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Discriminants of binary forms

The discriminant of a binary form

F (X ,Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n =

n∏
i=1

(αiX − βiY )

is given by D(F ) =
∏

1≤i<j≤n

(αiβj − αjβi )
2.

For U =
( a b

c d

)
we define FU(X ,Y ) := F (aX + bY , cX + dY ).

Properties:

(i) D(F ) is a homogeneous polynomial in Z[a0, . . . , an] of degree 2n− 2;

(ii) D(λFU) = λ2n−2(detU)n(n−1)D(F ) for every scalar λ and
2× 2-matrix U.
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GL(2,A)-equivalence of binary forms

Definition

Let A be a non-zero commutative ring. Two binary forms
F ,G ∈ A[X ,Y ] are called GL(2,A)-equivalent if there are ε ∈ A∗ and
U ∈ GL(2,A) such that G = εFU .

Fact:

Let F ,G ∈ A[X ,Y ] be two GL(2,A)-equivalent binary forms. Then
D(G ) = ηD(F ) for some η ∈ A∗.

For integral domains A of characteristic 0 and non-zero δ ∈ A, we
consider the “discriminant equation”

D(F ) ∈ δA∗ := {δη : η ∈ A∗} in binary forms F ∈ A[X ,Y ].

The solutions of this equation can be divided into GL(2,A)-equivalence
classes.
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A finiteness result over the S-integers

Let K be an algebraic number field and S a finite set of places of K ,
containing all infinite places. Denote by OS the ring of S-integers of K .

Theorem (Birch and Merriman, 1972)

Let n ≥ 2. Then there are only finitely many GL(2,OS)-equivalence
classes of binary forms F ∈ OS [X ,Y ] of degree n with D(F ) ∈ O∗S .

The proof of Birch and Merriman is ineffective, in that it does not give a
method to determine the equivalence classes.

E. and Győry (1991) proved in an effective way that for every
δ ∈ OS \ {0}, the binary forms F ∈ OS [X ,Y ] with

D(F ) ∈ δO∗S

lie in only finitely many GL(2,OS)-eq. classes. This was recently
sharpened.
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An effective result

For α ∈ Q, denote by h(α) the absolute logarithmic Weil height of α.
For a binary form F ∈ Q[X ,Y ], define h(F ) := max h(coeff of F ).

Denote by |A| the cardinality of a set A.

Let K be a number field of degree d and S a finite set of places of K ,
containing all infinite places.

Theorem 1 (E., Győry, 2016(?))

Let n ≥ 4 and δ ∈ OS \ {0}. Then every binary form F ∈ OS [X ,Y ] of
degree n with D(F ) ∈ δO∗S is GL(2,OS)-equivalent to a binary form F ∗

for which
h(F ∗) ≤ C eff

1 (K ,S , n) · |OS/δOS |5n−3,

where C eff
1 (K ,S , n) is an effectively computable number, depending only

on K , S and n.

For binary forms of degree 2 or 3 one can deduce by elementary means a
similar result with h(F ∗) ≤ C eff

2 (K ,S) + 1
d · log |OS/δOS |.
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An outline of the proof (I)

Let F ∈ OS [X ,Y ] be a binary form of degree n ≥ 4 with D(F ) ∈ δO∗S .
Denote by L its splitting field over K , i.e., the smallest extension over K
over which F can be factorized into linear forms.
Write F (X ,Y ) =

∏n
i=1(αiX − βiY ) with αi , βi ∈ L.

I Apply effective finiteness results for S-unit equations to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1, where ∆pq := αpβq−αqβp (1 ≤ p < q ≤ n).

This leads to an effective upper bound in terms of K ,S , n, δ for the
heights of crijkl(F ) := ∆ij∆kl/∆ik∆jl (1 ≤ i < j < k < l ≤ n).
Notice that crijkl(F ) is the cross ratio of the four zeros
Pi := (βi : αi ),Pj ,Pk ,Pl ∈ P1(L) of F .
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An outline of the proof (II)

I We have an effective upper bound in terms of K ,S , n, δ for the
heights of the cross ratios crijkl(F ), for all binary forms F ∈ OS [X ,Y ]
of degree n with D(F ) ∈ δO∗S and all i , j , k , l ∈ {1, . . . , n}.

I Projective geometry and Galois invariance imply that if
F ,G ∈ OS [X ,Y ] are two binary forms of degree n ≥ 4 such that
crijkl(F ) = crijkl(G ) for all i , j , k, l then there is a unique projective
transformation defined over K mapping the zeros of F to those of
G . This means that F ,G are GL(2,K )-equivalent, i.e., G = λFU for
some λ ∈ K∗ and U ∈ GL(2,K ).

I Thus, the binary forms F ∈ OS [X ,Y ] of degree n with D(F ) ∈ δO∗S
lie in finitely many GL(2,K )-eq. classes, and each of them contains
a binary form with height below an effective bound in terms of
K ,S , n, δ.

I Using adèlic geometry of numbers one shows that each of these
GL(2,K )-eq. classes is the union of finitely many GL(2,OS)-eq.
classes, and that each of them contains a binary form with height
below an effective bound in terms of K ,S , n, δ.
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A function field analogue

Let A := C[t], K := C(t) with t a variable.
For a binary form F (X ,Y ) = a0X

n + a1X
n−1Y + · · ·+ anY

n ∈ A[X ,Y ],
put h(F ) := maxi deg ai .

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let δ ∈ A \ {0} and F ∈ A[X ,Y ] a binary form of degree n ≥ 4 with
D(F ) = δ. Then F is GL(2,A)-equivalent to a binary form F ∗ with

h(F ∗) ≤ n2 + 5n − 6 + (20 + n−1) deg δ.

Idea.

Write F (X ,Y ) =
∏n

i=1(αiX − βiY ) with αi , βi in the splitting field L of
F over K . Apply Mason’s abc-theorem for function fields to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1, where ∆pq := αpβq − αqβp (1 ≤ p < q ≤ n).
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A conjecture over number fields

Zhuang’s theorem can be translated into a conjecture over the ring of
S-integers in a number field K by replacing deg δ by 1

[K :Q] · log |OS/δOS |.

Conjecture

Let K be a number field of degree d and S a finite set of places of K ,
containing all infinite places. Further, let n ≥ 4, δ ∈ OS \ {0} and let
F ∈ OS [X ,Y ] be a binary form of degree n with D(F ) ∈ δO∗S .
Then F is GL(2,OS)-equivalent to a binary form F ∗ with

h(F ∗) ≤ C3(n,K ,S) +
C4

d
· log |OS/δOS | (C4 absolute constant).

Proof, assuming abc over number fields.

Follow Zhuang’s proof, and apply the abc-conjecture over number fields
instead of Mason’s abc-theorem to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1.
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The number of equivalence classes

Let as before K be a number field and S a finite set of places of K ,
containing all infinite places.

We now consider upper bounds for the number of GL(2,OS)-equivalence
classes of binary forms F ∈ OS [X ,Y ] with

D(F ) ∈ δO∗S , deg F = n.

We focus on the dependence on δ of such bounds.
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The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K , n ≥ 3 and δ ∈ OS \ {0}.
Then the number of GL(2,OS)-equivalence classes of binary forms
F ∈ OS [X ,Y ] such that

(1) D(F ) ∈ δO∗S , deg F = n, F has splitting field L over K

is at most C eff(n,K , |S |, ε) · |OS/δOS |(1/n(n−1))+ε for all ε > 0.

Idea of proof.

Write F (X ,Y ) =
∏n

i=1(αiX − βiY ) with αi , βi ∈ L.
Put ∆pq := αpβq −αqβp and apply estimates for the number of solutions
of S-unit equations to

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1.
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The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)
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is at most C eff(n,K , |S |, ε) · |OS/δOS |(1/n(n−1))+ε for all ε > 0.

The exponent 1
n(n−1) is best possible.

For instance, fix a binary form F0 ∈ OS [X ,Y ] of degree n with D(F0) 6= 0
and some non-zero a ∈ OS .

Then the binary forms Fb(X ,Y ) := F0(aX , bX + Y ) (b ∈ OS) all have
discriminant an(n−1)D(F0) =: δ, have the same splitting field, and lie in

�F0 |OS/aOS | �F0 |OS/δOS |1/n(n−1) GL(2,OS)-eq. classes.
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The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K , n ≥ 3 and δ ∈ OS \ {0}.
Then the number of GL(2,OS)-equivalence classes of binary forms
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Open problem: Can we get a similar upper bound without fixing the
splitting field L of the binary forms under consideration?
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The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K , n ≥ 3 and δ ∈ OS \ {0}.
Then the number of GL(2,OS)-equivalence classes of binary forms
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Open problem: Can we get a similar upper bound without fixing the
splitting field L of the binary forms under consideration?

If there is a binary form F ∈ OS [X ,Y ] with (1), then g := [L : K ] divides
n! and δg ∈ dL/KOS , where dL/K is the relative discriminant of L/K .

What is the number of such L? Maybe �K ,S,n,ε |OS/δOS |ε for all ε > 0?
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The invariant order of a binary form

Let A be any commutative ring 6= {0}. An A-order of rank n is a
commutative ring whose additive structure is a free A-module of rank n.

Following Nakagawa (1989) and Simon (2001), we attach to every binary
form F ∈ A[X ,Y ] of degree n an A-order AF of rank n, called the
invariant A-order of F , which has the following properties:

(i) If F ,G ∈ A[X ,Y ] are two GL(2,A)-equivalent binary forms, then
AF
∼= AG (as A-algebras);

(ii) AF determines D(F ) up to a factor from A∗. That is, if
F ,G ∈ A[X ,Y ] are binary forms with AF

∼= AG , then
D(G ) = ηD(F ) for some η ∈ A∗.

We will consider “equations”

AF
∼= O in binary forms F ∈ A[X ,Y ] (O given A-order).

Fix a solution F0 ∈ A[X ,Y ] and put δ := D(F0). Then every other
solution F satisfies D(F ) ∈ δA∗.
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Definition of the invariant order

Let for the moment A be an integral domain with quotient field K of
characteristic 0.

Let F (X ,Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ A[X ,Y ] be a binary

form that is irreducible over K .

Define L = K (θ) where F (θ, 1) = 0, let AF be the free A-module with
basis {1, ω1, . . . , ωn−1} where

ωi := a0θ
i + a1θ

i−1 + · · ·+ ai−1θ (i = 1, . . . , n − 1),

and let ωn := −an. Then for 1 ≤ i , j ≤ n − 1,

(*) ωiωj = −
∑

max(i+j−n,1)≤k≤i

ai+j−kωk +
∑

j<k≤min(i+j,n)

ai+j−kωk .

We call AF the invariant A-order of F .

We can use (*) to extend this to arbitrary commutative rings A and
arbitrary binary forms F .
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Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and
F (X ,Y ) = a0X

n + a1X
n−1Y + · · ·+ anY

n ∈ A[X ,Y ] any binary form.

The invariant A-order AF of F is the free A-module with basis
{1, ω1, . . . , ωn−1} with prescribed multiplication rules

ωiωj = −
∑

max(i+j−n,1)≤k≤i

ai+j−kωk +
∑

j<k≤min(i+j,n)

ai+j−kωk ∀i , j .

AF is indeed a commutative ring (commutative and associative).
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Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and
F (X ,Y ) = a0X

n + a1X
n−1Y + · · ·+ anY

n ∈ A[X ,Y ] any binary form.

The invariant A-order AF of F is the free A-module with basis
{1, ω1, . . . , ωn−1} with prescribed multiplication rules

ωiωj = −
∑

max(i+j−n,1)≤k≤i

ai+j−kωk +
∑

j<k≤min(i+j,n)

ai+j−kωk ∀i , j .

Properties:

(i) Let F ,G ∈ A[X ,Y ] be binary forms. Then

F ,G GL(2,A)-equivalent =⇒ AF
∼= AG ;

AF
∼= AG =⇒ D(G ) = ηD(F ) for some η ∈ A∗.

(ii) Let A be an integral domain with quotient field K of characteristic 0
and F ∈ A[X ,Y ] a binary form. Then

F irreducible over K ⇐⇒ AF integral domain;
D(F ) 6= 0 ⇐⇒ AF nilpotent-free.
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Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order
O of rank 3 there is precisely one GL(2,A)-equivalence class of cubic
forms F ∈ A[X ,Y ] with AF

∼= O.

This was proved by Delone and Faddeev (1940) for A = Z and Z-orders
O that are integral domains, thus with binary forms F that are irreducible
over Q.

Then this was extended to arbitrary Z-orders O of rank 3 by Gan, Gross
and Savin (2002).

The extension to arbitrary rings A is straightforward (follows also from
general unpublished work of Deligne).

The proof uses only elementary algebra.

Simon (2001) constructed number fields of degree n = 4 and of any
prime degree ≥ 5 whose rings of integers are not the invariant Z-order of
a binary form.
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Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K , containing the
infinite places. Denote by OS,F the invariant OS -order of a binary form
F ∈ OS [X ,Y ].

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Győry, 2016(?))

Let O be a nilpotent-free OS -order of rank n ≥ 4. Then the binary forms
F ∈ OS [X ,Y ] with

OS,F
∼= O

lie in at most

25n2|S| GL(2,OS)-equivalence classes if n is odd,

h2(S) · 25n2|S| GL(2,OS)-equivalence classes if n is even,

where h2(S) denotes the number of ideal classes of OS of order ≤ 2.

This upper bound has no dependence on O other than its rank.
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where h2(S) denotes the number of ideal classes of OS of order ≤ 2.

Bérczes, E. and Győry proved this result for OS -orders O that are inte-
gral domains, and with a slightly larger upper bound for the number of
equivalence classes. The general result is due to E. and Győry.



30/41

Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K , containing the
infinite places. Denote by OS,F the invariant OS -order of a binary form
F ∈ OS [X ,Y ].

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Győry, 2016(?))

Let O be a nilpotent-free OS -order of rank n ≥ 4. Then the binary forms
F ∈ OS [X ,Y ] with

OS,F
∼= O

lie in at most

25n2|S| GL(2,OS)-equivalence classes if n is odd,

h2(S) · 25n2|S| GL(2,OS)-equivalence classes if n is even,

where h2(S) denotes the number of ideal classes of OS of order ≤ 2.

For every even n ≥ 4 there are OS -orders O of rank n such that the
number of GL(2,OS)-equivalence classes of binary forms F ∈ OS [X ,Y ]
with OS,F

∼= O is at least h2(S)/n!.
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Generalizations to other integral domains

Many Diophantine results valid over rings of S-integers of number fields
have been generalized to integral domains of characteristic 0 that are
finitely generated as a Z-algebra.

Does it hold that for every such domain A, and every δ ∈ A \ {0}, resp.
nilpotent-free A-order O of rank n, the solutions of

D(F ) ∈ δA∗, AF
∼= O in binary forms F ∈ A[X ,Y ] of degree n

lie in only finitely many GL(2,A)-equivalence classes?

NO for D(F ) ∈ δA∗; YES for AF
∼= O (if A is integrally closed).
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D(F ) ∈ δA∗

Assume that A has non-zero elements a such that A/aA is infinite (e.g.,
A = Z[t], a = t).

Fix such a and choose a binary form F0 ∈ A[X ,Y ] with D(F0) 6= 0.

Then the binary forms Fb(X ,Y ) := F (aX , bX + Y ) (b ∈ A) satisfy

D(Fb) = δ := an(n−1)D(F0)

and lie in infinitely many GL(2,A)-equivalence classes.
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AF
∼= O

Theorem 3 (E.)

Let A be an integral domain of characteristic 0. Assume that A is finitely
generated as a Z-algebra and that A is integrally closed.

Further, let O be a nilpotent-free A-order of rank n ≥ 4.

Then the binary forms F ∈ A[X ,Y ] with AF
∼= O lie in at most

exp
(
c(A)n5

)
GL(2,A)-equivalence classes, where c(A) depends on A only.
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The main tool

The main tool in the proof of Theorem 3 is:

Theorem (Beukers and Schlickewei, 1996)

Let F be a field of characteristic 0, and let Γ be a subgroup of F∗ of finite
rank r . Then the equation

x + y = 1

has at most 216(r+1) solutions in x , y ∈ Γ.
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An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F ∈ A[X ,Y ] with
AF
∼= O. Write F =

∏n
i=1(αiX − βiY ) over the splitting field of F and

put ∆pq := αpβq − αqβp (1 ≤ p, q ≤ n).

I Prove that crijkl(F ) := ∆ij∆kl/∆ik∆jl ∈ Γijkl(O), where Γijkl(O) is a
multiplicative group of rank ≤ c1(A)n4, depending only on O.

I Applying the theorem of Beukers and Schlickewei to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1

conclude that for each cross ratio crijkl(F ) there are at most
exp

(
c2(A)n4

)
possible values.

I The cross ratios cr123l(F ) (l = 4, . . . , n) fix the GL(2,K )-equivalence
class of F .
Deduce that the binary forms F ∈ A[X ,Y ] with AF

∼= O lie in at
most exp

(
c2(A)n5

)
GL(2,K )-equivalence classes.

I Prove that each of these GL(2,K )-equivalence classes is the union of
at most c3(A) GL(2,A)-equivalence classes.



37/41

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F ∈ A[X ,Y ] with
AF
∼= O. Write F =

∏n
i=1(αiX − βiY ) over the splitting field of F and

put ∆pq := αpβq − αqβp (1 ≤ p, q ≤ n).

I Prove that crijkl(F ) := ∆ij∆kl/∆ik∆jl ∈ Γijkl(O), where Γijkl(O) is a
multiplicative group of rank ≤ c1(A)n4, depending only on O.

I Applying the theorem of Beukers and Schlickewei to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1

conclude that for each cross ratio crijkl(F ) there are at most
exp

(
c2(A)n4

)
possible values.

I The cross ratios cr123l(F ) (l = 4, . . . , n) fix the GL(2,K )-equivalence
class of F .
Deduce that the binary forms F ∈ A[X ,Y ] with AF

∼= O lie in at
most exp

(
c2(A)n5

)
GL(2,K )-equivalence classes.

I Prove that each of these GL(2,K )-equivalence classes is the union of
at most c3(A) GL(2,A)-equivalence classes.



38/41

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F ∈ A[X ,Y ] with
AF
∼= O. Write F =

∏n
i=1(αiX − βiY ) over the splitting field of F and

put ∆pq := αpβq − αqβp (1 ≤ p, q ≤ n).

I Prove that crijkl(F ) := ∆ij∆kl/∆ik∆jl ∈ Γijkl(O), where Γijkl(O) is a
multiplicative group of rank ≤ c1(A)n4, depending only on O.

I Applying the theorem of Beukers and Schlickewei to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1

conclude that for each cross ratio crijkl(F ) there are at most
exp

(
c2(A)n4

)
possible values.

I The cross ratios cr123l(F ) (l = 4, . . . , n) fix the GL(2,K )-equivalence
class of F .
Deduce that the binary forms F ∈ A[X ,Y ] with AF

∼= O lie in at
most exp

(
c2(A)n5

)
GL(2,K )-equivalence classes.

I Prove that each of these GL(2,K )-equivalence classes is the union of
at most c3(A) GL(2,A)-equivalence classes.



39/41

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F ∈ A[X ,Y ] with
AF
∼= O. Write F =

∏n
i=1(αiX − βiY ) over the splitting field of F and

put ∆pq := αpβq − αqβp (1 ≤ p, q ≤ n).

I Prove that crijkl(F ) := ∆ij∆kl/∆ik∆jl ∈ Γijkl(O), where Γijkl(O) is a
multiplicative group of rank ≤ c1(A)n4, depending only on O.

I Applying the theorem of Beukers and Schlickewei to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1

conclude that for each cross ratio crijkl(F ) there are at most
exp

(
c2(A)n4

)
possible values.

I The cross ratios cr123l(F ) (l = 4, . . . , n) fix the GL(2,K )-equivalence
class of F .
Deduce that the binary forms F ∈ A[X ,Y ] with AF

∼= O lie in at
most exp

(
c2(A)n5

)
GL(2,K )-equivalence classes.

I Prove that each of these GL(2,K )-equivalence classes is the union of
at most c3(A) GL(2,A)-equivalence classes.



40/41

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F ∈ A[X ,Y ] with
AF
∼= O. Write F =

∏n
i=1(αiX − βiY ) over the splitting field of F and

put ∆pq := αpβq − αqβp (1 ≤ p, q ≤ n).

I Prove that crijkl(F ) := ∆ij∆kl/∆ik∆jl ∈ Γijkl(O), where Γijkl(O) is a
multiplicative group of rank ≤ c1(A)n4, depending only on O.

I Applying the theorem of Beukers and Schlickewei to the identities

∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1

conclude that for each cross ratio crijkl(F ) there are at most
exp

(
c2(A)n4

)
possible values.

I The cross ratios cr123l(F ) (l = 4, . . . , n) fix the GL(2,K )-equivalence
class of F .
Deduce that the binary forms F ∈ A[X ,Y ] with AF

∼= O lie in at
most exp

(
c2(A)n5

)
GL(2,K )-equivalence classes.

I Prove that each of these GL(2,K )-equivalence classes is the union of
at most c3(A) GL(2,A)-equivalence classes.



41/41

Thank you for your
attention!


