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Discriminants of binary forms

The discriminant of a binary form

n
F(X,Y) = aX"+a X" 1Y + -+ 2,Y" = [[(iX = BiY)

i=1

is given by D(F) = H (aiff; — Oéjﬁi)2-

1<i<j<n

a

For U = ( i b ) we define Fy(X, Y) i= F(aX + bY, cX + dY).

d

Properties:

(i) D(F) is a homogeneous polynomial in Z|ag, . . ., a,] of degree 2n—2;

(i) D(\Fy) = \?"=2(det U)""=YD(F) for every scalar \ and
2 X 2-matrix U.



GL(2, A)-equivalence of binary forms

Definition

Let A be a non-zero commutative ring. Two binary forms
F,G € A[X, Y] are called GL(2, A)-equivalent if there are ¢ € A* and
U € GL(2,A) such that G = eFy.

Fact:

Let F, G € A[X, Y] be two GL(2, A)-equivalent binary forms. Then
D(G) = nD(F) for some n € A*.

For integral domains A of characteristic 0 and non-zero § € A, we
consider the “discriminant equation”
D(F) € A" ;== {én: n € A"} in binary forms F € A[X, Y].

The solutions of this equation can be divided into GL(2, A)-equivalence
classes.



A finiteness result over the S-integers

Let K be an algebraic number field and S a finite set of places of K,
containing all infinite places. Denote by Os the ring of S-integers of K.

Theorem (Birch and Merriman, 1972)

Let n > 2. Then there are only finitely many GL(2, Os)-equivalence
classes of binary forms F € Os[X, Y] of degree n with D(F) € O%.

The proof of Birch and Merriman is ineffective, in that it does not give a
method to determine the equivalence classes.

E. and Gy&ry (1991) proved in an effective way that for every
d € Os \ {0}, the binary forms F € Os[X, Y] with

D(F) € 60

lie in only finitely many GL(2, Os)-eq. classes. This was recently
sharpened.



An effective result

For o € Q, denote by h() the absolute logarithmic Weil height of .
For a binary form F € Q[X, Y], define h(F) := max h(coeff of F).

Denote by |.A| the cardinality of a set A.

Let K be a number field of degree d and S a finite set of places of K,
containing all infinite places.

Theorem 1 (E., Gyory, 2016(?))

Let n> 4 and § € Os \ {0}. Then every binary form F € Os[X, Y] of
degree n with D(F) € 0% is GL(2, Os)-equivalent to a binary form F*
for which

h(F*) < Cleff(Kvsv n) : |OS/5OS|5n_37

where Cf(K, S, n) is an effectively computable number, depending only
on K, S and n.

For binary forms of degree 2 or 3 one can deduce by elementary means a
similar result with h(F*) < C§%(K, S) + % - log|Os /6 Os|.



An outline of the proof (1)

Let F € Os[X, Y] be a binary form of degree n > 4 with D(F) € 6O¢.
Denote by L its splitting field over K, i.e., the smallest extension over K
over which F can be factorized into linear forms.

Write F(X,Y) =T[_;(c;X — 3;Y) with o;, B; € L.

> Apply effective finiteness results for S-unit equations to the identities

DAy | Aply
m+ AJikAjl =1, where Ay = apfg—qfp (1 < p<qg<n).
This leads to an effective upper bound in terms of K, S, n,§ for the
heights of Cl’;jk/(F) = A;jAk//A,'kAj/ (1 <i<j<k<lI< n).
Notice that crjjs(F) is the cross ratio of the four zeros

P; = (,8, : Oé,')7 Pj, Pk, P e Pl(L) of F.



An outline of the proof (Il)

» We have an effective upper bound in terms of K, S, n,§ for the
heights of the cross ratios crjj(F), for all binary forms F € Os[X, Y]
of degree n with D(F) € 0% and all i,j, k,/ € {1,...,n}.
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heights of the cross ratios crjj(F), for all binary forms F € Os[X, Y]
of degree n with D(F) € 0% and all i,j, k,/ € {1,...,n}.

» Projective geometry and Galois invariance imply that if
F,G € Os[X, Y] are two binary forms of degree n > 4 such that
crijui(F) = criju(G) for all i, j, k, | then there is a unique projective
transformation defined over K mapping the zeros of F to those of
G. This means that F, G are GL(2, K)-equivalent, i.e., G = \Fy for
some A € K* and U € GL(2, K).
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An outline of the proof (Il)

» We have an effective upper bound in terms of K, S, n,§ for the
heights of the cross ratios crjj(F), for all binary forms F € Os[X, Y]
of degree n with D(F) € 0% and all i,j, k,/ € {1,...,n}.

» Projective geometry and Galois invariance imply that if
F,G € Os[X, Y] are two binary forms of degree n > 4 such that
crijui(F) = criju(G) for all i, j, k, | then there is a unique projective
transformation defined over K mapping the zeros of F to those of
G. This means that F, G are GL(2, K)-equivalent, i.e., G = \Fy for
some A € K* and U € GL(2, K).

> Thus, the binary forms F € Os[X, Y] of degree n with D(F) € §O¢
lie in finitely many GL(2, K)-eq. classes, and each of them contains
a binary form with height below an effective bound in terms of
K,S,n,9.

» Using adélic geometry of numbers one shows that each of these
GL(2, K)-eq. classes is the union of finitely many GL(2, Os)-eq.
classes, and that each of them contains a binary form with height
below an effective bound in terms of K, S, n,d. O



A function field analogue

Let A:=CJ[t], K := C(t) with t a variable.

For a binary form F(X,Y) = aoX" + a1 X" 1Y + .-+ a,Y" € A[X, Y],
put h(F) := max; deg a;.

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let § € A\ {0} and F € A[X, Y] a binary form of degree n > 4 with
D(F)=246. Then F is GL(2, A)-equivalent to a binary form F* with

h(F*) < n?>4+5n—6+ (20 + n~1)degé.



A function field analogue

Let A:=CJ[t], K := C(t) with t a variable.

For a binary form F(X,Y) = aoX" + a1 X" 1Y + .-+ a,Y" € A[X, Y],
put h(F) := max; deg a;.

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let § € A\ {0} and F € A[X, Y] a binary form of degree n > 4 with
D(F)=246. Then F is GL(2, A)-equivalent to a binary form F* with

h(F*) < n?>4+5n—6+ (20 + n~1)degé.

Idea.
Write F(X,Y) = [[_;(c;X — 8;Y) with «, 3 in the splitting field L of
F over K. Apply Mason's abc-theorem for function fields to the identities

AjAy " AjAj

=1, where A,, ==« — @ | < s @<
AN YA RRVAN AN Pq pBq aBp ( p<gq )

O



A conjecture over number fields

Zhuang's theorem can be translated into a conjecture over the ring of
S-integers in a number field K by replacing deg § by [Ki:b] -log |0s/80s)|.



A conjecture over number fields

Zhuang's theorem can be translated into a conjecture over the ring of
S-integers in a number field K by replacing deg § by [K;EQ] -log |0s/80s)|.

Conjecture

Let K be a number field of degree d and S a finite set of places of K,
containing all infinite places. Further, let n >4, 5§ € Os \ {0} and let
F € Os[X, Y] be a binary form of degree n with D(F) € 6 O%.

Then F is GL(2, Os)-equivalent to a binary form F* with

h(F*) < G(n,K,S) + % -log|0s/d0s| (C4 absolute constant).

Proof, assuming abc over number fields.

Follow Zhuang's proof, and apply the abc-conjecture over number fields
instead of Mason's abc-theorem to the identities
DAy DpAy

el 0
VAV A AN ANT



The number of equivalence classes

Let as before K be a number field and S a finite set of places of K,
containing all infinite places.

We now consider upper bounds for the number of GL(2, Os)-equivalence
classes of binary forms F € Os[X, Y] with

D(F) € 605, degF =n.

We focus on the dependence on ¢ of such bounds.



The number of equivalence classes

Theorem (Bérczes, E., Gyory, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K, n > 3 and 6 € Os \ {0}.

Then the number of GL(2, Os)-equivalence classes of binary forms
F € Os[X, Y] such that

(1) D(F) € 605, degF =n, F has splitting field L over K

is at most C*T(n, K,|S|,€) - |0s/50s|(/"(=1)+€  for al € > 0.

Idea of proof.

Write F(X, Y) = Hle(a,-X = ﬂ,Y) with a,-,B,- e L.
Put Apq := apfq — agBp and apply estimates for the number of solutions
of S-unit equations to
AjAy N Al _ 1 ¥
Apdj Ayl



The number of equivalence classes

Theorem (Bérczes, E., Gyory, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K, n > 3 and ¢ € Os \ {0}.

Then the number of GL(2, Os)-equivalence classes of binary forms
F € Os[X, Y] such that
(1) D(F) € 605, degF =n, F has splitting field L over K

is at most C*¥(n, K, |S|,€) - |0s /5 Os|(t/"(n=1)+e for all € > 0.

The exponent ﬁ is best possible.

For instance, fix a binary form Fy € Os[X, Y] of degree n with D(fp) # 0
and some non-zero a € Os.

Then the binary forms Fp(X,Y) := Fo(aX,bX + Y) (b € Os) all have
discriminant a"("~YUD(Fy) =: §, have the same splitting field, and lie in

> |0s/a0s| >F, |0s/50s|*/"n=1) GL(2, Os)-eq. classes.
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Open problem: Can we get a similar upper bound without fixing the
splitting field L of the binary forms under consideration?



The number of equivalence classes

Theorem (Bérczes, E., Gyory, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K, n > 3 and ¢ € Os \ {0}.

Then the number of GL(2, Os)-equivalence classes of binary forms
F € Os[X, Y] such that

(1) D(F) € 605, degF =n, F has splitting field L over K

is at most C*¥(n, K, |S|,€) - |0s /5 Os|(t/"(n=1)+e for all € > 0.

Open problem: Can we get a similar upper bound without fixing the
splitting field L of the binary forms under consideration?

If there is a binary form F € Os[X, Y] with (1), then g := [L : K] divides
nl and 6% € 0,k Os, where 0 /i is the relative discriminant of L/K.
What is the number of such L? Maybe <k s n |Os/00s|¢ for all € > 07



The invariant order of a binary form

Let A be any commutative ring # {0}. An A-order of rank n is a
commutative ring whose additive structure is a free A-module of rank n.

Following Nakagawa (1989) and Simon (2001), we attach to every binary
form F € A[X, Y] of degree n an A-order Ar of rank n, called the
invariant A-order of F, which has the following properties:

(i) If F, G € A[X, Y] are two GL(2, A)-equivalent binary forms, then
Ar = Ag (as A-algebras);

(ii) Ag determines D(F) up to a factor from A*. That is, if
F, G € A[X, Y] are binary forms with Af = Ag, then
D(G) = nD(F) for some n € A*.



The invariant order of a binary form

Let A be any commutative ring # {0}. An A-order of rank n is a
commutative ring whose additive structure is a free A-module of rank n.

Following Nakagawa (1989) and Simon (2001), we attach to every binary
form F € A[X, Y] of degree n an A-order Ar of rank n, called the
invariant A-order of F, which has the following properties:

(i) If F, G € A[X, Y] are two GL(2, A)-equivalent binary forms, then
Ar = Ag (as A-algebras);

(ii) Ag determines D(F) up to a factor from A*. That is, if
F, G € A[X, Y] are binary forms with Af = Ag, then
D(G) = nD(F) for some n € A*.

We will consider “equations”
Af = O in binary forms F € A[X, Y] (O given A-order).

Fix a solution Fy € A[X, Y] and put ¢ := D(F). Then every other
solution F satisfies D(F) € 0A*.



Definition of the invariant order

Let for the moment A be an integral domain with quotient field K of
characteristic 0.

Let F(X,Y) = aoX" + ai X" 'Y +---+a,Y" € A[X, Y] be a binary
form that is irreducible over K.

Define L = K(6) where F(0,1) =0, let Ar be the free A-module with
basis {1, w1, ...,wy—1} where

wii=apl + a0+ +a;_10 (i=1,...,n=1),

and let w, := —a,. Thenfor 1 <i,j<n-1,
(*) wiw; = — Z ajpj—kWk + Z Ajqj—kWk-
max(i+j—n,1)<k<i J<k<min(i+j,n)

We call Af the invariant A-order of F.

We can use (*) to extend this to arbitrary commutative rings A and
arbitrary binary forms F.



Extension to arbitrary rings and binary forms

Definition:
Let A be an arbitrary non-zero commutative ring and
F(X,Y)=aoX"+ a1 X""1Y + .-+ a,Y" € A[X, Y] any binary form.

The invariant A-order Ar of F is the free A-module with basis

{1,w1,...,ws—1} with prescribed multiplication rules
Wiwj = — g Aj4j—kWk + E ajtj_kwi Vi, j.
max(i+j—n,1)<k<i Jj<k<min(i+j,n)

Af is indeed a commutative ring (commutative and associative).



Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and
F(X,Y)=aoX"+ a1 X""1Y + .-+ a,Y" € A[X, Y] any binary form.

The invariant A-order Ar of F is the free A-module with basis

{1,w1,...,ws—1} with prescribed multiplication rules
wjwj = — E Aj+j—kWk + E it j—kWk Vi, J.
max(i+j—n,1)<k<i J<k<min(i+j,n)
Properties:

(i) Let F, G € A[X, Y] be binary forms. Then
F,G GL(2,A)-equivalent = Ar = Ag;
ArF =2 A¢ = D(G) = nD(F) for some n € A*.
(ii) Let A be an integral domain with quotient field K of characteristic 0
and F € A[X, Y] a binary form. Then

F irreducible over K <= Af integral domain;
D(F) # 0 <= Af nilpotent-free.



Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order

O of rank 3 there is precisely one GL(2, A)-equivalence class of cubic
forms F € A[X, Y] with Ar = O.
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Let A be an arbitrary non-zero commutative ring. Then for every A-order
O of rank 3 there is precisely one GL(2, A)-equivalence class of cubic
forms F € A[X, Y] with Ar = O.

This was proved by Delone and Faddeev (1940) for A = Z and Z-orders
O that are integral domains, thus with binary forms F that are irreducible
over Q.

Then this was extended to arbitrary Z-orders O of rank 3 by Gan, Gross
and Savin (2002).

The extension to arbitrary rings A is straightforward (follows also from
general unpublished work of Deligne).

The proof uses only elementary algebra.



Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order
O of rank 3 there is precisely one GL(2, A)-equivalence class of cubic
forms F € A[X, Y] with Ar = O.

This was proved by Delone and Faddeev (1940) for A = Z and Z-orders
O that are integral domains, thus with binary forms F that are irreducible
over Q.

Then this was extended to arbitrary Z-orders O of rank 3 by Gan, Gross
and Savin (2002).

The extension to arbitrary rings A is straightforward (follows also from
general unpublished work of Deligne).

The proof uses only elementary algebra.

Simon (2001) constructed number fields of degree n =4 and of any
prime degree > 5 whose rings of integers are not the invariant Z-order of
a binary form.



Quantitative results for orders of rank > 4

Let K be a number field and S a finite set of places of K, containing the
infinite places. Denote by Os ¢ the invariant Os-order of a binary form
Fe Os[X, Y].

Theorem 2 (Bérczes, E. and Gyoéry, 2004; E. and Gyéry, 2016(?))

Let O be a nilpotent-free Os-order of rank n > 4. Then the binary forms
F € Os[X, Y] with
OsrF=0

lie in at most

25r°!S| GL(2, Os)-equivalence classes if n is odd,

ha(S) - 2518 GL(2, Os)-equivalence classes if n is even,

where hy(S) denotes the number of ideal classes of Os of order < 2.

This upper bound has no dependence on O other than its rank.



Quantitative results for orders of rank > 4

Let K be a number field and S a finite set of places of K, containing the
infinite places. Denote by Os ¢ the invariant Os-order of a binary form
Fe Os[X, Y].

Theorem 2 (Bérczes, E. and Gyoéry, 2004; E. and Gyéry, 2016(?))

Let O be a nilpotent-free Os-order of rank n > 4. Then the binary forms
F € Os[X, Y] with
OsrF=0

lie in at most
25r°!S| GL(2, Os)-equivalence classes if n is odd,

ha(S) - 2518 GL(2, Os)-equivalence classes if n is even,
where hy(S) denotes the number of ideal classes of Os of order < 2.
Bérczes, E. and Gydry proved this result for Os-orders O that are inte-

gral domains, and with a slightly larger upper bound for the number of
equivalence classes. The general result is due to E. and Gyéry.



Quantitative results for orders of rank > 4

Let K be a number field and S a finite set of places of K, containing the
infinite places. Denote by Os ¢ the invariant Os-order of a binary form
Fe Os[X, Y].

Theorem 2 (Bérczes, E. and Gyoéry, 2004; E. and Gyéry, 2016(?))

Let O be a nilpotent-free Os-order of rank n > 4. Then the binary forms
F € Os[X, Y] with
OsrF=0

lie in at most
25r°!S| GL(2, Os)-equivalence classes if n is odd,

ha(S) - 2518 GL(2, Os)-equivalence classes if n is even,
where hy(S) denotes the number of ideal classes of Os of order < 2.
For every even n > 4 there are Os-orders O of rank n such that the

number of GL(2, Os)-equivalence classes of binary forms F € Os[X, Y]
with Os r = O is at least hy(S)/n!.



Generalizations to other integral domains

Many Diophantine results valid over rings of S-integers of number fields
have been generalized to integral domains of characteristic 0 that are
finitely generated as a Z-algebra.

Does it hold that for every such domain A, and every § € A\ {0}, resp.
nilpotent-free A-order O of rank n, the solutions of

D(F) € 6A*, Ar = O in binary forms F € A[X, Y] of degree n

lie in only finitely many GL(2, A)-equivalence classes?



Generalizations to other integral domains

Many Diophantine results valid over rings of S-integers of number fields
have been generalized to integral domains of characteristic 0 that are
finitely generated as a Z-algebra.

Does it hold that for every such domain A, and every § € A\ {0}, resp.
nilpotent-free A-order O of rank n, the solutions of

D(F) € 6A*, Ar = O in binary forms F € A[X, Y] of degree n

lie in only finitely many GL(2, A)-equivalence classes?

NO for D(F) € §A*; YES for Ar = O (if A is integrally closed).



D(F) € §A*

Assume that A has non-zero elements a such that A/aA is infinite (e.g.,
A=1Z[t], a=1).

Fix such a and choose a binary form Fy € A[X, Y] with D(Fo) # 0.
Then the binary forms Fp(X,Y) := F(aX,bX + Y) (b € A) satisfy

D(Fy) = 6 := a"" "V D(Fy)

and lie in infinitely many GL(2, A)-equivalence classes.



Theorem 3 (E.)

Let A be an integral domain of characteristic 0. Assume that A is finitely
generated as a Z-algebra and that A is integrally closed.

Further, let O be a nilpotent-free A-order of rank n > 4.
Then the binary forms F € A[X, Y] with Ar = O lie in at most
exp (c(A)n°)

GL(2, A)-equivalence classes, where c(A) depends on A only.



The main tool

The main tool in the proof of Theorem 3 is:

Theorem (Beukers and Schlickewei, 1996)

Let F be a field of characteristic 0, and let I be a subgroup of F* of finite
rank r. Then the equation
x+y=1

has at most 2190+1) solutions in x,y € T.



An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F € A[X, Y] with
Ar = 0. Write F = [[7_;(a;X — B3;Y) over the splitting field of F and
put Apg :=apfBq —aghbp (1< p,q<n).
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multiplicative group of rank < ¢;(A)n*, depending only on O.



An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F € A[X, Y] with
Ar = 0. Write F = [[7_;(a;X — B3;Y) over the splitting field of F and
put Apg :=apfBq —aghbp (1< p,q<n).
» Prove that cr;jk/(F) = A,'J'Ak//A,'kAj/ S F,-jk,(O), where F,-J-k,(O) is a
multiplicative group of rank < c;(A)n*, depending only on O.
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NjAy  DAply
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conclude that for each cross ratio crjjy(F) there are at most
exp (c2(A)n*) possible values.
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An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form F € A[X, Y] with
Ar = 0. Write F = [[7_;(a;X — B3;Y) over the splitting field of F and
put Apg :=apfBq —aghbp (1< p,q<n).
» Prove that cr;jk/(F) = A,'J'Ak//A,'kAj/ S F,-jk,(O), where F,-J-k,(O) is a
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exp (c2(A)n*) possible values.

» The cross ratios crio3/(F) (I =4, ..., n) fix the GL(2, K)-equivalence
class of F.
Deduce that the binary forms F € A[X, Y] with Af = O lie in at
most exp (c2(A)n®) GL(2, K)-equivalence classes.

=1

» Prove that each of these GL(2, K)-equivalence classes is the union of
at most c3(A) GL(2, A)-equivalence classes. O



Thank you for your
attention!



