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Abstract. An s-valued vector space over a field K is a tuple V = (V,w1, . . . , ws),

consisting of a finite dimensional K-vector space V and valuations w1, . . . , ws on V .

Such spaces (in an other but equivalent formulation) were introduced by Faltings

and Wüstholz [6] in their then new proof of W.M. Schmidt’s Subspace Theorem

from Diophantine approximation. An important ingredient of their proof was that

the tensor product of two semistable s-valued vector spaces is again semistable,

and they proved this using an analogous existing result for vector bundles of

Narasimhan and Seshadri [10]. Later, various other proofs of this fact were given,

all of them highly non-elementary. The most down-to-earth proof was given by

Faltings himself, in [5], where he used modules over the formal power series ring

K[[t]].

In the present paper, we have worked out Faltings’ arguments from this last

paper in detail, and translated them into elementary linear algebra. We proved

various generalizations of the semistability result of Faltings and Wüstholz. We

recall the definition of weighted Harder-Narasimhan filtration and correspond-

ing Harder-Narasimhan valuation of an s-valued vector space from [6], and show

among other things that taking the Harder-Narasimhan valuation commutes with

taking exterior powers, symmetric powers, base extensions and tensor products.

This contains as a special case the semistability result of Faltings and Wüstholz

mentioned above, and moreover that exterior powers, symmetric powers and base

extensions of semistable s-valued vector spaces are semistable. Further, we give

a procedure to compute the Harder-Narasimhan valuation of an s-valued vector

space. Our results are valid over fields K of any characteristic.

1. Introduction and results

Let K be a field (of any characteristic) and V a K-vector space. A valuation on

V is a function w : V → R ∪ {∞} such that

(1.1)

{
w(x) =∞⇐⇒ x = 0, w(λx) = w(x) for x ∈ V, λ ∈ K∗,

w(x+ y) > min(w(x), w(y)) for x, y ∈ V.
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Vector spaces with valuations were studied among others by Fuchs [7]. An s-valued

K-vector space is a tuple V = (V,w1, . . . , ws), where V is a K-vector space and

w1, . . . , ws are valuations on V . A multi-valued K-vector space is an s-valued K-

vector space for any s > 1.

We assume throughout this paper that V is finite-dimensional and non-zero. Let

w be a valuation on V . If α1 > α2 > · · · is any sequence of values assumed by

w on V \ {0}, then the sets Fi := {x ∈ V : w(x) > αi} (i = 1, 2, . . .) form a

strictly increasing sequence of linear subspaces of V , which necessarily has to be

finite. Hence w assumes only finitely many values on V \ {0}, say α1 > · · · > αr.

We call the corresponding sequence of subspaces

(1.2) (0) = F0⊂6= F1⊂6= · · · ⊂6= Fr = V, where Fi = {x ∈ V : w(x) > αi}

the (unweighted) filtration of w, and the tuple

(1.3)
(
(0) = F0⊂6= F1⊂6= · · · ⊂6= Fr = V, α1 > · · · > αr

)
the weighted filtration of w. Conversely, the weighted filtration (1.3) uniquely de-

termines w, as w(x) = αi for x ∈ Fi \ Fi−1. In contrast to the literature, we work

with multi-valued vector spaces instead of multi-filtered vector spaces (vector spaces

endowed with a finite number of weighted filtrations) since in our set-up, valuations

are more convenient. But it should be kept in mind that both notions are equivalent.

In the 1970s, W.M. Schmidt [12] (see also [13]) and later in a more general form

Schlickewei [11] proved a central theorem in Diophantine approximation, the Sub-

space Theorem. Roughly speaking, this asserts that the solutions of a particular

system of Diophantine inequalities with unknowns from Pn(K) with K an algebraic

number field, lie in finitely many proper linear subspaces of Pn(K).

In their landmark paper [6], Faltings and Wüstholz gave an entirely new proof

of this Subspace Theorem, which depends heavily on multi-valued vector spaces (in

fact, Faltings and Wüstholz used multi-filtered vector spaces). They observed that

for finite dimensional s-valued vector spaces there are a semistability theory, and

thus a Harder-Narasimhan filtration. They attached a multi-valued vector space to

a system of Diophantine inequalities as considered in the Subspace Theorem, and

pointed out, that the Harder-Narasimhan filtration of this space plays an important

role in a more refined analysis of this system of inequalities. See Ballaÿ [1, Chap.

3] for another approach to their proof.

There is a natural notion of tensor product of s-valued vector spaces. One of the

key tools in the proof of Faltings and Wüstholz in [6] is their Theorem 4.1, asserting
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that if V , W are semistable s-valued vector spaces over a field K of characteristic 0,

then their tensor product V⊗KW is also semistable. Faltings and Wüstholz proved

this using semistability theory for vector bundles over algebraic curves, developed by

Narasimhan and Seshadri [10]. Shortly afterwards, Totaro [15] gave another proof,

also valid only for fields of characteristic 0, in which he linked the semistability of

an s-valued vector space V = (V,w1, . . . , ws) to the existence of a suitable metric

on V . Then Faltings [5] gave a new proof, valid for fields K of any characteristic,

based on an argument using modules over the power series ring K[[t]], inspired by

work of Lafaille [9]. Finally, Fujimori [8] gave a proof, based on Schmidt’s Subspace

Theorem, in which he more or less converted the arguments of Faltings and Wüstholz

(this was allowed since Schmidt and Schlickewei had already given a proof of the

Subspace Theorem independent of multi-valued vector spaces). In Fujimori’s proof

one has to assume that K is an algebraic number field.

It is rather unsatisfactory that the semistability result of Faltings and Wüstholz,

which is in essence just linear algebra, could so far be proved only using techniques

going far beyond linear algebra. In fact, Faltings’ K[[t]]-modules argument from [5]

can be translated into terms of elementary linear algebra, but it uses a limit argument

for sequences of valuations. What remains open is to give a fully combinatorial proof,

avoiding this limit argument.

In the present paper, we have worked out in detail Faltings’ K[[t]]-modules argu-

ment, translated into elementary linear algebra. This approach is valid for fields K

of any characteristic. Our main result is a central theorem, which relates the Harder-

Narasimham valuation of a given multi-valued K-vector space to a particular binary

operator on the collection of valuations on the ambient vector space. From this cen-

tral theorem we deduce the semistability result of Faltings and Wüstholz for tensor

products. More generally, for not necessarily semistable s-valued vector spaces we

show that the Harder-Narasimhan valuation commutes with tensor products in the

sense that the Harder-Narasimhan valuation of the tensor product of two s-valued

vector spaces is the (to be defined) tensor product of their Harder-Narasimhan val-

uations. Likewise we show that the Harder-Narasimhan valuation commutes with

exterior powers, symmetric powers and base extensions. Using our result on exte-

rior powers we describe a(n unfortunately very inefficient) method to compute the

Harder-Narasimhan valuation of a given multi-valued vector space.

We first recall the necessary definitions, and then state our theorems.
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1.1. Definitions. Throughout this paper, K is any field. We say that an s-valued

K-vector space V = (V,w1, . . . , ws) is non-zero if V is non-zero and define the

dimension of V to be that of V . By ⊗ we always denote the tensor product with

respect to K. A morphism from an s-valued K-vector space V = (V,w1, . . . , ws) to

another s-valued K-vector space V ′ = (V ′, w′1, . . . , w
′
s) is a K-linear map ϕ : V → V ′

such that for i = 1, . . . , s we have w′i◦ϕ > wi, i.e., w′i(ϕ(x)) > wi(x) for x ∈ V . Note

that ϕ is an isomorphism precisely if ϕ is bijective and w′i ◦ ϕ = wi for i = 1, . . . , s.

Clearly, the composition of two morphisms of s-valued K-vector spaces is another

such morphism.

In what follows, V is a non-zero, finite-dimensional K-vector space. For a valua-

tion w on V with weighted filtration (1.3) we define

w(V ) :=
r∑
i=1

αi(dimFi − dimFi−1).

Then the slope of an s-valued vector space V = (V,w1, . . . , ws) is defined by

µ(V ) :=
1

dimV

s∑
i=1

wi(V ).

Let U be a linear subspace of V . Denote by xU the image of x under the canonical

map V → V/U . A valuation w on V induces valuations w|U on U , which is the

restriction of w to U , and wU on V/U , given by

(1.4) wU(y) := max{w(x) : x ∈ V, xU = y}.

Now for a given s-valued vector space V = (V,w1, . . . , ws) we define the s-valued sub-

space U := (U,w1|U , . . . , ws|U) and s-valued quotient V /U := (V/U,wU1 , . . . , w
U
s ).

A (by default finite dimensional) s-valued vector space V is called semistable

if µ(U) 6 µ(V ) for every non-zero linear subspace U of V . A not necessarily

semistable s-valued vector space V has a maximal destabilizing subspace V1, which

is such that µ(U) 6 µ(V1) for every non-zero linear subspace U of V and such that

all subspaces U with µ(U) = µ(V1) are contained in V1. This leads to the weighted

Harder-Narasimhan filtration(
(0) = V0⊂6= V1⊂6= · · · ⊂6= Vr = V, µ1 > · · · > µr

)
,

where Vi is such that Vi/Vi−1 is the maximal destabilizing subspace of V /Vi−1 and

µi := µ(Vi/Vi−1) for i = 1, . . . , r. The corresponding Harder-Narasimham valuation
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wHN
V

of V is given by wHN
V

(x) := µi for x ∈ Vi \Vi−1, i = 1, . . . , r. For further details

we refer to Section 2.

Given a non-zero, finite-dimensional K-vector space V , we denote by W(V ) the

collection of valuations on V . For w ∈ W(V ), define

minw := min{w(x) : x ∈ V }, maxw := max{w(x) : x ∈ V \ {0}}.

Let W be a subcollection of W(V ) that is bounded from below, i.e., there is C ∈ R
with minw > C for w ∈ W . Then the infimum of W , given by

(infW)(x) := inf{w(x) : w ∈ W} for x ∈ V,

defines a valuation on V .

Let V1, . . . , Vk,W be finite-dimensional K-vector spaces and ρ : V1×· · ·×Vk → W

a multi-linear map such that ρ(V1×· · ·×Vk) generates W . Further, let wi be a

valuation on Vi, for i = 1, . . . , k. We define a valuation ρ(w1, . . . , wk) on W by

ρ(w1, . . . , wk) := inf
{
w ∈ W(W ) : w(ρ(x1, . . . , xk)) >

k∑
j=1

wj(xj)(1.5)

for all x1 ∈ V1, . . . , xk ∈ Vk
}
.

This is a well-defined valuation on W . For letW denote the collection of valuations

on the right-hand side. First,W is non-empty, for instance it contains the valuation

that is equal to
∑k

j=1 maxwj on W \ {0}. Second, W is bounded from below. For

W consists of sums of elements ρ(x1, . . . , xk) with xj ∈ Vj for j = 1, . . . , k and

so by (1.1), any w ∈ W assumes its minimum at such an element. Now clearly,

minw >
∑k

j=1 minwj for w ∈ W .

Notice that with ρ : V → V/U : x 7→ xU , the definitions (1.5) and (1.4) coincide.

By specializing (1.5) to W = V1⊗· · ·⊗Vk (tensor product), ρ : (x1, . . . , xk) 7→
x1⊗· · ·⊗xk we get a valuation ρ(w1, . . . , wk) =: w1⊗· · ·⊗wk on V1⊗· · ·⊗Vk. Taking

Vi = V,wi = w for i = 1, . . . , k where 1 6 k 6 n, W = ∧kV (k-th exterior power),

ρ : (x1, . . . , xk) 7→ x1 ∧ · · · ∧ xk we get a valuation ∧kw on ∧kV . Lastly, taking

Vi = V , wi = w for i = 1, . . . , k where k > 1, W = Sk V (k-th symmetric power),

ρ : (x1, . . . , xk) 7→ x1 · · ·xk, we get a valuation Sk w on Sk V .

Let again V be a finite-dimensional K-vector space and w a valuation on V . For

any extension field L of K we define a valuation w⊗L on the base extension V ⊗L
by

(1.6) w⊗L := inf{w′ ∈ W(V ⊗L) : w′(x⊗ξ) > w(x) for all x ∈ V, ξ ∈ L}.
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Lastly, given two finite-dimensional K-vector spaces V , V ′ and valuations w on V

and w′ on V ′ we define a valuation on the (external) direct sum V ⊕V ′ by

(w⊕w′)(x, y) := min(w(x), w′(y)) for (x, y) ∈ V ⊕V ′.

Now the k-th exterior power, k-th symmetric power and base extension of a finite-

dimensional s-valued vector space V = (V,w1, . . . , ws) are given by

∧kV := (∧kV,∧kw1, . . . ,∧kws), Sk V := (Sk V, Sk w1, . . . , S
k ws),

V ⊗L := (V ⊗L,w1⊗L, . . . , ws⊗L),

while the direct sum and tensor product of two s-valued vector spaces V = (V,w1, . . . , ws)

and V ′ = (V ′, w′1, . . . , w
′
s) are given by

V ⊕V ′ := (V ⊕V ′, w1⊕w′1, . . . , ws⊕w′s), V ⊗V ′ := (V ⊗V ′, w1⊗w′1, . . . , ws⊗w′s).

1.2. Results. We start with formulating our central result, which we proved by

following the ideas of Faltings from [5]. From this central theorem we will deduce

our other results.

Let V be a non-zero, finite-dimensional K-vector space. On its collection of

valuations W(V ) we define a binary operator ∗ as follows:

(1.7) w1 ∗ w2 := inf{w ∈ W(V ) : w > w1 + w2} for w1, w2 ∈ W(V );

this defines a valuation on V since minw > minw1 + minw2 for every valuation w

in the collection on the right-hand side. The ∗-operator is clearly commutative, but

in case that dimV > 2 it is non-associative.

We define a metric on W(V ) by

|w1 − w2| := max
x∈V \{0}

|w1(x)− w2(x)| for w1, w2 ∈ W(V ).

Our central theorem reads as follows.

Theorem 1.1. Let V = (V,w1, . . . , ws) be a non-zero, finite-dimensional s-valued

vector space, where s > 2. Define the sequence of valuations (vm)∞m=0 on V recur-

sively by v0(x) := 0 for x ∈ V \ {0} and

vm := (· · · ((vm−1 ∗ w1) ∗ w2) · · · ) ∗ ws for m = 1, 2, . . . .

Then there is C > 0 such that

|vm −mwHNV | 6 C for all m > 0.
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It is not too hard to give a direct proof of the following result, but we have chosen

to deduce it from Theorem 1.1. In fact, in Section 6 we will deduce a more general

result, i.e., Corollary 6.2.

Corollary 1.2. Let V = (V,w1, w2) be a non-zero, finite-dimensional two-valued

vector space. Then wHN
V

= w1 ∗ w2.

Unfortunately, our method of proof of Theorem 1.1 is ineffective, in the sense that

it gives only the existence of a constant C, but not a method to compute it.

We considered some toy examples, i.e., two-dimensional three-valued vector spaces

V = (V,w1, w2, w3), and discovered that in each of them the sequence (vm −
mwHN

V
)∞m=0 is ultimately periodic. Further, it turned out that by varying w1, w2, w3,

the pre-period can be made arbitrarily long, whereas the length of the period remains

bounded. Inspired by this, we would like to pose the following problem:

Problem 1.3. Let V = (V,w1, . . . , ws) be an n-dimensional s-valued vector space.

Is it true that the sequence (vm −mwHNV )∞m=0 is ultimately periodic, with an upper

bound for the period depending only on n and s?

The results stated below will be deduced by combining Theorem 1.1 with prop-

erties of the ∗-operator. For some of these results there are more direct proofs.

Our first consequence asserts that the Harder-Narasimhan valuation commutes

with exterior powers, symmetric powers, base extensions, direct sums, and tensor

products.

Theorem 1.4. (i) Let V be a non-zero, finite-dimensional s-valued K-vector space.

Then the following identities of valuations hold:

wHN∧kV = ∧kwHN
V

on ∧kV for every k ∈ {1, . . . , dimV };(1.8)

wHN
Sk V

= Sk wHN
V

on Sk V for every positive integer k;(1.9)

wHN
V⊗L = wHN

V
⊗L on V ⊗L for every extension field L of K.(1.10)

(ii) Let V , V ′ be two non-zero, finite-dimensional s-valued K-vector spaces. Then

the following identities of valuations hold:

wHN
V⊕V ′ = wHN

V
⊕wHN

V ′
on V ⊕V ′;(1.11)

wHN
V⊗V ′ = wHN

V
⊗wHN

V ′
on V ⊗V ′.(1.12)

A valuation on a K-vector space V is called constant if it is constant on V \
{0}. It is trivial that an s-valued K-vector space V is semistable if and only if its
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Harder-Narasimhan valuation is constant. Further, from (1.5), (1.6) it is clear that

exterior powers, symmetric powers, base extensions and tensor products of constant

valuations are again constant. This leads at once to the following:

Corollary 1.5. (i) Let V be a non-zero, finite-dimensional, semistable s-valued K-

vector space. Then ∧kV (for every k ∈ {1, . . . , dimV }), Sk V (for every positive

integer k) and V ⊗L (for every extension field L of K), are all semistable.

(ii) Let V , V ′ be two non-zero, finite-dimensional semistable s-valued K-vector

spaces. Then V ⊗V ′ is semistable.

Identity (1.8) was proved implicitly in a paper with Ferretti [4], where it is an

important ingredient. The proof given there, in the spirit of Fujimori’s, uses a special

case of the Subspace Theorem, and thus it works only if the ground field K is an

algebraic number field. The arguments in the present paper do not go beyond linear

algebra, and work for any field K of any characteristic.

The next result that we derive from Theorem 1.1 shows that the Harder-Narasimhan

valuation is compatible with morphisms of s-valued vector spaces. For a direct proof

(in the general framework of Harder-Narasimhan categories), we refer to Chen [2,

Thm. 5.7].

Theorem 1.6. Let V and V ′ be two non-zero finite-dimensional s-valued K-vector

spaces and ϕ a morphism from V to V ′. Then wHN
V ′
◦ ϕ > wHN

V
.

Given a collection A of linear subspaces of V , the (+,∩)-algebra generated by A
is the smallest collection U of linear subspaces of V such that

(i) A ⊆ U and {0}, V ∈ U ;

(ii) for all U1, U2 ∈ U we have U1 + U2 ∈ U , U1 ∩ U2 ∈ U .

Theorem 1.7. Let V = (V,w1, . . . , ws) be a finite-dimensional s-valued K-vector

space. Then the subspaces in the Harder-Narasimhan filtration of V belong to the

(+,∩)-algebra generated by the subspaces occurring in the unweighted filtrations of

w1, . . . , ws.

Let A consist of the spaces in the unweighted filtrations of w1, . . . , ws. We can

decompose the (+,∩)-algebra generated by A as ∪m>0Am, where the collections Am
(m = 0, 1, , . . . , ) are defined inductively by

A0 := A ∪ {∅, V }, Am+1 := {U1 + U2, U1 ∩ U2 : U1, U2 ∈ ∪l6mAl} for m > 0.
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We define the depth of U ∈ ∪m>0Am to be the smallest m such that U ∈ Am. We

are interested in effective upper bounds for the depths of the spaces of the Harder-

Narasimhan filtration of V , but unfortunately, our arguments do not provide these.

The importance of such effective depth bounds would be that they allow us to

compute the Harder-Narasimhan valuation of V . Ideas from Vojta [16] suggest the

following

Problem 1.8. Given an n-dimensional s-valued K-vector space V , can the depths

of the spaces in the Harder-Narasimhan filtration of V be bounded above in terms of

n and s only?

In Section 7 we describe an algorithm to compute the Harder-Narasimhan valua-

tion of an s-weighted vector space V , based on other principles than effective depth

bounds. The idea is that the first space V1 in the Harder-Narasimhan filtration of

V can be easily computed if dimV1 = 1. Then one can make a reduction to this

special case by applying our result Theorem 1.4, (1.8) on exterior powers. In case

the underlying field K is an algebraic number field, we give (Theorem 7.4) explicit

upper bounds for the heights of the subspaces occurring in the Harder-Narasimhan

filtration of V .

The remainder of our paper is organized as follows. In Section 2 we have col-

lected some basic facts. In Section 3 we deduce some properties of the ∗-operator

introduced above. In Section 4 we prove some convergence results for sequences of

valuations. In Section 5 we prove Theorem 1.1 and in Section 6 we deduce Theo-

rems 1.5–1.7 and Corollary 1.2. In Section 7 we describe our method to compute the

Harder-Narasimhan valuation of an s-valued vector space, and give upper bounds

for the heights of the spaces in the Harder-Narasimhan filtration in case K is a

number field.

2. Basic facts

For convenience of the reader we have recalled the proofs of some well-known

facts about multi-valued vector spaces. Throughout this paper, K is any field. For

a subset A of a K-vector space V we denote by spanA the K-linear subspace of V

generated by A. The collection of valuations on V is denoted byW(V ). A valuation

w on V is said to be constant if there is µ ∈ R such that w(x) = µ for x ∈ V \ {0}.
In this situation we will be sloppy and write w = µ. More generally, given reals λ, µ

on V with λ > 0, we define the valuation λw+µ on V by (λw+µ)(x) := λw(x) +µ

for x ∈ V \ {0}.
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2.1. Weights, subspaces, quotients, degrees, slopes. In what follows, V is a

non-zero K-vector space of finite dimension.

Let w be a valuation on V . Let α1 > · · · > αr be the distinct values assumed

by w on V \ {0}. Then the (unweighted) filtration of w is the strictly increasing

sequence of linear subspaces of V ,

(1.2) (0) = F0⊂6= F1⊂6= · · · ⊂6= Fr = V where Fi := {x ∈ V : w(x) > αi},

and the weighted filtration of w is

(1.3)
(

(0) = F0⊂6= F1⊂6= · · · ⊂6= Fr = V ; α1 > · · · > αr

)
.

This weighted filtration uniquely determines w. With the help of (1.3) we define

the weight of V ,

w(V ) :=
r∑
i=1

αi(dimFi − dimFi−1)

=
r−1∑
i=1

(αi − αi+1) dimFi + αr dimV.

For β ∈ R ∪ {∞}, not necessarily in the value set of w, define the linear subspace

of V ,

F
(w)
β := {x ∈ V : w(x) > β}.

Let β0 :=∞ and let {β1 > · · · > βt} be any finite set of reals containing the values

assumed by w on V \ {0}. Then

w(x) = βi for x ∈ F (w)
βi
\ F (w)

βi−1
, i = 1, . . . , t,(2.1)

w(V ) =
t−1∑
i=1

(βi − βi+1) dimF
(w)
βi

+ βt dimV.(2.2)

We define w(V ) := 0 if V = (0); then in this case (2.1) and (2.2) are trivially true.

The following lemma will be useful. We assume henceforth that V is non-zero.

Given two valuations w1, w2 on V we write w1 6 w2 or w2 > w1 if w1(x) 6 w2(x)

for all x ∈ V , and w1 < w2 or w2 > w1 if w2 > w1 and w1 6= w2.

Lemma 2.1. Let w1, w2 be valuations on V with w1 < w2. Then w1(V ) < w2(V ).

Proof. Let {β1 > · · · > βt} be the union of the sets of values assumed by w1 and w2,

respctively, on V \{0}. By w1 < w2 and (2.1) we have F
(w1)
βi
⊆ F

(w2)
βi

for i = 1, . . . , t,
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with strict inclusion for at least one i. Now (2.2) applied with w1 and w2 gives

w1(V ) < w2(V ). �

Let U be a non-zero linear subspace of V . For x ∈ V , denote by xU the image

of x under the canonical map V → V/U . The restriction w|U of w to U defines a

valuation on U , while wU , given by

wU(y) := max{w(x) : x ∈ V, xU = y} for y ∈ V/U

defines a valuation on V/U . Noting that {x ∈ U : w(x) > αi} = U∩Fi (i = 1, . . . , r),

while

{y ∈ V/U : wU(y) > αi} = {xU : x ∈ V, ∃z ∈ U with w(x+ z) > αi}
= (Fi + U)/U (i = 1, . . . , r),

it follows at once from (2.2) that

w|U(U) =
r−1∑
i=1

(αi − αi+1) dim(U ∩ Fi) + αr dimU,(2.3)

wU(V/U) =
r−1∑
i=1

(αi − αi+1) dim((U + Fi)/U) + αr dim(V/U),(2.4)

and thus,

(2.5) wU(V/U) = w(V )− w|U(U).

For convenience, for a linear subspace U of V we write w(U) instead of w|U(U).

Then for any two linear subspaces U1, U2 of V we have

(2.6) w(U1 + U2) + w(U1 ∩ U2) > w(U1) + w(U2).

This follows easily from (2.3) and from

dim((U1 + U2) ∩ F ) > dim((U1 ∩ F ) + (U2 ∩ F ))

= dim(U1 ∩ F ) + dim(U2 ∩ F )− dim(U1 ∩ U2 ∩ F )

for any linear subspace F of V , with equality if F = V .

Let V = (V,w1, . . . , ws) be a non-zero, finite-dimensional s-valued K-vector space.

The degree and slope of V are given by respectively

d(V ) :=
s∑
i=1

wi(V ), µ(V ) :=
d(V )

dimV
.
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Let U be a linear subspace of V . Then the corresponding s-valued subspace U of V

and s-valued quotient V /U are given by

U := (U,w1|U , . . . , ws|U), V /U := (V/U,wU1 , . . . , w
U
s ).

From (2.5) we infer at once that

(2.7) d(V /U) = d(V )− d(U).

Further, by (2.6) we have for any two linear subspaces U1, U2 of V ,

(2.8) d(U1 + U2) + d(U1 ∩ U2) > d(U1) + d(U2).

2.2. Semistability, Harder-Narasimhan valuation. Let V = (V,w1, . . . , ws) be

a non-zero s-valued K-vector space of dimension n. We say that V is semistable if

µ(U) 6 µ(V ) for every non-zero linear subspace U of V . In this case, the Harder-

Narasimhan valuation of V is given by wHN
V

(x) := µ(V ) for x ∈ V \ {0}.

Henceforth, we do not require that V is semistable and construct the Harder-

Narasimhan valuation in this general case. The basic tool is the following lemma.

Lemma 2.2. There is a unique, non-zero linear subspace D = D(V ) of V (called

the maximal destabilizing subspace of V ) such that for every non-zero linear

subspace U of V we have

µ(U) 6 µ(D) if U ⊆ D, µ(U) < µ(D) if U 6⊂ D.

Proof. It is clear that a subspace D as in the lemma is unique. We prove the

existence of such a subspace. Let µ be the maximum of the quantities µ(U), taken

over all non-zero linear subspaces U of V . Inequality (2.8) implies that if U1, U2 are

any two non-zero linear subspaces of V with µ(U1) = µ(U2) = µ, then

d(U1 + U2) > d(U1) + d(U2)− d(U1 ∩ U2)

> µ
(

dimU1 + dimU2 − dim(U1 ∩ U2)
)

= µ dim(U1 + U2),

hence µ(U1 + U2) = µ. Now let D be the sum of all non-zero linear subspaces U

of V with µ(U) = µ. Then clearly, µ(D) = µ > µ(U) for every non-zero linear

subspace U of V , with strict inequality if U 6⊂ D. �
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We note that by (2.7) we have for D = D(V ),

µ(U/D) =
d(U)− d(D)

dimU − dimD
=
µ(U) dimU − µ(D) dimD

dimU − dimD
< µ(D)(2.9)

for every linear subspace U of V with U ⊃
6=
D.

Now let V be an s-valued vector space, which is not necessarily semistable. We

construct a filtration

(2.10) (0) = V0⊂6= V1⊂6= · · · ⊂6= Vr = V

by taking

V1 = D(V ), V2/V1 = D(V /V1), V3/V2 = D(V /V2), . . . .

It is clear that

V1, V2/V1, . . . , V /Vr−1 are semistable

and moreover, by (2.9), using V3/V2 ∼= (V3/V1)/(V2/V1) etc.,

µ(V1) > µ(V2/V1) > · · · > µ(V /Vr−1).

We call (2.10) the Harder-Narasimhan filtration of V and(
(0) = V0⊂6= V1⊂6= · · · ⊂6= Vr = V, µ(V1) > µ(V2/V1) > · · · > µ(V /Vr−1)

)
the weighted Harder-Narasimhan filtration of V . The associated Harder-Narasimhan

valuation on V is then defined by

wHN
V

(x) := µ(Vi/Vi−1) for x ∈ Vi \ Vi−1, i = 1, . . . , r.

Remark 2.3. Let V = (V,w1, . . . , ws) be an s-valued vector space. The following

facts can be easily verified:

(i) If s = 1, V = (V,w1), then wHN
V

= w1.

(ii) wHN
V /V1

= (wHN
V

)V1 .

(iii) For the weight of V with respect to the Harder-Narasimhan valuation of V we

have wHN
V

(V ) = d(V ).

(iv) Let λ ∈ R>0, µ1, . . . , µs ∈ R and V
′

= (V, λw1 + µ1, . . . , λws + µs). Then

wHN
V
′ = λwHN

V
+ µ1 + · · ·+ µs.



14 J.-H. EVERTSE

2.3. Adapted bases. Let V be a non-zero, finite-dimensional vector space over a

field K, let w be a valuation on V , and let (0) = F0⊂6= F1⊂6= · · · ⊂6= Fr = V be its

filtration (see (1.2)). Further, let {fj : j ∈ I} with I a finite index set be a basis of

V .

We say that {fj : j ∈ I} is a basis of V adapted to w if it contains precisely dimFi
vectors from Fi, for i = 1, . . . , r.

Let βj (j ∈ I) be reals. We say that the valuation w is given by (fj, βj) (j ∈ I) if

whenever we express a non-zero x ∈ V as
∑

j∈I ξjfj with ξj ∈ K, we have

w(x) = min{βj : j ∈ I, ξj 6= 0}.

Lemma 2.4. Let V be a non-zero, finite-dimensional vector space over a field K,

w a valuation on V , and {fj : j ∈ I} with I a finite index set a basis of V .

(i)
∑

j∈I w(fj) 6 w(V );

(ii) {fj : j ∈ I} is adapted to w ⇔
∑

j∈I w(fj) = w(V );

(iii) {fj : j ∈ I} is adapted to w ⇔ w is given by (fj, w(fj)) (j ∈ I), i.e., if

x =
∑

j∈I ξjfj with ξj ∈ K, not all 0, then w(x) = min{w(fj) : ξj 6= 0}.

Proof. We assume without loss of generality that the given basis of V is {f1, . . . , fn}
and that w(f1) > · · · > w(fn). Let (1.3) be the weighted filtration of w. For

i = 0, . . . , r, let ei := #
(
{f1, . . . , fn} ∩ Fi

)
. Then ei 6 di := dimFi for i = 0, . . . , r,

and e0 = d0 = 0, er = dr = n. Further, w(fj) = αi for ei−1 < j 6 ei, i = 1, . . . , r.

(i), (ii) We have
∑n

j=1w(fj) =
∑r

i=1(ei − ei−1)αi =
∑r−1

i=1 ei(αi − αi+1) + nαr.

This is 6 w(V ), and equal to w(V ) precisely if ei = di for i = 1, . . . , r − 1, i.e., if

{fj : j ∈ I} is adapted to w.

(iii) w is given by (fj, w(fj)) (j ∈ I) ⇔ Fi ⊆ span{fj : j 6 ei} for i = 1, . . . , r ⇔
ei = di for i = 1, . . . , r. �

Lemma 2.5. Let U be a proper, non-zero linear subspace of V . Further, let {f1, . . . , fn}
be a basis of V such that {f1, . . . , fm} is a basis of U . Then the following two as-

sertions are equivalent:

(i) {f1, . . . , fn} is adapted to w;

(ii) {f1, . . . , fm} is adapted to w|U , {fUm+1, . . . , f
U
n } is a basis of V/U adapted to wU ,

and wU(fUi ) = w(fi) for i = m+ 1, . . . , n.
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Proof. By (2.5), Lemma 2.4 (i) and the definition of wU we have

w(V ) = w|U(U) + wU(V/U) >
m∑
i=1

w(fi) +
n∑

i=m+1

wU(fUi ) >
n∑
i=1

w(fi).

So w(V ) =
∑n

i=1w(fi) if and only if w|U(U) =
∑m

i=1w(fi), w
U(V/U) =

∑n
i=m+1w(fUi )

and wU(fUi ) = w(fi) for i = m+ 1, . . . , n. Apply Lemma 2.4 (ii). �

To our knowledge, the following important observation occurred for the first time

in a paper by Corvaja and Zannier [3, Lemma 3.2], but it was known before. 1

Lemma 2.6. Let V be a non-zero n-dimensional K-vector space and w1, w2 two

valuations on V . Then V has a basis {f1, . . . , fn} adapted to both w1, w2.

Proof. We proceed by induction on n. For n = 1 the assertion is obviously true. Let

n > 2 and suppose Lemma 2.6 is true for all vector spaces of dimension < n. If both

valuations w1, w2 are constant (i.e., on V \ {0}), then any basis will do. Suppose w1

is not constant. Then w1 has a filtration (0)⊂
6=
· · · ⊂

6=
Fr−1⊂6= Fr = V , where Fr−1 is

non-zero and strictly smaller than V . By the induction hypothesis, U := Fr−1 has

a basis {f1, . . . , fm} adapted to both w1|U and w2|U . Choose fm+1, . . . , fn ∈ V \ U
such that {fUm+1, . . . , f

U
n } is a basis of V/U adapted to wU2 and wU2 (fUi ) = w2(fi) for

i = m + 1, . . . , n. Then by Lemma 2.5, the set {f1, . . . , fn} is a basis of V adapted

to w2. But by its very construction this basis contains precisely dimFi vectors from

Fi for i = 1, . . . , r − 1, and also dimFr = n vectors from Fr = V . Hence this basis

is adapted to w1 as well. �

Remark 2.7. This can not be extended to more than two valuations.

2.4. Exterior powers, symmetric powers, base extensions, direct sums and

tensor products. For integers k, n with 1 6 k 6 n we denote by In,k the collection

of integer tuples (i1, . . . , ik) with 1 6 i1 < · · · < ik 6 n. For positive integers k, n, we

denote by Jn,k the collection of integer tuples (i1, . . . , ik) with 1 6 i1 6 · · · 6 ik 6 n.

As before, K is any field.

Lemma 2.8. (i) Let V be a K-vector space of dimension n > 0, w a valuation on

V , and {f1, . . . , fn} a basis of V adapted to w. Then the valuations ∧kw on ∧kV
(1 6 k 6 n), Sk w on Sk V (k > 1) and w⊗L on the L-vector space V ⊗L (where L

1It was mentioned to me several years earlier by Roberto Ferretti (personal communication).
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is any extension field of K) are given by respectively(
fi1 ∧ · · · ∧ fik , w(fi1) + · · ·+ w(fik)

) (
(i1, . . . , ik) ∈ In,k

)
;(

fi1 · · · fik , w(fi1) + · · ·+ w(fik)
) (

(i1, . . . , ik) ∈ Jn,k
)
;(

fi⊗1, w(fi)
)

(i = 1, . . . , n).

(ii) Let V , V ′ be K-vector spaces of dimensions n, m, respectively, w a valuation on

V , w′ a valuation on V ′, {f1, . . . , fn} a basis of V adapted to w, and {g1, . . . , gm} a

basis of V ′ adapted to w′. Then the valuations w⊕w′ on V⊕V ′ and w⊗w′ on V⊗V ′
are given by respectively(

(fi, 0), w(fi)
)

(i = 1, . . . , n) and
(

(0, gj), w
′(gj)

)
(j = 1, . . . ,m);(

fi⊗gj, w(fi) + w′(gj)
)

(i = 1, . . . , n, j = 1, . . . ,m
)
.

Proof. We prove only the result for the tensor product; the proofs of the other

results in the lemma are entirely similar. Denote by u the valuation on V ⊗V ′
given by

(
fi⊗gj, w(fi) + w′(gj)

)
(i = 1, . . . , n, j = 1, . . . ,m

)
. Let x =

∑
i∈I ξifi,

y =
∑

j∈J ηjgj be non-zero elements of V ,V ′, where ξi, ηj ∈ K∗ for all i ∈ I, j ∈ J .

Then

u(x⊗y) = min
(i,j)∈I×J

(w(fi) + w′(gj))

>
(

min
i∈I

w(fi)
)

+
(

min
j∈J

w′(gj)
)

= w(x) + w′(y).

In view of definition (1.5), applied to the tensor product, this means that u > w⊗w′.
To prove the reverse inequality, let z ∈ V ⊗V ′ and write z =

∑
(i,j)∈H ξi,jfi⊗gj,

where H is a subset of {1, . . . , n} × {1, . . . ,m} and ξi,j ∈ K∗ for (i, j) ∈ H. Then

by definition (1.5),

(w⊗w′))(z) > min
(i,j)∈H

(w⊗w′)(fi⊗gj) > min
(i,j)∈H

(w(fi) + w′(gj)) = u(z).

Hence w⊗w′ > u. �

Let V = (V,w1, . . . , ws) be an s-valued K-vector space of dimension n > 0. Recall

that the k-th exterior power (1 6 k 6 n), k-th symmetric power (k > 1) and tensor

product with an extension field L of K of V are given by

∧kV := (∧kV,∧kw1, . . . ,∧kws), Sk V := (Sk V, Sk w1, . . . , S
k ws),

V ⊗L := (V ⊗L,w1⊗L, . . . , ws⊗L).
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Further, the direct sum, respectively tensor product over K, of two s-valued K-

vector spaces V = (V,w1, . . . , ws), V ′ = (V ′, w′1, . . . , w
′
s) are given by

V ⊕V ′ := (V ⊕V ′, w1⊕w′1, . . . , ws⊕w′s), V ⊗V ′ = (V ⊗V ′, w1⊗w′1, . . . , ws⊗w′s).

Using Lemmas 2.8 and 2.4, the following is not hard to show.

Corollary 2.9. Let V be an s-valued K-vector space of dimension n > 0. Then

(i) d(∧kV ) =
(
n−1
k−1

)
d(V ), µ(∧kV ) = kµ(V ) for k ∈ {1, . . . , n};

(ii) d(Sk V ) = k
n

(
n+k−1
k−1

)
d(V ), µ(Sk V ) = kµ(V ) for k > 1;

(iii) d(V ⊗L) = d(V ), µ(V ⊗L) = µ(V ) for any extension field L of K.

Further, for any two finite dimensional s-valued K-vector spaces V , V ′ we have

(iv) d(V ⊕V ′) = d(V ) + d(V ′);

(v) d(V ⊗V ′) = dimV ′ · d(V ) + dimV · d(V ′), µ(V ⊗V ′) = µ(V ) + µ(V ′).

3. The ∗-operator

Let K be a field and V a K-vector space of finite dimension n > 0.

Recall that the ∗-operator on the collection W(V ) of valuations of V is defined

by

(1.7) w1 ∗ w2 := inf{w ∈ W(V ) : w > w1 + w2} for w1, w2 ∈ W(V ).

This binary operator is commutative, but if dimV > 2 it is non-associative. To

illustrate this, take two linearly independent vectors f1, f2 ∈ V , put f3 := f1 + f2,

define Ui := span{fi} for i = 1, 2, 3, U := span{f1, f2}, and for i = 1, 2, 3 define a

valuation wi on V by

wi(x) = 1 for x ∈ Ui\{0}, wi(x) = 0 for x ∈ V \ Ui.

It can be shown that (w1 ∗ w2) ∗ w3 6= w1 ∗ (w2 ∗ w3) by comparing their weighted

filtrations: the weighted filtrations of (w1 ∗ w2) ∗ w3, w1 ∗ (w2 ∗ w3) are(
(0)⊂

6=
U3⊂6= U ⊂6= V, 2 > 1 > 0

)
,
(

(0)⊂
6=
U1⊂6= U ⊂6= V, 2 > 1 > 0

)
if dimV > 3,(

(0)⊂
6=
U3⊂6= V, 2 > 1

)
,
(

(0)⊂
6=
U1⊂6= V, 2 > 1

)
if dimV = 2.

Below, we deduce some properties of the ∗-operator. Recall Lemma 2.6.
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Lemma 3.1. Let V be a K-vector space of dimension n > 0 and w1, w2 valuations

on V . Further, let {f1, . . . , fn} be a basis of V adapted to w1 and w2. Then w1 ∗w2

is given by (fi, w1(fi) + w2(fi)) (i = 1, . . . , n).

Proof. We write x ∈ V \ {0} as
∑

i∈Ix ξifi, where Ix ⊆ {1, . . . , n} and ξi ∈ K∗ for

i ∈ Ix. Let u be the valuation given by (fi, w1(fi) +w2(fi)) (i = 1, . . . , n). Then for

x ∈ V \ {0} we have

u(x) = min
i∈Ix

(w1(fi) + w2(fi)) > min
i∈Ix

w1(fi) + min
i∈Ix

w2(fi) = w1(x) + w2(x),

hence u > w1 ∗ w2. Conversely, we have for x ∈ V \ {0},

(w1 ∗ w2)(x) > min
i∈Ix

(w1 ∗ w2)(fi) > min
i∈Ix

(w1(fi) + w2(fi)) = u(x),

hence w1 ∗ w2 > u. �

Lemma 3.2. (i) Let V be a K-vector space of dimension n > 0 and w1, w2 valua-

tions on V . Then the following identities of valuations hold:

∧k(w1 ∗ w2) = (∧kw1) ∗ (∧kw2) on ∧k V for each k ∈ {1, . . . , n},
Sk(w1 ∗ w2) = (Sk w1) ∗ (Sk w2) on Sk V for every positive integer k,

(w1 ∗ w2)⊗L = (w1⊗L) ∗ (w2⊗L) on V ⊗L for every extension field L of K.

(ii) Let w1, w2 be valuations on V and w′1, w
′
2 valuations on another non-zero finite-

dimensional K-vector space V ′. Then the following identities of valuations hold:

(w1 ∗ w2)⊕(w′1 ∗ w′2) = (w1⊕w′1) ∗ (w2⊕w′2) on V ⊕V ′,
(w1 ∗ w2)⊗(w′1 ∗ w′2) = (w1⊗w′1) ∗ (w2⊗w′2) on V ⊗V ′.

Proof. Straightforward using Lemmas 2.8 and 3.1. We prove only the identity for

the tensor product; the other identities are obtained in the same manner. Define the

valuations u1 := (w1 ∗w2)⊗(w′1 ∗w′2), u2 := (w1⊗w′1) ∗ (w2⊗w′2). Let {f1, . . . , fn} be

a basis of V adapted to both w1 and w2, hence also to w1 ∗w2, and let {g1, . . . , gm}
be a basis of V ′ adapted to w′1 and w′2, hence to w′1 ∗ w′2. Write I := {1, . . . , n},
J := {1, . . . ,m}. Then {fi⊗gj : (i, j) ∈ I × J} is a basis of V ⊗V ′, adapted to both

u1 and u2, and moreover, u1(fi⊗gj) = u2(fi⊗gj) = w1(fi)+w2(fi)+w′1(gj)+w′2(gj),

for i ∈ I, j ∈ J . Together with Lemma 2.4 (iii) this implies u1 = u2. �

Lemma 3.3. Let V be a non-zero finite-dimensional K-vector space.

(i) Let w1, w2 be valuations on V and λ, µ1, µ2 reals with λ > 0. Then

(λw1 + µ1) ∗ (λw2 + µ2) = λ(w1 ∗ w2) + µ1 + µ2.
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(ii) Let w1, w2 be valuations on V . Then (w1 ∗ w2)(V ) = w1(V ) + w2(V ).

(iii) Let ϕ : V → V ′ be a linear map from V to another finite-dimensional K-vector

space V ′, and let w1, w2 be valuations on V and w′1, w
′
2 valuations on V ′ such that

w′i ◦ ϕ > wi for i = 1, 2. Then (w′1 ∗ w′2) ◦ ϕ > w1 ∗ w2 for i = 1, 2.

(iv) Let w1, w2, w
′
1, w

′
2 be valuations on V with w′1 > w1, w

′
2 > w2. Then w′1 ∗ w′2 >

w1 ∗ w2.

(v) Let w1, w2, w
′
1, w

′
2 be valuations on V . Then |w1 ∗ w2 − w′1 ∗ w′2| 6 |w1 − w′1| +

|w2 − w′2|.

Proof. (i) Trivial from definition.

(ii) Choose a basis {f1, . . . , fn} of V adapted to both w1, w2, take the sum over

i = 1, . . . , n of (w1 ∗ w2)(fi) = w1(fi) + w2(fi) and apply Lemma 2.4 (ii).

(iii) Applying definition (1.7) we get (w′1 ∗ w′2) ◦ ϕ > w′1 ◦ ϕ + w′2 ◦ ϕ > w1 + w2

and subsequently (iii).

(iv) Apply (iii) with V ′ = V and ϕ the identity.

(v) Put ci := |wi−w′i| for i = 1, 2. Then wi 6 w′i+ci for i = 1, 2, hence by (iv),(i),

w1 ∗ w2 6 (w′1 + c1) ∗ (w′2 + c2) = w′1 ∗ w′2 + c1 + c2.

Likewise, w′1 ∗ w′2 6 w1 ∗ w2 + c1 + c2. Hence |w1 ∗ w2 − w′1 ∗ w′2| 6 c1 + c2. �

Lemma 3.4. Let V be a non-zero, finite-dimensional K-vector space and w1, w2

valuations on V . Then the subspaces in the filtration of w1 ∗ w2 lie in the (+,∩)-

algebra generated by the subspaces in the filtrations of w1 and w2.

Proof. Let α1 > · · · > αr be the values assumed by w1, let β1 > · · · > βs be those

assumed by w2, let γ1 > · · · > γt be those assumed by w1∗w2, and let Fi := {x ∈ V :

w1(x) > αi}, Gj := {x ∈ V : w2(x) > βj} and Hk := {x ∈ V : (w1 ∗ w2)(x) > γk}
be the corresponding subspaces in the filtrations of w1, w2 and w1 ∗w2, respectively.

Take a basis {f1, . . . , fn} of V adapted to w1 and w2. Then by Lemma 3.1,

Hk = span{fl : w1(fl) + w2(fl) > γk}

=
∑

αi+βj>γk

(
span{fl : w1(fl) > αi} ∩ span{fl : w2(fl) > βj}

)
=

∑
αi+βj>γk

(
Fi ∩Gj

)
,

which clearly implies Lemma 3.4. �
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Let again V be a non-zero finite-dimensional K-vector space and w a valuation

on V . For a proper linear subspace U of V we define

(3.1) δ(U,w) := max
(
0, min{w(x)− w(y) : x ∈ U, y ∈ V \ U}

)
.

One easily shows that if w has weighted filtration given by (1.3), then

(3.2) δ(U,w) =


∞ if U = (0),

αi − αi+1 > 0 if U = Fi for some i ∈ {1, . . . , r − 1},
0 if U 6= (0), F1, . . . , Fr−1.

Thus, if U ⊂
6=
V then δ(U,w) > 0 if U = (0) or U is in the filtration of w, and

δ(U,w) = 0 otherwise. A consequence of this is, that if U is in the filtration of w

and x ∈ V \ U , then wU(xU) = w(x).

The next lemma gives a sufficient condition under which the ∗-operator commutes

with taking restrictions or quotients. For a valuation w on a non-zero K-vector space

V , we define |w| := max{|w(x)| : x ∈ V \ {0} }.

Lemma 3.5. Let V be a non-zero, finite-dimensional K-vector space and w1, w2

valuations on V and let U be a proper, non-zero linear subspace of V such that

δ(U,w1) > 2|w2|. Then

(i) δ(U,w1 ∗ w2) > δ(U,w1)− 2|w2| > 0,

(ii) (w1 ∗ w2)|U = (w1|U) ∗ (w2|U), (w1 ∗ w2)
U = wU1 ∗ wU2 ,

(iii) (w1 ∗ w2)(x) = (wU1 ∗ wU2 )(xU) for x ∈ V \ U .

Here in (ii), (iii), the ∗-operators on the left-hand sides are those on W(V ), while

the ∗-operators on the right-hand sides are those on W(U), W(V/U), respectively.

Proof. (i) By Lemma 3.3 (v) we have |(w1 ∗w2)(x)−w1(x)| 6 |w2| for x ∈ V \ {0}.
So (w1 ∗w2)(x)− (w1 ∗w2)(y) > w1(x)−w1(y)− 2|w2| for x ∈ U , y ∈ V \U . Apply

(3.1).

(ii) Choose a basis {f1, . . . , fn} of V adapted to both w1, w2. Our assumption

implies that U is in the filtration of w1. So {f1, . . . , fn} contains a basis of U ,

{f1, . . . , fm}, say. By Lemmas 2.5 and 3.1, {f1, . . . , fm} is adapted to w1|U , w2|U and

(w1∗w2)|U . Now both (w1∗w2)|U and (w1|U)∗(w2|U) are given by
(
fi, w1(fi)+w2(fi)

)
(i = 1, . . . ,m), hence are equal. The second assertion of (ii) can be proved in the

same manner.

(iii) By (i), U is in the filtration of w1 ∗ w2. Hence for x ∈ V \ U we have

(w1 ∗ w2)(x) = (w1 ∗ w2)
U(xU) = (wU1 ∗ wU2 )(xU). �
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4. Sequences of valuations

We will prove some convergence results for sequences of valuations. As before, K

is any field and V a non-zero, finite-dimensional K-vector space.

We need an auxiliary result from linear algebra. Denote by S the collection of

subsets of V of the shape

(4.1) (V1 \W1) ∪ (V2 \W2) ∪ · · · ∪ (Vr \Wr)

where r > 1 and V1,W1, . . . , Vr,Wr are linear subspaces of V such that

(0) ⊆ W1 ⊆ V1 ⊆ W2 ⊆ V2 ⊆ · · · ⊆ Wr ⊆ Vr ⊆ V.

Lemma 4.1. Any non-decreasing sequence F1 ⊆ F2 ⊆ · · · of sets from S is even-

tually constant.

Proof. Notice that in (4.1) we can delete Vi \Wi if Vi = Wi, while if Vi = Wi+1 we

can shorten (4.1) using (Vi \Wi)∪ (Vi+1 \Wi+1) = Vi+1 \Wi. By repeatedly applying

this, we see that any non-empty element F of S can be expressed in the form (4.1)

where r > 1 and V1,W1, . . . , Vr,Wr are linear subspaces of V such that

(0) ⊆ W1⊂6= V1⊂6= W2⊂6= V2⊂6= · · · ⊂6= Wr⊂6= Vr ⊆ V.

Then spanF = Vr. Further,

Vr \ F = (Wr \ Vr−1) ∪ · · · ∪ (W2 \ V1) ∪W1,

hence span(Vr \ F) = Wr⊂6= spanF .

We now prove Lemma 4.1, where we proceed by induction on the dimension of

V . If dimV = 1 our lemma is clear. Suppose dimV > 1. Let F1 ⊆ F2 ⊆ · · · be a

non-decreasing sequence from S. Then spanF1 ⊆ spanF2 ⊆ · · · . Hence there is

i0 such that for i > i0, spanF i = V0 is independent of i. Further, span(V0 \ F i0) ⊇
span(V0\F i0+1) ⊇ · · · . Hence there is i1 > i0 such that for i > i1, span(V0\F i) = W0

is independent of i, while moreover, W0⊂6= V0. This means that for i > i1 we have

F i = (V0 \W0) ∪ Gi, where Gi belongs to S and is contained in W0. Now apply the

induction hypothesis to the sequence {Gi}. �

Lemma 4.2. Let (w1,m)∞m=0, (w2,m)∞m=0 be two sequences of valuations on V such

that

w1,m − w2,m > w1,m+1 − w2,m+1 pointwise on V \ {0} for m > 0,

for every x ∈ V \ {0} there is m > 0 such that w1,m(x) 6 w2,m(x).
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Then there is m0 such that w1,m 6 w2,m for m > m0.

Proof. For m = 0, 1, . . ., define

Fm := {x ∈ V \ {0} : w1,m(x) 6 w2,m(x)}.

We first show that Fm belongs to S for m = 1, 2, . . .. Fix m and let the weighted

filtration of w1,m be given by (1.3). Thus, w1,m assumes the values α1 > · · · > αr
on V \ {0} and w1,m(x) = αi if and only if x ∈ Fi \ Fi−1. Define the subspaces

Gi := {x ∈ V : w2,m(x) > αi} for i = 1, . . . , r. Then

Fm =
r⋃
i=1

(
(Fi \ Fi−1) ∩Gi

)
=

r⋃
i=1

(
(Fi ∩Gi) \ (Fi−1 ∩Gi)

)
which is indeed a set in S since (0) = F0⊂6= F1⊂6= · · · ⊂6= Fr and G1 ⊆ · · · ⊆ Gr.

Our assumptions on the sequences (w1,m)∞m=0, (w2,m)∞m=0 imply that F0 ⊆ F1 ⊆
· · · and

⋃∞
m=0Fm = V \{0}. By the previous lemma there ism0 such that Fm = Fm0

for all m > m0. Hence Fm = V \ {0} for m > m0, which means precisely that

w1,m 6 w2,m for m > m0. �

Given a sequence of valuations (wm)∞m=0 and a valuation w on V , we write wm ↓ w
if w0 > w1 > · · · and limm→∞wm(x) = w(x) for x ∈ V \ {0}.

Lemma 4.3. Let (w1,m)∞m=0, (w2,m)∞m=0 be sequences of valuations, and w1, w2 val-

uations on V such that wi,m ↓ wi for i = 1, 2. Then w1,m ∗ w2,m ↓ w1 ∗ w2.

Proof. By Lemma 3.3 (iv) the sequence (w1,m∗w2,m)∞m=0 is non-increasing. We prove

that the limit is w1 ∗ w2. Let ε > 0. For every x ∈ V \ {0} and i = 1, 2 there is mi

such that wi,mi
(x) 6 wi(x)+ε. So by Lemma 4.2, there is m0 such that wi,m 6 wi+ε

for i = 1, 2, m > m0. Now parts (iv),(i) of Lemma 3.3 yield

w1 ∗ w2 6 w1,m ∗ w2,m 6 (w1 + ε) ∗ (w2 + ε) = w1 ∗ w2 + 2ε for m > m0.

This proves Lemma 4.3. �

Lemma 4.4. Let (wm)∞m=0 be a sequence of valuations on V with w0 > w1 > · · · .
Then

U := {x ∈ V : lim
m→∞

wm(x) > −∞}

is a linear subspace of V , and if U 6= (0), U 6= V , then limm→∞ δ(U,wm) =∞.
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Proof. It is obvious that U is a linear subspace of V . Suppose U 6= (0), U 6= V .

We have to prove that for every A > 0 there is m0 such that δ(U,wm) > A for all

m > m0, or equivalently, wm(x)− wm(y) > A for all x ∈ U , y ∈ V \ U , m > m0.

We obtain a valuation u on U by setting u(x) := limm→∞wm(x) for all non-zero

x ∈ U . Hence wm(x) > C for x ∈ U , m > 1, where C is the minimum of u. Let

A > 0 and define valuations w′m (m = 0, 1, . . .) on V by

w′m(x) := wm(x) for x ∈ U, w′m(x) := C − A for x ∈ V \ U.

Clearly wm − w′m (m = 0, 1, . . .) is non-increasing, and for every x ∈ V \ {0} there

is an integer m such that wm(x) 6 w′m(x). So by Lemma 4.2 there is m0 such that

wm 6 w′m for m > m0, implying wm(y) 6 C − A for y ∈ V \ U , m > m0. This

implies wm(x)− wm(y) > C − (C − A) = A for x ∈ U , y ∈ V \ U , m > m0. �

5. Proof of Theorem 1.1

We first prove two lemmas and an important proposition. For a non-zero s-valued

K-vector space V = (V,w1, . . . , ws) we define an operator [·;V ] on the collection

W(V ) of valuations on V by

[w;V ] := (· · · ((w ∗ w1) ∗ w2) · · · ) ∗ ws for w ∈ W(V ).

Notice that for a linear subspace U of V with (0)⊂
6=
U ⊂
6=
V this gives

[w′;U ] := (· · · ((w′ ∗ (w1|U)) ∗ (w2|U)) ∗ · · · ) ∗ (ws|U) for w′ ∈ W(U),

[w′′;V /U ] := (· · · ((w′′ ∗ wU1 ) ∗ wU2 ) ∗ · · · ) ∗ wUs for w′′ ∈ W(V/U).

In the two lemmas below we have collected some properties of these operators.

Henceforth, we fix an s-valued K-vector space V = (V,w1, . . . , ws) of finite dimen-

sion n > 0.

Lemma 5.1. (i) Let w ∈ W(V ). Then [w;V ](V ) = w(V ) + d(V ).

(ii) Let V
′

:= (V,w1 + µ1, . . . , ws + µs) for some µ1, . . . , µs ∈ R. Then [w;V
′
] =

[w;V ] + (µ1 + · · ·+ µs) for w ∈ W(V ).

(iii) Let u1, u2 ∈ W(V ) with u1 > u2. Then [u1;V ] > [u2;V ].

(iv) Let u1, u2 ∈ W(V ). Then | [u1;V ]− [u2;V ] | 6 |u1 − u2|.
(v) Let (um)∞m=0 be a sequence of valuations on V and u another valuation on V

such that um ↓ u. Then [um;V ] ↓ [u;V ].
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Proof. Part (i) follows from
∑s

i=1wi(V ) = d(V ) and a repeated application of

Lemma 3.3 (ii), part (ii) follows by repeatedly applying Lemma 3.3 (i), and parts

(iii), (iv), (v) by repeatedly applying Lemma 3.3 (iv), (v) and Lemma 4.3. �

Lemma 5.2. Let w be a valuation on V and let U be a linear subspace of V such

that (0)⊂
6=
U ⊂
6=
V and δ(U,w) > 2(|w1|+ · · ·+ |ws|).

(i) [w;V ]|U = [w|U ;U ];

(ii) [w;V ]U = [wU ;V /U ];

(iii) wU(xU) = w(x), [wU ;V /U ](xU) = [w;V ](x) for x ∈ V \ U .

Proof. Repeated application of Lemma 3.5. �

The hard core of the proof of Theorem 1.1 (and thus of this paper) is the following

proposition. Both this proposition and its proof are translations into the terminology

of our paper of ideas of Faltings [5].

Proposition 5.3. Assume that V is semistable. Then there exists a valuation u on

V such that [u;V ] = u+ µ(V ).

Proof. We start with a reduction. Notice that the s-valued vector space V
′

:=

(V,w1−µ(V )/s, . . . , ws−µ(V )/s) is semistable, has µ(V
′
) = 0 and satisfies [u;V

′
] =

[u;V ] − µ(V ) for u ∈ W(V ) by Lemma 5.1 (ii). Once we have shown that there is

u ∈ W(V ) with [u;V
′
] = u, it follows that [u, V ] = u + µ(V ). So no generality is

lost if we assume

(5.1) µ(V ) = 0

and show that there is a valuation u on V with [u;V ] = u.

So assume (5.1). Pick any valuation u0 on V and define valuations u1, u2, , . . . ,

recursively by

um+1 := min(um, [um;V ]) for m > 0,

where min(w,w′) denotes the pointwise minimum of two valuations w,w′; this is

clearly a valuation on V .

We note that since u0 > u1 > · · · , the limit limm→∞ um(x) exists for every

x ∈ V \ {0} but it may be −∞. Define

U := {x ∈ V : lim
m→∞

um(x) > −∞}.

Then U is a linear subspace of V . We distinguish three cases.
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Case I. U = V .

Then u(x) := limm→∞ um(x) is finite for every x ∈ V \ {0}. Clearly, u defines a

valuation on V , and um ↓ u. By Lemma 5.1 (v), we have [um;V ] ↓ [u;V ]. By letting

m→∞ in [um;V ] > um+1 we obtain [u;V ] > u. On the other hand, by Lemma 5.1

(i) and (5.1) we have [u;V ](V ) = u(V ). Now Lemma 2.1 implies that [u;V ] = u.

Case II. U = (0).

We show that this is impossible. We first observe that for all m > 0,

(5.2) [um;V ]− um+1 > [um+1;V ]− um+2 pointwise on V \ {0}.

Indeed, substituting um+2 = min(um+1, [um+1;V ]), we see that (5.2) is equivalent to

[um;V ]− um+1 > max(0, [um+1;V ]− um+1) pointwise on V \ {0}

and this is satisfied since [um;V ] > um+1 and since [um+1;V ] 6 [um;V ] by Lemma

5.1 (iii).

Assume that U = (0). Then for every x ∈ V \ {0} there is m > 0 such that

um+1(x) < um(x); hence um+1(x) = [um;V ](x) for this m. Together with (5.2) and

Lemma 4.2 this implies that there is m0 such that [um;V ] 6 um+1 for m > m0, so

certainly [um;V ] 6 um for m > m0. On the other hand, by Lemma 5.1 (i) and (5.1)

we have [um;V ](V ) = um(V ), so by Lemma 2.1 we have [um;V ] = um for m > m0.

But then, um = um0 for m > m0, implying U = V , contradicting our assumption.

So case II cannot occur.

Case III. (0)⊂
6=
U ⊂
6=
V .

We will derive a contradiction by reducing this to Case II. We first observe that by

Lemma 4.4, there is m0 such that δ(U, um) > 2
∑s

i=1 |wi| for every m > m0.

We first deal with U = (U,w1|U , . . . , ws|U). Define a valuation on U by u′ :=

limm→∞ um|U . Then by Lemmas 5.1 (v) and 5.2 (i) we have

[u′;U ] = lim
m→∞

[um|U ;U ] = lim
m→∞

[um;V ]|U ,

and letting m → ∞ in the inequality um+1|U 6 [um;V ]|U yields u′ 6 [u′;U ]. So

u′(U) 6 [u′;U ](U) by Lemma 2.1. On the other hand, by Lemma 5.1 (i), applied

with U instead of V we have

[u;U ](U) = u′(U) + d(U),

hence µ(U) =
d(U)
dimU > 0. But then µ(U) = 0 by (5.1) and the semistability of V .
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We now proceed with V /U = (V/U,wU1 , . . . , w
U
s ). An easy computation shows

that µ(V /U) = 0 and V /U is semistable. By Lemma 5.2 (iii) we have uUm+1 =

min(uUm, [u
U
m;V /U ]) for m > m0 and limm→∞ u

U
m(xU) = −∞ for xU ∈ V/U , xU 6= 0.

Hence we are in the same situation as in case II, but with V /U instead of V . This

leads again to a contradiction. So also case III cannot occur. This completes the

proof of Proposition 5.3. �

Proof of Theorem 1.1. We assume that wHN
V

has weighted filtration

(5.3)
(

(0) = V0⊂6= V1⊂6= · · · ⊂6= Vr = V ;µ1 > · · · > µr

)
.

We prove our theorem by induction on r. First let r = 1. Then V is semistable

and µ(V ) = µ1. Let u be the valuation from Proposition 5.3. By applying [·;V ] m

times to u, using Lemma 5.1 (ii), we obtain u+mµ1 and subsequently, by applying

Lemma 5.1 (iv) m times, |vm − (u+mµ1)| 6 |0− u| = |u| . Hence

|vm −mwHNV | = |vm −mµ1| 6 2|u| for m > 0.

This settles the case r = 1.

Next, let r > 2. We define sequences of valuations (v′m)∞m=0 on V1 and (v′′m)∞m=0 on

V/V1 such that v′0 = 0, v′′0 = 0, v′m = [v′m−1;V1], v
′′
m = [v′′m−1;V /V1] for m = 1, 2, . . ..

By what we just showed there is a constant C ′ such that

(5.4) |v′m −mµ1| 6 C ′ for m > 0.

Further, by the induction hypothesis, there is C ′′ > 0 such that

(5.5) |v′′m −mwHNV /V1| 6 C ′′ for m > 0.

These inequalities imply that for m > 0,

v′m(x) > mµ1 − C ′ for x ∈ V1 \ {0},
v′′m(y) 6 mµ2 + C ′′ for y ∈ (V/V1) \ {0},

where in the last inequality we have used that wHN
V /V1

= (wHN
V

)V1 6 µ2. Since µ1 > µ2

there is m0 such that

v′m(x)− v′′m(y) > 2(|w1|+ · · ·+ |ws|)(5.6)

for x ∈ V1, y ∈ (V/V1) \ {0}, m > m0.
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We now define functions um (m > m0) on V by

um(x) :=

{
v′m(x) for x ∈ V1,
v′′m(xV1) for x ∈ V \ V1.

By (5.6) these functions define valuations on V with

(5.7)

{
um|V1 = v′m, uV1m = v′′m,

δ(V1, um) > 2(|w1|+ · · ·+ |ws|) for m > m0.

Inequalities (5.4), (5.5) together with (wHN
V

)|V1 = µ1, (wHN
V

)V1 = wHN
V /V1

imply

|um −mwHNV | 6 max(C ′, C ′′) for m > m0.

Thanks to (5.7) we can apply Lemma 5.2 and deduce um+1 = [um;V ] for m > m0.

Together with Lemma 5.1 (iv) this yields

|vm − um| 6 |vm0 − um0| for m > m0.

This leads finally to

|vm −mwHNV | 6 |vm0 − um0|+ max(C ′, C ′′) for m > m0,

which clearly implies Theorem 1.1. �

6. Proofs of Corollary 1.2 and Theorems 1.4, 1.6, 1.7

Let K be a field and V a finite-dimensional, non-zero K-vector space. Given a

valuation w on V and a sequence (wm)∞m=0 of valuations on V , we write wm → w

uniformly on V if |wm − w| → 0 as m→∞.

We start with an immediate consequence of Theorem 1.1.

Corollary 6.1. Let V and (vm)∞m=0 be as in Theorem 1.1. Then 1
m
vm → wHN

V

uniformly on V .

Proof. Divide the inequality in Theorem 1.1 by m and let m→∞. �

We deduce the following result, which, in view of Lemma 3.1, contains Corollary

1.2 as a special case.

Corollary 6.2. Let V = (V,w1, . . . , ws) be an s-valued K-vector space of dimension

n > 0. Assume that V has a basis {f1, . . . , fn} adapted to w1, . . . , ws. Then

wHN
V

= (· · · (w1 ∗ w2) · · · ) ∗ ws.
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In particular, if s = 2 then wHN
V

= w1 ∗ w2.

Proof. By repeatedly applying Lemma 3.1 one deduces that for all m > 1, vm is given

by (fi, m
∑s

j=1wj(fi)) (i = 1, . . . , n); hence vm = mv1. Apply Corollary 6.1. �

Our last auxiliary result is the following simple lemma.

Lemma 6.3. (i) Let V be a K-vector space of dimension n > 0 and let w be a

valuation and (wm)∞m=0 a sequence of valuations on V such that wm → w uniformly

on V . Then

∧kwm → ∧kw uniformly on ∧kV for each k ∈ {1, . . . , n};
Sk wm → Sk w uniformly on Sk V for every positive integer k;

wm⊗L→ w⊗L uniformly on V ⊗L for every extension field L of K.

(ii) Let V, V ′ be two non-zero, finite dimensional K-vector spaces. Let w, (wm)∞m=0

be a valuation and sequence of weights on V such that wm → w uniformly on V ,

and w′, (w′m)∞m=0 a weight and sequence of valuations on V ′ such that w′m → w′

uniformly on V ′. Then

wm⊕w′m → w⊕w′ uniformly on V ⊕V ′;
wm⊗w′m → w⊗w′ uniformly on V ⊗V ′.

Proof. We prove only the statement concerning the tensor product, the proofs of the

other assertions being similar. For m > 0, let cm := |wm − w|, c′m := |w′m − w′|. By

(1.5) we have wm⊗w′m > w⊗w′−(cm+c′m), and likewise, w⊗w′ > wm⊗w′m−(cm+c′m);

hence |wm⊗w′m − w⊗w′| 6 cm + c′m → 0 as m→∞. �

Proof of Theorem 1.4. We just have to combine Corollary 6.1 with Lemmas 3.2 and

6.3. We only detail the proof of (1.12).

Let K be a field and V = (V,w1, . . . , ws), V ′ = (V ′, w′1, . . . , w
′
s) two non-zero,

finite dimensional s-valued K-vector spaces. Let vm be the valuations from Theorem

1.1. In a similar manner we define valuations v′m on V ′ (with w′i replacing wi for

all i) and um on V ⊗V ′ (with wi⊗w′i replacing wi for all i). Then um = vm⊗v′m
for m = 1, 2, . . . by a repeated application of Lemma 3.2. From Corollary 6.1 one

infers 1
m
um → wHN

V⊗V ′ , while on the other hand by Corollary 6.1 and Lemma 6.3,
1
m
um = ( 1

m
vm)⊗( 1

m
v′m) → wHN

V
⊗wHN

V ′
. This proves (1.12). The assertions (1.8)–

(1.11) can be proved in precisely the same manner. �
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Proof of Theorem 1.6. Let V = (V,w1, . . . , ws) and V
′

= (V ′, w′1, . . . , w
′
s) be two

finite dimensional s-valued K-vector spaces and ϕ a morphism from V to V
′
; this

means that w′i ◦ ϕ > wi for i = 1, . . . , s. Let vm (m = 0, 1, 2, . . .) be the valuations

on V from Theorem 1.1, and let the valuations v′m on V ′ be defined in the same

way, replacing wi by w′i for i = 1, . . . , s. By repeatedly applying Lemma 3.3 (iii), it

follows that v′m ◦ ϕ > vm for all m, and then Theorem 1.6 follows by dividing by m

and applying Corollary 6.1. �

Proof of Theorem 1.7. Let again V = (V,w1, . . . , ws) be an n-dimensional, s-valued

K-vector space. Denote by U the (+,∩)-algebra generated by the subspaces in

the filtrations of w1, . . . , ws. From Lemma 3.4 it follows that if w′, w′′ are any

two valuations on V whose filtrations consist of subspaces from U , then also the

subspaces in the filtration of w′ ∗w′′ belong to U . This implies that for m = 1, 2, . . .,

the subspaces in the filtrations of the valuations vm from Theorem 1.1 belong to U .

Let the weighted Harder-Narasimhan filtration of V be given by (5.3) and let

C be the constant from Theorem 1.1. We may assume that r > 2. Put ε :=

min16i6r−1(µi − µi+1) and let m be an integer with m > 3C/ε. Then for i =

1, . . . , r − 1, x ∈ Vi, y ∈ V \ Vi we have

vm(x)− vm(y) > mwHN
V

(x)−mwHN
V

(y)− 2C > m(µi − µi+1)− 2C > C,

that is, δ(Vi, vm) > 0. We conclude that V1, . . . , Vr−1 are in the filtration of vm,

hence belong to U . �

7. Effective computation of the Harder-Narasimhan valuation

Let K be a given field and V a finite-dimensional K-vector space. We show that

if the s-valued K-vector space V = (V,w1, . . . , ws) is explicity given in some sense

then its Harder-Narasimhan valuation can be computed in principle. We do not

claim practical efficiency.

Here, the input and output of a computation are finite tuples from K qR, and a

computation is built up from finitely many applications of an arithmetic operation

on K or R (+, −, ×, /) and finitely many if-then-else commands, where the condition

to be checked is either whether a given K-valued expression is 0, or whether a given

R-valued expression is > 0. We say that a particular object is effectively computable

from a given input if it is representable by a finite tuple from K q R that can be

computed from the input by means of a computation as above.
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We fix a basis B = {e1, . . . , en} of V and perform computations in V by rep-

resenting an element of V by means of its coordinates with respect to B. Linear

subspaces of V are described by means of a basis, of which each element is given by

its coordinates with respect to B. By standard procedures from linear algebra one

can compute the intersection and sum of two given linear subspaces of V .

Let w1, . . . , ws be valuations on V , and V = (V,w1, . . . , ws) the corresponding

s-valued K-vector space. We assume that wi (i = 1, . . . , s) is given by (fi,j, αi,j)

(j = 1, . . . , n), i.e., Bi := {fi,1, . . . , fi,n} is a basis of V and if x =
∑n

j=1 ξjfi,j with

ξj ∈ K, not all 0, then wi(x) = min{αi,j : ξi,j 6= 0}. From these defining data, one

can compute their respective weighted filtrations,

(7.1)
(

(0) = F
(wi)
0
⊂
6=
· · · ⊂

6=
F (wi)
ri

= V ;αi,1 > · · · > αi,ri

)
(i = 1, . . . , s).

Our algorithm is based on two lemmas, which we state and prove below. Given a

filtration (0)⊂
6=
F1⊂6= · · · ⊂6= Fr of linear subspaces of a given vector space, we call Fi

the i-th space of this filtration.

Lemma 7.1. Let V1 be the first space in the Harder-Narasimhan filtration of V .

Suppose that dimV1 = 1. Then there are indices ji ∈ {1, . . . , ri} for i = 1, . . . , s

such that

(7.2) V1 =
s⋂
i=1

F
(wi)
ji

.

Proof. Let V1 = span{x}. For i = 1, . . . , s, let ji be the smallest index j from

{1, . . . , ri} such that x ∈ F
(wi)
j . Thus, V1 ⊆

⋂s
i=1 F

(wi)
ji

. Conversely, let y ∈⋂s
i=1 F

(wi)
ji

with y 6= 0. Then

µ(span{y}) =
s∑
i=1

wi(y) >
s∑
i=1

αi,ji =
s∑
i=1

wi(x) = µ(V1).

Hence µ(span{y}) = µ(V1), and so span{y} ⊆ V1. Identity (7.2) follows. �

We make a reduction to the case dimV1 = 1 using exterior powers. We need the

following lemma.

Lemma 7.2. Suppose that the i-th space Vi of the Harder-Narasimhan filtration of

V has dimension k. Then the one-dimensional space ∧kVi is the first space in the

Harder-Narasimhan filtration of ∧kV .
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Proof. Let {f1, . . . , fn} be a basis of V adapted to wHN
V

, ordered such that wHN
V

(f1) >
· · · > wHN

V
(fn). This means that in the sequence f1, . . . , fn, the first vectors form a

basis of V1, the next vectors augment this to a basis of V2, etc. Hence {f1, . . . , fk} is

a basis of Vi and wHN
V

(fk) > wHN
V

(fk+1). Now by (1.8) wHN∧kV = ∧kwHN
V

, and so by

Lemma 2.8, {fi1 ∧ · · · ∧ fik : (i1, . . . , ik) ∈ In,k} is a basis of ∧kV adapted to wHN∧kV .

The first space in the Harder-Narasimhan filtration of ∧kV has a basis consisting of

those vectors fi1 ∧ · · · ∧ fik with maximal wHN∧kV -value. Now clearly,

wHN∧kV (f1 ∧ · · · ∧ fk) =
k∑
i=1

wHN
V

(fi) > wHN∧kV (fi1 ∧ · · · ∧ fik)

for any (i1, . . . , ik) ∈ In,k different from (1, . . . , k). Hence ∧kVi = span{f1∧ · · ·∧fk}
is the first space in the Harder-Narasimhan filtration of ∧kV . �

Before describing our algorithm to compute the Harder-Narasimhan valuation

we prove another lemma. Given a basis B0 = {f1, . . . , fn} of V , let ∧kB0 be the

basis of ∧kV consisting of the elements fi1 ∧ · · · ∧ fik ((i1, . . . , ik) ∈ In,k). We will

express elements of ∧kV by means of their coordinates with respect to ∧kB, where

B = {e1, . . . , en} is the given basis of V .

Lemma 7.3. let 1 6 k 6 n. Then for any given non-zero x ∈ ∧kV it can be checked

whether there is a k-dimensional linear subspace U of V with ∧kU = span{x}, and

if so, compute a basis of U .

Proof. We have to check whether there are linearly independent x1, . . . , xk ∈ V such

that x is a scalar multiple of x1 ∧ · · · ∧ xk and if so, compute such x1, . . . , xk. This

can be done as follows. We may assume that the basis {x1, . . . , xk} to be found is

special, that is, if [x1, . . . , xk] is the n× k-matrix whose j-th column consists of the

coordinates of xj with respect to B, then one of the k×k-submatrices of [x1, . . . , xk]

is the unit matrix. This being the case, one of the coordinates of x1 ∧ · · · ∧ xk with

respect to ∧kB is equal to ±1 and moreover, the coordinates of x1, . . . , xk all occur,

except maybe for the sign, among the coordinates of x1∧· · ·∧xk. So the coordinates

of x1, . . . , xk can be easily determined from x1∧· · ·∧xk. Now what we have to do is

computing all scalar multiples of x with one of the coordinates with respect to ∧kB
equal to ±1, and check whether one of these multiples equals x1 ∧ · · · ∧ xk for some

special set {x1, . . . , xk}. �

Description of the algorithm.

The input of our algorithm is an n-dimensional s-valued K-vector space V =
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(V,w1, . . . , ws), given explicitly by means of a basis Bi := {fi,1, . . . , fi,n} adapted to

wi, and the quantities wi(fi,1), . . . , wi(fi,n), for i = 1, . . . , s. The output will be the

weighted Harder-Narasimhan filtration of V .

We first construct a finite collection S of subspaces of V , guaranteed to contain

the spaces of the Harder-Narasimhan filtration of V .

The construction is as follows. For i = 1, . . . , s, let Gi run through all the sub-

spaces of V spanned by a subset of Bi and consider all intersections G1∩· · ·∩Gs. Let

S1 be the collection of those intersections that have dimension 1. Clearly, the spaces

in S1 can be computed. Next, for k = 2, . . . , n, i = 1, . . . , s, let Gi,k run through

the subspaces of ∧kV spanned by a subset of ∧kBi, and consider all intersections

G1,k ∩ · · · ∩ Gs,k. Among these intersections, select those that are of dimension 1

and are of the shape ∧kU for some k-dimensional linear subspace U of V . Then let

Sk consist of those spaces U thus obtained. By Lemma 7.3, the spaces in Sk can be

computed. Lastly, let S = ∪nk=1Sk.

If the first space V1 in the Harder-Narasimhan filtration of V has dimension 1,

then by Lemma 7.1 it belongs to S1. If the i-th space Vi of the Harder-Narasimhan

filtration of V has dimension k, then by Lemmas 2.8 (i), 7.2 and 7.1 it belongs to

Sk. Hence S contains the spaces of the Harder-Narasimhan filtration of V .

We now compute the spaces in the Harder-Narasimhan filtration of V . We com-

pute the slope µ(U) of each of the spaces U in S. From the spaces in S one selects

those with maximal slope, and among these the one of largest dimension. This is

the first space V1 in the Harder-Narasimhan filtration of V (recall that V1 contains

all spaces having maximal slope; hence it is the single one of largest dimension

among all spaces of maximal slope). Next, we obtain the second space V2 by con-

sidering all spaces U ⊃
6=
V1 from V for which µ(U/V 1) is maximal and taking from

these the space of largest dimension, etc. This will eventually give us the com-

plete Harder-Narasimhan filtration of V and together with the already computed

slopes µ(Vi/Vi−1), the weighted Harder-Narasimhan filtration and thus, the Harder-

Narasimhan valuation. �

Henceforth, we assume that K is an algebraic number field. We give an explicit

upper bound for the heights of the subspaces in the Harder-Narasimhan filtration

of a given s-valued K-vector space.

Denote by MK the set of places (equivalence classes of absolute values) of K. For

v ∈MK , we choose the absolute value | · |v representing v such that its restriction to

Q is either the ordinary absolute value given by |x|∞ = max(x,−x), or the p-adic
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absolute value | · |p with |p|p = p−1. The place v is called infinite (v | ∞) if | · |v
extends the ordinary absolute value, and finite (v - ∞) otherwise. The absolute

values | · |v satisfy the Product formula
∏

v∈MK
|x|dvv = 1 for x ∈ K∗, where dv is the

local degree of v, i.e. dv := [Kv : Qp], where p ∈ {∞} ∪ {primes} is such that | · |v
extends | · |p and Kv, Qp denote the respective completions.

Let V be an n-dimensional K-vector space with basis B = {e1, . . . , en}. We define

norms |x|B,v (v ∈ MK) and a height HB(x) for x ∈ V by expressing x as
∑n

i=1 ξiei
with ξ1, . . . , ξn ∈ K and putting

|x|B,v :=
( n∑
i=1

|ξi|2v
)1/2

if v|∞;

|x|B,v := max
(
|ξ1|v, . . . , |ξn|v

)
if v -∞

and

HB(x) :=
∏
v∈MK

|x|dv/dB,v ,

where d := [K : Q]. By the Product formula, HB(αx) = HB(x) for x ∈ V , α ∈ K∗.

Let k ∈ {1, . . . , n}. From the basis B = {e1, . . . , en} of V chosen above, we

construct a basis ∧kB := {ei1 ∧ · · · ∧ eik : (i1, . . . , ik) ∈ In,k} of ∧kV .

We define the height HB(U) of a linear subspace U of V by putting HB(U) := 1

if U = (0) or U = V , and

HB(U) := H∧kB(x1 ∧ · · · ∧ xk)

otherwise, where k = dimU and {x1, . . . , xk} is any basis of U . This does not depend

on the choice of the basis, since the vector x1 ∧ · · · ∧ xk is determined uniquely by

U up to a scalar factor.

Theorem 7.4. Let K be an algebraic number field, V an n-dimensional K-vector

space, and V = (V,w1, . . . , ws) an s-valued vector space. Choose a basis B =

{e1, . . . , en} of V and for each i = 1, . . . , s, choose a basis {fi,1, . . . , fi,n} of V

adapted to wi. Put

H := max{HB(fi,j) : 1 6 i 6 s, 1 6 j 6 n}.

Then for the spaces V1, . . . , Vr in the Harder-Narasimhan filtration of V , we have

HB(Vi) 6 H4n for i = 1, . . . , r.
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Proof. We start with some inequalities for heights of subspaces of V . Let x1, . . . , xk
be elements of V . By Hadamard’s inequality for the infinite places v and the ultra-

metric inequality for the finite places v, we have for any x1, . . . , xk ∈ V ,

|x1 ∧ · · · ∧ xk|∧kB,v 6 |x1|B,v · · · |xk|B,v for v ∈MK ,

and so

(7.3) H∧kB(x1 ∧ · · · ∧ xk) 6 HB(x1) · · ·HB(xk).

In particular, if U is a linear subspace of V with basis {x1, . . . , xk},

(7.4) HB(U) 6 HB(x1) · · ·HB(xk).

More generally, by a result of Struppeck and Vaaler [14], we have for any two linear

subspaces U1, U2 of V ,

(7.5) HB(U1 ∩ U2) 6 HB(U1 ∩ U2)HB(U1 + U2) 6 HB(U1)HB(U2).

Write as before Vi for the i-th space in the Harder-Narasimhan filtration of V .

First assume that dimV1 = 1. The space V1 is the intersection of at most n − 1

spaces from those in (7.2), and all of them have dimension at most n − 1. These

spaces are all generated by vectors from the bases {fi,1, . . . , fi,n} chosen above, and

so by (7.4) have height with respect to B at most Hn−1. A repeated application of

(7.5) then gives

(7.6) HB(V1) 6 H(n−1)2 .

We now deal with the general case. Let i ∈ {1, . . . , r} and suppose that Vi
has dimension k. By taking the exterior products of all k-element subsets of our

chosen basis {fj,1, . . . , fj,n} adapted to wj we obtain a basis adapted to ∧kwj, for

j = 1, . . . , s. By (7.3), the vectors from this basis have height with respect to ∧kB
at most Hk. Clearly, ∧kVi has dimension 1, and by Lemma 7.2, it is the first space

in the Harder-Narasimhan filtration of ∧kV . Now applying (7.6) with ∧kV ,
(
n
k

)
,

Hk instead of V , n, H, we obtain

HB(Vi) = H∧kB(∧kVi) 6 Hk((n
k)−1)2 6 H4n .

Here we have used
√
k
(
n
k

)
6 2n for k = 1, . . . , n, which is an easy consequence of

Stirling’s formula. �
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1994, pp. 648–655, Birkhaüser Verlag, Basel, 1995.
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