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On-line Research Seminar “Diophantine Number Theory”
Schiedam, December 11, 2020

Slides have been posted on
http://pub.math.leidenuniv.nl/∼evertsejh/lectures.shtml



2/48

Finitely generated domains

We consider Diophantine equations with unknowns taken from a finitely
generated domain of characteristic 0 over Z, i.e.,

A = Z[z1, . . . , zr ] = {f (z1, . . . , zr ) : f ∈ Z[Z1, . . . ,Zr ]} ⊃ Z.

Example 1. OK (ring of integers of a number field K )

OK = Z[ω1, . . . , ωD ], where {ω1, . . . , ωD} is a Z-module basis of OK .

Example 2. OK ,S (ring of S-integers of K , S = {p1, . . . , pt} is a set of
prime ideals of OK )

OK ,S = OK [(p1 · · · pt)−1] = Z[ω1, . . . , ωD , π
−1],

where (π) = (p1 · · · pt)hK with hK the class number of K .

We consider the most general case where z1, . . . , zr may be algebraic or
transcendental over Q.

Aim. Effective method to solve Diophantine equations with unknowns
from an arbitrary finitely generated domain of char. 0 (i.e., algorithm to
find all solutions in principle, we do not care about practical solubility).
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Representation of finitely generated domains

To make sense of effective methods to solve Diophantine equations over
finitely generated domains, we need ways to represent such a domain and
to represent elements of such a domain.

Let A = Z[z1, . . . , zr ] be a finitely generated domain of characteristic 0.

Define the ideal I := {f ∈ Z[Z1, . . . ,Zr ] : f (z1, . . . , zr ) = 0}.

By Hilbert’s basis theorem, there are f1, . . . , fM ∈ Z[Z1, . . . ,Zr ] such that
I = (f1, . . . , fM). Thus,

A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM), zi 7→ Zi mod (f1, . . . , fM)

We call such a set {f1, . . . , fM} a representation of A.

Fact

A is an integral domain of characteristic 0
⇐⇒ I = (f1, . . . , fM) is a prime ideal of Z[Z1, . . . ,Zr ] with I ∩ Z = (0).

There are methods to check this, given f1, . . . , fM .
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Representatives for elements

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/I, with I = (f1, . . . , fM) be a
finitely generated domain of characteristic 0.

We call α̃ ∈ Z[Z1, . . . ,Zr ] a representative for α ∈ A if α = α̃(z1, . . . , zr ),
i.e., if α corresponds to the residue class α̃ mod I.

We perform computations in A by doing computations on representatives.

For this, we must be able to check whether α̃, α̃′ ∈ Z[Z1, . . . ,Zr ]
represent the same element of A, i.e., α̃− α̃′ ∈ I.

For this, we need an ideal membership algorithm for Z[Z1, , . . . ,Zr ], that
is, an algorithm to decide whether a given polynomial of Z[Z1, . . . ,Zr ]
belongs to a given ideal of Z[Z1, . . . ,Zr ].

Such algorithms exist since the 1960s. The most recent one, due to
Aschenbrenner (2004), was of crucial importance in our investigations.
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Aschenbrenner’s ideal membership algorithm

For f ∈ Z[Z1, . . . ,Zr ], we define

deg f := total degree of f ,

h(f ) := logarithmic height of f (log max |coeff. of f |)

Theorem (Aschenbrenner, 2004)

Let g , f1, . . . , fM ∈ Z[Z1, . . . ,Zr ] have total degrees at most d and
logarithmic heights at most h, where d ≥ 1, h ≥ 1.
Suppose there are g1, . . . , gr ∈ Z[Z1, . . . ,Zr ] with g = g1f1 + · · ·+ gM fM .
Then there are such g1, . . . , gM with

deg gi ≤ C1 := (4d)(6r)
r

h, h(gi ) ≤ C2 := (4d)(6r)
r+1

hr+1

for i = 1, . . . ,M.

To verify whether g ∈ (f1, . . . , fM) one simply has to check for all
g1, . . . , gM ∈ Z[Z1, . . . ,Zr ] of total degrees at most C1 and logarithmic
heights at most C2 whether g = g1f1 + · · ·+ gM fM .
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Solving Diophantine equations over finitely
generated domains

Let A ∼= Z[Z1, . . . ,Zr ]/I with I = (f1, . . . , fM) be a f.g. domain of char.
0.
Let P ∈ A[X1, . . . ,Xm] and suppose that representatives in Z[Z1, . . . ,Zr ]
for the coefficients of P are given.

Suppose that we know somehow that the Diophantine equation

(*) P(x1, . . . , xm) = 0 in x1, . . . , xm ∈ A

has only finitely many solutions.

Effectively solving (∗) means producing a list, consisting of a tuple of
representatives x̃1, . . . , x̃m ∈ Z[Z1, . . . ,Zr ] for each solution x1, . . . , xm.

Győry (1983/84) developed a method to prove effective finiteness results
for various classes of Diophantine equations over finitely generated
domains, but his method works only for special domains (defined later).

Ev. and Győry (2013) extended this to arbitrary finitely generated
domains of characteristic 0, using Aschenbrenner’s theorem.
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Solving Diophantine equations over finitely
generated domains

Definition of the size

Let A ∼= Z[Z1, . . . ,Zr ]/I with I = (f1, . . . , fM) be a f.g. domain of char.
0.

Define the size of F ∈ Z[Z1, . . . ,Zr ] by s(F ) := max(1, deg F , h(F )).

Further, define the size of α ∈ A by

s(α) := inf
{
s(α̃) : α̃ ∈ Z[Z1, . . . ,Zr ] is a representative for α

}

Fact

Let P ∈ A[X1, . . . ,Xm] and let P̃ be a polynomial in X1, . . . ,Xm with
coefficients in Z[Z1, . . . ,Zr ] representing the coefficients of P.

We can solve (*) P(x1, . . . , xm) = 0 in x1, . . . , xm ∈ A if we can compute

a bound C = C (f1, . . . , fM , P̃) such that s(x1), . . . , s(xm) ≤ C for all
solutions of (*).

Proof. Check for all tuples x̃1, . . . , x̃m ∈ Z[Z1, . . . ,Zr ] of size ≤ C

whether P̃(x̃1, . . . , x̃m) ∈ I using an ideal menbership algorithm.
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General idea

The general idea to estimate the sizes of the solutions of an equation

(*) P(x1, . . . , xm) = 0 in x1, . . . , xm ∈ A

is as follows:

1) Derive related equations over certain function fields and certain
number fields.

2) Compute upper bounds for the heights of the solutions of the
equations over function fields (e.g. using Mason’s abc-theorem for
algebraic functions) and for the heights of the solutions over number
fields (e.g., using Baker’s method).

3) Combine the estimates from 2) to derive upper bounds for the sizes
of the solutions of (*), using the effective specialization lemma
(discussed later).
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First application: unit equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0 and let
a, b, c be non-zero elements of A. Consider the unit equation

(U) ax + by = c in x , y ∈ A∗ (group of units of A)

Győry (1979) gave explicit upper bounds for the heights of x , y in case
that A is the ring of S-integers in a number field and Mason (1983)
proved an analogue for function fields in one variable.

Theorem (Ev., Győry, 2013)

Suppose that f1, . . . , fM and some representatives of a, b, c have total
degrees ≤ d and logarithmic heights ≤ h, where d ≥ 1, h ≥ 1.

Then for all solutions x , y ∈ A∗ of (U) we have

s(x), s(y) ≤ exp
(
(2d)κ

r
h
)
,

where κ is an effectively computable absolute constant > 1.
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Further applications

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0.

Our method gives effective estimates for the sizes of the solutions of the
following equations:

I (Bérczes, Ev., Győry, 2014) Thue equations F (x , y) = δ in x , y ∈ A
where F ∈ A[X ,Y ] is a binary form and δ ∈ A \ {0};

I (Bérczes, Ev., Győry, 2014) hyper- and superelliptic equations
yn = f (x) in x , y ∈ A, Schinzel-Tijdeman equation y z = f (x) in
x , y ∈ A, z ∈ Z>0 where f ∈ A[X ];

I (Koymans, 2015) Catalan equation xm − yn = 1 in x , y ∈ A,
m, n ∈ Z>0;

I (Bérczes, 2015) generalized unit equations f (x , y) = 0 in x , y ∈ A∗

where f ∈ A[X ,Y ];

I (Ev., Győry, 202?) decomposable form equations F (x1, . . . , xm) = δ
in x1, . . . , xm ∈ A where δ ∈ A \ {0} and F ∈ A[X1, . . . ,Xm] is a
decomposable form, i.e., it factorizes into linear forms over an
algebraic extension of the quotient field of A.
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I (Ev., Győry, 202?) decomposable form equations F (x1, . . . , xm) = δ
in x1, . . . , xm ∈ A where δ ∈ A \ {0} and F ∈ A[X1, . . . ,Xm] is a
decomposable form, i.e., it factorizes into linear forms over an
algebraic extension of the quotient field of A.



24/48

Further applications

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0.

Our method gives effective estimates for the sizes of the solutions of the
following equations:
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I (Ev., Győry, 202?) decomposable form equations F (x1, . . . , xm) = δ
in x1, . . . , xm ∈ A where δ ∈ A \ {0} and F ∈ A[X1, . . . ,Xm] is a
decomposable form, i.e., it factorizes into linear forms over an
algebraic extension of the quotient field of A.



26/48

Further applications

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0.

Our method gives effective estimates for the sizes of the solutions of the
following equations:
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yn = f (x) in x , y ∈ A, Schinzel-Tijdeman equation y z = f (x) in
x , y ∈ A, z ∈ Z>0 where f ∈ A[X ];
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Explanation of the method

As mentioned before, we can estimate the sizes of the solutions of a
Diophantine equation over a finitely generated integral domain A of
characteristic 0 in terms of estimates for the heights of the solutions of
related equations over number fields and over function fields.

We would like to explain this in more detail.

Our method has three ingredients:

1) construction of a special domain B ⊇ A;

2) construction of specializations (ring homomorphisms) B → Q;

3) effective specialization lemma.
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Construction of a special domain B ⊃ A

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of
char. 0 and K its quotient field.

Suppose that f1, . . . , fM have total degrees at most d and logarithmic
heights at most h, where d ≥ 1, h ≥ 1.

We assume that z1, . . . , zq are algebraically independent and that
zq+1, . . . , zr are algebraic over K0 := Q(z1, . . . , zq).
Note that [K : K0] =: D ≤ d r .

Let A0 := Z[z1, . . . , zq]. Then

A ⊆ B := A0[θ, g−1] = Z[z1, . . . , zq, θ, g
−1],

where g ∈ A0 \ {0}, θ ∈ K and θ has minimal polynomial
F(X ) = XD + F1X

D−1 + · · ·+ FD ∈ A0[X ] over K0.
Such a domain B is called special.

Viewing the Fi and g as polynomials in the variables z1, . . . , zq, we can
choose them such that their total degrees and logarithmic heights are
effectively bounded in terms of r , d and h.
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Specializations

Let A = Z[z1, . . . , zr ] be a f.g. domain of char. 0.

Let z1, . . . , zq be algebraically independent, zq+1, . . . , zr algebraic over
K0 = Q(z1, . . . , zq), A0 = Z[z1, . . . , zq] and A ⊆ B = A0[θ, g−1], where
g ∈ A0 \ {0} and θ has minimal polynomial
F(X ) = XD + F1X

D−1 + · · ·+ FD ∈ A0[X ] over K0.

For u = (u1, . . . , uq) ∈ Zq, let Fu be the polynomial in Z[X ] obtained by
substituting ui for zi (i = 1, . . . , q) in the Fj , and let θu,1, . . . , θu,D be
the zeros of Fu in Q.

Now for u ∈ Zq with g(u) 6= 0 and j = 1, . . . ,D, we can define a ring
homomorphism ϕu,j : B → Q by

z1 7→ u1, . . . , zq 7→ uq, θ 7→ θu,j .

ϕu,j(B) is contained in the ring of S-integers of a number field, where S
and the number field depend on u and j .

Hence also ϕu,j(A) is contained in this ring of S-integers.
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Effective specialization lemma

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of
char. 0 and K its quotient field.

Suppose that f1, . . . , fM have total degrees at most d and logarithmic
heights at most h, where d ≥ 1, h ≥ 1.

Let z1, . . . , zq be alg. ind., zq+1, . . . , zr alg. over K0 = Q(z1, . . . , zq).

Let ki = Q(z1, . . . , zi−1, zi+1, . . . , zq), Li := kiK .
Then Li is a finite extension of ki (zi ) and thus a function field in one
variable over ki .

Further, let

HLi the function field height on Li (0 on k∗i ),
hQ the absolute logarithmic Weil height on Q,

s(α) := inf{max
(
1, deg α̃, h(α̃)

)
: α̃ repr. of α} the size of α ∈ A.

Effective specialization lemma

Let α ∈ A. Let max1≤i≤q HLi (α) ≤ R. Then one can compute:

- a finite set S ⊂ Zq depending only on r , d , h,R;

- an effective upper bound for s(α) depending only on r , d , h, R and
max

{
hQ(ϕu,j(α)) : u ∈ S, j = 1, . . . ,D

}
.
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Effective specialization lemma

Let α ∈ A. Let max1≤i≤q HLi (α) ≤ R. Then one can compute:

- a finite set S ⊂ Zq depending only on r , d , h,R;

- an effective upper bound for s(α) depending only on r , d , h, R and
max

{
hQ(ϕu,j(α)) : u ∈ S, j = 1, . . . ,D

}
.

R → S →max
{
hQ(ϕu,j(α)) : u ∈ S, j = 1, . . . ,D

}
↘ ↙

s(α)

Győry (1983/84) basically proved a version of this effective specialization
lemma in the case that A is a special domain.

We extended this to arbitrary finitely generated domains A of
characteristic 0 using Aschenbrenner’s theorem mentioned before
(a result of this type was not available when Győry obtained his result).
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Application to unit equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0 and let
a, b, c be non-zero elements of A. Consider the equation

(U) ax + by = c in x , y ∈ A∗ (group of units of A)

Let d ≥ 1 be an upper bound for the total degrees and h ≥ 1 an upper
bound for the logarithmic heights of f1, . . . , fM and for representatives for
a, b, c .

1. Compute an upper bound R for HLi (x), HLi (y) for i = 1, . . . , q,
using Mason’s abc-theorem for function fields;

2. Compute the set S ⊂ Zq; the specializations ϕu,j

(u ∈ S, j = 1, . . . ,D) map (U) to S-unit equations in number fields;

3. Compute an upper bound for
max{hQ(ϕu,j(x)), hQ(ϕu,j(y)) : u ∈ S, j = 1, . . . ,D} using Baker
theory (e.g., Győry, Yu (2006));

4. Using the effective specialization lemma, compute upper bounds

s(x), s(y) ≤ exp
(
(2d)κ

r
h
)
.
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Decomposable form equations

Let A be a f.g. domain of char. 0, K the quotient field of A and K an
algebraic closure of K .

We consider so-called decomposable form equations

(DFE) F (x) = δ in x = (x1, . . . , xm) ∈ Am,

where δ ∈ A \ {0} and where F ∈ A[X1, . . . ,Xm] is a decomposable form,
that is, we can express F as a product of linear forms

F = `1 · · · `n, `i =
m∑
j=1

αi,jXj with αi,j ∈ K .

Every binary form is decomposable. So Thue equations are decomposable
form equations in two unknowns.
But forms in more than two variables need not be decomposable.

There are general finiteness theorems for (DFE) (Ev., Győry, 1985, 2015)
but these depend on Schmidt’s Subspace Theorem, hence are ineffective.
To get effective finiteness results one needs to impose stronger conditions
on F .
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Triangularly connected decomposable forms

Győry and Papp (1978) and Győry (1981, 1984) introduced the notion of
triangularly connected decomposable forms, for which one can prove
effective finiteness results for the corresponding decomposable form
equations.

Let K be any field of characteristic 0 and K an algebraic closure of K .
Consider a decomposable form

F = `1 · · · `n ∈ K [X1, . . . ,Xm], `i =
m∑
j=1

αi,jXj with αi,j ∈ K .

Define a graph G with set of vertices {1, . . . , n} and with edges {p, q} as
follows:
{p, q} is an edge of G if `p, `q are linearly dependent over K or if there is
k /∈ {p, q} such that `p, `q, `k are linearly dependent over K .

Then F is said to be triangularly connected if the graph G is connected.
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An effective result for decomposable form equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of characteristic 0.

Let F ∈ A[X1, . . . ,Xm] be a decomposable form of degree n (product of
n linear forms) and δ ∈ A \ {0} and consider

(DFE) F (x) = δ in x = (x1, . . . , xm) ∈ Am.

Theorem (Ev., Győry, 202?)

Suppose that F is triangularly connected and the linear factors of F have
rank m (effectively decidable),

let f1, . . . , fM have total degree at most d and logarithmic height at most
h, where d ≥ 1, h ≥ 1,

suppose δ and the coefficients of F have representatives of total degree
at most d and logarithmic height at most h.

Then for every solution x = (x1, . . . , xm) ∈ Am of (DFE) we have

s(x1), . . . , s(xm) ≤ exp
(
(nmn2d)κ

r
h
)

where κ is an effectively computable absolute constant > 1.
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About the proof

Győry proved in 1980/81 a version of the above theorem for
decomposable form equations over the ring of S-integers of a number
field.

We generalized his proof to decomposable form equations over arbitrary
finitely generated domains A. This required some new machinery.

The idea is that thanks to the triangular connectedness condition, the
decomposable form equation can be reduced to a system of unit
equations in two unknowns over a finitely generated domain A′ ⊃ A.

Applying our effective result on unit equations we eventually deduce our
theorem.
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About the proof

The reduction to unit equations is as follows.

Let A = Z[z1, . . . , zr ], K the quotient field of A and K an algebraic
closure of K .

Let F = `1 · · · `n ∈ A[X1, . . . ,Xm] with the `i linear forms with
coefficients in K be the decomposable form under consideration, and
suppose that F is triangularly connected.

Then there are many relations λk`k = λp`p + λq`q between the linear
forms, arising from the edges of the associated graph G.

Let x = (x1, . . . , xm) ∈ Am be a solution of F (x) = δ.

By adjoining to A a finite number of elements from K , and denoting by
A′ the resulting f.g. domain, we obtain

λp ·
`p(x)

`k(x)
+ λq ·

`q(x)

`k(x)
= λk ,

`p(x)

`k(x)
,
`q(x)

`k(x)
∈ A′∗.

Now apply the result on unit equations mentioned before, with A′ instead
of A.
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attention.


