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Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate
polynomials with integer coefficients, henceforth called ’Hermite
equivalence’, which was largely unnoticed.

We compare this with better known equivalence relations for polynomials,
i.e., GL2(Z)-equivalence and order equivalence (invariant orders of the
polynomials being isomorphic).

It will turn out that
GL2(Z)-equivalence ⇒ Hermite equivalence ⇒ order equivalence.

Our aim is the following:

I show that the implication arrows cannot be reversed, i.e., to give
examples of Hermite equivalent polynomials that are not
GL2(Z)-equivalent, and order equivalent polynomials that are not
Hermite equivalent.
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GLn(Z)-equivalence of decomposable forms

Hermite equivalence of univariate polynomials is defined by means of de-
composable forms associated to these polynomials.
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GLn(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n ≥ 2 in n variables

F (X) = c
n∏

i=1

(αi,1X1 + · · ·+ αi,nXn) ∈ Z[X1, . . . ,Xn],

where c ∈ Q∗ and αi,j ∈ Q for i , j = 1, . . . , n.

The discriminant of F is given by D(F ) := c2
(

det(αi,j)1≤i,j≤n
)2

.
We have D(F ) ∈ Z.
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GLn(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n ≥ 2 in n variables

F (X) = c
n∏

i=1

(αi,1X1 + · · ·+ αi,nXn) ∈ Z[X1, . . . ,Xn],

where c ∈ Q∗ and αi,j ∈ Q for i , j = 1, . . . , n.

The discriminant of F is given by D(F ) := c2
(

det(αi,j)1≤i,j≤n
)2

.
We have D(F ) ∈ Z.

Two decomposable forms F ,G as above are called GLn(Z)-equivalent if

G (X) = ±F (UX) for some U ∈ GLn(Z)

(here X = (X1, . . . ,Xn)T is a column vector).

Two GLn(Z)-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let n ≥ 2, D 6= 0. Then the decomposable forms in Z[X1, . . . ,Xn] of
degree n and discriminant D lie in finitely many GLn(Z)-equivalence
classes.
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Hermite equivalence of univariate polynomials

Let f = c(X −α1) · · · (X −αn) ∈ Z[X ] (with c ∈ Z6=0, α1, . . . , αn ∈ Q).

Define the discriminant of f by D(f ) := c2n−2
∏

1≤i<j≤n(αi − αj)
2.

To f we associate the decomposable form

[f ](X) := cn−1
n∏

i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn) ∈ Z[X1, . . . ,Xn].

Fact. D(f ) = D([f ]) (Vandermonde).

Hermite introduced in 1857 the following equivalence relation:

Two polynomials f , g ∈ Z[X ] of degree n are called Hermite equivalent if
the associated decomposable forms [f ] and [g ] are GLn(Z)-equivalent,
i.e., [g ](X) = ±[f ](UX) for some U ∈ GLn(Z).

Hermite’s theorem on decomposable forms and the above fact imply:

Theorem (Hermite, 1857)

Let n ≥ 2, D 6= 0. Then the polynomials f ∈ Z[X ] of degree n and of
discriminant D lie in finitely many Hermite equivalence classes.
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GL2(Z)-equivalence

We want to compare Hermite equivalence with GL2(Z)-equivalence.

Two polynomials f , g ∈ Z[X ] of degree n are called GL2(Z)-equivalent if
there is

(
a b
d e

)
∈ GL2(Z) such that

g(X ) = ±(dX + e)nf
(aX+b
dX+e

)
.

Lemma

Let f , g ∈ Z[X ] be two GL2(Z)-equivalent polynomials of equal degree.
Then they are Hermite equivalent.

The converse is in general not true.
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Proof of Lemma

We have to prove that any two GL2(Z)-equivalent polynomials f , g in
Z[X ] are Hermite equivalent.

Let f (X ) = c
∏n

i=1(X − αi ) ∈ Z[X ] and g(X ) = ±(dX + e)nf
(
aX+b
dX+e

)
,

where A :=
(
a b
d e

)
∈ GL2(Z).

Then g(X ) = ±c
∏n

i=1(βiX − γi ), βi = d − aαi , γi = −e + bαi .

Define the inner product of two column vectors
x = (x1, . . . , xn)T , y = (y1, . . . , yn)T by 〈x, y〉 := x1y1 + · · ·+ xnyn.

Let as before X = (X1, . . . ,Xn)T . Thus,

[f ](X) = cn−1
n∏

i=1

〈ai ,X〉, where ai = (1, αi , . . . , , α
n−1
i )T ,

[g ](X) = ±cn−1
n∏

i=1

〈bi ,X〉, where bi = (βn−1
i , βn−2

i γi , . . . , γ
n−1
i )T .

Then bi = t(A)ai with t(A) ∈ GLn(Z) for i = 1, . . . , n. So

[g ](X) = ±cn−1
n∏

i=1

〈t(A)ai ,X〉 = ±cn−1
n∏

i=1

〈ai , t(A)TX〉 = ±[f ](t(A)TX).
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Finiteness results for GL2(Z)-equivalence

Recall that two polynomials f , g ∈ Z[X ] of the same degree are
GL2(Z)-equivalent if g(X ) = ±(dX + e)deg f f

(
aX+b
dX+e

)
for some(

a b
d e

)
∈ GL2(Z).

Theorem (Birch and Merriman, 1972)

Let n ≥ 2, D 6= 0. Then there are only finitely many GL2(Z)-equivalence
classes of polynomials f ∈ Z[X ] of degree n and discriminant D.

The proof of Birch and Merriman is ineffective.
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Finiteness results for GL2(Z)-equivalence

Recall that two polynomials f , g ∈ Z[X ] of the same degree are
GL2(Z)-equivalent if g(X ) = ±(dX + e)deg f f

(
aX+b
dX+e

)
for some(

a b
d e

)
∈ GL2(Z).

Theorem (Ev. and Győry, 1991)

Let n ≥ 2, D 6= 0. Then there is an effective C = C (n,D) such that
every f ∈ Z[X ] of degree n and discriminant D is GL2(Z)-equivalent to a
polynomial f ∗ with H(f ∗) := max |coeff. f ∗| ≤ C .

In 2017, Ev. and Győry proved this with C = exp
(

(16n3)25n
2 |D|5n−3

)
.

This extends work of Győry from the late 1970-s on monic polynomials.

The theorems of Birch and Merriman and Ev. and Győry on GL2(Z)-
equivalence use finiteness results for unit equations and Baker’s theory on
logarithmic forms, and thus are much deeper than Hermite’s.



20/51

An algebraic criterion for Hermite equivalence

In what follows, we restrict ourselves to polynomials in Z[X ] that are
irreducible and primitive, i.e., with coefficients having gcd 1.

For an algebraic number α of degree n define the free Z-module
generated by 1, α, . . . , αn−1,

Mα :=
{
x1 + x2α + · · ·+ xnα

n−1 : x1, . . . , xn ∈ Z
}

Lemma

Let f , g ∈ Z[X ] be primitive, irreducible polynomials of degree ≥ 2. Then
f , g are Hermite equivalent if and only if there are λ 6= 0, a root α of f
and a root β of g such that Mβ = λMα = {λξ : ξ ∈Mα}.



21/51

Connection with invariant orders

Let Mα :=
{
x1 + x2α+ · · ·+ xnα

n−1 : x1, . . . , xn ∈ Z
}

for α of degree n,

Zα := {ξ ∈ Q(α) : ξMα ⊆Mα}, the ring of scalars of Mα.

It can be shown that Zα = Z[α] ∩ Z[α−1]. It is an order in Q(α).

Let f ∈ Z[X ] be a primitive, irreducible polynomial and α a root of f .
Then Zα is called the invariant order of f ; it is up to isomorphism
uniquely determined.
The discriminant of Zα is equal to D(f ).

We saw that if f , g are primitive, irreducible, Hermite equivalent
polynomials then there are λ 6= 0, a root α of f and a root β of g such
that Mβ = λMα. This implies Zα = Zβ .

Corollary

If f , g are irreducible, primitive, Hermite equivalent polynomials in Z[X ],
then f has a root α and g a root β such that Zα = Zβ , i.e., f and g
have isomorphic invariant orders.
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Summary

Let f , g ∈ Z[X ] be two primitive, irreducible polynomials.
Then f , g are GL2(Z)-equivalent

⇒ f , g are Hermite equivalent
⇒ f , g are order equivalent (have isomorphic invariant orders)
⇒ f , g have equal discriminant.

There are only finitely many GL2(Z)-equivalence classes of polynomials of
given degree and discriminant.

So each order equivalence class, resp. Hermite equivalence class is the
union of finitely many GL2(Z)-equivalence classes.
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The monic case

We are interested in the problem whether or not two polynomials with
isomorphic invariant orders are Hermite equivalent.
We first consider monic polynomials.

Let f ∈ Z[X ] be irreducible and monic and α a root of f . Let deg f = n.
Recall that

Mα =
{ n∑

i=1

xiα
i−1 : xi ∈ Z

}
, Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Since f is monic, αn, αn+1, . . . ∈Mα. Hence Mα = Zα = Z[α].

Corollary

Let f , g ∈ Z[X ] be irreducible and monic. Then f , g are Hermite
equivalent if and only if f has a root α and g a root β such that
Z[α] = Z[β], i.e., if and only if f and g have isomorphic invariant orders.
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The non-monic case

If f , g ∈ Z[X ] are irreducible and monic, then
f , g are Hermite equivalent ⇐⇒ f , g have isomorphic invariant orders.

If f , g ∈ Z[X ] are irreducible, primitive and not both monic, then
f , g are Hermite equivalent =⇒ f , g have isomorphic invariant orders.

What about ⇐=?

Theorem (Delone and Faddeev, The theory of irrationalities of the
third degree, 1940)

Let f , g ∈ Z[X ] be two irreducible, primitive polynomials of degree 3. If
f , g have isomorphic invariant orders then they are GL2(Z)-equivalent,
hence Hermite equivalent.
So for primitive, irreducible, cubic polynomials, GL2(Z)-equivalence,
Hermite equivalence and order equivalence coincide.

There are Hermite inequivalent polynomials of degree 4 with isomorphic
invariant orders.

Likely, this is true for degree ≥ 5 as well, but we haven’t been able to
produce any counterexamples in this case yet.
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Isomorphic invariant orders 6⇒ Hermite equivalence

Let f ∈ Z[X ] be irreducible and primitive and α a root of f . Let
deg f = n. Recall that

Mα =
{ n∑

i=1

xiα
i−1 : xi ∈ Z

}
, Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Define Iα := Zα + αZα to be the fractional ideal of Zα generated by 1
and α.

Theorem (BEGRS, 2022)

Let f , g ∈ Z[X ] be irreducible and primitive. Then f , g are Hermite
equivalent if and only if f has a root α and g a root β such that Zα = Zβ
and the fractional ideals Iα and Iβ belong to the same ideal class.

Example

Let f = 4X 4 − X 3 − 62X 2 + 13X + 255, g = 5X 4 − X 3 − 2X 2 − 7X − 6.
Then f and g are irreducible, f has a root α and g a root β such that
Q(α) = Q(β) and Zα = Zβ is the maximal order of Q(α).

But Iα is principal and Iβ is not. So f and g are not Hermite equivalent.
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Hermite equivalence 6⇒ GL2(Z)-inequivalence

For polynomials of degree 2 (trivial) and of degree 3 (Delone and
Faddeev) Hermite equivalence and GL2(Z)-equivalence coincide.

Theorem (BEGRS, 2021)

For every n ≥ 4 there are infinitely many pairs (f , g) of irreducible,
primitive polynomials in Z[X ] of degree n such that f , g are Hermite
equivalent but GL2(Z)-inequivalent.
These pairs lie in different Hermite equivalence classes.

The proof is by means of an explicit construction.
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The construction (I)

Consider the formal power series C (X ) :=
1−
√

1− 4X

2X
=
∞∑
i=0

CiX
i ,

with Ci = 1
i+1

(
2i
i

)
∈ Z the i-th Catalan number.

Let n ≥ 4, and a(n)(X ) :=
n−2∑
i=0

CiX
i ,

b(n)(X ) :=
X (a(n)(X ))2 − a(n)(X ) + 1

X n−1 ,

k(n)(X ) :=
1− X · a(n)(X − X 2)

(1− X )n−1
.

Note X n−1|Xa(n)(X )2 − a(n)(X ) + 1 since XC (X )2 − C (X ) + 1 = 0,

X n−1|1− (1− X )a(n)(X − X 2) since C (X − X 2) = 1
1−X

,

(1− X )n−1|1− X · a(n)(X − X 2).

So a(n)(X ), b(n)(X ), k(n)(X ) are polynomials in Z[X ] of degree n − 2.
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The construction (II)

Let a(n)(X ), b(n)(X ), k(n)(X ) be the polynomials from the previous slide,
let c be either 1 or a prime and t a prime different from c , and put

f
(n)
t,c (X ) := cX n + tk(n)(cX ),

g
(n)
t,c (X ) := cX n + t(1− 2cX · a(n)(X ))− cn−1t2b(n)(cX ).

Note that both f
(n)
t,c (X ), g

(n)
t,c (X ) are polynomials in Z[X ] of degree n with

leading coefficient c .
They are both primitive, and by Eisenstein’s criterion, both irreducible.
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The construction (II)

Let a(n)(X ), b(n)(X ), k(n)(X ) be the polynomials from the previous slide,
let c be either 1 or a prime and t a prime different from c , and put

f
(n)
t,c (X ) := cX n + tk(n)(cX ),

g
(n)
t,c (X ) := cX n + t(1− 2cX · a(n)(X ))− cn−1t2b(n)(cX ).

Theorem

Let n ≥ 4. Then there are infinitely many pairs (c , t) as above such that

f
(n)
t,c (X ), g

(n)
t,c (X ) have the following properties:

(i) f
(n)
t,c (X ), g

(n)
t,c (X ) are irreducible, primitive polynomials in Z[X ] of

degree n with leading coefficient c ;

(ii) f
(n)
t,c (X ), g

(n)
t,c (X ) are Hermite equivalent;

(iii) f
(n)
t,c (X ), g

(n)
t,c (X ) are not GL2(Z)-equivalent.

Moreover, the pairs (f
(n)
t,c , g

(n)
t,c ) lie in different Hermite equivalence

classes.
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Special polynomials

A polynomial f ∈ Z[X ] is called special if there is g ∈ Z[X ] such that g
is Hermite equivalent to f but GL2(Z)-inequivalent to f .

All polynomials in Z[X ] of degree 2 and 3 are non-special (trivial for
n = 2, Delone and Faddeev for n = 3).

For every n ≥ 4 we have constructed infinitely many primitive, irreducible
special polynomials of degree n that lie in different Hermite equivalence

classes (the polynomials f
(n)
t,c from the previous slide).

Vague belief

Most polynomials are non-special.
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A polynomial f ∈ Z[X ] is called special if there is g ∈ Z[X ] such that g
is Hermite equivalent to f but GL2(Z)-inequivalent to f .

All polynomials in Z[X ] of degree 2 and 3 are non-special (trivial for
n = 2, Delone and Faddeev for n = 3).

For every n ≥ 4 we have constructed infinitely many primitive, irreducible
special polynomials of degree n that lie in different Hermite equivalence

classes (the polynomials f
(n)
t,c from the previous slide).

Question

Let K be a given number field. Consider the primitive, irreducible, special
polynomials f ∈ Z[X ] such that a root of f generates K . Do these
polynomials lie in only finitely Hermite equivalence classes?

There are number fields K of degree 4 for which this is false.

But we do not exclude that for number fields of degree ≥ 5 this is true.
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A weaker result

For a number field K , let PI(K ) denote the set of primitive, irreducible
polynomials f ∈ Z[X ] such that K is generated by a root of f .

Recall that f ∈ PI(K ) is special if there is g ∈ Z[X ] such that g and f
are Hermite equivalent but GL2(Z)-inequivalent.

Call two polynomials f , g ∈ Z[X ] GL2(Q)-equivalent if they have the

same degree, say n, and g(X ) = u(dX + e)nf
(aX+b
dX+e

)
for some u ∈ Q∗

and
(
a b
d e

)
∈ GL2(Q).

Theorem (E.)

Let K be a number field of degree n ≥ 5 whose normal closure has as
Galois group the full symmetric group Sn.

Then the special polynomials in PI(K ) lie in finitely many
GL2(Q)-equivalence classes.

There are number fields K of degree 4 for which this is false.



41/51

A weaker result

For a number field K , let PI(K ) denote the set of primitive, irreducible
polynomials f ∈ Z[X ] such that K is generated by a root of f .

Recall that f ∈ PI(K ) is special if there is g ∈ Z[X ] such that g and f
are Hermite equivalent but GL2(Z)-inequivalent.

Call two polynomials f , g ∈ Z[X ] GL2(Q)-equivalent if they have the

same degree, say n, and g(X ) = u(dX + e)nf
(aX+b
dX+e

)
for some u ∈ Q∗

and
(
a b
d e

)
∈ GL2(Q).

Theorem (E.)

Let K be a number field of degree n ≥ 5 whose normal closure has as
Galois group the full symmetric group Sn.

Then the special polynomials in PI(K ) lie in finitely many
GL2(Q)-equivalence classes.

There are number fields K of degree 4 for which this is false.



42/51

Outline of the proof

Assume [K : Q] = n ≥ 5 and its normal closure L has Galois group Sn.

Let f ∈ PI(K ) be special. Choose g ∈ PI(K ) such that g and f are
Hermite equivalent butGL2(Z)-inequivalent.

Then ∃ α, β such that f (α) = g(β) = 0, K = Q(α) = Q(β).

Let ξ 7→ ξ(i) (i = 1, . . . , n) be the embeddings K ↪→ C and define the
cross ratios of ξ,

crijkl(ξ) =
(ξ(i) − ξ(j))(ξ(k) − ξ(l))
(ξ(i) − ξ(k))(ξ(j) − ξ(l))

.

Lemma (⇐ Hermite equivalence of f and g)

crijkl(α)

crijkl(β)
∈ O∗L for all distinct i , j , k, l ∈ {1, . . . , n}.

Using algebraic relations between the cross ratios and finiteness results
for unit equations, one shows that there are only finitely many
possibilities for the crijkl(α).
Any given set of values for the crijkl(α) fixes the GL2(Q)-equivalence
class of f .
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Quantitative results

Theorem (Bérczes, Ev., Győry, 2004)

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

The best bounds for C (n) obtained so far:

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

In the case n = 4, Bhargava used an injection from the GL2(Z)-equiv.
classes of quartic polynomials f with invariant order O to sols. of a cubic
Thue equation F (x , y) = 1 and used Bennett’s upper bound 10 for the
number of sols. of the latter.

The case n ≥ 5 was deduced from Beukers’ and Schlickewei’s upper
bound 216r+8 for the number of solutions of x + y = 1 in x , y ∈ Γ, with Γ
a multiplicative group of rank r .
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Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

The best bounds for C (n) obtained so far:

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)
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Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

Open problems

I Improve C (n) (to something polynomial in n?)

I Lower bounds growing to infinity with n.



50/51

Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

Corollary

The primitive, irreducible polynomials f ∈ Z[X ] of degree n in a given
Hermite equivalence class lie in at most C (n) GL2(Z)-equivalence classes.
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Congratulations, Kálmán,
János, András.


