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Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate
polynomials with integer coefficients, henceforth called ’Hermite
equivalence’, which was largely unnoticed.

We compare this with more established equivalence relations, i.e.,
Z-equivalence for monic polynomials and GL2(Z)-equivalence for not
necessarily monic polynomials.

It will turn out that Z-equivalence and GL2(Z)-equivalence imply Hermite
equivalence.

We are interested in the following problems:

I to show that Hermite equivalence is weaker than Z-equivalence and
GL2(Z)-equivalence, i.e., to give examples of Hermite equivalent
polynomials that are not Z-equivalent or GL2(Z)-equivalent;

I say something about the number of Z-equivalence classes or
GL2(Z)-equivalence classes going into a Hermite equivalence class.
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GLn(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n ≥ 2 in n variables

F (X) = c
n∏

i=1

(αi,1X1 + · · ·+ αi,nXn) ∈ Z[X1, . . . ,Xn],

where c ∈ Q∗ and αi,j ∈ Q for i , j = 1, . . . , n.

The discriminant of F is given by D(F ) := c2
(

det(αi,j)1≤i,j≤n
)2

.
We have D(F ) ∈ Z.

Two decomposable forms F ,G as above are called GLn(Z)-equivalent if

G (X) = ±F (UX) for some U ∈ GLn(Z)

(here X = (X1, . . . ,Xn)T is a column vector).

Two GLn(Z)-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let n ≥ 2, D 6= 0. Then the decomposable forms in Z[X1, . . . ,Xn] of
degree n and discriminant D lie in finitely many GLn(Z)-equivalence
classes.
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Hermite equivalence of univariate polynomials

Let f = c(X −α1) · · · (X −αn) ∈ Z[X ] (with c ∈ Z6=0, α1, . . . , αn ∈ Q).

Define the discriminant of f by D(f ) := c2n−2
∏

1≤i<j≤n(αi − αj)
2.

To f we associate the decomposable form

[f ](X) := cn−1
n∏

i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn) ∈ Z[X1, . . . ,Xn].

Fact. D(f ) = D([f ]) (Vandermonde).

Hermite introduced in 1857 the following equivalence relation:

Two polynomials f , g ∈ Z[X ] of degree n are called Hermite equivalent if
the associated decomposable forms [f ] and [g ] are GLn(Z)-equivalent,
i.e., [g ](X) = ±[f ](UX) for some U ∈ GLn(Z).

Hermite’s theorem on decomposable forms and the above fact imply:

Theorem (Hermite, 1857)

Let n ≥ 2, D 6= 0. Then the polynomials f ∈ Z[X ] of degree n and of
discriminant D lie in finitely many Hermite equivalence classes.
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Z-equivalence and GL2(Z)-equivalence

We want to compare the Hermite equivalence with other, better known
equivalence relations for univariate polynomials.

Two monic polynomials f , g ∈ Z[X ] of degree n are called Z-equivalent if
g(X ) = f (X + a) or g(X ) = (−1)nf (−X + a) for some a ∈ Z.

Two not necessarily monic polynomials f , g ∈ Z[X ] of degree n are called
GL2(Z)-equivalent if there is

(
a b
d e

)
∈ GL2(Z) such that

g(X ) = ±(dX + e)nf ( aX+b
dX+e ).

Z-equivalent monic polynomials in Z[X ] are clearly GL2(Z)-equivalent.

Lemma

Let f , g ∈ Z[X ] be two Z-equivalent, resp. GL2(Z)-equivalent
polynomials. Then they are Hermite equivalent.

We will give examples showing that the converse is in general not true.
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Proof of Lemma

We prove that any two GL2(Z)-equivalent polynomials f , g in Z[X ] are
Hermite equivalent, which suffices.

Let f (X ) = c
∏n

i=1(X − αi ) ∈ Z[X ] and g(X ) = ±(dX + e)nf
(
aX+b
dX+e

)
,

where A :=
(
a b
d e

)
∈ GL2(Z).

Then g(X ) = ±c
∏n

i=1(βiX − γi ), βi = d − aαi , γi = −e + bαi .

Define the inner product of two column vectors
x = (x1, . . . , xn)T , y = (y1, . . . , yn)T by 〈x, y〉 := x1y1 + · · ·+ xnyn.

Let as before X = (X1, . . . ,Xn)T . Thus,

[f ](X) = cn−1
n∏

i=1

〈ai ,X〉, where ai = (1, αi , . . . , , α
n−1
i )T ,

[g ](X) = ±cn−1
n∏

i=1

〈bi ,X〉, where bi = (βn−1
i , βn−2

i γi , . . . , γ
n−1
i )T .

Then bi = t(A)ai with t(A) ∈ GLn(Z) for i = 1, . . . , n. So

[g ](X) = ±cn−1
n∏

i=1

〈t(A)ai ,X〉 = ±cn−1
n∏

i=1

〈ai , t(A)TX〉 = ±[f ](t(A)TX).
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A finiteness result for Z-equivalence

Recall that two monic polynomials f , g ∈ Z[X ] are Z-equivalent if
g(X ) = f (X + a) or (−1)deg f f (−X + a) for some a ∈ Z.

Theorem (Győry, 1973,1974)

Let D 6= 0. Then there are only finitely many Z-equivalence classes of
monic polynomials f ∈ Z[X ] of discriminant D, and a full system of
representatives of those can be determined effectively.



20/52

Finiteness results for GL2(Z)-equivalence

Recall that two polynomials f , g ∈ Z[X ] are GL2(Z)-equivalent if
g(X ) = ±(dX + e)deg f f

(
aX+b
dX+e

)
for some

(
a b
d e

)
∈ GL2(Z).

Theorem (Birch and Merriman, 1972)

Let D 6= 0. Then there are only finitely many GL2(Z)-equivalence classes
of polynomials f ∈ Z[X ] of discriminant D.

The proof of Birch and Merriman is ineffective.

In 1991, Ev. and Győry gave an effective proof of the theorem of Birch
and Merriman, implying that a full system of representatives for the
GL2(Z)-equivalence classes can be determined effectively.

The theorems of Győry on Z-equivalence and of Birch and Merriman and
Ev. and Győry on GL2(Z)-equivalence use finiteness results for unit
equations and Baker’s theory on logarithmic forms, and thus are much
deeper than that of Hermite on his equivalence.



21/52

Finiteness results for GL2(Z)-equivalence

Recall that two polynomials f , g ∈ Z[X ] are GL2(Z)-equivalent if
g(X ) = ±(dX + e)deg f f

(
aX+b
dX+e

)
for some

(
a b
d e

)
∈ GL2(Z).

Theorem (Birch and Merriman, 1972)

Let D 6= 0. Then there are only finitely many GL2(Z)-equivalence classes
of polynomials f ∈ Z[X ] of discriminant D.

The proof of Birch and Merriman is ineffective.
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An algebraic criterion for Hermite equivalence

For an algebraic number α of degree n define the free Z-module
generated by 1, α, . . . , αn−1,

Mα :=
{
x1 + x2α + · · ·+ xnα

n−1 : x1, . . . , xn ∈ Z
}

Call a polynomial with integer coefficients primitive if its coefficients have
gcd 1.

Henceforth, all polynomials will be primitive.

Lemma

Let f , g ∈ Z[X ] be primitive, irreducible polynomials of degree ≥ 2. Then
f , g are Hermite equivalent if and only if there are λ 6= 0, a root α of f
and a root β of g such that Mβ = λMα = {λξ : ξ ∈Mα}.
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Proof of Lemma

Let f = c
∏n

i=1(X − αi ), g = c ′
∏n

i=1(X − βi ) ∈ Z[X ] be irreducible,
primitive. Then

[f ](X) = cn−1
n∏

i=1

〈ai ,X〉, [g ](X) = c ′n−1
n∏

i=1

〈bi ,X〉,

with ai = (1, αi , . . . , α
n−1
i )T , bi = (1, βi , . . . , β

n−1
i )T .

So f , g are Hermite equivalent

⇐⇒ ∃U ∈ GLn(Z) with [g ](X) = ±[f ](UX)

⇐⇒ ∃U ∈ GLn(Z), λi 6= 0 with 〈bi ,X〉 = λi 〈ai ,UX〉 for i = 1, . . . , n

(after reindexing, for ⇐ use that [g ](X), [f ](UX) are primitive)

⇐⇒ ∃U ∈ GLn(Z), λi 6= 0 with bi = λiU
Tai for i = 1, . . . , n

⇐⇒ ∃λi 6= 0 with Mβi = λiMαi for i = 1, . . . , n

⇐⇒ ∃λ 6= 0, root α of f , root β of g with Mβ = λMα

(for ⇐ take for αi , βi , λi the conjugates of α, β, λ).
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Connection with invariant orders

Let Mα :=
{
x1 + x2α+ · · ·+ xnα

n−1 : x1, . . . , xn ∈ Z
}

for α of degree n,

Zα := {ξ ∈ Q(α) : ξMα ⊆Mα}, the ring of scalars of Mα.

It can be shown that Zα = Z[α] ∩ Z[α−1]. It is an order in Q(α).

Let f ∈ Z[X ] be a primitive, irreducible polynomial and α a root of f .
Then Zα is called the invariant order of f ; it is up to isomorphism
uniquely determined.

We saw that if f , g are Hermite equivalent primitive, irreducible
polynomials then there are λ 6= 0, a root α of f and a root β of g such
that Mβ = λMα. This implies Zα = Zβ .

Corollary 1

If f , g are Hermite equivalent, irreducible, primitive polynomials in Z[X ],
then f has a root α and g a root β such that Zα = Zβ , i.e., f and g
have isomorphic invariant orders.
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The monic case

Let f ∈ Z[X ] be irreducible and monic and α a root of f . Let deg f = n.
Recall that

Mα =
{ n∑

i=1

xiα
i−1 : xi ∈ Z

}
, Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Since f is monic, αn, αn+1, . . . ∈Mα. Hence Mα = Zα = Z[α].

Corollary 2

Let f , g ∈ Z[X ] be irreducible and monic. Then f , g are Hermite
equivalent if and only if f has a root α and g a root β such that
Z[α] = Z[β], i.e., if and only if f and g have isomorphic invariant orders.
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The non-monic case

If f , g ∈ Z[X ] are irreducible and monic, then
f , g are Hermite equivalent ⇐⇒ f , g have isomorphic invariant orders.

If f , g ∈ Z[X ] are irreducible, primitive and not both monic, then
f , g are Hermite equivalent =⇒ f , g have isomorphic invariant orders.

What about ⇐=?

I Any two irreducible, primitive polynomials of degree 3 with
isomorphic invariant orders are GL2(Z)-equivalent, hence Hermite
equivalent (Delone and Faddeev, 1940).

I Bhargava and Swaminathan (4/1/2022) gave a method to produce
irreducible, primitive polynomials of degree 4 that have isomorphic
invariant orders but are not Hermite equivalent.

Example

f = 4X 4 −X 3 − 62X 2 + 13X + 255, g = 5X 4 −X 3 − 2X 2 − 7X − 6 have
isomorphic invariant orders but are not Hermite equivalent.
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The non-monic case

In fact, Bhargava and Swaminathan used a more precise criterion to
obtain their example.

Let f ∈ Z[X ] be irreducible and primitive and α a root of f . Let
deg f = n. Recall that

Mα =
{ n∑

i=1

xiα
i−1 : xi ∈ Z

}
, Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Define Iα := Zα + αZα to be the fractional ideal of Zα generated by 1
and α.

Theorem (Bhargava, Swaminathan, 4/1/2022)

Let f , g ∈ Z[X ] be irreducible and primitive. Then f , g are Hermite
equivalent if and only if f has a root α and g a root β such that Zα = Zβ
and the fractional ideals Iα and Iβ belong to the same ideal class.
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Quantitative results

Recall that if f ∈ Z[X ] is an irreducible, primitive polynomial, then the
invariant order of f is Zα = Z[α] ∩ Z[α−1], where α is any root of f .
In the case that f is monic, this invariant order is Z[α].

f , g ∈ Z[X ] are Z-equivalent if g(X ) = f (X + a) or (−1)deg f f (−X + a)
for some a ∈ Z.

f , g ∈ Z[X ] are GL2(Z)-equivalent if g(X ) = ±(dX + e)deg f f ( aX+b
dX+e ) for

some
(
a b
d e

)
∈ GL2(Z).

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n.

(i) (Ev., Győry, 1985) The monic, irreducible polynomials f ∈ Z[X ] with
invariant order O lie in at most C1(n) Z-equivalence classes.

(ii) (Bérczes, Ev., Győry, 2004) The primitive, irreducible polynomials
f ∈ Z[X ] with invariant order O lie in at most C2(n) GL2(Z)-equivalence
classes.

Here C1(n), C2(n) depend on n only.
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Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n.

(i) The monic, irreducible polynomials f ∈ Z[X ] with invariant order O
lie in at most C1(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f ∈ Z[X ] with invariant order
O lie in at most C2(n) GL2(Z)-equivalence classes.

The best bounds for C1(n), C2(n) obtained so far (ignoring earlier work):

n C1(n) C2(n)

3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)

≥ 5 24(n+5)(n−2) (Ev. 2011) 25n2 (Ev., Győry, 2017)
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Theorem

Let n ≥ 3, and let O be any order of a number field of degree n.
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3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
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≥ 5 24(n+5)(n−2) (Ev. 2011) 25n2 (Ev., Győry, 2017)

There is a uniform bound T (n) such that if F ∈ Z[X ,Y ] is any
irreducible binary form of degree n ≥ 3, then the Thue equation
F (x , y) = 1, x , y ∈ Z has at most T (n) solutions.

I C1(3) ≤ T (3), T (3) ≤ 10 (Bennett, 2001);

I C1(n) ≤ C2(n)T (n) for n ≥ 4, C2(4) ≤ C1(3) (Bhargava, theory of
cubic resolvent orders), T (4) ≤ 276 (Akhtari, 2021);

I (for n ≥ 5) reduction to unit equations in two unknowns.
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Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n.
(i) The monic, irreducible polynomials f ∈ Z[X ] with invariant order O
lie in at most C1(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f ∈ Z[X ] with invariant order
O lie in at most C2(n) GL2(Z)-equivalence classes.

n C1(n) C2(n)

3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)

≥ 5 24(n+5)(n−2) (Ev. 2011) 25n2 (Ev., Győry, 2017)

Open problems

I Improve C1(n), C2(n) (to something polynomial in n?)

I Lower bounds growing to infinity with n.
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Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n.
(i) The monic, irreducible polynomials f ∈ Z[X ] with invariant order O
lie in at most C1(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f ∈ Z[X ] with invariant order
O lie in at most C2(n) GL2(Z)-equivalence classes.

n C1(n) C2(n)

3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)

≥ 5 24(n+5)(n−2) (Ev. 2011) 25n2 (Ev., Győry, 2017)

Corollary

(i) The monic, irreducible polynomials f ∈ Z[X ] of degree n in a given
Hermite equivalence class lie in at most C1(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f ∈ Z[X ] of degree n in a
given Hermite equivalence class lie in at most C2(n) GL2(Z)-equivalence
classes.
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Hermite equivalent but GL2(Z)-inequivalent
polynomials

For polynomials of degree 2 (trivial) and of degree 3 (Delone and
Faddeev) Hermite equivalence and GL2(Z)-equivalence coincide.

For polynomials of degree ≥ 4 this is not the case.

Theorem

For every n ≥ 4 there are infinitely many pairs (f , g) of irreducible,
primitive polynomials in Z[X ] of degree n such that f , g are Hermite
equivalent but GL2(Z)-inequivalent.
These pairs lie in different Hermite equivalent classes.

We give Remete’s construction.
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The construction (I)

Consider the formal power series C (X ) :=
1−
√

1− 4X

2X
=
∞∑
i=0

CiX
i ,

with Ci = 1
i+1

(
2i
i

)
∈ Z the i-th Catalan number.

Let n ≥ 4, and a(n)(X ) :=
n−2∑
i=0

CiX
i ,

b(n)(X ) :=
X (a(n)(X ))2 − a(n)(X ) + 1

X n−1 ,

k(n)(X ) :=
1− X · a(n)(X − X 2)

(1− X )n−1
.

Note X n−1|Xa(n)(X )2 − a(n)(X ) + 1 since XC (X )2 − C (X ) + 1 = 0,

X n−1|1− (1− X )a(n)(X − X 2) since C (X − X 2) = 1
1−X

,

(1− X )n−1|1− X · a(n)(X − X 2).

So a(n)(X ), b(n)(X ), k(n)(X ) are polynomials in Z[X ] of degree n − 2.
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The construction (II)

Let a(n)(X ), b(n)(X ), k(n)(X ) be the polynomials from the previous slide,
let c be either 1 or a prime and t a prime different from c , and put

f
(n)
t,c (X ) := cX n + tk(n)(cX ),

g
(n)
t,c (X ) := cX n + t(1− 2cX · a(n)(X ))− cn−1t2b(n)(cX ).

Note that both f
(n)
t,c (X ), g

(n)
t,c (X ) are polynomials in Z[X ] of degree n

with leading coefficient c .
They are both primitive, and by Eisenstein’s criterion, both irreducible.

Lemma

Let α be a root of f
(n)
t,c (X ). Then β := α− cα2 is a root of g

(n)
t,c (X ) and

moreover, α = p
(n)
t,c (β), where

p
(n)
t,c (X ) := X · a(n)(cX ) + t · cn−2b(n)(cX ).

Proposition 1

Mα =Mβ , so f
(n)
t,c (X ) and g

(n)
t,c (X ) are Hermite equivalent.
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GL2(Z)-inequivalence

We want to prove that f
(n)
t,c (X ) and g

(n)
t,c (X ) are not GL2(Z)-equivalent.

An important ingredient is the following:

Lemma

Let n ≥ 4. Then the polynomial k(n)(X ) is irreducible.

The involved proof uses a theorem of Dumas (1906), which gives, for a
given f ∈ Z[X ] and a prime q, a small list of possibilities for the degrees
of the irreducible factors of f in Zq[X ].

This list can be read off from the Newton polygon of f with respect to q.

By applying Dumas’ theorem with a couple of distinct primes to

k(n)(1 + X ) = Cn−1

n−2∑
i=0

(
n

i

)
(n − 1− i)(n − i)

(n − 1 + i)(n + i)
· X i

one obtains that k(n)(X ) is either irreducible or has a rational root.

By a separate argument it is excluded that k(n)(X ) has a rational
root.
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GL2(Z)-inequivalence

Lemma

Let n ≥ 4. Then the polynomial k(n)(X ) is irreducible.

By Chebotarev’s density theorem, there are infinitely many primes p such
that k(n)(X ) has no zeros modulo p.

Proposition 2

Let n ≥ 4, and let p > Cn−1 = n−1
(
2n−2
n−1

)
be a prime such that

k(n+1)(X ) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

c ≡ 1 (mod np), Cn−1t ≡ 1 (mod p), t 6= c .

Then the polynomials f
(n)
t,c (X ), g

(n)
t,c (X ) are GL2(Z)-inequivalent.
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Summary

By combining Propositions 1 and 2 one obtains:

Theorem

Let n ≥ 4, and let p > Cn−1 = n−1
(
2n−2
n−1

)
be a prime such that

k(n+1)(X ) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

c ≡ 1 (mod np), Cn−1t ≡ 1 (mod p), t 6= c .

Then the polynomials f
(n)
t,c (X ), g

(n)
t,c (X ) have the following properties:

(i) f
(n)
t,c (X ), g

(n)
t,c (X ) are irreducible, primitive polynomials in Z[X ] of

degree n with leading coefficient c ;

(ii) f
(n)
t,c (X ), g

(n)
t,c (X ) are Hermite equivalent;

(iii) f
(n)
t,c (X ), g

(n)
t,c (X ) are not GL2(Z)-equivalent.
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Summary

Theorem

Let n ≥ 4, and let p > Cn−1 = n−1
(
2n−2
n−1

)
be a prime such that

k(n+1)(X ) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

(*) c ≡ 1 (mod np), Cn−1t ≡ 1 (mod p), t 6= c .

Then the polynomials f
(n)
t,c (X ), g

(n)
t,c (X ) have the following properties:

(i) f
(n)
t,c (X ), g

(n)
t,c (X ) are irreducible, primitive polynomials in Z[X ] of

degree n with leading coefficient c ;

(ii) f
(n)
t,c (X ), g

(n)
t,c (X ) are Hermite equivalent;

(iii) f
(n)
t,c (X ), g

(n)
t,c (X ) are not GL2(Z)-equivalent.

By Dirichlet’s theorem on primes in arithmetic progressions, there are
infinitely many pairs (c , t) with (*).

This gives for every n ≥ 4, infinitely many pairs (f , g) of irreducible,
primitive polynomials of degree n that are Hermite equivalent but not
GL2(Z)-equivalent. By making a further selection, we get infinitely many
pairs lying in different Hermite equivalence classes.
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