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Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate
polynomials with integer coefficients, henceforth called 'Hermite
equivalence’, which was largely unnoticed.

We compare this with more established equivalence relations, i.e.,
Z-equivalence for monic polynomials and GL;(Z)-equivalence for not
necessarily monic polynomials.

It will turn out that Z-equivalence and GLy(Z)-equivalence imply Hermite
equivalence.



Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate
polynomials with integer coefficients, henceforth called 'Hermite
equivalence’, which was largely unnoticed.

We compare this with more established equivalence relations, i.e.,
Z-equivalence for monic polynomials and GL;(Z)-equivalence for not
necessarily monic polynomials.

It will turn out that Z-equivalence and GLy(Z)-equivalence imply Hermite
equivalence.

We are interested in the following problems:
» to show that Hermite equivalence is weaker than Z-equivalence and
GLy(Z)-equivalence, i.e., to give examples of Hermite equivalent
polynomials that are not Z-equivalent or GLy(Z)-equivalent;

» say something about the number of Z-equivalence classes or
GLy(Z)-equivalence classes going into a Hermite equivalence class.



GL,(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n > 2 in n variables

n
FX) = c[J(iaXe + - + inXn) € Z[X1, ..., Xa],
=1 _
where c € Q" and a;j € Q for i,j=1,...,n.
The discriminant of F is given by D(F) := cz(det(a;vj)lg,-,jg,,)?
We have D(F) € Z.



GL,(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n > 2 in n variables

F(X) = Cﬁ(ai,lxl + ot ainXn) € Z[X1, ..., X,
where ¢ € Q* and ai,:-le Qfori,j=1,...,n.
The discriminant of F is given by D(F) := cz(det(a;vj)lg,-,jg,,)%
We have D(F) € Z.
Two decomposable forms F, G as above are called GL,(Z)-equivalent if
G(X) = £F(UX) for some U € GL,(Z)

(here X = (X1,...,X,)" is a column vector).

Two GL,(Z)-equivalent decomposable forms have the same discriminant.



GL,(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n > 2 in n variables

n
F(X) = CH(ai,1X1 + ot ainXn) € Z[X1, ..., X,
=1 _
where c € Q" and a;j € Q for i,j=1,...,n.

The discriminant of F is given by D(F) := cz(det(a;vj)lg,-,jg,,)%

We have D(F) € Z.

Two decomposable forms F, G as above are called GL,(Z)-equivalent if
G(X) = £F(UX) for some U € GL,(Z)

(here X = (X1,...,X,)" is a column vector).

Two GL,(Z)-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let n>2, D #0. Then the decomposable forms in Z[Xi, ..., X,] of
degree n and discriminant D lie in finitely many GL,(Z)-equivalence
classes.



Hermite equivalence of univariate polynomials

Let f = c(X —aq1) - (X —an) € Z[X] (with ¢ € Z4g, a1,...,a, € Q).

Define the discriminant of f by D(f) := ¢?"~2 [Ticicj<n(ai— aj)?.
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[F1(X) = " [[(X0 + aiXa + - +af7X,) € Z[X, ..., X,
i=1

Fact. D(f) = D([f]) (Vandermonde).
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Two polynomials f, g € Z[X] of degree n are called Hermite equivalent if
the associated decomposable forms [f] and [g] are GL,(Z)-equivalent,
i.e., [g](X) = £[f](UX) for some U € GL,(Z).



Hermite equivalence of univariate polynomials

Let f = c(X —aq1) - (X —an) € Z[X] (with ¢ € Z4g, a1,...,a, € Q).
Define the discriminant of f by D(f) := ¢?"~2 [Ticicj<n(ai— aj)?.
To f we associate the decomposable form

[I(X) :=c"* H(X1 +aiXo+ - +alTIX,) € Z[X, ., Xa)
i=1

Fact. D(f) = D([f]) (Vandermonde).

Hermite introduced in 1857 the following equivalence relation:

Two polynomials f, g € Z[X] of degree n are called Hermite equivalent if
the associated decomposable forms [f] and [g] are GL,(Z)-equivalent,
i.e., [g](X) = £[f](UX) for some U € GL,(Z).

Hermite's theorem on decomposable forms and the above fact imply:

Theorem (Hermite, 1857)

Let n>2, D #0. Then the polynomials f € Z[X] of degree n and of
discriminant D lie in finitely many Hermite equivalence classes.



Z-equivalence and GL,(Z)-equivalence

We want to compare the Hermite equivalence with other, better known
equivalence relations for univariate polynomials.



Z-equivalence and GL,(Z)-equivalence

We want to compare the Hermite equivalence with other, better known
equivalence relations for univariate polynomials.

Two monic polynomials f, g € Z[X] of degree n are called Z-equivalent if
g(X) =f(X+a)or g(X)=(-1)"f(—X + a) for some a € Z.

Two not necessarily monic polynomials f, g € Z[X] of degree n are called
GLy(Z)-equivalent if there is (3 2) € GLy(Z) such that

g(X) = £(dX + e)"f(Z2).

Z-equivalent monic polynomials in Z[X] are clearly GLy(Z)-equivalent.
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Let f,g € Z[X] be two Z-equivalent, resp. GLy(Z)-equivalent
polynomials. Then they are Hermite equivalent.



Z-equivalence and GL,(Z)-equivalence

We want to compare the Hermite equivalence with other, better known
equivalence relations for univariate polynomials.

Two monic polynomials f, g € Z[X] of degree n are called Z-equivalent if
g(X) =f(X+a)or g(X)=(-1)"f(—X + a) for some a € Z.

Two not necessarily monic polynomials f, g € Z[X] of degree n are called
GLy(Z)-equivalent if there is (3 2) € GLy(Z) such that

g(X) = £(dX + e)"f(Z2).

Z-equivalent monic polynomials in Z[X] are clearly GLy(Z)-equivalent.

Lemma

Let f,g € Z[X] be two Z-equivalent, resp. GLy(Z)-equivalent
polynomials. Then they are Hermite equivalent.

We will give examples showing that the converse is in general not true.



Proof of Lemma

We prove that any two GLy(Z)-equivalent polynomials f, g in Z[X] are
Hermite equivalent, which suffices.



Proof of Lemma

We prove that any two GLy(Z)-equivalent polynomials f, g in Z[X] are
Hermite equivalent, which suffices.

Let £(X) = c[T7_1(X — @) € Z[X] and g(X) = £(dX + e)"f (%E2),
where A= (3b) € GLy(Z).

Then g(X) = £c[[/_,(BiX — i), Bi=d — aaj, vj = —e + ba;.




Proof of Lemma

We prove that any two GLy(Z)-equivalent polynomials f, g in Z[X] are
Hermite equivalent, which suffices.

Let £(X) = c[T7_1(X — @) € Z[X] and g(X) = £(dX + e)"f (%E2),
where A= (3b) € GLy(Z).

Then g(X) = £c[[/_,(BiX — i), Bi=d — aaj, vj = —e + ba;.

Define the inner product of two column vectors
x=(x, %)y = (1, ¥n) T by (%,Y) 1= xays 4 o+ XaY
Let as before X = (Xl, ..., Xp)T. Thus,

[F1(X) =" 1H , where a; = (1, aj,...,,a" )T,

1

[g](X) = "1H X), where b; = (571, 87" 2yi,....7 )T



Proof of Lemma

We prove that any two GLy(Z)-equivalent polynomials f, g in Z[X] are
Hermite equivalent, which suffices.

Let £(X) = c[T7_1(X — @) € Z[X] and g(X) = £(dX + e)"f (%E2),
where A= (3b) € GLy(Z).

Then g(X) = £c[[/_,(BiX — i), Bi=d — aaj, vj = —e + ba;.

Define the inner product of two column vectors
x=(x, %)y = (1, ¥n) T by (%,Y) 1= xays 4 o+ XaY
Let as before X = (Xl, ..., Xp)T. Thus,

[F1(X) =" 1H , where a; = (1, a;,...,,a/ )7,
[g](X) = +c"~ 1H , where b, = (8771, 872,771
Then b; = t(A)a; with t(A) € GLy(Z) fori=1,. . So

[g](X) = +c™ 1H (Aaj X) = £ 1H = £[f)(t(A)7X). O



A finiteness result for Z-equivalence

Recall that two monic polynomials f, g € Z[X] are Z-equivalent if
g(X) = f(X + a) or (—1)%&ff(—X + a) for some a € Z.

Theorem (Gyory, 1973,1974)

Let D # 0. Then there are only finitely many Z-equivalence classes of
monic polynomials f € Z[X] of discriminant D, and a full system of
representatives of those can be determined effectively.



Finiteness results for GL,(Z)-equivalence

Recall that two polynomials f, g € Z[X] are GLy(Z)-equivalent if
g(X) = £(dX + e)%ef f(2Xth) for some (32) € GLo(Z).

dX+e
Theorem (Birch and Merriman, 1972)

Let D # 0. Then there are only finitely many GLy(Z)-equivalence classes
of polynomials f € Z[X] of discriminant D.

The proof of Birch and Merriman is ineffective.

In 1991, Ev. and Gydry gave an effective proof of the theorem of Birch
and Merriman, implying that a full system of representatives for the
GLy(Z)-equivalence classes can be determined effectively.



Finiteness results for GL,(Z)-equivalence

Recall that two polynomials f, g € Z[X] are GLy(Z)-equivalent if

g(X) = +(dX + e)degff(%ig) for some (2 %) € GLy(Z).

Theorem (Birch and Merriman, 1972)

Let D # 0. Then there are only finitely many GLy(Z)-equivalence classes
of polynomials f € Z[X] of discriminant D.

The proof of Birch and Merriman is ineffective.

In 1991, Ev. and Gydry gave an effective proof of the theorem of Birch
and Merriman, implying that a full system of representatives for the
GLy(Z)-equivalence classes can be determined effectively.

The theorems of Gydry on Z-equivalence and of Birch and Merriman and
Ev. and Gyéry on GLy(Z)-equivalence use finiteness results for unit
equations and Baker's theory on logarithmic forms, and thus are much
deeper than that of Hermite on his equivalence.



An algebraic criterion for Hermite equivalence

For an algebraic number « of degree n define the free Z-module

generated by 1,,...,a" 1,

Ma = {3 +300+ -+ x0" 1 X1, 0 € L)

Call a polynomial with integer coefficients primitive if its coefficients have
ged 1.

Henceforth, all polynomials will be primitive.

Lemma

Let f,g € Z[X] be primitive, irreducible polynomials of degree > 2. Then
f,g are Hermite equivalent if and only if there are A # 0, a root a of f
and a root 3 of g such that Mg =AM, = {X{: € € My}



Proof of Lemma

Let f=c[[_,(X — i), g = ' TI_;(X — B;) € Z[X] be irreducible,
primitive. Then

[F1(X —c"IHax lgl(x —c/“H

with a; = (1, @j, ..., al” 1)T, b; =(L,5i,....6/" 1)T.



Proof of Lemma

Let f=c[[_,(X — i), g = ' TI_;(X — B;) € Z[X] be irreducible,
primitive. Then

[F(X) = c"~ 1H 2, %), [g]X) =" 1H
with a; = (1, @j, ..., al” 1)T, b; =(L,5i,....6/" 1)T.
So f, g are Hermite equivalent

<= 3U € GL,(Z) with [g](X) = £[f](UX)
< 3U € GL,(Z), \i # 0 with (b;, X) = A\i(a;, UX) for i=1,...,n
(after reindexing, for < use that [g](X), [f](UX) are primitive)



Proof of Lemma

Let f=c[[_,(X — i), g = ' TI_;(X — B;) € Z[X] be irreducible,
primitive. Then

[F1(X —c"IHax lgl(x —c/“H

with a; = (1, @j, ..., al” 1)T, b; =(L,5i,....6/" 1)T.

So f, g are Hermite equivalent

—
—

1ty

AU € GLA(Z) with [g](X) = +[f](UX)

AU € GL,(Z), \i # 0 with (b;, X) = A\i(a;, UX) for i =1,...,n
(after reindexing, for < use that [g](X), [f](UX) are primitive)
JU € GL,(Z), \i 0 with b, = \;U"a; fori=1,...,n

I\ # 0 with Mg, = A\ M, fori=1,.

3\ #£ 0, root « of f, root § of g with M@ =AM,

(for < take for «;, 8, A\; the conjugates of «, 3, A). O



Connection with invariant orders

Let My = {x1+xa+ - +x0"" 1 xq,...,x, € Z} for a of degree n,
Lo :={£ € Qo) : EMy C M}, the ring of scalars of M,,.
It can be shown that Z, = Z[a] N Z[a"1]. It is an order in Q(a).

Let f € Z[X] be a primitive, irreducible polynomial and « a root of f.
Then Z,, is called the invariant order of f; it is up to isomorphism
uniquely determined.



Connection with invariant orders

Let My = {x1+xa+ - +x0"" 1 xq,...,x, € Z} for a of degree n,
Zo =1 € Q(a) : EM, € M}, the ring of scalars of M,,.

It can be shown that Z, = Z[a] N Z[a"1]. It is an order in Q(a).

Let f € Z[X] be a primitive, irreducible polynomial and « a root of f.

Then Z, is called the invariant order of f; it is up to isomorphism
uniquely determined.

We saw that if f, g are Hermite equivalent primitive, irreducible
polynomials then there are A £ 0, a root « of f and a root 3 of g such
that Mg = AM,,. This implies Z, = Zg.

Corollary 1

If f, g are Hermite equivalent, irreducible, primitive polynomials in Z[X],
then f has a root ac and g a root 3 such that Z, = Zg, i.e., f and g
have isomorphic invariant orders.



The monic case

Let f € Z[X] be irreducible and monic and « a root of f. Let degf = n.
Recall that

Mo ={D_xia'™: x €2}, Za = {£ €Q(a): EMa € Ma}.
Since f is monic, a", & . € M,,. Hence M, =7Z, = Z[a].

Corollary 2

Let f, g € Z[X] be irreducible and monic. Then f,g are Hermite
equivalent if and only if f has a root « and g a root (8 such that
Zl|a] = Z|p), i.e., if and only if f and g have isomorphic invariant orders.



The non-monic case

If f,g € Z[X] are irreducible and monic, then
f, g are Hermite equivalent <= f, g have isomorphic invariant orders.

If f,g € Z[X] are irreducible, primitive and not both monic, then
f, g are Hermite equivalent = f, g have isomorphic invariant orders.

What about <=7
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If f,g € Z[X] are irreducible, primitive and not both monic, then
f, g are Hermite equivalent = f, g have isomorphic invariant orders.

What about <7
» Any two irreducible, primitive polynomials of degree 3 with

isomorphic invariant orders are GLy(Z)-equivalent, hence Hermite
equivalent (Delone and Faddeev, 1940).



The non-monic case

If f,g € Z[X] are irreducible and monic, then
f, g are Hermite equivalent <= f, g have isomorphic invariant orders.

If f,g € Z[X] are irreducible, primitive and not both monic, then
f, g are Hermite equivalent = f, g have isomorphic invariant orders.

What about <=7

» Any two irreducible, primitive polynomials of degree 3 with
isomorphic invariant orders are GLy(Z)-equivalent, hence Hermite
equivalent (Delone and Faddeev, 1940).

» Bhargava and Swaminathan (4/1/2022) gave a method to produce
irreducible, primitive polynomials of degree 4 that have isomorphic
invariant orders but are not Hermite equivalent.

Example

f=4X* - X3 —-62X2 413X 4255, g = 5X* — X3 —2X2 —7X — 6 have
isomorphic invariant orders but are not Hermite equivalent.



The non-monic case

In fact, Bhargava and Swaminathan used a more precise criterion to
obtain their example.

Let £ € Z[X] be irreducible and primitive and « a root of f. Let
deg f = n. Recall that

Mgy = {inai_l DX € Z}, Lo = {§ € Q(a) €M, C Ma}'
i=1

Define I, := Zy + aZ,, to be the fractional ideal of Z, generated by 1
and a.

Theorem (Bhargava, Swaminathan, 4/1/2022)

Let f, g € Z[X] be irreducible and primitive. Then f,g are Hermite
equivalent if and only if f has a root o and g a root 3 such that Z, = Zg
and the fractional ideals I, and I3 belong to the same ideal class.



Quantitative results

Recall that if f € Z[X] is an irreducible, primitive polynomial, then the
invariant order of f is Z, = Z[a] N Z[a~!], where « is any root of f.

In the case that f is monic, this invariant order is Z[a].

f,g € Z[X] are Z-equivalent if g(X) = f(X + a) or (—1)%ff(—X + a)
for some a € Z.

f,g € Z[X] are GLy(Z)-equivalent if g(X) = £(dX + e)degff(%ig) for
some (3%) € GL(2Z).

Theorem

Let n > 3, and let O be any order of a number field of degree n.

(i) (Ev., Gydry, 1985) The monic, irreducible polynomials f € Z[X] with
invariant order O lie in at most Cy(n) Z-equivalence classes.

(ii) (Bérczes, Ev., Gydry, 2004) The primitive, irreducible polynomials

f € Z[X] with invariant order O lie in at most Cy(n) GLy(Z)-equivalence
classes.

Here Cy1(n), Cy(n) depend on n only.



Quantitative results

Theorem
Let n > 3, and let O be any order of a number field of degree n.

(i) The monic, irreducible polynomials f € Z[X] with invariant order O
lie in at most Cy(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f € Z[X] with invariant order
O lie in at most Cy(n) GLy(Z)-equivalence classes.

The best bounds for C;(n), C,(n) obtained so far (ignoring earlier work):
n  C(n) G(n)

3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)

>5 24nt8)(n=2) (Ey. 2011) 257" (Ev., Gydry, 2017)



Quantitative results

Theorem

Let n > 3, and let O be any order of a number field of degree n.

(i) The monic, irreducible polynomials f € Z[X] with invariant order O
lie in at most Cy(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f € Z[X] with invariant order
O lie in at most Cy(n) GLa(Z)-equivalence classes.

n  G(n) Go(n)
3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)

>5 24 t8)(n=2) (Ey 2011) 257" (Ev., Gydry, 2017)

There is a uniform bound T(n) such that if F € Z[X, Y] is any
irreducible binary form of degree n > 3, then the Thue equation
F(x,y) =1, x,y € Z has at most T(n) solutions.

> Ci(3) < T(3), T(3) < 10 (Bennett, 2001);

» Ci(n) < G(n)T(n) for n > 4, G(4) < G1(3) (Bhargava, theory of
cubic resolvent orders), T(4) < 276 (Akhtari, 2021);

» (for n > 5) reduction to unit equations in two unknowns.



Quantitative results

Theorem

Let n > 3, and let O be any order of a number field of degree n.
(i) The monic, irreducible polynomials f € Z[X] with invariant order O
lie in at most Cy(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f € Z[X] with invariant order
O lie in at most Cy(n) GLa(Z)-equivalence classes.

n  Cy(n) Ca(n)
3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)

>5 24nt8)(n=2) (Ey 2011) 257" (Ev., Gydry, 2017)

Open problems
» Improve Ci(n), C3(n) (to something polynomial in n?)

» Lower bounds growing to infinity with n.



Quantitative results

Theorem

Let n > 3, and let O be any order of a number field of degree n.
(i) The monic, irreducible polynomials f € Z[X] with invariant order O
lie in at most Cy(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f € Z[X] with invariant order
O lie in at most Cy(n) GLy(Z)-equivalence classes.

n  GCy(n) G(n)
3 10 (Bennett, 2001) 1 (Delone, Faddeev, 1940)
4 2760 (Akhtari, Bhargava, 2021) 10 (Bhargava, 2021)
>5 24nt8)(n=2) (Ey 2011) 257" (Ev., Gydry, 2017)
Corollary

(i) The monic, irreducible polynomials f € Z[X] of degree n in a given
Hermite equivalence class lie in at most Cy(n) Z-equivalence classes.

(ii) The primitive, irreducible polynomials f € Z[X] of degree n in a
given Hermite equivalence class lie in at most Cy(n) GLy(Z)-equivalence
classes.



Hermite equivalent but GL,(Z)-inequivalent

polynomials

For polynomials of degree 2 (trivial) and of degree 3 (Delone and
Faddeev) Hermite equivalence and GL,(Z)-equivalence coincide.

For polynomials of degree > 4 this is not the case.

Theorem

For every n > 4 there are infinitely many pairs (f, g) of irreducible,
primitive polynomials in Z|X] of degree n such that f,g are Hermite
equivalent but GL,(Z)-inequivalent.

These pairs lie in different Hermite equivalent classes.

We give Remete’s construction.



The construction (1)

1-vVI—4X & ,
Consider the formal power series C(X) := ——————— = Z GX',

with G; = 15 (%) € Z the i-th Catalan number.



The construction (1)

1-vVI—4X & ,
Consider the formal power series C(X) := ——————— = Z GX',

with C; = ,+1< ) € Z the i-th Czatalan number.

Let n>4,and  (m)(x).— Z CX',
i=0
X(a(n)(X))Q n)( )+
= Xn—1 ’
1 _ X . a(n)(X — X2)
(T—X)7 T




The construction (1)

1-vVI—4X & ,
Consider the formal power series C(X) := ——————— = Z GX',

with C; = ,+1< ) € Z the i-th Czatalan number.

Letn>4,and  ,00(x).= 3" X,
i=0

_ X@"(X))? —a(X) +

b(”)( ) s ,
. 1—X-an(x - Xx?
K(X) = (1x()n1 )

Note X""!|Xa(M(X)? —al™(X)+1 since XC(X)? = C(X)+1=0,
X" 41— (1= X)al"(X — X?) since C(X — X2):—X
(1—X)"1— X - aM(x - x?).

So a(M(X), b("(X), k("M(X) are polynomials in Z[X] of degree n — 2.



The construction (I1)

Let a("(X), b("(X), k(" (X) be the polynomials from the previous slide,
let ¢ be either 1 or a prime and t a prime different from ¢, and put
(X)) = X"+ tk(M(eX),
g (X) 1= X"+ t(1 — 2¢X - aM(X)) — " 1e2b(M (eX).
Note that both ftgz)(X), gt(,"c)(X) are polynomials in Z[X] of degree n

with leading coefficient c.
They are both primitive, and by Eisenstein's criterion, both irreducible.



The construction (I1)

Let a("(X), b("(X), k(" (X) be the polynomials from the previous slide,
let ¢ be either 1 or a prime and t a prime different from ¢, and put
FD(X) = X+ th(D(eX),
g (X) 1= X"+ t(1 — 2¢X - aM(X)) — " 1e2b(M (eX).
Note that both ﬂ(,z)(X), gt(,"c)(X) are polynomials in Z[X] of degree n

with leading coefficient c.
They are both primitive, and by Eisenstein’s criterion, both irreducible.

Lemma
Let o be a root of ft(";)(X). Then 3 := a — ca? is a root ofgt()"C)(X) and

moreover, o = p§”,_? (B), where

p(X) = X - alD(cX) + t - "2 (cX).



The construction (I1)

Let a("(X), b("(X), k(" (X) be the polynomials from the previous slide,
let ¢ be either 1 or a prime and t a prime different from ¢, and put
FD(X) = X+ th(D(eX),
g (X) 1= X"+ t(1 — 2¢X - aM(X)) — " 1e2b(M (eX).
Note that both ﬂ(,z)(X), gt(,"c)(X) are polynomials in Z[X] of degree n

with leading coefficient c.
They are both primitive, and by Eisenstein’s criterion, both irreducible.

Lemma
Let o be a root of ft(";)(X). Then 3 := a — ca? is a root ofgt()"c)(X) and
moreover, o = p§”,_? (B), where

p(X) = X - alD(cX) + t - "2 (cX).

Proposition 1
My = Mg, so f;("c')(X) and gt(,'L)(X) are Hermite equivalent.



GL,(Z)-inequivalence

We want to prove that ft('g)(X) and gt()nc)(X) are not GLy(Z)-equivalent.
An important ingredient is the following:

Lemma

Let n > 4. Then the polynomial kI")(X) is irreducible.

The involved proof uses a theorem of Dumas (1906), which gives, for a
given f € Z[X] and a prime g, a small list of possibilities for the degrees
of the irreducible factors of £ in Z4[X].

This list can be read off from the Newton polygon of f with respect to q.



GL,(Z)-inequivalence

We want to prove that ft('g)( X) and g( )(X) are not GLy(Z)-equivalent.
An important ingredient is the followmg.

Lemma

Let n > 4. Then the polynomial kI")(X) is irreducible.

The involved proof uses a theorem of Dumas (1906), which gives, for a
given f € Z[X] and a prime g, a small list of possibilities for the degrees
of the irreducible factors of £ in Z4[X].

This list can be read off from the Newton polygon of f with respect to q.

By applying Dumas’ theorem with a couple of distinct primes to

) n—1—i)(n—1i) ;
kM (14 X) = an()(n—1+l)( +)'X

one obtains that k(" (X) is either irreducible or has a rational root.

By a separate argument it is excluded that k(")(X) has a rational
root. O]



GL,(Z)-inequivalence

Lemma
Let n > 4. Then the polynomial k\")(X) is irreducible.

By Chebotarev's density theorem, there are infinitely many primes p such
that k(" (X) has no zeros modulo p.

Proposition 2
Let n> 4, and let p> C,_1 = n_l(

k("1 (X) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

c =1(modnp), Ch,_1t=1(modp), t#c.
Then the polynomials ft(z)( X), gt("c)(X) are GLy(Z)-inequivalent.

2n—2

1 ) be a prime such that



By combining Propositions 1 and 2 one obtains:

Theorem
Let n>4, and let p > C,_1 = n~ (2: 2) be a prime such that

k("1 (X) has no zeros modulo p.
Further, let ¢ be either 1 or a prime, and t a prime, such that

¢ =1(modnp), Ch,_1t=1(modp), t#c.

Then the polynomials ft("c’)( X), gt("c)(X ) have the following properties:

(i) f;(';) (X), gt(7nc)(X ) are irreducible, primitive polynomials in Z[X] of
degree n with leading coefficient c;

(i) f(")(X) gt (")(X) are Hermite equivalent;
(iii) f(")(X) gt ")(X) are not GLy(Z)-equivalent.



Theorem
Let n>4, and let p > C,_1 = nfl(

k("1 (X) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

*) ¢ =1(modnp), C,_1t=1(modp), t#c.

2n—2

1 ) be a prime such that

Then the polynomials ft(";)(X ), gt("c)(X ) have the following properties:

fr. (") X), (M (X) are irreducible, primitive polynomials in Z[X] of
8t,c
degree n Wlth /eading coefficient c;

(i) f(”)(X) gt ( ) are Hermite equivalent;

(iii) ft(;)(X), gnc( ) are not GLy(Z)-equivalent.

By Dirichlet's theorem on primes in arithmetic progressions, there are
infinitely many pairs (c, t) with (¥*).

This gives for every n > 4, infinitely many pairs (f, g) of irreducible,
primitive polynomials of degree n that are Hermite equivalent but not
GLy(Z)-equivalent. By making a further selection, we get infinitely many
pairs lying in different Hermite equivalence classes.
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and last but not least
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and last but not least

HAPPY NEW YEAR !!!



