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Finitely generated domains

We consider Diophantine equations with solutions taken from a finitely
generated domain A of characteristic 0, i.e.,

A = Z[z1, . . . , zr ] = {f (z1, . . . , zr ) : f ∈ Z[Z1, . . . ,Zr ]} ⊃ Z.

Here the zi may be algebraic or transcendental over Q.

Examples for finitely generated domains of char. 0:

I OK (ring of integers of a number field K );

I OK ,S = OK [(p1 · · · pt)−1] (ring of S-integers), where
S = {p1, . . . , pt} is a set of prime ideals of OK ;

I Z[Z1, . . . ,Zr ] (polynomial ring in the variables Z1, . . . ,Zr );

I Z[Z1, . . . ,Zr ]/I, I prime ideal of Z[Z1, . . . ,Zr ] with I ∩ Z = (0).

Aim. To give effective upper bounds for the sizes (analogues of heights)
of the solutions of Diophantine equations over an arbitrary finitely
generated domain A.

With such bounds we can in principle find all solutions.
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Representation of a finitely generated domain

Let A = Z[z1, . . . , zr ] be a finitely generated domain of characteristic 0.

Define the ideal I := {f ∈ Z[Z1, . . . ,Zr ] : f (z1, . . . , zr ) = 0}.

By Hilbert’s basis theorem, there are f1, . . . , fM ∈ Z[Z1, . . . ,Zr ] such that
I = (f1, . . . , fM). Thus,

A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM), zi 7→ Zi mod (f1, . . . , fM)

We use {f1, . . . , fM} to represent A.

For A to be a domain of characteristic 0,
I = (f1, . . . , fM) has to be a prime ideal of Z[Z1, . . . ,Zr ] with
I ∩ Z = (0).

There are methods to check this, given f1, . . . , fM .
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Representatives for elements, sizes

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/I, with I = (f1, . . . , fM) be a
finitely generated domain of characteristic 0.

We call α̃ ∈ Z[Z1, . . . ,Zr ] a representative for α ∈ A if α = α̃(z1, . . . , zr ),
i.e., if α corresponds to the residue class α̃ mod I.

For f ∈ Z[Z1, . . . ,Zr ], we define

deg f := total degree of f ,

h(f ) := logarithmic height of f (log max |coeff. of f |),
s(f ) := size of f := max(1, deg f , h(f )).

Subsequently, we define the size of α ∈ A by

s(α) := inf{s(α̃) : α̃ representative for α}.



7/33

Representatives for elements, sizes

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/I, with I = (f1, . . . , fM) be a
finitely generated domain of characteristic 0.

We call α̃ ∈ Z[Z1, . . . ,Zr ] a representative for α ∈ A if α = α̃(z1, . . . , zr ),
i.e., if α corresponds to the residue class α̃ mod I.

For f ∈ Z[Z1, . . . ,Zr ], we define

deg f := total degree of f ,

h(f ) := logarithmic height of f (log max |coeff. of f |),
s(f ) := size of f := max(1, deg f , h(f )).

Subsequently, we define the size of α ∈ A by

s(α) := inf{s(α̃) : α̃ representative for α}.



8/33

Representatives for elements, sizes

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/I, with I = (f1, . . . , fM) be a
finitely generated domain of characteristic 0.

We call α̃ ∈ Z[Z1, . . . ,Zr ] a representative for α ∈ A if α = α̃(z1, . . . , zr ),
i.e., if α corresponds to the residue class α̃ mod I.

For f ∈ Z[Z1, . . . ,Zr ], we define

deg f := total degree of f ,

h(f ) := logarithmic height of f (log max |coeff. of f |),
s(f ) := size of f := max(1, deg f , h(f )).

Subsequently, we define the size of α ∈ A by

s(α) := inf{s(α̃) : α̃ representative for α}.



9/33

Unit equations over finitely generated domains

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/I, with I = (f1, . . . , fM) be a
finitely generated domain of characteristic 0.

Let a, b, c ∈ A \ {0} and consider the unit equation

(U) ax + by = c in x , y ∈ A∗ (unit group of A).

Theorem 1 (Ev., Győry, 2013)

Let ã, b̃, c̃ ∈ Z[Z1, . . . ,Zr ] be representatives for a, b, c . Assume that

f1, . . . , fM , ã, b̃, c̃ have total degrees at most d ≥ 1 and logarithmic
heights at most h ≥ 1.

Then for all solutions x , y ∈ A∗ of (U) we have

s(x), s(y) ≤ exp
(
(2d)κ

r
h
)
,

where κ is an effectively computable absolute constant > 1.

Recall s(x) = inf{s(x̃) : x̃ repr. for x}, s(x̃) = max(1, deg x̃ , h(x̃)),
x̃ is a repr. for x if x̃ ∈ Z[Z1, . . . ,Zr ] and x = x̃(z1, . . . , zr ).
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Let ã, b̃, c̃ ∈ Z[Z1, . . . ,Zr ] be representatives for a, b, c . Assume that
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Outline of the proof

Consider the equation (U) ax + by = c in x , y ∈ A∗.
Let K be the quotient field of A.

(1) View (U) as S-unit equation over the function field K and compute
an upper bound for the function field heights of x , y (using Mason’s
abc-theorem over function fields).

(2) A specialization, i.e., ring homomorphism ϕ : A→ Q, maps A∗ to a
group of S-units in some number field and thus (U) to an S-unit
equation ϕ(a)ϕ(x) + ϕ(b)ϕ(y) = ϕ(c).

Compute for various ϕ upper bounds for the number field heights of
ϕ(x), ϕ(y) (using lower bounds for linear forms in ordinary, resp.
p-adic logs, e.g., Győry, Yu, 2006).

(3) Estimate s(x), s(y) in terms of the bounds found in (1) and (2).
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Decomposable form equations

Let A be a f.g. domain of char. 0, K the quotient field of A and K an
algebraic closure of K .

We consider so-called decomposable form equations

(DF) F (x) = δ in x = (x1, . . . , xm) ∈ Am,

where δ ∈ A \ {0} and where F ∈ A[X1, . . . ,Xm] is a decomposable form,
that is, we can express F as a product of linear forms

F = `1 · · · `n, `i =
m∑
j=1

αi,jXj with αi,j ∈ K .

Every binary form is decomposable. So Thue equations are decomposable
form equations in two unknowns.

There are general finiteness theorems for (DF) (Ev., Győry, 1985, 2015)
but these depend on Schmidt’s Subspace Theorem, hence are ineffective.
To get effective theorems one needs to impose stronger conditions on F .
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Triangularly connected decomposable forms

Győry and Papp (1978) and Győry (1981, 1984) introduced the notion of
triangularly connected decomposable forms, for which one can prove
effective finiteness results for the corresponding decomposable form
equations.

Let K be any field of characteristic 0 and K an algebraic closure of K .
Consider a decomposable form

F = `1 · · · `n ∈ K [X1, . . . ,Xm], `i =
m∑
j=1

αi,jXj with αi,j ∈ K .

Define a graph G with set of vertices {1, . . . , n} and with edges {p, q} as
follows:
{p, q} is an edge of G if `p, `q are linearly dependent over K or if there is
k /∈ {p, q} such that `p, `q, `k are linearly dependent over K .

Then F is said to be triangularly connected if the graph G is connected.
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Triangularly connected decomposable forms

Győry (1980/81) considered decomposable form equations

(DF) F (x) = δ in x = (x1, . . . , xm) ∈ Om
K ,S

where OK ,S is the ring of S-integers in a number field K .

Under the assumptions that F is a triangularly connected decomposable
form and that the set of linear factors of F has rank m (to prevent easy
constructions of infinitely many solutions), he gave an effective upper
bound for the number field heights h(x1), . . . , h(xm).

Győry’s proof was to reduce (DF) to a system of S ′-unit equations in two
unknowns in a finite extension K ′ of K and to apply an effective result
for the latter.

We generalized his proof from OK ,S to arbitrary finitely generated
domains A of characteristic 0. For this, we needed some new machinery.
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An effective result for decomposable form equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of characteristic 0,
K the quotient field of A and K an algebraic closure of K .

Let F ∈ A[X1, . . . ,Xm] be a decomposable form of degree n (product of
n linear forms with coeff. in K ) and δ ∈ A \ {0} and consider

(DF) F (x) = δ in x = (x1, . . . , xm) ∈ Am.

Theorem 2 (Ev., Győry, hopefully 2022)

Suppose that F is triangularly connected and the linear factors of F have
rank m over K (effectively decidable),

let f1, . . . , fM have total degree at most d and logarithmic height at most
h, where d ≥ 1, h ≥ 1,

suppose δ and the coefficients of F have representatives of total degree
at most d and logarithmic height at most h.

Then for every solution x = (x1, . . . , xm) ∈ Am of (DF) we have

s(x1), . . . , s(xm) ≤ exp
(
(nmn2d)κ

r
h
)

where κ is an effectively computable absolute constant > 1.
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Applications

Let A be a f.g. domain of char. 0. We give some equations for which we
can deduce effective upper bounds for the sizes of the solutions:

1. Thue equations F (x , y) = δ in x , y ∈ A.

Here δ ∈ A \ {0} and F ∈ A[X ,Y ] is a binary form of degree n ≥ 3 and
non-zero discriminant. So F is a triangularly connected dec. form.

2. Double Pell equations x2− b1y
2 = c1, x2− b2z

2 = c2 in x , y , z ∈ A.

Here b1, b2, c1, c2 ∈ A \ {0}, c1 6= c2.

Apply Thm. 2 to the triangularly connected dec. form equation
F (x , y , z) = (x2 − b1y

2)(x2 − b2z
2)(b1y

2 − b2z
2) = c1c2(c2 − c1).

3. Discriminant form equation

D(x) = (x1 · · · xm)2 ·
∏

1≤i<j≤m

(xi − xj)
2 = δ in x = (x1, . . . , xm) ∈ Am.

Here δ ∈ A \ {0}. Recall that D(x) is the discriminant of
X (X − x1) · · · (X − xm). Note that D is triangularly connected.
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Proof of Theorem 2: reduction to unit equations

Let A be a f.g. domain of char. 0, K the quotient field of A and K an
algebraic closure of K . Consider the dec. form equation

(DF) F (x) = `1(x) · · · `n(x) = δ in x = (x1, . . . , xm) ∈ Am

where F ∈ A[X1, . . . ,Xm], and the `i are the linear factors of F , with
coefficients in K .

Suppose that F is triangularly connected and `1, . . . , `n have rank m.

Then there are many relations λk`k = λp`p + λq`q between the linear
forms, arising from the edges of the associated graph G.

Let A′ be the domain obtained by adjoining δ−1 and the coefficients of
the `i to A. Then for every solution x ∈ Am of (DF),

λp ·
`p(x)

`k(x)
+ λq ·

`q(x)

`k(x)
= λk ,

`p(x)

`k(x)
,
`q(x)

`k(x)
∈ A′∗.

Now apply Theorem 1 on unit equations, with A′ instead of A.

To work this out, we have to do computations in K and for this we use
suitable measures for elements of K , so-called degree-height estimates.
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Now apply Theorem 1 on unit equations, with A′ instead of A.

To work this out, we have to do computations in K and for this we use
suitable measures for elements of K , so-called degree-height estimates.
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Degree-height estimates

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of
char. 0, K the quotient field of A and K an algebraic closure of K .

Let α ∈ K be of degree n over K .

We can express the minimal polynomial of α over K as

X n +
g1(z1, . . . , zr )

g0(z1, . . . , zr )
X n−1 + · · ·+ gn(z1, . . . , zr )

g0(z1, . . . , zr )

where g0, . . . , gn ∈ Z[Z1, . . . ,Zr ] and g0 6∈ (f1, . . . , fM).

We call (d , h) a degree-height estimate for α if g0, . . . , gn can be chosen
such that

deg gi ≤ d , h(gi ) ≤ h for i = 0, . . . , n

(here deg denotes total degree and h(·) logarithmic height).

Main tool. Given α1, . . . , αm ∈ K and β ∈ K satisfying
P(α1, . . . , αm, β) = 0 for some P ∈ Z[X1, . . . ,Xm,Y ], we want a
degree-height estimate for β ∈ K in terms of degree-height estimates for
α1, . . . , αm ∈ K .
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A result for degree-height estimates

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of
char. 0, K the quotient field of A and K an algebraic closure of K .

Theorem 3 (Ev., Győry, 2022 (?))

Suppose f1, . . . , fM have total degree ≤ d and log. height ≤ h, where
d ≥ 1, h ≥ 1.

Let α1, . . . , αm ∈ K be such that [K (αi ) : K ] = ni , and αi has
degree-height estimate (d , h) for i = 1, . . . ,m.

Let P ∈ Z[X1, . . . ,Xm,Y ] be such that P(α1, . . . , αm,Y ) is of degree
≥ 1 in Y .

Let β ∈ K with P(α1, . . . , αm, β) = 0.

Then β has degree-height estimate(
R, R ·(h(P) + h)

)
, where R =

(
2 degP ·m · n1 · · · nm · d

)κr
,

with κ an effectively computable absolute constant > 1.
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Open problems

I The proof of Theorem 3 is technical and clumsy.

Is there a good alternative for the very naive degree-height estimates,
with an analogue for Theorem 3 that can be proved more smoothly?
(Compare naive heights and Weil heights for algebraic numbers.)

I In 2000, Moriwaki introduced height functions, based on Arakelov
intersection theory, for K , where K is a finitely generated field over
Q.

Can these be compared to our degree-height estimates?



33/33

Congratulations, Yuri!


