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Abstract. Let K be an algebraic number field and S a set of places on K of
finite cardinality s, containing all infinite places. We deal with the Thue-Mahler
equation over K, (*) F(x,y) € O§ inz,y € Og, where Og is the ring of S-integers,
O% is the group of S-units, and F'(X,Y) is a binary form with coefficients in Og.
Bombieri [2] showed that if F' has degree r > 6 and F' is irreducible over K,
then (*) has at most (127)'2% solutions; here two solutions (z1,y1), (x2,y2) are
considered equal if x1/y; = z2/y2. In this paper, we improve Bombieri’s upper
bound to (5x10° r)*. Our method of proof is not a refinement of Bombieri’s.
Instead, we apply the method of [5] to Thue-Mahler equations and work out the

improvements which are possible in this special case.

§1. Introduction.

Let F(X,Y) =a, X" +a,_1 X" 'Y +---+aoY" be a binary form of degree r > 3
with coefficients in Z which is irreducible over Q and {p1, ..., p:} a (possibly empty)
set of prime numbers. Extending a result of Thue [10], Mahler [8] proved that the

equation
(1.1) |F(z,y)| =pi* - -p;* inzy, 21,...,2 €7Z with ged(z,y) =1

has only finitely many solutions.
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Mahler’s result has been generalised to number fields. Let K be an algebraic
number field and denote its ring of integers by Ok. Further, denote by My
the set of places of K. The elements of My are the embeddings ¢ : K — R
which are called real infinite places; the pairs of complex conjugate embeddings
{0, : K — C} which are called complex infinite places; and the prime ideals of
Ok which are also called finite places. For every v € M we define a normalised

absolute value | - |, as follows:

| |o == |o()|"/K:Q if v is a real infinite place o : K «— R;
||y := |o ()2 = [7()|IEQ if ¢ is a complex infinite place {0,7 : K < C};

| |y := (Np)~orde O)/IKQL if 4 is a finite place, i.e. prime ideal p of Of;

here Np is the norm of p, i.e. the cardinality of Ok /p, and ord, (x) is the exponent

of p in the prime ideal decomposition of (x).

Let S be a finite set of places of K, containing all infinite places. We define the

ring of S-integers and the group of S-units as usual by
Os={zeK: |z|, <1 forv¢gS},
Oi={zxeK: |z|, =1 forv ¢S},

respectively, where ‘v € S” means ‘v € Mg \S.” Instead of (1.1) one may consider

the equation
(1.2) F(z,y) € O in (z,y) € OF ,

where F(X,Y) is a binary form of degree r > 3 with coefficients in Og which is
irreducible over K. An Of-coset of solutions of (1.2) is a set {e(z,y) : € € O%},
where (x,y) is a fixed solution of (1.2). Clearly, every element of such a coset is
a solution of (1.2). Now the generalisation of Mahler’s result mentioned above

states that the set of solutions of (1.2) is the union of finitely many O%-cosets. 1)

This follows from Lang’s generalisation [6] of Siegel’s theorem that an algebraic curve over K of genus

at least 1 has only finitely many S-integral points, but was probably known before.
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It is easily verified that this implies that (1.1) has only finitely many solutions,
by observing that with S = {00, p1,...,p}, (0o being the infinite place of Q) we
have O = {xp7* ---p{* : z1,...,2 € Z} and that any coset contains precisely

two pairs (z,y) € Z? with ged(x,y) = 1.

There are several papers in which explicit upper bounds for the number of (O%-
cosets of) solutions of (1.1) and (1.2) are given, e.g. [7], [4], [2], and the last two
papers give bounds independent of the coefficients of the form F. The most recent
result among these, due to Bombieri [2], states that if F' has degree r > 6 and S
has cardinality s, then (1.2) has at most (12r)'2¢ O%-cosets of solutions. A better
bound was obtained earlier in a special case by Bombieri and Schmidt [3], who
showed that the Thue equation F(x,y) = +1 in x,y € Z (which is eq. (1.2) with
K = Q,S = {o0}) has at most constant xr solutions, where the constant can be

taken equal to 430 if r is sufficiently large. In this paper we prove:

Theorem 1. Let K be an algebraic number field and S a finite set of places on
K of cardinality s, containing all infinite places. Further, let F'(X,Y’) be a binary
form of degree r > 3 with coefficients in Og which is irreducible over K. Then the

set of solutions of
(1.2) F(z,y) € Oy in (z,y) € OF

is the union of at most

(5x10°%7)°
O%-cosets.

Like Bombieri, we distinguish between “large” and “not large” O%-cosets of so-
lutions of (1.2) and treat the large cosets by applying the “Thue principle” (cf.
[1]). Our treatment of the not large cosets is not a refinement of Bombieri’s, but
is based on rather different ideas. Bombieri (similarly as Bombieri and Schmidt
in [3]) heavily uses that the number of O%-cosets of solutions of (1.2) does not

change when F' is replaced by an equivalent form, where equivalence is defined by
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means of transformations from GL3(Og), and in his proof he uses some compli-
cated notion of reduction of binary forms. Instead, we apply the method of [5] to
Thue-Mahler equations. We will see that there is no loss of generality to assume
that F(X,Y) = (X +cVY) - (X 4+ cMY) where ¢V, ..., (") are the conjugates
over K of some algebraic number c¢. The substance of our method is, that we do
not apply the Diophantine approximation techniques to a solution (z,y) of (1.2)
but to the number u := x 4 cy and that we work with the absolute Weil height
H(u) of the vector u = (u'V, ..., u(") consisting of all conjugates of u. In par-
ticular, we will reduce eq. (1.2) to certain Diophantine inequalities in terms of u

and H(u) and prove a gap principle for these inequalities.

§2. Reduction to another theorem.

Let K,S, F be as in §1. In the proof of Theorem 1 it is no restriction to assume
that F(1,0) = 1. Namely, suppose that F(1,0) # 1 and let (zo,y0) € O% be
a solution of (1.2). The ideal in Og generated by xg,yo is (1), hence there are
a,b € Og such that axg — byg = 1. Put € := F(z0,y0) and define

G(X,Y) = 'F(zoX +bY,yoX + aY).

Note that G has its coefficients in Og and that G(1,0) = e 'F(zo,y0) = 1.
Moreover, since (z,y) — (xox + by, yor + ay) is an invertible transformation from
O% to itself, the number of cosets of solutions of (1.2) does not change when F is

replaced by G.
Assuming, as we may, that F'(1,0) = 1, we have
F(X,Y)=(X+cVY) (X +cMY),

where ¢ is algebraic of degree 7 over K and ¢V, ..., ¢(") are the conjugates of ¢

over K. Put L = K(c) and let O, g denote the integral closure of Og in L and
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07 s the unit group of O, . Thus, ¢ € Of 5. Define the K-vector space
V={z+cy: z,ye K} .

V has the following two properties which will be essential in our investigations:
(2.1) V is a two-dimensional K-linear subspace of L;
(2.2) for every basis {a,b} of V we have L = K(b/a).

Namely, (2.1) is obvious. Further, if {a,b} is a basis of V then {a = a + (¢, b =
v+ dc} with a, 8, v, § € K and ad — B # 0 and therefore K (b/a) = K(c) = L.

An O%-coset in L is a set {eu : € € Of} where u is a fixed element of L. We need:

Lemma 1. (z,y) is a solution of (1.2) if and only if x +cy € VN O} g. Further,
two solutions (z1,y1), (x2,y2) of (1.2) belong to the same O%-coset if and only if

x1 + cy1, T2 + cyz belong to the same O§-coset.

Proof. For z,y € Og we have that F'(z,y) is equal to the norm Ny, /x (z +cy) and
that z +cy € VN Or,s. Now the first assertion follows at once from the fact that
for u € Op 5 we have Ny, /i (u) € O <= u € OE,S‘ As for the second assertion,
we have for z1,y1, z2,y2 € Og, € € OF that xo+cys = e(x1 +cy1) <= (22,12) =

e(z1,y1) since {1, c} is linearly independent over K. O
Now Theorem 1 follows at once from Lemma 1 and

Theorem 2. Let K be an algebraic number field, L a finite extension of K of
degree r > 3, S a set of places on K of finite cardinality s containing all infinite

places, and V' a K-vector space satisfying (2.1), (2.2). Then the set
VNog s

is the union of at most

(5><106 r)s

O%-cosets.



63. Preliminaries.

We need some basic facts about the normalised absolute values introduced in §1
and about heights. Let again K be an algebraic number field and Mg its set of
places. For every normalised absolute value |- |, (v € Mg) we fix a continuation
to the algebraic closure K of K which we denote also by |-|,. We define the v-adic

norm
[ == max(|Z1]y, ..., |2n|o) for x = (z1,...,2,) € K, v e Mg.
We shall frequently use the

Product formula H |z|, =1 for x € K* ;
vVEMg
we mention that for z € K\K we have in general that [T, ., 2|, # 1. To be able

to deal with archimedean and non-archimedean absolute values simultaneously, we

introduce the quantities

s(v) :=
2

s(v) == K0

s(v) := 0 if v is a finite place.

1
(K : Q]

if v is a real infinite place,

if v is a complex infinite place,

Thus,

(3.1) Z s(v) =1 for every set of places S containing all infinite places,

veSs
and
|$1 + -4 xn|v < nS(U) maX(’.T1|U, ooy |$n|v) y
(3.2) |z1y1 + -+ Tuynlo < ) max([z1lo, .- |[2nlo) - max([yilo, -, [ynlo)

for ©i,...,Tn, Yi,-- s Yn € K, v € My .

Now let L be a finite extension of K of degree r. Denote the K-isomorphic
embeddings of L into K by u — u®, ... u— u"), respectively. To every u € L
we associate the vector

u=(ub,. . u").
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(Throughout this paper, we adopt the convention that if we use any slanted char-
acter to denote an element of L, then we use the corresponding bold face character
to denote the r-dimensional vector consisting of the conjugates over K of this el-
ement, e.g. if a € L then a = (aM,... a(") etc.) We define the height of u
by
33)  H(u):= [] o= [ max(ju®Vl,,..., [ul"],) forueL

vEMK vEMg

(in fact, since the coordinates of u are the conjugates of u this is the usual absolute
Weil height of u; later, we will define another height H(u)). If v’ = Au for some
A € K* then from the Product formula it follows that

(3.4) Hw) = [T - H(w) = H(u) .
vEME

Further, the Product formula implies

1/r
(3.5) H(u) > < H lu) .. -u(’")|v> =1 foruelL",
veEMg

since uM) - u(" = Np g (u) € K*.
Let S be a finite set of places on K, containing all infinite places. The integral

closure O g of Og in L is equal to {u € L : |[u|, <1fori=1,...,r, v¢& S}

This implies
(3.6) |, = =u|, =|ul, =1 forue OLs VES.
Insertion of this into (3.3) gives

(3.7) H(u) =[] lul, forueOjs.
veS

Now let V' be a K-vector space satisfying (2.1) and (2.2). Below we define the
height of V. Let {a,b} be any basis of V. Define the determinants

Aij(a,b) == a Db — a@DpD for 1 <, j<r.
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Note that A;;(a,b) = —Aj;(a,b) and that A;;(a,b) = 0if ¢ = j. According to
our convention, we put a = (a,...,a(), b= (b, ..., b("). Thus, the exterior

product of a, b is the (g)—dimensional vector
aAb:= (Alg(a, b), Alg(a, b), ceey A,a_gm_l(a, b), Ar_g’r(a, b), Ar_17r(a, b))

Now the height of V' is defined by
(3.8) H(V):= H laAb|, = H lgr?gjcgr 1A (a,b)ly -
vEMK vEMg

This is independent of the choice of the basis {a,b}: namely, if
{a/ = &1a+ &b, b = €10 + E22b} with &;; € K is another basis, then

(3.9) Agj(a’,b') = (E11€22 — €12821) Agj(a,b) for 1 <i,j <,
SO
(3.10) a’' Ab = ({11822 — &12821) -a A b,

and this implies, together with the Product formula, that

H(@ Ab) = ( H 11822 — E12801]0) H(a Ab) = H(aADb) .
vEMEK

We will use that by (3.2) we have
i@ D)l < 200 max(a®],, [, max(bs, [59)]),
whence
(3.11) laAb|, <2°W|a|,|b|, forve Mg .
We need some other properties of V:

Lemma 2. Let {a,b} be any basis of V. Then
(1) Ajj(a,b) #0 for 1 <i,j <r with i # j;
(ii) the discriminant D(a,b) := (ngiqg Aij(a, b))2 belongs to K*;
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(iii) H(V) > 1, and H(V) = 1 if and only if for every v € Mg, the numbers
|A(a,b)]y, (1 <1,j <, i+#j) are equal one to another;

(iv) for every w € V and for each i,j,k € {1,...,r} we have Siegel’s identity
Ajr(a, ) u® + Agi(a, b)u? + Ayj(a, bu™ = 0.

Proof. (i). Put ¢ :=b/a. Then

(3.12) Aij(a,b) = aWDa (D — Wy

Further, by (2.2) we have L = K(c) and therefore ¢V, ... (") are distinct. To-
gether with (3.12) this proves (i).

(ii). We have D(a,b) # 0 by (i) and D(a,b) € K since each K-automorphism of

K permutes, up to sign, the numbers A;;(a, b).

(iii). By (ii) and the Product formula we have

bv 1<j<r Az 7b v
H(V): H |a/\ | H maxi<i<j< | ](a )|

wait D@ )T b (Thcicyer [Aii(a,0)])2 =1

Each factor in the product is > 1, hence H(V) > 1. If H(V') = 1, then each factor
is equal to 1 and this implies that for every v € M, the numbers [A;;(a,b)|, (1 <

i,j <r, i#j) are equal one to another.

(iv). Write u = za + yb with x,y € K. Put again ¢ := b/a. Then (3.12) implies

Ajr(a, D) u + Agi(a,b)u? + Ay;(a, b)u®
— a(z’>a<j)a<k){(c<j) — ™) (@ 4 ye®)t
F(® — @)z 4 ye®) 1 (@ = )z + ycw))}

=0. 0J



84. Reduction to Diophantine inequalities.

As before, let K be a number field, L a finite extension of K of degree r, S a finite
set of places on K of cardinality s, containing all infinite places, and V' a K-vector

space satisfying (2.1) and (2.2). Further, let Z be the collection of tuples
i=(iy:ves) withi, e{l,...;r}forves.

For each i € 7 we define the quantity

(4.1) A,V (Hmaxmw a,b)| ) (H |a/\b|v> ,

vgS
where {a,b} is any basis of V', and where by j # i, we indicate that we let j
run through the set of indices {1,...,7}\{i,}. From (3.9), (3.10) and the Product
formula, it follows that A(i, V') is independent of the choice of the basis, i.e. does
not change when {a, b} is replaced by any other basis {a’,b'} of V. The quantity
A(i, V') will appear in certain Diophantine inequalities arising from the set VNOi s

and in a gap principle related to these inequalities. We also need the quantities

6(i) (i € Z) defined by

(4.2) H(V)PO = H{ ( laAbl, 1 }
I1

—1
ves (T, 180, b))

if H(V) >1and 0(i):=0if H(V) = 1.

(3.9) and (3.10) imply that also (i) is independent of the choice of the basis {a, b}.
Note that (4.2) holds true also if H(V) = 1: namely, Lemma 2 (iii) implies that
in that case the right-hand side of (4.2) is also equal to 1. We need the following

inequalities:

Lemma 3. (i) H(V)'%® < AG, V) < H(V) foricT;
(i) 0(i) > 0 fori € T and ) ;. 0(i) < r°.

Proof. Fix a basis {a,b} of V and write A;; for A;;(a,b). Put H, :=|aAb|, =

maxm‘ |A”|U
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_1_
—

(). Since [],4; [Ai, jlo7" < max;z, |A;, jlo < H, for v € S we have

AGV) < [ Ho [ Ho = H(V), and

veS vgS
1

1 [z, 1Bigl0)
AGV) =TT (TT 1400) -HHU—H{< e ) }-H(V)
VES i, vgs vES v
= H(V)'70

(ii). We assume that H(V') > 1 which is no restriction. We recall that by Lemma
2 (i) we have that D := ([],;.;-, Ay)° € K*. (i) implies that 6(i) > 0 for
i € Z. To prove the other assertion, we observe that Z consists of exactly r* tuples

i=(i,:ved) and that

IT I 1206l =11124

i€l j#iy i#]

s—1 s—1
. =|D|) forvesS.

Further, we have |D|, < maxi<;<j<, |Aij|Z(T_1) = H;" ™Y for v ¢ S. Together

with (3.8) and the Product formula applied to D this gives

__eG) _ H,
H(V)2iex 00 — I1 (H A 1/<r—1>>
ieZ \ves Hj;éiv ’ ty,J [V

s

H H
= ____TE____ S ———§j¥————
s IDZ 1/(r—1) 1161;4[1( |DZ /(r—1)

=HWV)"”

which implies (ii). O
Suppose that V N O} ¢ is non-empty. For ug € VN O g, define the space
1y, _ogo—1, .
ug V={uy u:ueV}.

Let up be an element u of V N OF ¢ for which H (u~1V) is minimal; such an wug
exists since for each uw € VNO7 o, H (u=1V) is the absolute Weil height of a vector
of given dimension with coordinates in some given finite extension of K (cf. [5]

§3), and since the set of values of absolute Weil heights of such vectors is discrete.
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Put V' := ug'V. Then 1 € V' and H(u='V’) > H(V') for every u € V' N 07 s-
Further, V' also satisfies (2.1) and (2.2) and the number of Og-cosets in V' N O] 4
is the same as that in V N OFf 5. Therefore, in what follows, we may replace
V by V’. Thus, we may assume that 1 € V and H(u™'V) > H(V) for every
u € VNOj g In the remainder of this paper, we assume that V' satisfies these

conditions and also (2.1) and (2.2), i.e.
V' is a two-dimensional K-linear subspace of V;
(4.3) for every basis {a,b} of V we have L = K(b/a);

1€V, H@ 'V)>H(V) forevery u e VNOj g .

Lemma 4. For every u € V N O} g there is a tuplei= (i, : v € S) € T such that

each of the three inequalities below is satisfied:

‘u(iv)|v ] 2
Ada <AGLV)
(42) L T =209 g
ut™], L AH(V)T?
4.4.b <AGV)
‘u(iv)| ) 2r—1H(V>r9(i)—1
4.4.c <AGV) - )
) L =209 —5y

Remark. Inequalities (4.4.a), (4.4.b), (4.4.c) will be used to deal with the “small,”

“medium” and “large” Og-cosets, respectively.

Proof. Let u € VN Oj 4. Take any basis {a,b} of V and put A;; := Ay;(a,b).
For each of the inequalities (4.4.a), (4.4.b), (4.4.c) we shall construct a tuplei € 7
for which that inequality is satisfied. The three tuples we obtain in this way are
a priori different, so we must do some effort to show that (4.4.a)-(4.4.c) can be

satisfied with the same tuple i.

We first show that there is a tuple i with (4.4.a). Note that {u~'a,u~1b} is a basis
of u='V. Further,

Aij(ura,ut) = (uD N~ (aDpl) — qWp)y) = (u(i)u(j))—lAij_
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By (3.6) we have |[u®u)|, =1 for v ¢ S. Hence

1) = Al
H(“ V)_ H {1<1<]X<7‘ |u(l u(J)| }

vEMgK
|A'L.7|U }
= H max ———~— o - | | max|A;;|,
i () q,(4) H iy J
UGS{ 3 [uulDl, vgs
_ Al
_Hg{m a0, - Ll nble-

Together with (4.3) this implies

|AZJ|U
(4.5) H(V) < I;IS{maX TOTEIN H laAb|, .

Fix v € S. Choose p from {1,...,r} such that \u(p)|v = max;—i1,. r |u(i)|v = |ul,.

Further, choose iy, j, from {1,...,7} such that

|Aiv7jv|v |Aw’v

W@ uG [, i [u@u@],’

‘Ajv:pu(iv)‘v S |Aiv7pu( )’U’

the inequality can be achieved after interchanging i,, 7, if necessary. From Lemma

2 (iv) and (3.2) it follows that
|Aivaj'uu(p)‘v = ‘Ajvapu(iv) + Apai'uu(jv)|v S 2S(v)|Apaivu(jU)|'U

Dividing this by |u**)uU»)u)|, and using [u®]|, = |ul, gives

. -1
‘Aiu,jv ‘U s(v) |AP77LU ’U s(v) ’u(%) ‘U -2
u], =2 ey, <20 T, ) e maxl Bl -

By inserting this into (4.5), using (3.1), (4.1) and (3.7), we obtain

i)
H(V)g2H{(’ . |”) It 2} <HmaX|Aw|UH|aAb|v>

[uly vgS




with i = (i, : v € S) and this implies (4.4.a).

We now show that there is a tuple i with (4.4.b). We assume, without loss of

generality, that
luD Dy F)|

1 W@y @), 1

3/2 = 3/2
verty [B12823A31 |y vere 1Ak Aki|v

for every subset {i,7,k} of {1,...,7}. Note that u(" ...y = Nk (u) € K* and

that ngi <i<r Afj € K* by Lemma 2 (ii). Now the Product formula applied to

these quantities gives

Lo 1/(3)
(1)4,(2),(3) ()4, (5) ¢, (k)
u’uNu v urur’u v
we) [ - \2§{ m 1I- |}

3 3/2
veity [ A12803 051 [ Gy ey veie 1B Ak Al

D )2 )G
("%)/74()

3
vEM K |H1§i<j§r A?ﬂv
=1.

Now let v € Mg. Choose i, from {1,2,3} such that
|u(i”)’1) — min (|u(1),m |u(2)|v, |u(3)|v) _
Further, let again p € {1,...,7} be such that [u(P)|, = |u],. Then for k € {1,2,3},

k # i, we have, by Lemma 2 (iv) and (3.2),

= [y = 184, 1l 1B + A,
< 25(v)|Aiv,k|;1 max (|Akp|vv |Aiv,p|v) - max (lu(iv)|v’ |u(k) |v)

< 2OA; il a Al - fu®)],

Together with |A;, x|y < max;-;, |A;, ;| this implies
(4'7) |u|U S 28(U)|Ai1);k|’;3/2|a A b’U : II;'éa‘X |Ai1)7j ’})/2 ’ |u(k)|'U
JF v
for k € {1,2,3}, k # i, .

Let {jv, kv} = {1,2,3}\{iv}. From (4.7) with k = j,, k, and |A;, &, o < |a A bl

we infer
)], JuMuPyB),

A A w53 2la A b A
|u|v = |u|73) | 1vsJv Z’Uak'u|’l) |a/\ |’U _rjggbi;{’ 1v7]|U

< max |A; |y - 45®) WWu@u@|,  |an b7
— . Ty, lv T )

J#i [A12A03 A5 5/ uf3
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By taking the product over v € Mk, using (4.6), (3.1), (3.3) and (3.8), we get

o), _ /2
(4.8) 7 < (T maxlal) - AH(V)

et Ul By S H(u?

By (3.6) we have |u(®)|, = |u|, = 1 for v ¢ S. Further, it is obvious that

11 maX\AZ e < HmaX]Al il [[lanble =AG V),

UEMK ’UES vES

with i = (i, : v € S). By inserting this into (4.8) we obtain (4.4.b).

It is obvious that (4.4.a), (4.4.b) hold true simultaneously for a tuple i for which
[Tes (|u(“)|v/|u|v) -A(i,V)~! is minimal. We remark that i = (i, : v € S) with
iy € {1,...,7} given by

|u(i“)\v |U(j)|u
(4.9) ——————— = min ———— forves
maX|Aiv7;€]U J=1,..., T maX|Ajk|v
ki k#j
where K 1s the only running index in the maxima) 1s such a tuple: namely, lor
h k is th 1 ing index in th i i h 1 ly, f

each tuple j = (j, : v € S) with j, € {1,...,r} for v € S we have

(iv) (in
Ul_[ ‘u‘u’v’ A(l, V)—l — (H g;léa|z|A k‘ )(H |u’v1 H |a/\b| 1>

veS vgS

<(II ma'jj‘(;j'vﬂ )(H ul; ' [T lanblt) = T]
jo 7 ves

vgS

lulv)],,

AG, V)~

We now prove that also (4.4.c) holds true for the tuple i defined by (4.9). Fix
v € S. We show that |uU)|, is close to |u|, for each j # i,. Choose p with
lu®)|, = |ul,. Fix j # i,. From Lemma 2 (iv), (3.2) and from

|Ajpu(iv)|v < max [Ajily - |U(iv)|v < max |A;, gl - |U(j)|v < lan b|v|u(j)|v
k#j k#iy

which is a consequence of (4.9) it follows that

[uly = [u®]y = [Aq, 415 1Al + Api,ul?],

< 2°0Ai 41 a A bl e,
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Hence

ul™)], < 9(r=1)s(v) . Jul™)], H laAbl, _ [ul)],
lul, ~ lul, iy FAYERT lul,
laAb|7! JuD - ()],

Hj;éiv 1A, o uly

We take the product over v € S. Note that since u(*) ---u(") € 01sNK = 0Oj

_ o(r=1)s(v) .

we have

(4.10) H |u(1) . .u(r)|v =1.
veS

Therefore,

)], i laAb[r1 _
<or-t. v H(u)™" by (3.1), (3.7), (4.10)
Ul_[ <U1;£ Hj;éiu |Aiv,j|v>

=2 L. HWV) DO F(u)™" by (4.2)
<AGV) -2 HW)POD-IH(u)™" by Lemma 3 (i)

which is (4.4.c). This completes the proof of Lemma 4. O

§5. A gap principle.

As before, let K be a number field, L a finite extension of K of degree r, S a set of
places on K of finite cardinality s, containing all infinite places, and V' a K-vector

space satisfying (4.3). Further, we put d := [K : Q).

The following lemma is needed to derive a gap principle that can deal also with

“very small” solutions.

Lemma 5. Let F' be a real > 1 and let C be a subset of VN OF ¢ that can not

be contained in the union of fewer than

max(2F24, 4 x 79129)

16



O%-cosets. Then there are uy,us € C such that {uy,us} is a basis of V' and

(51) H ‘ul/\U2‘v SF_l 5
vgS
where u; = (ugl), . .,ug.r)) for j = 1,2.

Proof. The proof is similar to that of Lemma 6 of [5]. We assume, with no loss of
generality, that any two distinct elements of C belong to different O%-cosets, and
that C has cardinality at least max(2F?29¢,4x79+2%), Using that 01 sNK = O, it
follows easily that any two K-linearly dependent elements of V' N Oj g belong to
the same Og%-coset. Hence any two distinct elements of C form a basis of V. For
every v ¢ S, choose uy,,ug, € C such that

(5.2) a1, Augyly, = max |ug Auglfy ,
uy,u2€C

(1) (T))

Ujy ey for ¢ = 1,2. The coordinates of uy, A us, belong to

where u;, = (u
OL.s, hence |uj, Augyl, <1 for v € S. Therefore, it suffices to show that there
are distinct uq,us € C with
A\
H Iw Ay s
|u1v A Uoy |v
(5.2) implies that each factor in the product in the left-hand side is < 1. Therefore,

it suffices to show that there are uy,us € C, v ¢ S, such that

|111 /\112|U

(53) < F~ 1 U1 7é us .

|U—1v /\u2v|v

Among all prime ideals outside S, we choose one with minimal norm, p say; let
Np denote the norm of this prime ideal. Since by assumption F' > 1, there is an

integer m > 1 with
(5.4) Np(m=Y/d « < Npm/d

We distinguish between the cases m =1 and m > 2.

17



The case m = 1.

First assume that

(5.5)  |ug Auzly = Uiy AUgyly

for every v ¢ S and every uy,us € C with uy # usy .

By assumption, C has cardinality > 3. Fix uy,us,u3z € C. We have ug = auy + Bus
with «, f € K, since {u1,us} is a basis of V. Now (5.5) implies that

_ |us Augfy _ |uAusly

— 1 —
) |5|’U |u1 /\U2|U

= = =1 f S,
|U1/\112|v OI'U¢

|a|v

hence o, B € O%. Let u € C, u # uy, uz,u3. We have u = zu; +yus with z,y € K.
Similarly as above, we have z,y € O%. Moreover, (5.5) implies that

|u A ugl,

|Bx — ayly, = =1 forvé¢s,

lur A uzly
whence Br — ay € OF. Since any two distinct elements of C form a basis of V', we
have that v € C is uniquely determined by the quotient x/y. Further, by Theorem
1 of [4] there are at most 3x7%+2% quotients z/y € OF for which (Bz/ay)—1 € O%.
Since we have considered only u € C distinct from wq, us, us, this implies that C
has cardinality at most 3+3x7912% < 4x79+2%_ But this is against our assumption.

Therefore, (5.5) can not be true.

Hence there are distinct uy,us € C and v ¢ S such that |uy A uzl, < [u, A ugyle.
Recall that v = q is a prime ideal of Ok outside S. For ¢ = 1,2 we have u; =
TiU1y + Yo, With x;,y; € K. Thus,

lug A uzl, n/d

Ty A ol = |z1y2 — z2y1|o = Nq~
v vI|v

for some positive integer n. Now by our choice of p and by (5.4) and m = 1 we

have Nq~™/¢ < Np~1/¢ < F~1. Hence v and uy, uy satisfy (5.3).

The case m > 2.
Let v = p. Every u € C can be expressed uniquely as u = xui, + yus, with

x,y € K. We have C = C; U (s, with
Ci={uel: [z, <|yl}, C2={uel: |yl <|z|,}.

18



We assume, without loss of generality, that C; has cardinality > %Card C. Thus,

by our assumption on C, and by (5.4) and m > 2,
(5.6) Card C; > F?? > Np?™=2 > Np™ .

Define the local ring O = {z € K : |z|, < 1} and the ideal of O, a = {z € K :
2|, < Np~™/4}. The residue class ring O/a is isomorphic to O /p™. Therefore,
O/a has cardinality Np™. Since any two distinct elements of C form a basis
of V, u € C is uniquely determined by z/y. So (5.6) implies that there are
distinct uq,us € C; with u; = x;u1, + yiug, for ¢ = 1,2, where z;,y; € K and
r1/y1 = x9/yo mod a, ie. |(z1/y1) — (x2/y2)]e < Np~™/¢ By (5.2) we have
[Yilo = |t10 Ay /|01 Augyly < 1 for i = 1,2. These inequalities imply, together
with (5.4),

uq A uzgly x x _ _
u:‘xlyZ_nyl‘v:‘ylyﬂv — -2 <Npe<pT
U1y A ugyly Yy Y2,
which is (5.3). This completes the proof of Lemma 5. O

The next combinatorial lemma is a special case of Lemma 4 of [4] . It is a formal-

isation of an idea of Mahler.

Lemma 6. Let q be an integer > 1 and A\ a real with 0 < \ < % Then there

exists a set I' of g-tuples (71, ...,7,) of real numbers with

q
v >0fori=1,...,q, szl—/\,
i=1

such that
e

Card(I') < (X)q_l (e=2.7182...)

and such that for every set of reals Fy, ..., Fy, A with
q
0<F;<1 forj=1,...,q, HFjSA
there is a tuple (y1,...,7,) € I with

F; <AV forj=1,...,q.
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O

The gap principle which we prove below is of a similar type as a gap principle for the
Subspace theorem proved by Schmidt (cf. [9], Lemma 3.1). Fixi= (i, :v € S) €7
and let A(i, V') be the quantity defined by (4.1).

Lemma 7. (Gap principle.) Let C, P, B be reals with
(5.7) C>1, B>P>1.

Then the set of u € V N OF, ¢ satistying

ul™)l, :
(5.8) 1T ™ A, V) - %ﬁp , H(u<B

is the union of at most

log B\*
02d<14000- 142 )
{ + logP}
Og-cosets.
Proof. Put
log B \ 1
K= —— - -
log P’ 22k +1) 7
ity |, (@, b)ly
Cv — man;,g v ‘ u»](a )l fOI' v E S ,

la A bl,
where {a,b} is any basis of V. Note that by (3.9), C, does not depend on the
choice of the basis. Let u € V N O} g satisfy (5.8) and put

|u(iU)|U -1 —1/s
—C,{(7C/2) - H(V)} forve S.

uf,

Fy(u) == min<1,

From (5.8) and from

IIc.= [loes max;zi, [Ai, (@b - TlogslaAble _ AGV)
ves ! Hves|a/\bv 'Hugés la A bl, H(V)

which is a consequence of (4.1) and (3.8), it follows that

[T A< (]I 'ﬁ””) (11 cv)_l((m/z) CHOV)) ™!
vES v veS

veSs

1
Hu)2P
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By Lemma 6, there is an s-tuple (7, : v € S) with v, > 0forv € Sand ) o7 =
1 — )\, such that

(5.9) Fyu) < (—

< <W)2P)% forve S

and such that (y, : v € S) belongs to a set I' independent of u of cardinality at
most (e/A)*~1. The condition H(u) < B implies that there is an integer k with

0<k< 2k and
(5.10) P*? < H(u) < PFHD/2

Now let k& be any integer with 0 < k < 2k and (v, : v € S) any tuple of non-
negative reals with ) ¢, = 1—X and let C be the set of elements v € V'N OLs
satisfying (5.8), (5.9) and (5.10). We claim that

(5.11) C is contained in the union of fewer than 4C2% . 748 O%-cosets.

Taking into consideration the number of possibilities for k and the cardinality of

[, (5.11) implies that the set of u € VN O} g with (5.8) is the union of fewer than

402d . 748 . (2,€ + 1) . (;)8_1
<O oaxT . (26 41) - (2e{26+1})°7"

< C?*(14000{2x + 1})°

O%-cosets. Thus, (5.11) implies Lemma 7.

It remains to prove (5.11). Assume the contrary, i.e. that C can not be contained
in the union of fewer than 4C2? - 745 O%-cosets. This quantity is at least max(2x
(7C)%4,4x79+2%) since d is at most two times the number of infinite places of K,
hence at most 2s. Therefore, from Lemma 5 with F' = 7C' it follows that there are

u1,us € C such that {uy,us} is a basis of V' and such that

(5.12) I s Auzly < (7C)7F
vegS
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Without loss of generality we assume that
(513) H(ul) S H(UZ).

Let
S'i={veS: v >0} s :=CardS,

and put
A1, V) (H mes Ay, ;(a )], )( I1 |a/\b]U> .
S ’UEMK\S/
S’ is non-empty since ) o7 =1 —A > 0. From (3.8) it follows that

(5.14) I c. = V)

veS’ )
Hence A’(i, V) is independent of the choice of the basis {a,b}. Below, we will

estimate A’(i, V) from above by computing it with respect to the basis {u1,us2}

instead of {a,b}. For convenience, we introduce the quantities

d = Z s(v), "= Z s(v),

ves’ vES\S"
L "o .
= H |y, Hj = H lu;|, forj=1,2.
ves’ vES\S'

Note that by (3.1) and (3.7) we have
(5.15) d+c"=1, H}H] = H(u;) forj=1,2.

Let v € S’. Choose j, from {1,...,r}\{i,} such that |A;, ; (u1,us2)|, =
max;-;, |Ai, j(ur, u2)ly. (5.9), (3.4) and P > 1 imply that F,,(u;) < 1 for j =1, 2.

Hence .
|u(.l”) o —Yv

|u'| CU((7C/2)H(V))1/S(H(u)2p> for j=1,2.

Together with (3.2) and (5.13) this implies that

JF#tw

st(v) max(|uglv)ugjv)|v,| (iv) (]U)‘ )

™), |ué“>|v)

< 290y, fu], max ( ,
|u1|v |u2|v

< 2Ol fl, -, (GC2H0) s

ux
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and by taking the product over v € S’, using (5.14) and >° .o Yo = D peg o =

1 — )\ we obtain

e o A1, V) s'/s 2 M
Uglg.r;gflAu,j(ul,uQMUSQ HHy = (re/2mv)) " {H(w)*P}
(5.16) < AL, V) -2¢(7C/2) - H;H;{H(u1)2p}“ .

By (3.11) we have

(5.17) [I hwAwe|, <2¢"BHYH] .
veS\S’

Now, by combining (5.16), (5.17) and (5.12) and using (5.15) we get

NGV =] max | Ai, j (1, u2)fo [T loanugl- [ [uaAusl,
ves 17T vES\S vgS

/ 7" A-1
< NV) -2 (70 2) - BLE] - ByEY - {H(w 2P (70) 7
= A1, V)P "H(up)* "H(uy) ,

hence
2) H(uz) '
H(uy)

1< P'H(uy)

By H(u1) < B which is a consequence of (5.8) and the definition of x we have
H(up)* < B> = P?** and by (5.10) we have H(ug)/H(uy) < P*+1/2/pk/2 —
P'/2. Recalling that A = 1/{2(2x + 1)}, it follows that

1 « PA-D+2Xs+1/2 _ prtDA=1/2 _ 1

Thus, the negation of (5.11) leads to a contradiction. This completes the proof of
Lemma 7. OJ

We need the following consequence.

Lemma 8. Let D, Ay, As,0 be reals with 6 > 0, D > 0 and

(5.18) Ay > Ay > max (1, (27 D)%) .
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Then the set of u € VN O}, L.s with

U(Zv) . ) D
(5.19) I1 | |u|v| SAGY) graEm e A S HW) <A
vES

is contained in the union of at most

(2800017 + 125*1)>s - (1 +

log(log A2/ log A;)
log(1+ 6)

Og-cosets.

Proof. We assume that A, > A; which is clearly no restriction. Let k be the

smallest integer with AgHé)k > A5. Then

log(log A2/ log Ay)
5.20 k<1
(5:20) S T T g1 +90)
For every u € V N O] g satisfying (5.19) there is an integer ¢ with 0 <t <k —1
and
(5.21) A < ) < AT

From the assumption A; > (2D/7)%/9 it follows that each u € V' N 07 s with
(5.19) and (5.21) satisfies

H |u(’“)! A, V)D
H(u)24509" ~

7/2
H(u)2A§1+6)t(56/6) ’

< <SAGV)-

veES

From Lemma 7 with P = Agl+5)t(56/6), B = AgHé)tH and C' = 1, we infer that
the set of u € VN O7 g satisfying (5.19) and (5.21) is contained in the union of at

most

log B (1+9)*! s
(14000{1 + 22 gP}) (14000{1 T2 5)1(56/6) })

= (14000(1 + %{1 +571))
— (280017 + 126~ 1))
( )

O%-cosets. By taking into consideration the number of possibilities for ¢ given by

the right-hand side of (5.20) this implies Lemma 8. O
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§6. The large solutions.

Let as before K be a number field, L a finite extension of K of degree r, and
w— uM . u— u™ the K-isomorphic embeddings of L into K. Further, let S
be a finite set of places on K, containing all infinite places. For z1,...,z, € K,
v € Mk we put

|z1, ..o Ty = max(|21 ]y, - - [Tn]o)-

We define the height of § € K by

HPB) = ] L6l
vEMg
More generally, we define the height of a € L by
r . 1/r
H(a) := ( IT 11 |1,a(’)\v) .
vEME 1=1
The following lemma is a slightly modified version of Bombieri’s Thue principle

[1].

Lemma 9. (Thue principle). Let t,T,0,31,d2 be positive real numbers such that

2 2
(6.1) \/ <t<\/j, T<t, t<O<t !,
r+1 r

let B1,02 € K, aj,as € L, and let i = (i, : v € S) with i, € {1,...,r} forv € S.
Then either

|aglv) _ 61’ 061 ’agbv) _ /82‘ 0_152
6.2 max{ | ————~ , | —=2—="
o]l T, Gil T, Gal

o1 ba

> (@) HE ) T BHE) HE)) T win e =

2
2 — rt2’

or

6.3 A N N
(6.3) 55, 2" TaT
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Proof. This is the same result as Theorem 2 of [1], except for the denominators
11, B;|, in (6.2) and except for the additional assumption ¢ < 6 < ¢t~ which im-
plies that the quantities p5(t), p2(7) in Bombieri’s statement are equal to %tz, %72,
respectively (see the remark at the end of [1],Chap. IV). Further, Bombieri uses
another, but equivalent, definition for the height H («) for a € L. We have to make
some minor modifications in the arguments of [1], pp. 288-291 which are indicated
below. We mention that our notation K, L, s(v) corresponds to Bombieri’s nota-
tion k, K,e(v)/[k : Q]. Further, by choosing other continuations of |- |, (v € S) to
L if necessary, we may assume that ag-i”) =qj; for j =1,2,veS. Welet S be
the set of those places v € S for which both quantities |a; — 5i| /|1, Bilo (i = 1,2)
are smaller than 1. Clearly, it suffices to prove Lemma 9 with in the left-hand side

of (6.2) the product over v € S being replaced by the product over v € S’. Our

set S” plays the same role as Bombieri’s set S.

For pairs I = (iy,i2), J = (j1,J2) of non-negative integers, we put I'! = i1lis! and
(‘I]) = (Zi) (Zj) and we define the differential operator A; = (9/9X1)"(0/0X5)"™
for polynomials in X7, X5. Let P € K[X;,X3] be the polynomial constructed
in Section IIT of [1], with t,7 as in (6.1), and degrees at most dy,ds in X7, Xo,
respectively, such that properties (i)-(v) on p. 288 of [1] are satisfied and such
that instead if (vi) we have |a; — Bilo/|1, Bilo < 1 for v € S’, i = 1,2. Then
v = (1/I*)AT P(By,32) # 0. We have to estimate |y|, from above for each
v € M and then apply the Product formula. Like in [1], we have to distinguish

the four cases:

I.v € S, v finite; II. v € S, v infinite; ITL. v ¢ S’ v finite; IV. v ¢ S’, v infinite.

Case I. We indicate the changes on p. 289 of [1]. We have

1

7= 27AT P(BL B)

= Z (I*;-I> ﬁAI*-ﬂP(al,o@)(ﬁl _ Oél)il (Ba — 042)i2 .
I :

By (iii), (iv) on p. 288 we have A"t/ P(ay1,ay) = 0 for I = (iy,is) with
0=ty /d1+0is/dy < t—7. Let I = (i1,i3) be a pair with 0~ 1iy /dy +0is/ds > t—T.
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Using the notation log™ 2 = max(0,log z) we have

log AI*+IP(al,a2)

(I+17)!
S log |P|v -+ (d1 — ZT — i1)10g+ |051’v -+ (dg — Z; — 22) 10g+ |042|U s

v

where I* = (if,43) and |P|, is the maximum of the v-adic absolute values of the
coefficients of P. From |o; — Biy < |1, Bil, it follows that log™ o], < log™ |Bil.

for : = 1,2. Hence

log AI*HP(%,QQ)

(I 4 I*)! v
<log|Pl, + (d1 — i} —i1)log™ [Bi], + (d2 — i3 —i2) log™ |Bal, .

Moreover,

log |(B1 — 1) (B2 — a2)™ s

. . - a v ) a v
= i1 log™ |B1y + izlog™ B2y + i1 log { 15’11 51|1‘ } +izlog { ‘5\21 52!2’ }
<i1log™ |Bilv + i21log™ |Baly

= ey o { e ot {2l )

By summing over all I, using that v is finite, we get in case I,
|’y‘v < log |P’v + dl 10g+ ‘ﬁl’v + d2 10g+ ‘52’1)

+(t-7) max<9d1 log {5} gty 10 {12 =00 ﬁji“}) |

Case II. We modify the arguments in case II on p. 289 of [1] in the same way
as above, except that we now have to insert log™ ||, < s(v)log2 +log™ |8, for

1 = 1,2. Thus we obtain

V]o < log |P|, + dilog™ |Bi]y + d2log™ |Bale

+(t—r>max<9d1 log {5} gty 10 {12 =00 ﬁji“}) |

+ s(v)(dy + d2) log6 + o(dy + d2) .
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The arguments of cases IIT and IV on pp. 289-291 of [1] do not have to be modified,
and the proof of our Lemma 9 is then completed in precisely the same way as that

of Theorem 2 of [1]. O

Let K, S, L,r = [L : K| be as before, let s denote the cardinality of S, and let V be
a K-vector space satisfying (4.3). Then 1 € V. We will apply Lemma 9 as follows.
Let uy,uz € VN O} 5. We will choose an appropriate b € V' such that {1,b} is a
basis of V' and then apply Lemma 9 with ay = as = b and with §; = —z;/y; for
1 = 1,2, where u; = x; + y;b with z;,y; € K for i = 1,2. Assume for the moment

that there is an element b € V with

(6.4) be K, b b =1,

It is obvious that {1,b} is a basis of V' and from (3.2) it follows that
(6.5) b|, = max(|bM],,...,[60],) > r~5®) forve Mg .

Let 1:=(1,...,1) (r times). We need the following lemma:

Lemma 10. Let u € V with u = x + yb, where z,y € K and y # 0. Then for

v € Mg we have

(i) [uly < (2r)*[blu|a, ylo ;

bl,
(i) ol < 2 T2l
Proof. (i).Fori=1,...,r, v € Mg we have

|u(i)|v = |x + yb(i)‘v < 2S(U)|1,b(i)|v‘x7y|v < 25(v) maX(l, |b|v)‘xay|v by (3-2)

< (2r)*“bly|z,yl. Dy (6.5)

and this implies (i).

(ii). Let v € M. We have - (1 Ab) = (z14+yb)Ab =uAband y-(1Ab) = 1 Au.
Together with (3.11) this implies that
_ |u A b|U < 25(1)) |b|U

=l = 1ADb|, — |1 ADb|, fulo s
|1 Aul,
— < 9s(v) . )
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By taking the maxima of the left- and the right-hand sides and using (6.5) we
obtain (ii). O

We recall that by Lemma 4, for every u € V N OF ¢ there is a tuple i = (i :
v € S) € T satisfying (4.4.a)-(4.4.c). Fix i € 7 and let Sjarge(i) be the set of
u € VN O g satisfying (4.4.a)-(4.4.c) and

(6.6) H(u) > {ZH(V)}QMHQ(D) .

Lemma 11. Siaree(i) is the union of at most (4x 106)s O%-cosets.

Proof. We first choose an appropriate element b of V' satisfying (6.4). Clearly, K is
a one-dimensional subspace of V and the space Vg := {u € V : u) - - . 4-u(") = 0}
is a proper K-linear subspace of V since 1 ¢ V{. Hence Vj has dimension at most
1. Therefore, both K and Vj contain at most one Og-coset of elements of VNO7J .
Now let

C := Slarge (1) \ (K U V)).

We assume, without loss of generality, that C is non-empty. Let b’ be the element
u of C for which H(u) is minimal. Since b’ ¢ V;, we have \ := AR Y )
Note that A € K. Hence b:= A7V is an element of V satisfying (6.4). Put

H := H(b).
By (3.4) we have H = H(A™'b’) = H(b’). Therefore

21(146(i))
! )} , H(u)>H foruecC.

(6.7) H> {ZH(V

We make the following
Claim. Let uy,...,u; be a sequence of elements from C with
(6.8)  H(uy) > HY, H(uiq) > Hw) fori=1,...,t—1.

Then t < (8e)*~1.
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Suppose for the moment that the claim is true. Let u; € C be such that H(uy) >
HY°™ and subject to this condition H(uy) is minimal. For i =1,2,..., let u;41 €
C be such that H(u;41) > H(ui)wGT2 and subject to this condition, H(u;41) is
minimal. Then the sequence uy,us, us, ... has only a finite number ¢ of elements
with ¢ < (8¢)*~1. Now (6.7) and this choice of u1,us,...,u; imply that for every
u € C we have either H < H(u) < H'"* or H(u;) < H(u) < H(u;)'°"" for some
i€ {l,...,t}. We are going to apply Lemma 8. Note that every u € C satisfies
(4.4.c), ie. [[,equ®]s/luly < AG, V) - DH(u)=27° with D = 2"~1H (V)1
and § = r — 2. Further, by (6.7) and r > 3 we have H > max(1, (2D/7)%/%). Now
Lemma 8 with D, § as defined above and with A; = H, Ay = H'*°"* implies that

the set of elements v € C with H < H(u) < H 10°7* s contained in the union of at

most
12 s log(10672)
2800(17 —}{1 7} 24.2% (81200)° =: T
{80( H o)) Ut g oy < 242X (81200)
O%-cosets; here we used again that » > 3. Similarly, for ¢ = 1,...,¢, the set of

u € C with H(u;) < H(u) < H(ui)wﬁ’"2 is contained in the union of fewer than 7'
O%-cosets. Recalling that C = Sjarge (i) \ (K U Vp) and that both K and Vj contain
at most one Of-coset, it follows that Sjarge(i) is contained in the union of fewer

than

2+ (t+1)T <2+ (14 (8e)*™1) - 24.2%(81200)% < (4x10%)*
O%-cosets. This proves Lemma 11.

Proof of the claim. We assume the contrary, i.e. that there is a sequence

Ui, ...,ur in C with (6.8) and with
(6.9) t > (8e)*~ 1,

Let u € {uy,...,us}. From (6.7), (6.8) and A(i,V) < H(V) which is part of
Lemma 3 (i), it follows that

H () > (A(i, V)- 2’"‘115[(V)r9(i)—1>106
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Further, u satisfies (4.4.c). Hence

(iv) v or=1H(V rO(i)—1
e i | ). 27 0)

Hu) < H(u)_r(l_lofﬁ) for u € {uq,...,u}.

veSs

1 consisting of tuples

By Lemma 6, there is a set I" of cardinality at most (8¢)*~
(Yo : v € S) with 4, > 0 for v € S and ) g7 = 7/8, such that for each

uw € {uy,...,us} there is a tuple (v, : v € S) € T with

|u(iu) |

(6.10)

< <H(u)_r(1_1076)>% for v € S.

|,
Since ¢t > Card I, there are distinct elements of {uq, ..., u;} satisfying (6.10) with

the same tuple (v, : v € §). Summarising, it follows that there are z1, 2z € C with

(611) H(Z]_) 2 H1067‘2 ’
(6.12) H(zz) > H(z:)"""" |
‘Z(iv)‘v

- Yo
(6.13) < (H(zj)—“l—lo 6>> forj=1,2, veS,

1]

where (7, : v € S) is a tuple of non-negative reals with ) ¢, = 7/8, and where
1 r

= (z]( )2 ))

Z; for j = 1,2. We apply Lemma 9 to show that such z1, zo can

not exist.
Since {1, b} is a basis of V', we have
Zj = Xj +yjb with Tj,Y; € K for j =1,2.

Since C N K = (), we have y; # 0 for j = 1,2. Put a1 = az = o := b and
Bj == —ux;/y; for j =1,2. We apply Lemma 9 with these «;, 5, and with

(6.14) 6=1, ¢ \/ 2 \/2 t2 + 107 !
. = =A== T - =
’ r+0.5x10-4"’ r+0.5x10-* 100’

1 s 1
log H(z1)" ° logH(z2)

0 =
Note that the quantity C' in Lemma 9 is equal to

(6.15) C =2x10%r +0.5x107%) = 2x10% + 1.
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11, B1ly 11, Baly
51 5_2

Bi={BH) HE) - {BH@)H(E) |

We estimate each A, from above. Let v € S and j € {1,2}. By Lemma 10 (i) we

A, = max({w—_ﬁm}él,{w—_ﬁm}%) forves,

have
2], < (2r)*“|bl, |25, y;lo-
Hence
(7:11) — . . .b(iv) Z(ZU) v
o Bilo = 75 + 45 [ < C’U| i with C,, := (2r)*@|b|,
‘17ﬁj‘v ‘xj7yj’v ’Zj’v

where the equality is obtained by multiplying numerator and denominator with

|yj|v. Using 61 > 2 and (6.14), it follows that

24",

51 (7"0) 52 B
o Avgeglmw({ e )Squle—W—lO 9.
Z1 |y Z2 |y

By (6.11) we have d; < (10°721log H)™! and by (6.4), (3.1), (3.3) we have
[1c. =TI @ml, < T @bl =2rH(b) = 20H .
vES veS veEM§g

By inserting these inequalities into (6.16) and using the lower bound for H from

(6.7) we obtain

(6.17) D log Ay <61 ) logCyp — (D y)r(l—107)

veS veES veS
<1 log(2r H) (7(1 10—6))
— rH) — (=(1— r

~ 105r2log H & 8

< 15)—67’ . (ga - 10_6))7“ = a(r) .

We now estimate B from above. We have

o) = ((I1 T[m#01)"" < TT mestt. ol

’UEMKizl ’UGMK
< II (=®bl) =rH by (65), (3.1), (3.3)
vEMK
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Further, the Product formula implies

H(B;) =H(z;/y;) = [[ WLai/yilo= [[ lzirysle forj=1,2.
vEMK vEMK

Therefore,

s(v b v H .
H(B) < [] @) >’1|A|blvyzj\v = 2r gy H () < 2rH - H(z) for j=1,2

vEMK
where the first inequality follows from Lemma 10 (ii), the equality from (3.1),
(3.3), (3.8), and the last inequality from Lemma 2 (iii). Using the lower bound for
H from (6.7) it follows that

(3H(a)) H(B;) < (3rH) T H(z;) < H¥'" H(z;) for j =1,2.
Together with (6.11), (6.12) this implies that

1 4x 10472 4x 10472
log B < —{2 ( )1 H}
BT =TT - log H(z1) i log H(z2) ©8

1 8 100 4+ 05x10-4
< 9 —><— 2.08 \/—::b .
_t—7< T 102) = g9 *4Vex 2 (r)

It is easy to check that for » > 3 we have a(r) < —b(r), where a(r) is the quantity
defined in (6.17). Hence

> log A, < —logB .

vEeS

In other words, (6.2) is not valid and so by Lemma 9, inequality (6.3) holds, that

is,

r logH(zy) 102 175 1 4
—e T = 2 s 2 T2
2 logH(za) 26, 2 T37
T 2
= (=41 —4>—_
<2+ 0 r+0.5x10—4
B 3
S 2x10% 41

Hence
log H(z2)  2x10%2% +r
log H(z1) 6

which contradicts (6.12). Thus, our assumption that the claim is false leads to a

< 10572

contradiction. This completes our proof of Lemma 11. (]
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§7. Proof of Theorem 2.

Let K, L, r =[L: K], S, s =Card S be as before, and let V' be a K-vector space
satisfying (4.3). We recall that by Lemma 4, for every u € V N O} g there is an
ieZ={(i,:ves):i, €{l,...,r}} for which u satisfies (4.4.a)-(4.4.c). Let
S(i) be the set of u € V' N 07 g satisfying (4.4.a)-(4.4.c). We divide S(i) into

Susei) = {ue @)+ 1w > (L)Y

Smedium (1) = {u € S(i) : <ZH(V))21 < H(u) (ZH(V)>21(1+0(1))}’

Thus,
(1) vnois=Jsw=J (Slarge(i) U Simedium (i) U Ssmau(i)) .
ez icT
Fix i € Z. By Lemma 11, Sjarge(i) is contained in the union of at most (4x10°)*

O%-cosets. Every u € Spmedium(i) satisfies (4.4.b). Hence every u € Spedium (1)
satisfies (5.19) (cf. Lemma 8) with

7 21 7 21(1+6(i)) .
D=4H(V)? §=1, A = (ZH(V>> , Ag= (ZH(V)) = AW,

It is easy to check that these D, d, Ay, As satisfy (5.18), i.e. Ay > Ay >
max(1, (2D/7)%/%). So Lemma 8 implies that Spedium(i) is contained in the union
of at most

log(1+6(i))

(2800 - (17 + 12))5<1 - ) < (81200)5(1 + ge(i))

O%-cosets. Finally, every u € Sgman(i) satisfies (4.4.a). Therefore, every u €
Ssman (1) satisfies (5.8) (cf. Lemma 7) with

C=1, P= ZH(V), B= (ZH(V))Zl = p2

These C, P, B clearly satisfy (5.7). Hence Lemma 7 implies that Sgman(i) is con-

tained in the union of at most
(14000(1 +2x21))° = (602000)*
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*
O%-cosets.

We now apply (7.1). Recalling that Z consists of 7* tuples i and that ) ;. 0(i) < r*

which is part of Lemma 3 (ii), it follows that V' N O7F g is the union of at most

2;;{K4><106)34—(81200)3(1+—g&(ﬂ)—+(602000)S} < (5x10° r)*

O%-cosets. This completes the proof of Theorem 2. O
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