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Abstract. Let K be an algebraic number field and S a set of places on K of

finite cardinality s, containing all infinite places. We deal with the Thue-Mahler

equation over K, (*) F (x, y) ∈ O∗S in x, y ∈ OS , where OS is the ring of S-integers,

O∗S is the group of S-units, and F (X,Y ) is a binary form with coefficients in OS .

Bombieri [2] showed that if F has degree r ≥ 6 and F is irreducible over K,

then (*) has at most (12r)12s solutions; here two solutions (x1, y1), (x2, y2) are

considered equal if x1/y1 = x2/y2. In this paper, we improve Bombieri’s upper

bound to (5×106 r)s. Our method of proof is not a refinement of Bombieri’s.

Instead, we apply the method of [5] to Thue-Mahler equations and work out the

improvements which are possible in this special case.

§1. Introduction.

Let F (X,Y ) = arX
r + ar−1X

r−1Y + · · ·+ a0Y
r be a binary form of degree r ≥ 3

with coefficients in Z which is irreducible over Q and {p1, ..., pt} a (possibly empty)

set of prime numbers. Extending a result of Thue [10], Mahler [8] proved that the

equation

(1.1) |F (x, y)| = pz11 · · · p
zt
t in x, y, z1, . . . , zt ∈ Z with gcd(x, y) = 1

has only finitely many solutions.
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Mahler’s result has been generalised to number fields. Let K be an algebraic

number field and denote its ring of integers by OK . Further, denote by MK

the set of places of K. The elements of MK are the embeddings σ : K ↪→ R

which are called real infinite places; the pairs of complex conjugate embeddings

{σ, σ : K ↪→ C} which are called complex infinite places; and the prime ideals of

OK which are also called finite places. For every v ∈ MK we define a normalised

absolute value | · |v as follows:

| · |v := |σ(·)|1/[K:Q] if v is a real infinite place σ : K ↪→ R;

| · |v := |σ(·)|2/[K:Q] = |σ(·)|2/[K:Q] if v is a complex infinite place {σ, σ : K ↪→ C};

| · |v := (Np)−ordp(·)/[K:Q] if v is a finite place, i.e. prime ideal p of OK ;

here Np is the norm of p, i.e. the cardinality of OK/p, and ordp(x) is the exponent

of p in the prime ideal decomposition of (x).

Let S be a finite set of places of K, containing all infinite places. We define the

ring of S-integers and the group of S-units as usual by

OS = {x ∈ K : |x|v ≤ 1 for v 6∈ S},

O∗S = {x ∈ K : |x|v = 1 for v 6∈ S},

respectively, where ‘v 6∈ S’ means ‘v ∈MK\S.’ Instead of (1.1) one may consider

the equation

(1.2) F (x, y) ∈ O∗S in (x, y) ∈ O2
S ,

where F (X,Y ) is a binary form of degree r ≥ 3 with coefficients in OS which is

irreducible over K. An O∗S-coset of solutions of (1.2) is a set {ε(x, y) : ε ∈ O∗S},

where (x, y) is a fixed solution of (1.2). Clearly, every element of such a coset is

a solution of (1.2). Now the generalisation of Mahler’s result mentioned above

states that the set of solutions of (1.2) is the union of finitely many O∗S-cosets. 1)

1) This follows from Lang’s generalisation [6] of Siegel’s theorem that an algebraic curve over K of genus
at least 1 has only finitely many S-integral points, but was probably known before.
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It is easily verified that this implies that (1.1) has only finitely many solutions,

by observing that with S = {∞, p1, . . . , pt}, (∞ being the infinite place of Q) we

have O∗S = {±pz11 · · · p
zt
t : z1, . . . , zt ∈ Z} and that any coset contains precisely

two pairs (x, y) ∈ Z2 with gcd(x, y) = 1.

There are several papers in which explicit upper bounds for the number of (O∗S-

cosets of) solutions of (1.1) and (1.2) are given, e.g. [7], [4], [2], and the last two

papers give bounds independent of the coefficients of the form F . The most recent

result among these, due to Bombieri [2], states that if F has degree r ≥ 6 and S

has cardinality s, then (1.2) has at most (12r)12s O∗S-cosets of solutions. A better

bound was obtained earlier in a special case by Bombieri and Schmidt [3], who

showed that the Thue equation F (x, y) = ±1 in x, y ∈ Z (which is eq. (1.2) with

K = Q, S = {∞}) has at most constant×r solutions, where the constant can be

taken equal to 430 if r is sufficiently large. In this paper we prove:

Theorem 1. Let K be an algebraic number field and S a finite set of places on

K of cardinality s, containing all infinite places. Further, let F (X,Y ) be a binary

form of degree r ≥ 3 with coefficients in OS which is irreducible over K. Then the

set of solutions of

(1.2) F (x, y) ∈ O∗S in (x, y) ∈ O2
S

is the union of at most (
5×106 r

)s
O∗S-cosets.

Like Bombieri, we distinguish between “large” and “not large” O∗S-cosets of so-

lutions of (1.2) and treat the large cosets by applying the “Thue principle” (cf.

[1]). Our treatment of the not large cosets is not a refinement of Bombieri’s, but

is based on rather different ideas. Bombieri (similarly as Bombieri and Schmidt

in [3]) heavily uses that the number of O∗S-cosets of solutions of (1.2) does not

change when F is replaced by an equivalent form, where equivalence is defined by
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means of transformations from GL2(OS), and in his proof he uses some compli-

cated notion of reduction of binary forms. Instead, we apply the method of [5] to

Thue-Mahler equations. We will see that there is no loss of generality to assume

that F (X,Y ) = (X + c(1)Y ) · · · (X + c(r)Y ) where c(1), . . . , c(r) are the conjugates

over K of some algebraic number c. The substance of our method is, that we do

not apply the Diophantine approximation techniques to a solution (x, y) of (1.2)

but to the number u := x + cy and that we work with the absolute Weil height

H(u) of the vector u = (u(1), . . . , u(r)) consisting of all conjugates of u. In par-

ticular, we will reduce eq. (1.2) to certain Diophantine inequalities in terms of u

and H(u) and prove a gap principle for these inequalities.

§2. Reduction to another theorem.

Let K,S, F be as in §1. In the proof of Theorem 1 it is no restriction to assume

that F (1, 0) = 1. Namely, suppose that F (1, 0) 6= 1 and let (x0, y0) ∈ O2
S be

a solution of (1.2). The ideal in OS generated by x0, y0 is (1), hence there are

a, b ∈ OS such that ax0 − by0 = 1. Put ε := F (x0, y0) and define

G(X,Y ) = ε−1F (x0X + bY, y0X + aY ).

Note that G has its coefficients in OS and that G(1, 0) = ε−1F (x0, y0) = 1.

Moreover, since (x, y) 7→ (x0x+ by, y0x+ ay) is an invertible transformation from

O2
S to itself, the number of cosets of solutions of (1.2) does not change when F is

replaced by G.

Assuming, as we may, that F (1, 0) = 1, we have

F (X,Y ) = (X + c(1)Y ) · · · (X + c(r)Y ),

where c is algebraic of degree r over K and c(1), . . . , c(r) are the conjugates of c

over K. Put L = K(c) and let OL,S denote the integral closure of OS in L and
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O∗L,S the unit group of OL,S . Thus, c ∈ OL,S . Define the K-vector space

V = {x+ cy : x, y ∈ K} .

V has the following two properties which will be essential in our investigations:

(2.1) V is a two-dimensional K-linear subspace of L;

(2.2) for every basis {a, b} of V we have L = K(b/a).

Namely, (2.1) is obvious. Further, if {a, b} is a basis of V then {a = α + βc, b =

γ + δc} with α, β, γ, δ ∈ K and αδ − βγ 6= 0 and therefore K(b/a) = K(c) = L.

An O∗S-coset in L is a set {εu : ε ∈ O∗S} where u is a fixed element of L. We need:

Lemma 1. (x, y) is a solution of (1.2) if and only if x+ cy ∈ V ∩ O∗L,S . Further,

two solutions (x1, y1), (x2, y2) of (1.2) belong to the same O∗S-coset if and only if

x1 + cy1, x2 + cy2 belong to the same O∗S-coset.

Proof. For x, y ∈ OS we have that F (x, y) is equal to the norm NL/K(x+cy) and

that x+ cy ∈ V ∩OL,S . Now the first assertion follows at once from the fact that

for u ∈ OL,S we have NL/K(u) ∈ O∗S ⇐⇒ u ∈ O∗L,S . As for the second assertion,

we have for x1, y1, x2, y2 ∈ OS , ε ∈ O∗S that x2 +cy2 = ε(x1 +cy1)⇐⇒ (x2, y2) =

ε(x1, y1) since {1, c} is linearly independent over K. �

Now Theorem 1 follows at once from Lemma 1 and

Theorem 2. Let K be an algebraic number field, L a finite extension of K of

degree r ≥ 3, S a set of places on K of finite cardinality s containing all infinite

places, and V a K-vector space satisfying (2.1), (2.2). Then the set

V ∩ O∗L,S

is the union of at most (
5×106 r

)s
O∗S-cosets.
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§3. Preliminaries.

We need some basic facts about the normalised absolute values introduced in §1

and about heights. Let again K be an algebraic number field and MK its set of

places. For every normalised absolute value | · |v (v ∈ MK) we fix a continuation

to the algebraic closure K of K which we denote also by | · |v. We define the v-adic

norm

|x|v := max(|x1|v, . . . , |xn|v) for x = (x1, . . . , xn) ∈ Kn
, v ∈MK .

We shall frequently use the

Product formula
∏

v∈MK

|x|v = 1 for x ∈ K∗ ;

we mention that for x ∈ K\K we have in general that
∏
v∈MK

|x|v 6= 1. To be able

to deal with archimedean and non-archimedean absolute values simultaneously, we

introduce the quantities

s(v) :=
1

[K : Q]
if v is a real infinite place,

s(v) :=
2

[K : Q]
if v is a complex infinite place,

s(v) := 0 if v is a finite place.

Thus,

(3.1)
∑
v∈S

s(v) = 1 for every set of places S containing all infinite places,

and

|x1 + · · ·+ xn|v ≤ ns(v) max(|x1|v, . . . , |xn|v) ,

|x1y1 + · · ·+ xnyn|v ≤ ns(v) max(|x1|v, . . . , |xn|v) ·max(|y1|v, . . . , |yn|v)(3.2)

for x1, . . . , xn, y1, . . . , yn ∈ K, v ∈MK .

Now let L be a finite extension of K of degree r. Denote the K-isomorphic

embeddings of L into K by u 7→ u(1), . . . , u 7→ u(r), respectively. To every u ∈ L

we associate the vector

u = (u(1), . . . , u(r)) .
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(Throughout this paper, we adopt the convention that if we use any slanted char-

acter to denote an element of L, then we use the corresponding bold face character

to denote the r-dimensional vector consisting of the conjugates over K of this el-

ement, e.g. if a ∈ L then a = (a(1), . . . , a(r)) etc.) We define the height of u

by

(3.3) H(u) :=
∏

v∈MK

|u|v =
∏

v∈MK

max(|u(1)|v, . . . , |u(r)|v) for u ∈ L

(in fact, since the coordinates of u are the conjugates of u this is the usual absolute

Weil height of u; later, we will define another height H(u)). If u′ = λu for some

λ ∈ K∗ then from the Product formula it follows that

(3.4) H(u′) =
∏

v∈MK

|λ|v ·H(u) = H(u) .

Further, the Product formula implies

(3.5) H(u) ≥
( ∏
v∈MK

|u(1) · · ·u(r)|v
)1/r

= 1 for u ∈ L∗ ,

since u(1) · · ·u(r) = NL/K(u) ∈ K∗.

Let S be a finite set of places on K, containing all infinite places. The integral

closure OL,S of OS in L is equal to {u ∈ L : |u(i)|v ≤ 1 for i = 1, . . . , r, v 6∈ S}.

This implies

(3.6) |u(1)|v = · · · = |u(r)|v = |u|v = 1 for u ∈ O∗L,S , v 6∈ S .

Insertion of this into (3.3) gives

(3.7) H(u) =
∏
v∈S
|u|v for u ∈ O∗L,S .

Now let V be a K-vector space satisfying (2.1) and (2.2). Below we define the

height of V . Let {a, b} be any basis of V . Define the determinants

∆ij(a, b) := a(i)b(j) − a(j)b(i) for 1 ≤ i, j ≤ r.
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Note that ∆ij(a, b) = −∆ji(a, b) and that ∆ij(a, b) = 0 if i = j. According to

our convention, we put a = (a(1), . . . , a(r)), b = (b(1), . . . , b(r)). Thus, the exterior

product of a, b is the
(
r
2

)
-dimensional vector

a ∧ b := (∆12(a, b),∆13(a, b), . . . ,∆r−2,r−1(a, b),∆r−2,r(a, b),∆r−1,r(a, b)).

Now the height of V is defined by

(3.8) H(V ) :=
∏

v∈MK

|a ∧ b|v =
∏

v∈MK

max
1≤i<j≤r

|∆ij(a, b)|v .

This is independent of the choice of the basis {a, b}: namely, if

{a′ = ξ11a+ ξ12b, b
′ = ξ21a+ ξ22b} with ξij ∈ K is another basis, then

(3.9) ∆ij(a′, b′) = (ξ11ξ22 − ξ12ξ21)∆ij(a, b) for 1 ≤ i, j ≤ r,

so

(3.10) a′ ∧ b′ = (ξ11ξ22 − ξ12ξ21) · a ∧ b ,

and this implies, together with the Product formula, that

H(a′ ∧ b′) =
( ∏
v∈MK

|ξ11ξ22 − ξ12ξ21|v
)
H(a ∧ b) = H(a ∧ b) .

We will use that by (3.2) we have

|∆ij(a, b)|v ≤ 2s(v) max(|a(i)|v, |a(j)|v) max(|b(i)|v, |b(j)|v),

whence

(3.11) |a ∧ b|v ≤ 2s(v)|a|v|b|v for v ∈MK .

We need some other properties of V :

Lemma 2. Let {a, b} be any basis of V . Then

(i) ∆ij(a, b) 6= 0 for 1 ≤ i, j ≤ r with i 6= j;

(ii) the discriminant D(a, b) :=
(∏

1≤i<j≤r ∆ij(a, b)
)2

belongs to K∗;
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(iii) H(V ) ≥ 1, and H(V ) = 1 if and only if for every v ∈ MK , the numbers

|∆ij(a, b)|v (1 ≤ i, j ≤ r, i 6= j) are equal one to another;

(iv) for every u ∈ V and for each i, j, k ∈ {1, . . . , r} we have Siegel’s identity

∆jk(a, b)u(i) + ∆ki(a, b)u(j) + ∆ij(a, b)u(k) = 0.

Proof. (i). Put c := b/a. Then

(3.12) ∆ij(a, b) = a(i)a(j)(c(i) − c(j)) .

Further, by (2.2) we have L = K(c) and therefore c(1), . . . , c(r) are distinct. To-

gether with (3.12) this proves (i).

(ii). We have D(a, b) 6= 0 by (i) and D(a, b) ∈ K since each K-automorphism of

K permutes, up to sign, the numbers ∆ij(a, b).

(iii). By (ii) and the Product formula we have

H(V ) =
∏

v∈MK

|a ∧ b|v
|D(a, b)|1/r(r−1)

v

=
∏

v∈MK

max1≤i<j≤r |∆ij(a, b)|v
(
∏

1≤i<j≤r |∆ij(a, b)|v)2/r(r−1)
.

Each factor in the product is ≥ 1, hence H(V ) ≥ 1. If H(V ) = 1, then each factor

is equal to 1 and this implies that for every v ∈MK , the numbers |∆ij(a, b)|v (1 ≤

i, j ≤ r, i 6= j) are equal one to another.

(iv). Write u = xa+ yb with x, y ∈ K. Put again c := b/a. Then (3.12) implies

∆jk(a, b)u(i) + ∆ki(a, b)u(j) + ∆ij(a, b)u(k)

= a(i)a(j)a(k)
{

(c(j) − c(k))(x+ yc(i))+

+ (c(k) − c(i))(x+ yc(j)) + (c(i) − c(j))(x+ yc(k))
}

= 0. �
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§4. Reduction to Diophantine inequalities.

As before, let K be a number field, L a finite extension of K of degree r, S a finite

set of places on K of cardinality s, containing all infinite places, and V a K-vector

space satisfying (2.1) and (2.2). Further, let I be the collection of tuples

i = (iv : v ∈ S) with iv ∈ {1, . . . , r} for v ∈ S .

For each i ∈ I we define the quantity

(4.1) ∆(i, V ) =

(∏
v∈S

max
j 6=iv
|∆iv,j(a, b)|v

)
·
(∏
v 6∈S

|a ∧ b|v
)
,

where {a, b} is any basis of V , and where by j 6= iv we indicate that we let j

run through the set of indices {1, . . . , r}\{iv}. From (3.9), (3.10) and the Product

formula, it follows that ∆(i, V ) is independent of the choice of the basis, i.e. does

not change when {a, b} is replaced by any other basis {a′, b′} of V . The quantity

∆(i, V ) will appear in certain Diophantine inequalities arising from the set V ∩O∗L,S
and in a gap principle related to these inequalities. We also need the quantities

θ(i) (i ∈ I) defined by

(4.2) H(V )θ(i) =
∏
v∈S

{
|a ∧ b|v(∏

j 6=iv |∆iv,j(a, b)|v
) 1
r−1

}

if H(V ) > 1 and θ(i) := 0 if H(V ) = 1.

(3.9) and (3.10) imply that also θ(i) is independent of the choice of the basis {a, b}.

Note that (4.2) holds true also if H(V ) = 1: namely, Lemma 2 (iii) implies that

in that case the right-hand side of (4.2) is also equal to 1. We need the following

inequalities:

Lemma 3. (i) H(V )1−θ(i) ≤ ∆(i, V ) ≤ H(V ) for i ∈ I;

(ii) θ(i) ≥ 0 for i ∈ I and
∑

i∈I θ(i) ≤ rs.

Proof. Fix a basis {a, b} of V and write ∆ij for ∆ij(a, b). Put Hv := |a ∧ b|v =

maxi,j |∆ij |v.
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(i). Since
∏
j 6=iv |∆iv,j |

1
r−1
v ≤ maxj 6=iv |∆iv,j |v ≤ Hv for v ∈ S we have

∆(i, V ) ≤
∏
v∈S

Hv

∏
v 6∈S

Hv = H(V ), and

∆(i, V ) ≥
∏
v∈S

( ∏
j 6=iv

|∆iv,j |v
) 1
r−1 ·

∏
v/∈S

Hv =
∏
v∈S

{(∏
j 6=iv |∆iv,j |v

) 1
r−1

Hv

}
·H(V )

= H(V )1−θ(i) .

(ii). We assume that H(V ) > 1 which is no restriction. We recall that by Lemma

2 (ii) we have that D :=
(∏

1≤i<j≤r ∆ij

)2 ∈ K∗. (i) implies that θ(i) ≥ 0 for

i ∈ I. To prove the other assertion, we observe that I consists of exactly rs tuples

i = (iv : v ∈ S) and that

∏
i∈I

∏
j 6=iv

|∆iv,j |v =
∏
i 6=j

|∆ij |r
s−1

v = |D|r
s−1

v for v ∈ S .

Further, we have |D|v ≤ max1≤i<j≤r |∆ij |r(r−1)
v = H

r(r−1)
v for v 6∈ S. Together

with (3.8) and the Product formula applied to D this gives

H(V )
∑

i∈I
θ(i) =

∏
i∈I

(∏
v∈S

Hv∏
j 6=iv |∆iv,j |

1/(r−1)
v

)

=
∏
v∈S

Hrs

v

|D|r
s−1/(r−1)
v

≤
∏

v∈MK

Hrs

v

|D|r
s−1/(r−1)
v

= H(V )r
s

which implies (ii). �

Suppose that V ∩ O∗L,S is non-empty. For u0 ∈ V ∩ O∗L,S , define the space

u−1
0 V = {u−1

0 u : u ∈ V }.

Let u0 be an element u of V ∩ O∗L,S for which H(u−1V ) is minimal; such an u0

exists since for each u ∈ V ∩O∗L,S , H(u−1V ) is the absolute Weil height of a vector

of given dimension with coordinates in some given finite extension of K (cf. [5]

§3), and since the set of values of absolute Weil heights of such vectors is discrete.
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Put V ′ := u−1
0 V . Then 1 ∈ V ′ and H(u−1V ′) ≥ H(V ′) for every u ∈ V ′ ∩ O∗L,S .

Further, V ′ also satisfies (2.1) and (2.2) and the number of O∗S-cosets in V ′∩O∗L,S
is the same as that in V ∩ O∗L,S . Therefore, in what follows, we may replace

V by V ′. Thus, we may assume that 1 ∈ V and H(u−1V ) ≥ H(V ) for every

u ∈ V ∩ O∗L,S . In the remainder of this paper, we assume that V satisfies these

conditions and also (2.1) and (2.2), i.e.

(4.3)


V is a two-dimensional K-linear subspace of V ;

for every basis {a, b} of V we have L = K(b/a);

1 ∈ V, H(u−1V ) ≥ H(V ) for every u ∈ V ∩ O∗L,S .

Lemma 4. For every u ∈ V ∩O∗L,S there is a tuple i = (iv : v ∈ S) ∈ I such that

each of the three inequalities below is satisfied:

∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V ) · 2
H(u)2H(V )

,(4.4.a)

∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V ) · 4H(V )7/2

H(u)3
,(4.4.b)

∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V ) · 2r−1H(V )rθ(i)−1

H(u)r
.(4.4.c)

Remark. Inequalities (4.4.a), (4.4.b), (4.4.c) will be used to deal with the “small,”

“medium” and “large” O∗S-cosets, respectively.

Proof. Let u ∈ V ∩ O∗L,S . Take any basis {a, b} of V and put ∆ij := ∆ij(a, b).

For each of the inequalities (4.4.a), (4.4.b), (4.4.c) we shall construct a tuple i ∈ I

for which that inequality is satisfied. The three tuples we obtain in this way are

a priori different, so we must do some effort to show that (4.4.a)-(4.4.c) can be

satisfied with the same tuple i.

We first show that there is a tuple i with (4.4.a). Note that {u−1a, u−1b} is a basis

of u−1V . Further,

∆ij(u−1a, u−1b) = (u(i)u(j))−1(a(i)b(j) − a(j)b(i)) = (u(i)u(j))−1∆ij .
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By (3.6) we have |u(i)u(j)|v = 1 for v 6∈ S. Hence

H(u−1V ) =
∏

v∈MK

{
max

1≤i<j≤r

|∆ij |v
|u(i)u(j)|v

}

=
∏
v∈S

{
max
i,j

|∆ij |v
|u(i)u(j)|v

}
·
∏
v/∈S

max
i,j
|∆ij |v

=
∏
v∈S

{
max
i,j

|∆ij |v
|u(i)u(j)|v

}
·
∏
v/∈S

|a ∧ b|v .

Together with (4.3) this implies

(4.5) H(V ) ≤
∏
v∈S

{
max
i,j

|∆ij |v
|u(i)u(j)|v

}
·
∏
v/∈S

|a ∧ b|v .

Fix v ∈ S. Choose p from {1, . . . , r} such that |u(p)|v = maxi=1,...,r |u(i)|v = |u|v.

Further, choose iv, jv from {1, . . . , r} such that

|∆iv,jv |v
|u(iv)u(jv)|v

= max
i,j

|∆ij |v
|u(i)u(j)|v

,

|∆jv,pu
(iv)|v ≤ |∆iv,pu

(jv)|v;

the inequality can be achieved after interchanging iv, jv if necessary. From Lemma

2 (iv) and (3.2) it follows that

|∆iv,jvu
(p)|v = |∆jv,pu

(iv) + ∆p,ivu
(jv)|v ≤ 2s(v)|∆p,ivu

(jv)|v .

Dividing this by |u(iv)u(jv)u(p)|v and using |u(p)|v = |u|v gives

|∆iv,jv |v
|u(iv)u(jv)|v

≤ 2s(v) |∆p,iv |v
|u(iv)u(p)|v

≤ 2s(v)

(
|u(iv)|v
|u|v

)−1

|u|−2
v max

j 6=iv
|∆iv,j |v .

By inserting this into (4.5), using (3.1), (4.1) and (3.7), we obtain

H(V ) ≤ 2
∏
v∈S

{( |u(iv)|v
|u|v

)−1

|u|−2
v

}
·

(∏
v∈S

max
j 6=iv
|∆iv,j |v

∏
v 6∈S

|a ∧ b|v

)

= 2∆(i, V )

(∏
v∈S

|u(iv)|v
|u|v

)−1

H(u)−2

13



with i = (iv : v ∈ S) and this implies (4.4.a).

We now show that there is a tuple i with (4.4.b). We assume, without loss of

generality, that ∏
v∈MK

|u(1)u(2)u(3)|v
|∆12∆23∆31|3/2v

≤
∏

v∈MK

|u(i)u(j)u(k)|v
|∆ij∆jk∆ki|3/2v

for every subset {i, j, k} of {1, . . . , r}. Note that u(1) · · ·u(r) = NL/K(u) ∈ K∗ and

that
∏

1≤i<j≤r ∆2
ij ∈ K∗ by Lemma 2 (ii). Now the Product formula applied to

these quantities gives

∏
v∈MK

|u(1)u(2)u(3)|v
|∆12∆23∆31|3/2v

≤

{ ∏
{i,j,k}⊆{1,...,r}

∏
v∈MK

|u(i)u(j)u(k)|v
|∆ij∆jk∆ki|3/2v

}1/(r3)
(4.6)

=
∏

v∈MK

|u(1) · · ·u(r)|(
r−1

2 )/(r3)
v

|
∏

1≤i<j≤r ∆2
ij |

3(r−2
1 )/4(r3)

v

= 1.

Now let v ∈MK . Choose iv from {1, 2, 3} such that

|u(iv)|v = min
(
|u(1)|v, |u(2)|v, |u(3)|v

)
.

Further, let again p ∈ {1, . . . , r} be such that |u(p)|v = |u|v. Then for k ∈ {1, 2, 3},

k 6= iv we have, by Lemma 2 (iv) and (3.2),

|u|v = |u(p)|v = |∆iv,k|−1
v |∆kpu

(iv) + ∆p,ivu
(k)|v

≤ 2s(v)|∆iv,k|−1
v max

(
|∆kp|v, |∆iv,p|v

)
·max

(
|u(iv)|v, |u(k)|v

)
≤ 2s(v)|∆iv,k|−1

v |a ∧ b|v · |u(k)|v .
Together with |∆iv,k|v ≤ maxj 6=iv |∆iv,j |v this implies

|u|v ≤ 2s(v)|∆iv,k|−3/2
v |a ∧ b|v ·max

j 6=iv
|∆iv,j |1/2v · |u(k)|v(4.7)

for k ∈ {1, 2, 3}, k 6= iv .

Let {jv, kv} = {1, 2, 3}\{iv}. From (4.7) with k = jv, kv and |∆jv,kv |v ≤ |a ∧ b|v
we infer

|u(iv)|v
|u|v

≤ |u
(1)u(2)u(3)|v
|u|3v

· 4s(v)|∆iv,jv∆iv,kv |−3/2
v |a ∧ b|2v ·max

j 6=iv
|∆iv,j |v

≤ max
j 6=iv
|∆iv,j |v · 4s(v) |u(1)u(2)u(3)|v

|∆12∆23∆31|3/2v

· |a ∧ b|7/2v

|u|3v
.
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By taking the product over v ∈MK , using (4.6), (3.1), (3.3) and (3.8), we get

(4.8)
∏

v∈MK

|u(iv)|v
|u|v

≤
( ∏
v∈MK

max
j 6=iv
|∆iv,j |v

)
· 4H(V )7/2

H(u)3
.

By (3.6) we have |u(iv)|v = |u|v = 1 for v 6∈ S. Further, it is obvious that

∏
v∈MK

max
j 6=iv
|∆iv,j |v ≤

∏
v∈S

max
j 6=iv
|∆iv,j |v ·

∏
v 6∈S

|a ∧ b|v = ∆(i, V ) ,

with i = (iv : v ∈ S). By inserting this into (4.8) we obtain (4.4.b).

It is obvious that (4.4.a), (4.4.b) hold true simultaneously for a tuple i for which∏
v∈S

(
|u(iv)|v/|u|v

)
·∆(i, V )−1 is minimal. We remark that i = (iv : v ∈ S) with

iv ∈ {1, . . . , r} given by

(4.9)
|u(iv)|v

max
k 6=iv
|∆iv,k|v

= min
j=1,...,r

|u(j)|v
max
k 6=j
|∆jk|v

for v ∈ S

(where k is the only running index in the maxima) is such a tuple: namely, for

each tuple j = (jv : v ∈ S) with jv ∈ {1, . . . , r} for v ∈ S we have

∏
v∈S

|u(iv)|v
|u|v

·∆(i, V )−1 =
(∏
v∈S

|u(iv)|v
max
k 6=iv
|∆iv,k|v

)(∏
v∈S
|u|−1

v

∏
v 6∈S

|a ∧ b|−1
v

)
≤
(∏
v∈S

|u(jv)|v
max
k 6=jv
|∆jv,k|v

)(∏
v∈S
|u|−1

v

∏
v 6∈S

|a ∧ b|−1
v

)
=
∏
v∈S

|u(jv)|v
|u|v

·∆(j, V )−1 .

We now prove that also (4.4.c) holds true for the tuple i defined by (4.9). Fix

v ∈ S. We show that |u(j)|v is close to |u|v for each j 6= iv. Choose p with

|u(p)|v = |u|v. Fix j 6= iv. From Lemma 2 (iv), (3.2) and from

|∆jpu
(iv)|v ≤ max

k 6=j
|∆jk|v · |u(iv)|v ≤ max

k 6=iv
|∆iv,k|v · |u(j)|v ≤ |a ∧ b|v|u(j)|v

which is a consequence of (4.9) it follows that

|u|v = |u(p)|v = |∆iv,j |−1
v |∆jpu

(iv) + ∆p,ivu
(j)|v

≤ 2s(v)|∆iv,j |−1
v |a ∧ b|v|u(j)|v .
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Hence
|u(iv)|v
|u|v

≤ 2(r−1)s(v) · |u
(iv)|v
|u|v

∏
j 6=iv

(
|a ∧ b|v
|∆iv,j |v

· |u
(j)|v
|u|v

)

= 2(r−1)s(v) · |a ∧ b|r−1
v∏

j 6=iv |∆iv,j |v
· |u

(1) · · ·u(r)|v
|u|rv

.

We take the product over v ∈ S. Note that since u(1) · · ·u(r) ∈ O∗L,S ∩K = O∗S
we have

(4.10)
∏
v∈S
|u(1) · · ·u(r)|v = 1 .

Therefore,

∏
v∈S

|u(iv)|v
|u|v

≤ 2r−1 ·
(∏
v∈S

|a ∧ b|r−1
v∏

j 6=iv |∆iv,j |v

)
H(u)−r by (3.1), (3.7), (4.10)

= 2r−1 ·H(V )(r−1)θ(i)H(u)−r by (4.2)

≤ ∆(i, V ) · 2r−1H(V )rθ(i)−1H(u)−r by Lemma 3 (i)

which is (4.4.c). This completes the proof of Lemma 4. �

§5. A gap principle.

As before, let K be a number field, L a finite extension of K of degree r, S a set of

places on K of finite cardinality s, containing all infinite places, and V a K-vector

space satisfying (4.3). Further, we put d := [K : Q].

The following lemma is needed to derive a gap principle that can deal also with

“very small” solutions.

Lemma 5. Let F be a real > 1 and let C be a subset of V ∩ O∗L,S that can not

be contained in the union of fewer than

max(2F 2d, 4×7d+2s)
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O∗S-cosets. Then there are u1, u2 ∈ C such that {u1, u2} is a basis of V and

(5.1)
∏
v/∈S

|u1 ∧ u2|v ≤ F−1 ,

where uj = (u(1)
j , . . . , u

(r)
j ) for j = 1, 2.

Proof. The proof is similar to that of Lemma 6 of [5]. We assume, with no loss of

generality, that any two distinct elements of C belong to different O∗S-cosets, and

that C has cardinality at least max(2F 2d, 4×7d+2s). Using that O∗L,S ∩K = O∗S , it

follows easily that any two K-linearly dependent elements of V ∩ O∗L,S belong to

the same O∗S-coset. Hence any two distinct elements of C form a basis of V . For

every v 6∈ S, choose u1v, u2v ∈ C such that

(5.2) |u1v ∧ u2v|v = max
u1,u2∈C

|u1 ∧ u2|v ,

where uiv = (u(1)
iv , . . . , u

(r)
iv ) for i = 1, 2. The coordinates of u1v ∧ u2v belong to

OL,S , hence |u1v ∧ u2v|v ≤ 1 for v 6∈ S. Therefore, it suffices to show that there

are distinct u1, u2 ∈ C with

∏
v/∈S

|u1 ∧ u2|v
|u1v ∧ u2v|v

≤ F−1.

(5.2) implies that each factor in the product in the left-hand side is ≤ 1. Therefore,

it suffices to show that there are u1, u2 ∈ C, v /∈ S, such that

(5.3)
|u1 ∧ u2|v
|u1v ∧ u2v|v

≤ F−1, u1 6= u2 .

Among all prime ideals outside S, we choose one with minimal norm, p say; let

Np denote the norm of this prime ideal. Since by assumption F > 1, there is an

integer m ≥ 1 with

(5.4) Np(m−1)/d < F ≤ Npm/d .

We distinguish between the cases m = 1 and m ≥ 2.

17



The case m = 1.

First assume that

|u1 ∧ u2|v = |u1v ∧ u2v|v(5.5)

for every v /∈ S and every u1, u2 ∈ C with u1 6= u2 .

By assumption, C has cardinality ≥ 3. Fix u1, u2, u3 ∈ C. We have u3 = αu1 +βu2

with α, β ∈ K, since {u1, u2} is a basis of V . Now (5.5) implies that

|α|v =
|u3 ∧ u2|v
|u1 ∧ u2|v

= 1, |β|v =
|u1 ∧ u3|v
|u1 ∧ u2|v

= 1 for v /∈ S ,

hence α, β ∈ O∗S . Let u ∈ C, u 6= u1, u2, u3. We have u = xu1 +yu2 with x, y ∈ K.

Similarly as above, we have x, y ∈ O∗S . Moreover, (5.5) implies that

|βx− αy|v =
|u ∧ u3|v
|u1 ∧ u2|v

= 1 for v /∈ S ,

whence βx−αy ∈ O∗S . Since any two distinct elements of C form a basis of V , we

have that u ∈ C is uniquely determined by the quotient x/y. Further, by Theorem

1 of [4] there are at most 3×7d+2s quotients x/y ∈ O∗S for which (βx/αy)−1 ∈ O∗S .

Since we have considered only u ∈ C distinct from u1, u2, u3, this implies that C

has cardinality at most 3+3×7d+2s < 4×7d+2s. But this is against our assumption.

Therefore, (5.5) can not be true.

Hence there are distinct u1, u2 ∈ C and v 6∈ S such that |u1 ∧ u2|v < |u1v ∧ u2v|v.

Recall that v = q is a prime ideal of OK outside S. For i = 1, 2 we have ui =

xiu1v + yiu2v with xi, yi ∈ K. Thus,

|u1 ∧ u2|v
|u1v ∧ u2v|v

= |x1y2 − x2y1|v = Nq−n/d

for some positive integer n. Now by our choice of p and by (5.4) and m = 1 we

have Nq−n/d ≤ Np−1/d ≤ F−1. Hence v and u1, u2 satisfy (5.3).

The case m ≥ 2.

Let v = p. Every u ∈ C can be expressed uniquely as u = xu1v + yu2v with

x, y ∈ K. We have C = C1 ∪ C2, with

C1 = {u ∈ C : |x|v ≤ |y|v}, C2 = {u ∈ C : |y|v ≤ |x|v} .
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We assume, without loss of generality, that C1 has cardinality ≥ 1
2Card C. Thus,

by our assumption on C, and by (5.4) and m ≥ 2,

(5.6) Card C1 ≥ F 2d > Np2m−2 ≥ Npm .

Define the local ring O = {z ∈ K : |z|v ≤ 1} and the ideal of O, a = {z ∈ K :

|z|v ≤ Np−m/d}. The residue class ring O/a is isomorphic to OK/pm. Therefore,

O/a has cardinality Npm. Since any two distinct elements of C form a basis

of V , u ∈ C is uniquely determined by x/y. So (5.6) implies that there are

distinct u1, u2 ∈ C1 with ui = xiu1v + yiu2v for i = 1, 2, where xi, yi ∈ K and

x1/y1 ≡ x2/y2 mod a, i.e. |(x1/y1) − (x2/y2)|v ≤ Np−m/d. By (5.2) we have

|yi|v = |u1v ∧ui|v/|u1v ∧u2v|v ≤ 1 for i = 1, 2. These inequalities imply, together

with (5.4),

|u1 ∧ u2|v
|u1v ∧ u2v|v

= |x1y2 − x2y1|v = |y1y2|v
∣∣∣∣x1

y1
− x2

y2

∣∣∣∣
v

≤ Np−m/d ≤ F−1 ,

which is (5.3). This completes the proof of Lemma 5. �

The next combinatorial lemma is a special case of Lemma 4 of [4] . It is a formal-

isation of an idea of Mahler.

Lemma 6. Let q be an integer ≥ 1 and λ a real with 0 < λ ≤ 1
2 . Then there

exists a set Γ of q-tuples (γ1, . . . , γq) of real numbers with

γi ≥ 0 for i = 1, . . . , q,
q∑
i=1

γi = 1− λ,

such that

Card(Γ) ≤
( e
λ

)q−1

(e = 2.7182 . . .)

and such that for every set of reals F1, . . . , Fq,Λ with

0 < Fj ≤ 1 for j = 1, . . . , q,
q∏
j=1

Fj ≤ Λ

there is a tuple (γ1, . . . , γq) ∈ Γ with

Fj ≤ Λγj for j = 1, . . . , q.
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�

The gap principle which we prove below is of a similar type as a gap principle for the

Subspace theorem proved by Schmidt (cf. [9], Lemma 3.1). Fix i = (iv : v ∈ S) ∈ I

and let ∆(i, V ) be the quantity defined by (4.1).

Lemma 7. (Gap principle.) Let C,P,B be reals with

(5.7) C ≥ 1, B ≥ P > 1.

Then the set of u ∈ V ∩ O∗L,S satisfying

(5.8)
∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V ) · 7C/2
H(u)2P

, H(u) < B

is the union of at most

C2d
(

14000 ·
{

1 + 2
logB
logP

})s
O∗S-cosets.

Proof. Put
κ :=

logB
logP

, λ :=
1

2(2κ+ 1)
,

Cv :=
maxj 6=iv |∆iv,j(a, b)|v

|a ∧ b|v
for v ∈ S ,

where {a, b} is any basis of V . Note that by (3.9), Cv does not depend on the

choice of the basis. Let u ∈ V ∩ O∗L,S satisfy (5.8) and put

Fv(u) := min
(

1,
|u(iv)|v
|u|v

C−1
v {(7C/2) ·H(V )}−1/s

)
for v ∈ S .

From (5.8) and from∏
v∈S

Cv =
∏
v∈S maxj 6=iv |∆iv,j(a, b)|v ·

∏
v/∈S |a ∧ b|v∏

v∈S |a ∧ b|v ·
∏
v/∈S |a ∧ b|v

=
∆(i, V )
H(V )

which is a consequence of (4.1) and (3.8), it follows that∏
v∈S

Fv(u) ≤
(∏
v∈S

|u(iv)|v
|u|v

)(∏
v∈S

Cv

)−1(
(7C/2) ·H(V )

)−1

=
1

H(u)2P
.
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By Lemma 6, there is an s-tuple (γv : v ∈ S) with γv ≥ 0 for v ∈ S and
∑
v∈S γv =

1− λ, such that

(5.9) Fv(u) ≤
( 1
H(u)2P

)γv
for v ∈ S

and such that (γv : v ∈ S) belongs to a set Γ independent of u of cardinality at

most (e/λ)s−1. The condition H(u) < B implies that there is an integer k with

0 ≤ k < 2κ and

(5.10) P k/2 ≤ H(u) < P (k+1)/2 .

Now let k be any integer with 0 ≤ k ≤ 2κ and (γv : v ∈ S) any tuple of non-

negative reals with
∑
v∈S γv = 1−λ and let C be the set of elements u ∈ V ∩O∗L,S

satisfying (5.8), (5.9) and (5.10). We claim that

(5.11) C is contained in the union of fewer than 4C2d · 74s O∗S-cosets.

Taking into consideration the number of possibilities for k and the cardinality of

Γ, (5.11) implies that the set of u ∈ V ∩O∗L,S with (5.8) is the union of fewer than

4C2d · 74s · (2κ+ 1) ·
( e
λ

)s−1

≤ C2d · 4×74s · (2κ+ 1) ·
(
2e{2κ+ 1}

)s−1

< C2d
(
14000{2κ+ 1}

)s
O∗S-cosets. Thus, (5.11) implies Lemma 7.

It remains to prove (5.11). Assume the contrary, i.e. that C can not be contained

in the union of fewer than 4C2d · 74s O∗S-cosets. This quantity is at least max(2×

(7C)2d, 4×7d+2s), since d is at most two times the number of infinite places of K,

hence at most 2s. Therefore, from Lemma 5 with F = 7C it follows that there are

u1, u2 ∈ C such that {u1, u2} is a basis of V and such that

(5.12)
∏
v/∈S

|u1 ∧ u2|v ≤ (7C)−1 .
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Without loss of generality we assume that

(5.13) H(u1) ≤ H(u2).

Let

S′ := {v ∈ S : γv > 0}, s′ := Card S′ ,

and put

∆′(i, V ) :=
( ∏
v∈S′

max
j 6=iv
|∆iv,j(a, b)|v

)( ∏
v∈MK\S′

|a ∧ b|v
)
.

S′ is non-empty since
∑
v∈S γv = 1− λ > 0. From (3.8) it follows that

(5.14)
∏
v∈S′

Cv =
∆′(i, V )
H(V )

.

Hence ∆′(i, V ) is independent of the choice of the basis {a, b}. Below, we will

estimate ∆′(i, V ) from above by computing it with respect to the basis {u1, u2}

instead of {a, b}. For convenience, we introduce the quantities

c′ :=
∑
v∈S′

s(v), c′′ :=
∑

v∈S\S′
s(v),

H ′j :=
∏
v∈S′
|uj |v, H ′′j :=

∏
v∈S\S′

|uj |v for j = 1, 2.

Note that by (3.1) and (3.7) we have

(5.15) c′ + c′′ = 1, H ′jH
′′
j = H(uj) for j = 1, 2.

Let v ∈ S′. Choose jv from {1, . . . , r}\{iv} such that |∆iv,jv (u1, u2)|v =

maxj 6=iv |∆iv,j(u1, u2)|v. (5.9), (3.4) and P > 1 imply that Fv(uj) < 1 for j = 1, 2.

Hence
|u(iv)
j |v
|uj |v

≤ Cv
(
(7C/2)H(V )

)1/s(
H(u)2P

)−γv
for j = 1, 2.

Together with (3.2) and (5.13) this implies that

max
j 6=iv
|∆iv,j(u1, u2)|v = |u(iv)

1 u
(jv)
2 − u(iv)

2 u
(jv)
1 |v

≤ 2s(v) max(|u(iv)
1 u

(jv)
2 |v, |u(iv)

2 u
(jv)
1 |v)

≤ 2s(v)|u1|v|u2|v max
( |u(iv)

1 |v
|u1|v

,
|u(iv)

2 |v
|u2|v

)
≤ 2s(v)|u1|v|u2|v · Cv ·

(
(7C/2)H(V )

)1/s{ 1
H(u1)2P

}γv
,
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and by taking the product over v ∈ S′, using (5.14) and
∑
v∈S′ γv =

∑
v∈S γv =

1− λ we obtain

∏
v∈S′

max
j 6=iv
|∆iv,j(u1, u2)|v ≤ 2c

′
H ′1H

′
2

∆′(i, V )
H(V )

(
(7C/2)H(V )

)s′/s{
H(u1)2P

}λ−1

≤ ∆′(i, V ) · 2c
′
(7C/2) ·H ′1H ′2

{
H(u1)2P

}λ−1

.(5.16)

By (3.11) we have

(5.17)
∏

v∈S\S′
|u1 ∧ u2|v ≤ 2c

′′
H ′′1H

′′
2 .

Now, by combining (5.16), (5.17) and (5.12) and using (5.15) we get

∆′(i, V ) =
∏
v∈S′

max
j 6=iv
|∆iv,j(u1, u2)|v ·

∏
v∈S\S′

|u1 ∧ u2|v ·
∏
v 6∈S

|u1 ∧ u2|v

≤ ∆′(i, V ) · 2c
′+c′′(7C/2) ·H ′1H ′′1 ·H ′2H ′′2 ·

{
H(u1)2P

}λ−1

· (7C)−1

= ∆′(i, V ) · Pλ−1H(u1)2λ−1H(u2) ,

hence

1 ≤ Pλ−1H(u1)2λ · H(u2)
H(u1)

.

By H(u1) < B which is a consequence of (5.8) and the definition of κ we have

H(u1)2λ < B2λ = P 2λκ and by (5.10) we have H(u2)/H(u1) < P (k+1)/2/P k/2 =

P 1/2. Recalling that λ = 1/{2(2κ+ 1)}, it follows that

1 < P (λ−1)+2λκ+1/2 = P (2κ+1)λ−1/2 = 1 .

Thus, the negation of (5.11) leads to a contradiction. This completes the proof of

Lemma 7. �

We need the following consequence.

Lemma 8. Let D,A1, A2, δ be reals with δ > 0, D > 0 and

(5.18) A2 ≥ A1 > max
(
1,
(

2
7 ∧D

)6/δ)
.
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Then the set of u ∈ V ∩ O∗L,S with

(5.19)
∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V ) · D

H(u)2+δ
, A1 ≤ H(u) < A2

is contained in the union of at most(
2800(17 + 12δ−1)

)s
·

(
1 +

log(logA2/ logA1)
log(1 + δ)

)
O∗S-cosets.

Proof. We assume that A2 > A1 which is clearly no restriction. Let k be the

smallest integer with A
(1+δ)k

1 ≥ A2. Then

(5.20) k ≤ 1 +
log(logA2/ logA1)

log(1 + δ)
.

For every u ∈ V ∩ O∗L,S satisfying (5.19) there is an integer t with 0 ≤ t ≤ k − 1

and

(5.21) A
(1+δ)t

1 ≤ H(u) < A
(1+δ)t+1

1 .

From the assumption A1 > (2D/7)6/δ it follows that each u ∈ V ∩ O∗L,S with

(5.19) and (5.21) satisfies∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V )D

H(u)2A
δ(1+δ)t

1

≤ ∆(i, V ) · 7/2

H(u)2A
(1+δ)t(5δ/6)
1

.

From Lemma 7 with P = A
(1+δ)t(5δ/6)
1 , B = A

(1+δ)t+1

1 and C = 1, we infer that

the set of u ∈ V ∩O∗L,S satisfying (5.19) and (5.21) is contained in the union of at

most (
14000

{
1 + 2

logB
logP

})s
=

(
14000

{
1 + 2

(1 + δ)t+1

(1 + δ)t(5δ/6)
})s

=
(

14000
(
1 +

12
5
{1 + δ−1}

))s
=
(

2800(17 + 12δ−1)
)s

O∗S-cosets. By taking into consideration the number of possibilities for t given by

the right-hand side of (5.20) this implies Lemma 8. �
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§6. The large solutions.

Let as before K be a number field, L a finite extension of K of degree r, and

u 7→ u(1), . . . , u 7→ u(r) the K-isomorphic embeddings of L into K. Further, let S

be a finite set of places on K, containing all infinite places. For x1, . . . , xn ∈ K,

v ∈MK we put

|x1, . . . , xn|v := max(|x1|v, . . . , |xn|v).

We define the height of β ∈ K by

H(β) :=
∏

v∈MK

|1, β|v .

More generally, we define the height of α ∈ L by

H(α) :=
( ∏
v∈MK

r∏
i=1

|1, α(i)|v
)1/r

.

The following lemma is a slightly modified version of Bombieri’s Thue principle

[1].

Lemma 9. (Thue principle). Let t, τ, θ, δ1, δ2 be positive real numbers such that

(6.1)

√
2

r + 1
< t <

√
2
r
, τ < t, t < θ < t−1 ,

let β1, β2 ∈ K, α1, α2 ∈ L, and let i = (iv : v ∈ S) with iv ∈ {1, . . . , r} for v ∈ S.

Then either

∏
v∈S

max

{(
|α(iv)

1 − β1|v
|1, β1|v

)θδ1
,

(
|α(iv)

2 − β2|v
|1, β2|v

)θ−1δ2}
(6.2)

>
{

(3H(α1))CH(β1)
}− δ1

t−τ ·
{

(3H(α2))CH(β2)
}− δ2

t−τ
with C =

2
2− rt2

,

or

(6.3)
r

2
· δ2
δ1
>
r

2
t2 +

1
2
τ2 − 1 .
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Proof. This is the same result as Theorem 2 of [1], except for the denominators

|1, βi|v in (6.2) and except for the additional assumption t < θ < t−1 which im-

plies that the quantities ϕ2(t), ϕ2(τ) in Bombieri’s statement are equal to 1
2 t

2, 1
2τ

2,

respectively (see the remark at the end of [1],Chap. IV). Further, Bombieri uses

another, but equivalent, definition for the height H(α) for α ∈ L. We have to make

some minor modifications in the arguments of [1], pp. 288-291 which are indicated

below. We mention that our notation K,L, s(v) corresponds to Bombieri’s nota-

tion k,K, ε(v)/[k : Q]. Further, by choosing other continuations of | · |v (v ∈ S) to

L if necessary, we may assume that α(iv)
j = αj for j = 1, 2, v ∈ S. We let S′ be

the set of those places v ∈ S for which both quantities |αi − βi|v/|1, βi|v (i = 1, 2)

are smaller than 1. Clearly, it suffices to prove Lemma 9 with in the left-hand side

of (6.2) the product over v ∈ S being replaced by the product over v ∈ S′. Our

set S′ plays the same role as Bombieri’s set S.

For pairs I = (i1, i2), J = (j1, j2) of non-negative integers, we put I! = i1!i2! and(
J
I

)
=
(
j1
i1

)(
j2
i2

)
and we define the differential operator ∆I = (∂/∂X1)i1(∂/∂X2)i2

for polynomials in X1, X2. Let P ∈ K[X1, X2] be the polynomial constructed

in Section III of [1], with t, τ as in (6.1), and degrees at most d1, d2 in X1, X2,

respectively, such that properties (i)-(v) on p. 288 of [1] are satisfied and such

that instead if (vi) we have |αi − βi|v/|1, βi|v < 1 for v ∈ S′, i = 1, 2. Then

γ := (1/I∗!)∆I∗P (β1, β2) 6= 0. We have to estimate |γ|v from above for each

v ∈ MK and then apply the Product formula. Like in [1], we have to distinguish

the four cases:

I. v ∈ S′, v finite; II. v ∈ S′, v infinite; III. v /∈ S′, v finite; IV. v /∈ S′, v infinite.

Case I. We indicate the changes on p. 289 of [1]. We have

γ =
1
I∗!

∆I∗P (β1, β2)

=
∑
I

(
I∗ + I

I

)
1

(I + I∗)!
∆I∗+IP (α1, α2)(β1 − α1)i1(β2 − α2)i2 .

By (iii), (iv) on p. 288 we have ∆I∗+IP (α1, α2) = 0 for I = (i1, i2) with

θ−1i1/d1 +θi2/d2 < t−τ . Let I = (i1, i2) be a pair with θ−1i1/d1 +θi2/d2 ≥ t−τ .
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Using the notation log+ x = max(0, log x) we have

log
∣∣∣∣ 1
(I + I∗)!

∆I∗+IP (α1, α2)
∣∣∣∣
v

≤ log |P |v + (d1 − i∗1 − i1) log+ |α1|v + (d2 − i∗2 − i2) log+ |α2|v ,

where I∗ = (i∗1, i
∗
2) and |P |v is the maximum of the v-adic absolute values of the

coefficients of P . From |αi − βi|v < |1, βi|v it follows that log+ |αi|v ≤ log+ |βi|v
for i = 1, 2. Hence

log
∣∣∣∣ 1
(I + I∗)!

∆I∗+IP (α1, α2)
∣∣∣∣
v

≤ log |P |v + (d1 − i∗1 − i1) log+ |β1|v + (d2 − i∗2 − i2) log+ |β2|v .

Moreover,

log |(β1 − α1)i1(β2 − α2)i2 |v

= i1 log+ |β1|v + i2 log+ |β2|v + i1 log
{ |β1 − α1|v
|1, β1|v

}
+ i2 log

{ |β2 − α2|v
|1, β2|v

}
≤ i1 log+ |β1|v + i2 log+ |β2|v

+ (t− τ) max

(
θd1 log

{ |β1 − α1|v
|1, β1|v

}
, θ−1d2 log

{ |β2 − α2|v
|1, β2|v

})
.

By summing over all I, using that v is finite, we get in case I,

|γ|v ≤ log |P |v + d1 log+ |β1|v + d2 log+ |β2|v

+ (t− τ) max

(
θd1 log

{ |β1 − α1|v
|1, β1|v

}
, θ−1d2 log

{ |β2 − α2|v
|1, β2|v

})
.

Case II. We modify the arguments in case II on p. 289 of [1] in the same way

as above, except that we now have to insert log+ |αi|v ≤ s(v) log 2 + log+ |βi|v for

i = 1, 2. Thus we obtain

|γ|v ≤ log |P |v + d1 log+ |β1|v + d2 log+ |β2|v

+ (t− τ) max

(
θd1 log

{ |β1 − α1|v
|1, β1|v

}
, θ−1d2 log

{ |β2 − α2|v
|1, β2|v

})
.

+ s(v)(d1 + d2) log 6 + o(d1 + d2) .
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The arguments of cases III and IV on pp. 289-291 of [1] do not have to be modified,

and the proof of our Lemma 9 is then completed in precisely the same way as that

of Theorem 2 of [1]. �

Let K,S, L, r = [L : K] be as before, let s denote the cardinality of S, and let V be

a K-vector space satisfying (4.3). Then 1 ∈ V . We will apply Lemma 9 as follows.

Let u1, u2 ∈ V ∩ O∗L,S . We will choose an appropriate b ∈ V such that {1, b} is a

basis of V and then apply Lemma 9 with α1 = α2 = b and with βi = −xi/yi for

i = 1, 2, where ui = xi + yib with xi, yi ∈ K for i = 1, 2. Assume for the moment

that there is an element b ∈ V with

(6.4) b 6∈ K, b(1) + · · ·+ b(r) = 1 .

It is obvious that {1, b} is a basis of V and from (3.2) it follows that

(6.5) |b|v = max(|b(1)|v, . . . , |b(r)|v) ≥ r−s(v) for v ∈MK .

Let 1 := (1, . . . , 1) (r times). We need the following lemma:

Lemma 10. Let u ∈ V with u = x + yb, where x, y ∈ K and y 6= 0. Then for

v ∈MK we have

|u|v ≤ (2r)s(v)|b|v|x, y|v ;(i)

|x, y|v ≤ (2r)s(v) |b|v
|1 ∧ b|v

· |u|v .(ii)

Proof. (i).For i = 1, . . . , r, v ∈MK we have

|u(i)|v = |x+ yb(i)|v ≤ 2s(v)|1, b(i)|v|x, y|v ≤ 2s(v) max(1, |b|v)|x, y|v by (3.2)

≤ (2r)s(v)|b|v|x, y|v by (6.5)

and this implies (i).

(ii). Let v ∈MK . We have x ·(1∧b) = (x1+yb)∧b = u∧b and y ·(1∧b) = 1∧u.

Together with (3.11) this implies that

|x|v =
|u ∧ b|v
|1 ∧ b|v

≤ 2s(v) |b|v
|1 ∧ b|v

· |u|v ,

|y|v =
|1 ∧ u|v
|1 ∧ b|v

≤ 2s(v) 1
|1 ∧ b|v

· |u|v .
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By taking the maxima of the left- and the right-hand sides and using (6.5) we

obtain (ii). �

We recall that by Lemma 4, for every u ∈ V ∩ O∗L,S there is a tuple i = (iv :

v ∈ S) ∈ I satisfying (4.4.a)-(4.4.c). Fix i ∈ I and let Slarge(i) be the set of

u ∈ V ∩ O∗L,S satisfying (4.4.a)-(4.4.c) and

(6.6) H(u) ≥
{7

4
H(V )

}21(1+θ(i))

.

Lemma 11. Slarge(i) is the union of at most
(
4×106

)s O∗S-cosets.

Proof. We first choose an appropriate element b of V satisfying (6.4). Clearly, K is

a one-dimensional subspace of V and the space V0 := {u ∈ V : u(1)+· · ·+u(r) = 0}

is a proper K-linear subspace of V since 1 /∈ V0. Hence V0 has dimension at most

1. Therefore, both K and V0 contain at most one O∗S-coset of elements of V ∩O∗L,S .

Now let

C := Slarge(i)\(K ∪ V0).

We assume, without loss of generality, that C is non-empty. Let b′ be the element

u of C for which H(u) is minimal. Since b′ /∈ V0 we have λ := b′
(1) + · · ·+ b′

(r) 6= 0.

Note that λ ∈ K. Hence b := λ−1b′ is an element of V satisfying (6.4). Put

H := H(b).

By (3.4) we have H = H(λ−1b′) = H(b′). Therefore

(6.7) H ≥
{7

4
H(V )

}21(1+θ(i))

, H(u) ≥ H for u ∈ C .

We make the following

Claim. Let u1, . . . , ut be a sequence of elements from C with

(6.8) H(u1) ≥ H106r2
, H(ui+1) ≥ H(ui)106r2

for i = 1, . . . , t− 1.

Then t ≤ (8e)s−1.
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Suppose for the moment that the claim is true. Let u1 ∈ C be such that H(u1) ≥

H106r2
and subject to this condition H(u1) is minimal. For i = 1, 2, . . ., let ui+1 ∈

C be such that H(ui+1) ≥ H(ui)106r2
and subject to this condition, H(ui+1) is

minimal. Then the sequence u1, u2, u3, . . . has only a finite number t of elements

with t ≤ (8e)s−1. Now (6.7) and this choice of u1, u2, . . . , ut imply that for every

u ∈ C we have either H ≤ H(u) < H106r2
or H(ui) ≤ H(u) < H(ui)106r2

for some

i ∈ {1, . . . , t}. We are going to apply Lemma 8. Note that every u ∈ C satisfies

(4.4.c), i.e.
∏
v∈S |u(iv)|v/|u|v ≤ ∆(i, V ) ·DH(u)−2−δ with D = 2r−1H(V )rθ(i)−1

and δ = r − 2. Further, by (6.7) and r ≥ 3 we have H > max(1, (2D/7)6/δ). Now

Lemma 8 with D, δ as defined above and with A1 = H, A2 = H106r2
implies that

the set of elements u ∈ C with H ≤ H(u) < H106r2
is contained in the union of at

most {
2800(17 +

12
r − 2

)
}s{

1 +
log(106r2)
log(r − 1)

}
< 24.2×(81200)s =: T

O∗S-cosets; here we used again that r ≥ 3. Similarly, for i = 1, . . . , t, the set of

u ∈ C with H(ui) ≤ H(u) < H(ui)106r2
is contained in the union of fewer than T

O∗S-cosets. Recalling that C = Slarge(i)\(K ∪ V0) and that both K and V0 contain

at most one O∗S-coset, it follows that Slarge(i) is contained in the union of fewer

than

2 + (t+ 1)T ≤ 2 + (1 + (8e)s−1) · 24.2×(81200)s < (4×106)s

O∗S-cosets. This proves Lemma 11.

Proof of the claim. We assume the contrary, i.e. that there is a sequence

u1, . . . , ut in C with (6.8) and with

(6.9) t > (8e)s−1.

Let u ∈ {u1, . . . , ut}. From (6.7), (6.8) and ∆(i, V ) ≤ H(V ) which is part of

Lemma 3 (i), it follows that

H(u) >
(

∆(i, V ) · 2r−1H(V )rθ(i)−1
)106

.
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Further, u satisfies (4.4.c). Hence

∏
v∈S

|u(iv)|v
|u|v

≤ ∆(i, V ) · 2r−1H(V )rθ(i)−1

H(u)r
≤ H(u)−r(1−10−6) for u ∈ {u1, . . . , ut}.

By Lemma 6, there is a set Γ of cardinality at most (8e)s−1, consisting of tuples

(γv : v ∈ S) with γv ≥ 0 for v ∈ S and
∑
v∈S γv = 7/8, such that for each

u ∈ {u1, . . . , ut} there is a tuple (γv : v ∈ S) ∈ Γ with

(6.10)
|u(iv)|v
|u|v

≤
(
H(u)−r(1−10−6)

)γv
for v ∈ S.

Since t > Card Γ, there are distinct elements of {u1, . . . , ut} satisfying (6.10) with

the same tuple (γv : v ∈ S). Summarising, it follows that there are z1, z2 ∈ C with

H(z1) ≥ H106r2
,(6.11)

H(z2) ≥ H(z1)106r2
,(6.12)

|z(iv)
j |v
|zj |v

≤
(
H(zj)−r(1−10−6)

)γv
for j = 1, 2, v ∈ S ,(6.13)

where (γv : v ∈ S) is a tuple of non-negative reals with
∑
v∈S γv = 7/8, and where

zj = (z(1)
j , . . . , z

(r)
j ) for j = 1, 2. We apply Lemma 9 to show that such z1, z2 can

not exist.

Since {1, b} is a basis of V , we have

zj = xj + yjb with xj , yj ∈ K for j = 1, 2.

Since C ∩ K = ∅, we have yj 6= 0 for j = 1, 2. Put α1 = α2 = α := b and

βj := −xj/yj for j = 1, 2. We apply Lemma 9 with these αj , βj and with

θ = 1, t =

√
2

r + 0.5×10−4
, τ =

√
2− rt2 +

10−4

r + 0.5×10−4
=

t

100
,(6.14)

δ1 =
1

logH(z1)
, δ2 =

1
logH(z2)

.

Note that the quantity C in Lemma 9 is equal to

(6.15) C = 2×104(r + 0.5×10−4) = 2×104r + 1 .
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Put

Av := max

({ |α(iv) − β1|v
|1, β1|v

}δ1
,
{ |α(iv) − β2|v
|1, β2|v

}δ2)
for v ∈ S ,

B :=
{

(3H(α))CH(β1)
} δ1
t−τ ·

{
(3H(α))CH(β2)

} δ2
t−τ

.

We estimate each Av from above. Let v ∈ S and j ∈ {1, 2}. By Lemma 10 (i) we

have

|zj |v ≤ (2r)s(v)|b|v|xj , yj |v.

Hence

|α(iv) − βj |v
|1, βj |v

=
|xj + yjb

(iv)|v
|xj , yj |v

≤ Cv
|z(iv)
j |v
|zj |v

with Cv := (2r)s(v)|b|v

where the equality is obtained by multiplying numerator and denominator with

|yj |v. Using δ1 ≥ δ2 and (6.14), it follows that

(6.16) Av ≤ Cδ1v max

({ |z(iv)
1 |v
|z1|v

}δ1
,
{ |z(iv)

2 |v
|z2|v

}δ2)
≤ Cδ1v e−γvr(1−10−6) .

By (6.11) we have δ1 ≤ (106r2 logH)−1 and by (6.4), (3.1), (3.3) we have∏
v∈S

Cv =
∏
v∈S

(2r)s(v)|b|v ≤
∏

v∈MK

(2r)s(v)|b|v = 2rH(b) = 2rH .

By inserting these inequalities into (6.16) and using the lower bound for H from

(6.7) we obtain∑
v∈S

logAv ≤ δ1
∑
v∈S

logCv −
(∑
v∈S

γv
)
r(1− 10−6)(6.17)

≤ 1
106r2 logH

· log(2rH)−
(7

8
(1− 10−6)

)
r

≤ 3
106r

−
(7

8
(1− 10−6)

)
r =: a(r) .

We now estimate B from above. We have

H(α) =
( ∏
v∈MK

r∏
i=1

|1, b(i)|v
)1/r

≤
∏

v∈MK

max(1, |b|v)

≤
∏

v∈MK

(
rs(v)|b|v

)
= rH by (6.5), (3.1), (3.3).
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Further, the Product formula implies

H(βj) = H(xj/yj) =
∏

v∈MK

|1, xj/yj |v =
∏

v∈MK

|xj , yj |v for j = 1, 2.

Therefore,

H(βj) ≤
∏

v∈MK

(2r)s(v) |b|v
|1 ∧ b|v

|zj |v = 2r
H

H(V )
H(zj) ≤ 2rH ·H(zj) for j = 1, 2,

where the first inequality follows from Lemma 10 (ii), the equality from (3.1),

(3.3), (3.8), and the last inequality from Lemma 2 (iii). Using the lower bound for

H from (6.7) it follows that

(3H(α))CH(βj) ≤ (3rH)C+1H(zj) ≤ H4×104r2
H(zj) for j = 1, 2.

Together with (6.11), (6.12) this implies that

logB ≤ 1
t− τ

{
2 +

( 4×104r2

logH(z1)
+

4×104r2

logH(z2)

)
logH

}
≤ 1
t− τ

(
2 +

8
102

)
≤ 100

99
×2.08×

√
r + 0.5×10−4

2
=: b(r) .

It is easy to check that for r ≥ 3 we have a(r) < −b(r), where a(r) is the quantity

defined in (6.17). Hence ∑
v∈S

logAv < − logB .

In other words, (6.2) is not valid and so by Lemma 9, inequality (6.3) holds, that

is,
r

2
· logH(z1)

logH(z2)
=
r

2
δ2
δ1
>
r

2
t2 +

1
2
τ2 − 1

=
(r

2
+ 10−4

) 2
r + 0.5×10−4

− 1

=
3

2×104r + 1
.

Hence
logH(z2)
logH(z1)

<
2×104r2 + r

6
< 106r2

which contradicts (6.12). Thus, our assumption that the claim is false leads to a

contradiction. This completes our proof of Lemma 11. �
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§7. Proof of Theorem 2.

Let K, L, r = [L : K], S, s =Card S be as before, and let V be a K-vector space

satisfying (4.3). We recall that by Lemma 4, for every u ∈ V ∩ O∗L,S there is an

i ∈ I = {(iv : v ∈ S) : iv ∈ {1, . . . , r}} for which u satisfies (4.4.a)-(4.4.c). Let

S(i) be the set of u ∈ V ∩ O∗L,S satisfying (4.4.a)-(4.4.c). We divide S(i) into

Slarge(i) =
{
u ∈ S(i) : H(u) ≥

(7
4
H(V )

)21(1+θ(i))}
,

Smedium(i) =
{
u ∈ S(i) :

(7
4
H(V )

)21

≤ H(u) <
(7

4
H(V )

)21(1+θ(i))}
,

Ssmall(i) =
{
u ∈ S(i) : H(u) <

(7
4
H(V )

)21}
.

Thus,

(7.1) V ∩ O∗L,S =
⋃
i∈I

S(i) =
⋃
i∈I

(
Slarge(i) ∪ Smedium(i) ∪ Ssmall(i)

)
.

Fix i ∈ I. By Lemma 11, Slarge(i) is contained in the union of at most (4×106)s

O∗S-cosets. Every u ∈ Smedium(i) satisfies (4.4.b). Hence every u ∈ Smedium(i)

satisfies (5.19) (cf. Lemma 8) with

D = 4H(V )7/2, δ = 1, A1 =
(7

4
H(V )

)21

, A2 =
(7

4
H(V )

)21(1+θ(i))

= A
1+θ(i)
1 .

It is easy to check that these D, δ,A1, A2 satisfy (5.18), i.e. A2 ≥ A1 >

max(1, (2D/7)6/δ). So Lemma 8 implies that Smedium(i) is contained in the union

of at most

(2800 · (17 + 12))s
(

1 +
log(1 + θ(i))

log 2

)
≤ (81200)s

(
1 +

3
2
θ(i)

)
O∗S-cosets. Finally, every u ∈ Ssmall(i) satisfies (4.4.a). Therefore, every u ∈

Ssmall(i) satisfies (5.8) (cf. Lemma 7) with

C = 1, P =
7
4
H(V ), B =

(7
4
H(V )

)21 = P 21 .

These C,P,B clearly satisfy (5.7). Hence Lemma 7 implies that Ssmall(i) is con-

tained in the union of at most(
14000(1 + 2×21)

)s = (602000)s
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O∗S-cosets.

We now apply (7.1). Recalling that I consists of rs tuples i and that
∑

i∈I θ(i) ≤ rs

which is part of Lemma 3 (ii), it follows that V ∩ O∗L,S is the union of at most

∑
i∈I

{
(4×106)s + (81200)s

(
1 +

3
2
θ(i)

)
+ (602000)s

}
< (5×106 r)s

O∗S-cosets. This completes the proof of Theorem 2. �
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