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§1. Introduction.

Let F (X,Y ) = a0X
r + a1X

r−1Y + ...+ arY
r be a binary form in Z[X,Y ] and let

p1, ..., pt be distinct prime numbers. F is a product of linear forms
∏r
i=1(αiX +

βiY ) with algebraic αi, βi. From results of Thue [23] and Mahler [11] it follows
that if among the linear forms αiX+βiY there are three pairwise non-proportional
ones, then the equation

(1.1) |F (x, y)| = pz11 ...p
zt
t in x, y, z1, ..., zt ∈ Z with gcd(x, y) = 1

has only finitely many solutions. The Diophantine approximation techniques of
Thue and Mahler and improvements by Siegel, Dyson, Roth and Bombieri made
it possible to derive good explicit upper bounds for the number of solutions of
(1.1). The best such upper bound to date, due to Bombieri [1] is 2× (12r)12(t+1)

(Bombieri assumed that F is irreducible and r ≥ 6 which was not essential in his
proof). For t = 0, i.e. |F (x, y)| = 1 in x, y ∈ Z, Bombieri and Schmidt [2] derived
the upper bound constant×r which is best possible in terms of r.

In this paper we consider generalisations of (1.1) where instead of a binary form we
take a decomposable form in n ≥ 3 variables, that is, a homogeneous polynomial
F (X) with integer coefficients which is expressible as a product of linear forms with
algebraic coefficients, i.e. F (X) =

∏r
i=1(αi1X1 + ...+ αinXn). More precisely, we

consider decomposable form equations

(1.2) |F (x)| = pz11 ...p
zt
t in x ∈ Zn, z1, ..., zt ∈ Z with x primitive,

where x = (x1, ..., xn) ∈ Zn is called primitive if gcd (x1, ..., xn) = 1. Schmidt ini-
tiated the study of decomposable form equations and after that several qualitative
and quantitative finiteness results on (1.2) have been derived analogous to those
mentioned above for eq. (1.1). Below we give an overview. For instance, from
results of Schmidt, Schlickewei and Győry it follows that for ‘non-degenerate’ de-
composable forms F , there exists an explicit upper bound, depending on r = degF ,
n and t only, for the number of solutions of (1.2), with a doubly exponential de-
pendence on n. In this paper we improve this bound to 2 × (233r2)n

3(t+1). Our
result as well as the previous ones all go back to Schmidt’s Subspace theorem.
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The probably best known type of a decomposable form equation (apart from (1.1))
is a norm form equation, that is, an equation (1.2) in which F is a norm form, i.e.

(1.3) F (X) = c ·NM/Q(α1X1 + ...+ αnXn) = c

[M :Q]∏
i=1

(α(i)
1 X1 + ...+ α(i)

n Xn),

where M = Q(α1, ..., αn) is an algebraic number field, c is a non-zero integer,
and x 7→ x(i)(i = 1, ..., [M : Q]) are the isomorphic embeddings of M into C.
We consider more generally decomposable form equations rather than norm form
equations since several problems can be reduced to decomposable form equations
which are not norm form equations; for instance the S-unit equation

x0 + ...+ xn = 0 in x = (x0, ..., xn) ∈ Zn+1(1.4)
with x primitive, |x1...xn| composed of p1, ..., pt

can be reduced to eq. (1.2) with F (X) = X1 · · ·Xn(X1 + ...+Xn).

We remark that for every solution (x, z1, ..., zt) of (1.2) we have F (x) ∈ R∗, where
R is the ring Z[(p1...pt)−1] and R∗ is the unit group of R. We consider the more
general decomposable form equation over number fields,

(1.5) F (x) ∈ O∗S in x ∈ OnS ,

where OS is the ring of S-integers for some finite set of places S on some algebraic
number field K, O∗S is the unit group of OS , i.e. the group of S-units, and
where F is a decomposable form in n variables with coefficients from OS . We
recall that OS = OK [(℘1...℘t)−1], where OK is the ring of integers of K and
℘1, ..., ℘t are the prime ideals of OK , i.e. finite places, belonging to S. Further,
O∗S = {x ∈ K : (x) = ℘z11 ...℘

zt
t for z1, ..., zt ∈ Z}.

Obviously, if x is a solution of (1.5), then so is εx for every ε ∈ O∗S . Therefore,
we will give upper bounds for the maximal number of O∗S-cosets {εx : ε ∈ O∗S}
contained in the set of solutions of (1.5).

Below we give an overview of previous results on decomposable form equations,
norm form equations, and S-unit equations, and then state our improvements.
These improvements are consequences of our main result, stated in §2.

Overview of previous results.

In 1972, Schmidt [19, 20] was the first to derive non-trivial finiteness results for
norm form equations. He formulated a non-degeneracy condition for norm forms
F ∈ Z[X1, ..., Xn] and showed that the equation

F (x) = b in x ∈ Zn
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has only finitely many solutions for every non-zero integer b if and only if F is non-
degenerate. Schmidt derived this from his own higher dimensional generalisation
of Roth’s theorem, the Subspace Theorem [20].

Schmidt’s result on norm form equations was generalised successively by Schlick-
ewei in 1977 [14] to p-adic norm form equations (1.2) and by Laurent in 1984
[10] to norm form equations (1.5) over number fields; Laurent derived this from a
result of his on linear tori conjectured by Lang. In 1988, Győry and the author
[8] proved an extension of Laurent’s result to arbitrary decomposable form equa-
tions (1.5) over number fields. Later, Gaál, Győry and the author [7] proved the
following ‘semi-quantitative’ refinement of this: given a finite extension L of K,
there exists a uniform bound C, depending only on n, S and L, such that for every
‘non-degenerate’ decomposable form F ∈ OS [X1, ..., Xn] which can be factored
into linear forms over L, the number of O∗S-cosets of solutions of (1.5) is at most
C; however, their method of proof did not enable an explicit computation of C.
We mention that all these results follow from Schmidt’s Subspace theorem and its
p-adic generalisation by Schlickewei [13].

In 1989, Schmidt [21] made another breakthrough by proving a quantitative version
of his Subspace theorem from [20] and then deriving an explicit upper bound for
the number of solutions of norm form equations of the type |F (x)| = 1 in x ∈ Zn,
where F is a norm form as in (1.3) [22]. We state his result in detail. We can
rewrite the equation |F (x)| = 1 as

(1.6) |cNM/Q(ξ)| = 1 in ξ ∈M,

whereM is the Z-module generated by α1, ..., αn. We assume that cNM/Q(α1X1+
... + αnXn) has its coefficients in Z. Let V = QM denote the Q-vector space
generated by M, i.e. by α1, ..., αn. For each subfield J of M , define the subspace
of V ,

(1.7) V J = {ξ ∈ V : λξ ∈ V for every λ ∈ J}.

Thus, V J is the largest linear subspace of V closed under scalar multiplication by
elements from J . V is called non-degenerate if

V J = (0) for each subfield J of M which is not equal to Q(1.8)
or an imaginary quadratic field.

Let r = [M : Q] and n = dimV . Among other things, Schmidt showed that if V
is non-degenerate then the number of solutions of (1.6) is at most

(1.9) min
(
r230nr2

, r(2n)n·2
n+4
)
.
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Soon afterwards, Schlickewei proved a p-adic generalisation of Schmidt’s quantita-
tive Subspace theorem and extended this to number fields [15]. As an application,
he obtained an explicit upper bound for the number of solutions of S-unit equa-
tions over number fields [16]. Győry [9] used this to derive an explicit upper bound
for the number of O∗S-cosets of solutions of eq. (1.5) for arbitrary decomposable
forms F . We state the results of Schlickewei and Győry below.

Let K be an algebraic number field, and S a finite set of places on K, containing
all infinite places. Thus, S has cardinality r1 + r2 + t where r1 is the number of
embeddings of K into R, r2 is the number of complex conjugate pairs of embed-
dings of K into C and t is the number of prime ideals in S. From the Subspace
theorem it follows (cf. [4,12]) that the so-called S-unit equation

(1.10) a1u1 + ...+ anun = 1 in u1, ..., un ∈ O∗S ,

where a1, ..., an are non-zero coefficients from K, has only finitely many solutions
with non-vanishing subsums,

(1.11)
∑
i∈I

aiui 6= 0 for each non-empty I ⊆ {1, ..., n}.

In [16], Schlickewei proved that the number of such solutions is at most

(1.12) (4sD)236nDs6 ,

where s is the cardinality of S and D is the degree of the normal closure of K/Q.
Later [17] he improved this to 2226ns.

In [9], Győry generalised finiteness results of Schmidt and Schlickewei on ‘fami-
lies of solutions’ of (possibly degenerate) norm form equations to decomposable
form equations over number fields and obtained explicit upper bounds for the
number of families. As a consequence, he obtained the following: suppose that
F ∈ OS [X1, ..., Xn] is a decomposable form such that the number of O∗S-cosets of
solutions of (1.5) is finite (for instance, if F satisfies the non-degeneracy condition
of [8]); then this number of cosets is at most

(1.13) {5sG}2
37nGs6

where G is the degree of the normal closure of the field generated by K and the
coefficients of the linear forms dividing F .

Győry derived his bound by reducing eq. (1.5) to a system of S-unit equations in
some large extension of K (following the arguments in [10,8,7]) and using Schlick-
ewei’s bound (1.12) for the latter. If [K : Q] = d and if F is a norm form of
degree r then dr ≤ G ≤ (dr)!; this implies that Győry ’s bound is at least doubly

4



exponential in r. Győry’s approach might give something better by using an im-
provement of (1.12), but the best one can get in this way is a bound depending
exponentially on r. We mention that Schmidt obtained his bound (1.9) with a
polynomial dependence on r by reducing norm form equation (1.6) directly to his
quantitative Subspace theorem.

New Results.

In contrast to the results mentioned above, our estimates are not only for the
number of solutions of ‘non-degenerate’ decomposable form equations but also
for the number of ‘non-degenerate’ solutions of possibly degenerate decomposable
form equations. Let K be an algebraic number field and S a finite set of places on
K of cardinality s, containing all infinite places. Let

F (X) = l1(X) · · · lr(X) ∈ OS [X1, ..., Xn]

be a decomposable form of degree r, where l1, ..., lr are linear forms with coefficients
in some extension of K such that

(1.14) {x ∈ Kn : l1(x) = 0, ..., lr(x) = 0} = {0}.

In §2 we shall define what it means for x ∈ OnS to be (F, S)-non-degenerate or
(F, S)-degenerate. A more restrictive condition independent of S is that for every
proper, non-empty subset I of {1, ..., r} there are algebraic numbers c1, ..., cr such
that

c1l1 + ...+ crlr is identically zero,(1.15) ∑
i∈I

cili(x) 6= 0 .

(cf. §7, Remark 4). For instance, if F is a binary form with at least three pairwise
non-proportional linear factors then every x ∈ O2

S with F (x) 6= 0 is (F, S)-non-
degenerate. We shall prove:

Theorem 1. The set of (F, S)-non-degenerate solutions of

(1.5) F (x) ∈ O∗S in x ∈ OnS

is the union of at most (
233r2

)n3s

O∗S-cosets {εx : ε ∈ O∗S}.

We obtain the upper bound 2 × (233r2)n
3(t+1) for the number of (F, S)-non-

degenerate solutions of (1.2) by taking K = Q and S = {∞, p1, ..., pt} (where
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∞ is the infinite place of Q) and observing that each O∗S-coset contains precisely
two primitive x.

It will turn out (cf. §2, Remark 2) that from a given (F, S)-degenerate solution it
is possible to construct infinitely many O∗S-cosets of such solutions. Together with
Theorem 1 this yields:

Corollary. Suppose that the number of O∗S-cosets of solutions of (1.5) is finite.

Then this number is at most (233r2)n
3s.

We are going to state a general result on norm form equations. let K, S be as
before, and let M be a finite extension of K. Further, letM be a finitely generated
OS-module contained in M . Choose c ∈ K∗ such that for some set of generators
α1, ..., αm for M, the form

F (X) = cNM/K(α1X1 + ...+ αmXm)

has its coefficients in OS . It is easy to see that this holds for any set of generators
for M if it holds for one set of generators. We consider the norm form equation

(1.16) cNM/K(ξ) ∈ O∗S in ξ ∈M.

Let V = KM = {aξ : a ∈ K, ξ ∈M} denote the K-vector space generated byM.
We denote the integral closure of OS in some finite extension J of K by OJ,S and
the unit group of this ring by O∗J,S . Similarly to (1.7) we define for each subfield
J of M containing K,

V J = {ξ ∈ V : λξ ∈ V for every λ ∈ J}.

Definition. ξ ∈ V is called S-non-degenerate if

ξ 6∈ V J for every subfield J of M with J ⊇ K(1.17)
for which O∗J,S/O∗S is infinite.

It is easy to show that O∗J,S/O∗S is finite in the following two situations only: (i)
J = K; (ii) K is totally real, J is a totally complex quadratic extension of K and
none of the prime ideals in S splits into two different prime ideals in J .
We may partition the set of solutions of (1.16) into O∗S-cosets {εξ : ε ∈ O∗S}.
Clearly, if one element in an O∗S-coset is S-non-degenerate, then so is every other
element.

Theorem 2. Suppose that [M : K] = r, that dimK V = n, and that S has car-

dinality s. Then eq. (1.16) has at most
(
233r2

)n3s O∗S-cosets of S-non-degenerate
solutions.
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We call the space V S-non-degenerate if every non-zero ξ ∈ V is S-non-degenerate.
For K = Q, S = {∞}, this is precisely definition (1.8). Note that in this case
O∗S-cosets consist of ±ξ. It follows that Schmidt’s bound (1.9) for the number of
solutions of eq. (1.6): |cNM/Q(ξ)| = 1 in ξ ∈M can be improved to

2×
(
233r2

)n3

.

Finally, we mention an improvement of Schlickewei’s upper bound (1.12) for the
number of solutions of S-unit equations. Let K, S be as before.

Theorem 3. Let a1, ..., an ∈ K∗. Suppose that S has cardinality s. Then the
equation

a1u1 + ...+ anun = 1 in u1, ..., un ∈ O∗S with∑
i∈I

aiui 6= 0 for each non-empty I ⊆ {1, ..., n}

has at most
(
235n2

)n3s
solutions.

Although norm form equations and S-unit equations may be considered as special
types of decomposable form equations, there are problems with deriving Theorems
2 and 3 from Theorem 1, caused by the fact that in general OS is not a principal
ideal domain. Therefore, we will derive Theorems 1,2,3 from Theorem 4 in §2,
which is a result on “Galois-symmetric S-unit-vectors.”
Let K, S be as before and let F (X) ∈ OS [X1, ..., Xn] be a decomposable form
of degree r. Then F (X) = l1(X) · · · lr(X) where l1, ..., lr are linear forms with
coefficients in some normal extension L of K. For x ∈ Kn, put ui := li(x) for
i = 1, ..., r and u = (u1, ..., ur). By multiplying them with constants if necessary,
we may assume that the linear factors l1, ..., lr of F are permuted by applying any
automorphism from Gal(L/K) to their coefficients. Thus, every σ ∈ Gal(L/K)
permutes u1, ..., ur, in other words, for every σ ∈ Gal(L/K) there is a permutation
σ(1), ..., σ(r) of 1, ..., r such that σ(ui) = uσ(i) for i = 1, ..., r. Such a vector is
said to be Galois-symmetric. There is a finite set of places S′ on L such that for
every solution x of (1.5), u1, ..., ur are S′-units. Thus, every solution x of (1.5)
corresponds to a Galois-symmetric S′-unit vector u.

The main tool in the proof of Theorem 4 is our improved quantitative Subspace the-
orem from [6]. We use several ideas from Schmidt’s paper [22] but our arguments
differ from that of [22] in that we do not apply the Diophantine approximation
techniques to the solutions x of (1.5) but to the corresponding Galois-symmetric
vectors u; for instance, we use the reformulation of the quantitative Subspace the-
orem in terms of u which is stated in §4. In this way we can avoid generalising
the reduction theory for norm form equations in [22] to the p-adic case.
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§2. The main result.

The unit group of a ring or algebra R (always assumed to have a unit ele-
ment) is denoted by R∗. The r-fold direct sum or product of a ring, group,
etc. G is denoted by Gr. Let Q denote the algebraic closure of Q. For tu-
ples λ = (λ1, ..., λr), µ = (µ1, ..., µr) ∈ Q

r
we define coordinatewise addition

λ+µ = (λ1 +µ1, ..., λr +µr), scalar multiplication aλ = (aλ1, ..., aλr) (for a ∈ Q),
and multiplication λµ = (λ1µ1, ..., λrµr). The Galois group of a Galois extension
F ′/F is denoted by Gal(F ′/F ). For any algebraic number field it will be assumed
that it is contained in Q.
In what follows, K is an algebraic number field and S a finite set of places on K,
containing all infinite places. We denote by OS the integral closure in Q of the
ring of S-integers OS .

Let Σ be a Gal(Q/K)-action on {1, ..., r}, i.e. a homomorphism from Gal(Q/K)
to the permutation group of {1, ..., r}; thus, Σ attaches to every σ ∈ Gal(Q/K) a
permutation (σ(1), ..., σ(r)) of (1, ..., r). To Σ we associate the K-algebra

(2.1) ΛΣ :=
{
λ = (λ1, ..., λr) ∈ Q

r
:
σ(λi) = λσ(i) for i = 1, ..., r

and σ ∈ Gal(Q/K)

}
endowed with coordinatewise addition, multiplication and scalar multiplication by
elements of K. (Verify that ΛΣ is closed under these operations). Note that ΛΣ

has unit element 1 := (1, ..., 1). Further, ΛΣ has unit group Λ∗Σ = {λ ∈ ΛΣ :
λ1 · · ·λr 6= 0}. ∗) The diagonal homomorphism δ : a 7→ (a, ..., a) = a · 1 maps K
injectively into ΛΣ. For instance, if Σ is the trivial Gal(Q/K)-action on {1, ..., r}
then ΛΣ is the K-algebra Kr with coordinatewise operations.

Let P be a (Σ-)symmetric partition of {1, ..., , r}, that is, a collection of sets
P = {P1, ..., Pt} such that:

P1, ..., Pt are non-empty and pairwise disjoint,
P1 ∪ ... ∪ Pt = {1, ..., r},
σ(Pi) := {σ(k) : k ∈ Pi} belongs to P for i = 1, ..., r and for σ ∈ Gal(Q/K).

∗) It is easy to show that ΛΣ is isomorphic to a direct K-algebra sum K1⊕...⊕Kt of finite field extensions

of K with [K1:K]+...+[Kt:K]=r, cf. [5], Lemma 6.
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A pair i
P∼ j is a pair i, j ∈ {1, ..., r} such that i, j belong to the same set of P. To

P we associate the following K-subalgebra of ΛΣ:

ΛP = ΛΣ,P = {λ = (λ1, ..., λr) ∈ ΛΣ : λi = λj for each pair i P∼ j}. †)

For instance, if P = {{1}, ..., {r}} then ΛP = ΛΣ while if P = {{1, ..., r}} then
ΛP = δ(K). Further, we define the OS-algebra

OP,S := ΛP ∩ (OS)r = {λ = (λ1, ..., λr) ∈ ΛP : λi ∈ OS for i = 1, ..., r}.

Note that OP,S has unit group

O∗P,S = {λ ∈ Λ∗P : λi ∈ O
∗
S for i = 1, ..., r}

and that δ(O∗S) = {(a, ..., a) : a ∈ O∗S} is a subgroup of O∗P,S .

Now let W be an n-dimensional K-linear subspace of ΛΣ, where n ≥ 2. For each
symmetric partition P of ΛΣ, define the K-linear subspace of W ,

WP = WΣ,P := {u ∈W : λu ∈W for every λ ∈ ΛP}.

For every λ, µ ∈ ΛP , u ∈ WP we have λ(µu) = (λµ)u ∈ W ; hence µu ∈ WP .
Therefore, WP is closed under multiplication by elements of ΛP . It is in fact the
largest subspace of W with this property. The spaces WP appeared also in Győry’s
paper [9].

Definition. u ∈W is called S-non-degenerate if

u /∈WP for each symmetric partition P of {1, ..., r}(2.2)
for which O∗P,S/δ(O∗S) is infinite,

and S-degenerate otherwise.

At the end of this section (cf. Remark 3), we have listed the symmetric partitions
P for which O∗P,S/δ(O∗S) is finite.

For our applications to decomposable form equations, norm form equations and
S-unit equations we need a result on the set of vectors u = (u1, ..., ur) ∈ W with
u1, ..., ur ∈ O

∗
S . Since for this we did not have to change our arguments, we proved

a slightly more general “projective” result about elements u of W for which the
quotients ui/uj belong to O∗S . A K∗-coset is a set {au : a ∈ K∗} with some fixed
u ∈ ΛΣ.

†) In fact, in this way we obtain all K-subalgebras of ΛΣ containing 1.
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Theorem 4. Let K be an algebraic number field, S a finite set of places of K of
cardinality s containing all infinite places, Σ a Gal(Q/K)- action on {1, ..., r} and
W an n-dimensional K-linear subspace of

ΛΣ = {λ ∈ Qr : σ(λi) = λσ(i) for i = 1, ..., r, σ ∈ Gal(Q/K)}

where r ≥ 2, n ≥ 2. Then the set of u ∈W for which

u1 · · ·ur 6= 0, ui/uj ∈ O
∗
S for i, j = 1, ..., r,(2.3)

u is S-non-degenerate(2.4)

is the union of at most

(2.5)
(
233r2

)n3s

K∗-cosets.

Clearly, if u satisfies (2.3), (2.4), then so does au for every a ∈ K∗; therefore, it
makes sense to count the number of K∗-cosets of elements u ∈W with (2.3), (2.4).
We remark that a K∗-coset of elements of ΛΣ satisfying (2.3) need not contain an
u = (u1, ..., ur) with u1, ..., ur ∈ O

∗
S .

Remark 1. From an S-degenerate element u of W with (2.3) one can construct
infinitely many K∗-cosets of such elements. Namely, let u ∈ WP for some sym-
metric partition P of {1, ..., r} for which O∗P,S/δ(O∗S) is infinite. Every element of
the set H := {ζu : ζ ∈ O∗P,S} belongs to WP and satisfies (2.3). Moreover, since
O∗P,S ∩ δ(K∗) = δ(O∗S), the set H is not contained in the union of finitely many
K∗-cosets.

We now define the notion of (F, S)-degeneracy for decomposable forms F . Let
as before S be a finite set of places on K of cardinality s, containing all infinite
places. Further, let F (X) = l1(X) · · · lr(X) ∈ OS [X1, ..., Xn] be a decomposable
form of degree r in n ≥ 2 variables, where l1, ..., lr are homogeneous linear forms
in n variables with coefficients from Q such that

(1.14) {x ∈ Kn : l1(x) = 0, ..., lr(x) = 0} = {0}.

Define the K-linear map and the K-vector space

ϕ : Kn → Qr : ϕ(x) = (l1(x), ..., lr(x)) and W = ϕ(Kn),

respectively. ϕ is injective because of (1.14). By applying σ ∈ Gal(Q/K) to the
coefficients of l1, ..., lr we obtain the same linear forms, but multiplied with certain
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constants and in permuted order. In other words, there is a Gal(Q/K)-action Σ
on {1, ..., r} such that

(2.6) σ(li) = cσilσ(i) for i = 1, ..., r, σ ∈ Gal(Q/K),

where σ(li) is the linear form obtained by applying σ to the coefficients of li and
where cσi is some constant. We define again the space WP by {u ∈ W : λu ∈ W
for every λ ∈ ΛP}.

Definition. x ∈ Kn is called (F, S)-non-degenerate if ϕ(x) is S-non-degenerate,
i.e. if ϕ(x) /∈WP for every symmetric partition P of {1, ..., r} for which
O∗P,S/δ(O∗S) is infinite. Otherwise, x is called (F, S)-degenerate.

Clearly, if x is (F, S)-(non-) degenerate, then so is every element in the O∗S-coset
{εx : ε ∈ O∗S}.

We claim that the set of (F, S)-non-degenerate elements of Kn does not depend
on the choice of the factorisation l1 · · · lr of F into linear forms and moreover, does
not change when F is replaced by cF for some c ∈ K∗. Namely, let l′1 · · · l′r be a
factorisation of cF into linear forms. Then there is a tuple of non-zero algebraic
numbers c = (c1, ..., cr) such that l′1, ..., l

′
r is a permutation of c1l1, ..., crlr. Put

ϕ′(x) = (l′1(x), ..., l′r(x)), W ′ := ϕ′(Kn). Then ϕ′ = τ ◦ t ◦ ϕ, where t denotes
coordinatewise multiplication with c and τ is some permutation of coordinates.
t maps the S-non-degenerate elements of W bijectively to those of t(W ) since
t(W )P = t(WP) for each symmetric partition P of {1, ..., r}. Further, it is easy
to verify that τ maps ΛΣ to ΛΣ′ where Σ′ is some other Gal(Q/K)-action of
{1, ..., r} and that for each Σ-symmetric partition P of {1, ..., r}, τ maps t(W )P
to W ′P′ where P ′ is some Σ′-symmetric partition of {1, ..., r}. Hence τ maps the
S-non-degenerate elements of t(W ) bijectively to those of W ′. This proves our
claim.

Below, we shall derive Theorems 1,2 and 3 from Theorem 4. We need the following
lemma.

Lemma 1. Let G(X) = G1(X)...Gr(X) be a form in OS [X1, ..., Xn], where
G1, ..., Gr are homogeneous polynomials with coefficients from Q. Then for ev-
ery x,y ∈ OnS with G(x) ∈ O∗S , G(y) ∈ O∗S we have

Gi(x)/Gi(y) ∈ O∗S for i = 1, ..., r.

Proof. Let L be a finite extension of K containing the coefficients of G1, ..., Gr.
Let R denote the integral closure of OS in L; then R∗ is a subgroup of O∗S . For
a polynomial P with coefficients from L, denote by (P ) the fractional ideal with
respect to R generated by the coefficients of P . Using Gauss’ lemma for Dedekind
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domains we obtain (G1)...(Gr) = (G) ⊆ R. Further, we have Gi(x) ∈ (Gi) for
i = 1, ..., r and G1(x)...Gr(x) = G(x) ∈ R∗. It follows that for i = 1, ..., r we have
(Gi(x)) = (Gi). Clearly the same holds for y. It follows that for i = 1, ..., r, Gi(x)
and Gi(y) generate the same ideal i.e. their quotient belongs to R∗. �

Proof of Theorem 1 (on decomposable form equations).
Recall that we are considering eq. (1.5) F (x) ∈ O∗S in x ∈ OnS . We assume
that (1.5) has a solution, y, say. Replacing li by li(y)−1li for i = 1, ..., r and F
by F (y)−1F does not affect the set of (F, S)-non-degenerate solutions of (1.5).
Therefore, we may assume that li(y) = 1 for i = 1, ..., r, and shall do so in the
sequel. Thus, the constants cσi in (2.6) are equal to 1, i.e. σ(li) = lσ(i) for
i = 1, ..., r, σ ∈ Gal(Q/K). It follows that W = ϕ(Kn) is a K-linear subspace
of ΛΣ. Further, ϕ(x) = (l1(x)/l1(y), ..., lr(x)/lr(y)). From the injectivity of ϕ it
follows that dimW = n and that ϕ maps different O∗S-cosets in OnS into different
K∗-cosets in W . If x is any (F, S)-non-degenerate solution of (1.5), then by
definition, ϕ(x) is an S-non-degenerate element of W ; further, by Lemma 1 with
Gi = li, the coordinates of ϕ(x) belong to O∗S , whence ϕ(x) satisfies (2.3). Now
Theorem 1 follows at once by applying Theorem 4 to W . �

Remark 2. We now show that from an (F, S)-degenerate solution of (1.5) it is
possible to construct infinitely many O∗S-cosets of such solutions. Let x be an
(F, S)-degenerate solution of (1.5) with ϕ(x) ∈ WP , where P is a symmetric
partition of {1, ..., r} for which O∗P,S/δ(O∗S) is infinite. For every λ ∈ ΛP , put
xλ := ϕ−1(λ.ϕ(x)); note that xλ ∈ ϕ−1(WP). OP,S is a finitely generated OS-
module; let {λ1, ..., λt} be a set of generators. There is a non-zero d ∈ OS such
that dxλi ∈ OnS for i = 1, ..., t. Then dxλ ∈ OnS for every λ ∈ OP,S . There is a
positive integer m such that ηm−1 ∈ dOP,S for every η ∈ O∗P,S since OP,S/dOP,S
is finite.

Now let
G := {εηm : ε ∈ O∗S , η ∈ O∗P,S}.

For ζ = εηm ∈ G we have ζ = ε1 + dλ for some λ ∈ OP,S . Hence xζ = ϕ−1({ε1 +
dλ}ϕ(x)) = εx+dxλ ∈ OnS . Moreover, if ζ = (ζ1, ..., ζr), then ζ1 · · · ζr ∈ O

∗
S∩K∗ =

O∗S . Therefore, F (xζ) = ζ1...ζrF (x) ∈ O∗S , i.e., xζ satisfies (1.5). Since O∗P,S is
finitely generated, G has finite index in O∗P,S . Therefore, G/δ(O∗S) is infinite.
Hence the set of vectors ζϕ(x), and so the set of vectors xζ (ζ ∈ G), is not
contained in the union of finitely many O∗S-cosets. �

Proof of Theorem 2 (on norm form equations).
Let S be as before. Further, let M be a finite extension of K of degree r and
let M be a finitely generated OS-submodule of M , such that the K-vector space
V := KM = {aξ : a ∈ K, ξ ∈ M} has dimension n. Choose a set of generators
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{α1, ..., αm} for M. We assume that

(2.7) 1 ∈M, NM/K(α1X1 + ...+ αmXm) ∈ OS [X1, ..., Xm]

and we consider the equation

(2.8) NM/K(ξ) ∈ O∗S in ξ ∈M.

We show that (2.8) has at most C := (233r2)n
3s O∗S-cosets of solutions. In Theorem

2 we considered the more general equation (1.16) cNM/K(ξ) ∈ O∗S in x ∈ OnS and
we assumed that cNM/K(α1X1 + ...+ αmXm) has its coefficients in OS , for some
c ∈ K∗. However, taking a solution ξ0 of (1.16), we have for any solution ξ1
of (1.16) that ξ′1 := ξ1/ξ0 is a solution of NM/K(ξ′) ∈ O∗S in ξ′ ∈ M′ where
M′ = ξ−1

0 M; moreover, M′ satisfies (2.7). So it suffices to consider eq. (2.8).

Let ξ 7→ ξ(1), ..., ξ 7→ ξ(r) denote the K-isomorphic embeddings of M into Q, where
ξ(1) = ξ. The mapping

ψ : M ↪→ Qr : ψ(ξ) = (ξ(1), ..., ξ(r))

is a K-algebra isomorphism from M to ΛΣ, where Σ is the Gal(Q/K)-action on
{1, ..., r} defined by σ(ξ(i)) = ξ(σ(i)) for i = 1, ..., r. Put W := ψ(V ).

We claim that if ξ is an S-non-degenerate element of V then ψ(ξ) is an S-non-
degenerate element of W . Namely, suppose that ξ ∈ V is such that ψ(ξ) is an
S-degenerate element of W . Then ψ(ξ) ∈ WP for some symmetric partition P
of {1, ..., r} for which O∗P,S/δ(O∗S) is infinite. Let J := ψ−1(ΛP). Then J is a
K-subalgebra of M containing 1, hence a subfield of M containing K. Denote by
OJ,S the integral closure of OS in J . Then for ε ∈ J we have ε ∈ O∗J,S if and only
if ψ(ε) = (ε(1), ..., ε(r)) ∈ (O∗S)r. Hence ψ(O∗J,S) = ΛP ∩ (O∗S)r = O∗P,S . Further,
ψ(O∗S) = δ(O∗S), since both maps make an r-fold copy of ξ ∈ K. Hence O∗J,S/O∗S
is infinite. Moreover, since ψ(ξ) ∈WP we have ψ(ξ)ψ(J) = ψ(ξ)ΛP ⊆W = ψ(V ),
i.e. ξJ ⊆ V , which implies ξ ∈ V J . It follows that ξ is an S-degenerate element
of V . This proves our claim.

Let ξ ∈ M be a solution of (2.8). Choose a vector x = (x1, ..., xm) ∈ OmS with
ξ =

∑
i xiαi; by (2.7) there is a vector y = (y1, ..., ym) ∈ OmS with 1 =

∑
i yiαi.

Define the linear forms li(X) = α
(i)
1 X1 + ...+α(i)

m Xm for i = 1, ..., r. Then by (2.7),
their product F has its coefficients in OS . Hence by Lemma 1, ξ(i) = li(x)/li(y) ∈
O∗S for i = 1, ..., r. Therefore, ψ(ξ) satisfies (2.3). Now by applying Theorem 4
to W = ψ(V ), using our claim from above and observing that ψ maps different
O∗S-cosets into different K∗-cosets we infer that (2.8) has at most C O∗S-cosets of
solutions. This implies Theorem 2. �
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Proof of Theorem 3 (on S-unit equations).
Let S be as before, and a1, ..., an ∈ K∗. Recall that we have to estimate the
number of solutions of

(1.10) a1u1 + ...+ anun = 1 in u1, ..., un ∈ O∗S
with

(1.11)
∑
i∈I

aiui 6= 0 for each non-empty subset I of {1, ..., n}.

Let Σ be the trivial action on {1, ..., n + 1} so that ΛΣ = Kn+1 endowed with
coordinatewise operations. Put an+1 := −1. Define the K-linear subspace of ΛΣ:

W = {u = (u1, ..., un+1) ∈ ΛΣ : a1u1 + ...+ anun + an+1un+1 = 0}.
Let (u1, ..., un) be a solution of (1.10) with (1.11) and put u := (u1, ..., un, 1).
Thus, u ∈ W . We show that u is S-non-degenerate. Assume the contrary. Then
u ∈ WP for some partition P = {P1, ..., Pt} of {1, ..., n + 1} with t ≥ 2. We have
ΛP = {λ = (λ1, ..., λn+1) ∈ Kn+1 : λi = λj for each pair i P∼ j}; there are no
conjugacy relations between the λi since Σ is trivial. We assume without loss of
generality that n + 1 6∈ P1. Choose λ ∈ ΛP with λi = 1 for i ∈ P1, λi = 0 for
i ∈ P2 ∪ ... ∪ Pt. We have λu ∈ W which implies that

∑
i∈P1

aiui = 0. But this
contradicts (1.11).
By Theorem 4 with r = n+1, there are at most (233(n+1)2)n

3s S-non-degenerate
vectors u = (u1, ..., un, 1) ∈ W with u1, ..., un ∈ O∗S . This implies Theorem 3.
�

Remark 3. Let as before K be an algebraic number field, S a finite set of places on
K containing all infinite places, and Σ a Gal(Q/K)-action on {1, ..., r}. Lemma
8 of [5] (equivalence (ii)⇐⇒(iii) with O∗P,S replacing G(F )) gives a description of
the symmetric partitions P of {1, ..., r} for which O∗P,S/δ(O∗S) is finite. For the
sake of completeness we recall this result.
Let P = {P1, ..., Pt} be a symmetric partition of {1, ..., r}. Define the fields
K1, ...,Kt by

Gal(Q/Kj) = {σ ∈ Gal(Q/K) : σ(Pj) = Pj} for j = 1, ..., t.

Divide {P1, ..., Pt} into orbits such that Pi, Pj belong to the same orbit if and only
if Pj = σ(Pi) for some σ ∈ Gal(Q/K). In that case, σ(Ki) = Kj . Let u be the
number of orbits. Then O∗P,S/δ(O∗S) is finite if and only if one of the conditions
(2.9.a,b,c) below is satisfied:
(2.9.a) u = 1, t = 1, i.e. P = {{1, ..., r}};
(2.9.b) u = 1, t = 2, K is totally real and K1 is a totally complex quadratic

extension of K such that none of the prime ideals in S splits into two
prime ideals in K1; further, K2 = σ(K1) = K1 for some σ ∈ Gal(Q/K);

(2.9.c) u ≥ 2, each field among K,K1, ...,Kt is either Q or an imaginary
quadratic field, and S = {∞}, where ∞ is the only infinite place of K.

14



§3. Absolute values and heights.

Let K be an algebraic number field and denote by MK the set of places of K. MK

consists of the embeddings σ : K ↪→ R which are called real infinite places; the
pairs of complex conjugate embeddings σ, σ : K ↪→ C which are called complex
infinite places; and the prime ideals of OK which are also called finite places. For
every v ∈MK we define an absolute value |.|v as follows:

|.|v := |σ(.)|1/[K:Q] if v is a real infinite place σ : K ↪→ R;
|.|v := |σ(.)|2/[K:Q] = |σ(.)|2/[K:Q] if v is a complex infinite place {σ, σ : K ↪→ C};
|.|v := (N℘)−ord℘(.)/[K:Q] if v is a finite place, i.e. prime ideal ℘ of OK ;

here N℘ is the norm of ℘, i.e. the cardinality of OK/℘, and ord℘(x) is the
exponent of ℘ in the prime ideal decomposition of (x). For every v ∈ MK we
choose a continuation of |.|v to Q, denoted also by |.|v, and fix this in the sequel.
Note that if S is a finite subset of MK containing all (real and complex) infinite
places, then

OS = {x ∈ K : |x|v ≤ 1 for v /∈ S}, O∗S = {x ∈ K : |x|v = 1 for v /∈ S};

here we write v /∈ S for v ∈MK\S. The absolute values defined above satisfy the
Product formula ∏

v

|a|v = 1 for a ∈ K∗

(product over MK) and the Extension formulas for each finite extension L of K,∏
w|v

|a|w = |NL/K(a)|1/[L:K]
v for a ∈ L, v ∈MK ,

∏
w|v

|a|w = |a|v for a ∈ K, v ∈MK

where the product is taken over all w ∈ ML lying above v (i.e. over all w such
that the restriction of |.|w to K is a power of |.|v).

For a vector x = (x1, ..., xr) ∈ Q
r
, put

|x|v = |x1, ..., xr|v := max(|x1|v, ..., |xr|v) for v ∈MK .

Define the height of x = (x1, ..., xr) ∈ Q
r

by

H(x) = H(x1, ..., xr) :=
∏

w∈ML

|x|w,

where L is any number field containing x1, ..., xr and |x|w is defined similarly as
|x|v. By the Extension formula, this does not depend on L. By the Product
formula, we have

H(λx) = H(x) for x ∈ Qr, λ ∈ Q∗.
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Note that H(x) ≥ 1 if x 6= 0.

For v ∈MK , put

s(v) =
1

[K : Q]
if v is real infinite, s(v) =

2
[K : Q]

if v is complex infinite,

s(v) = 0 if v is finite.

For the numbers r1, r2 of real infinite places, complex infinite places, respectively
we have r1 + 2r2 = [K : Q]. Hence∑

v

s(v) =
∑
v|∞

s(v) = 1.

We define the scalar product of x = (x1, ..., xr), y = (y1, ..., yr) ∈ Q
r

as usual by

(x,y) = x1y1 + ...+ xryr.

We shall frequently use the following straightforward inequalities which are valid
for every v ∈MK :

|n1a1 + ...+ nrar|v ≤ (|n1|+ ...+ |nr|)s(v) max(|a1|v, ..., |ar|v)(3.1)
for n1, ..., nr ∈ Z, a1, ..., ar ∈ Q,

|(x,y)|v ≤ rs(v)|x|v|y|v for x,y ∈ Qr,(3.2)
|det(x1, ...,xr)|v ≤ (r!)s(v)|x1|v · · · |xr|v for x1, ...,xr ∈ Q

r
.(3.3)

We can generalise (3.3) to exterior products. Let n ∈ {1, ..., r} and x1, ...,xn ∈ Q
r
.

For I = {i1, ..., in} with 1 ≤ i1 < ... < in ≤ r, define the n× n-determinant

(x1 ∧ ... ∧ xn)I :=

∣∣∣∣∣∣∣
x1,i1 . . . x1,in

...
...

xn,i1 . . . xn,in

∣∣∣∣∣∣∣
where xi = (xi1, ..., xir). Letting I1, ..., I(rn) be the subsets of {1, ..., r} of cardinal-
ity n in some fixed order, we define

x1 ∧ ... ∧ xn := ((x1 ∧ ... ∧ xn)I1 , ..., (x1 ∧ ... ∧ xn)I(rn)
) ∈ Q(rn).

Note that x1 ∧ ... ∧ xn 6= 0 if and only if {x1, ...,xn} is (Q-) linearly independent.
Clearly (3.3) can be generalised to

(3.4) |x1 ∧ ... ∧ xn|v ≤ (n!)s(v)|x1|v...|xn|v for v ∈MK .
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Schmidt [18] introduced the following height for a Q-linear subspace Y of Q
r

:
H((0)) = H(Q

r
) = 1 and, if Y has basis {a1, ...,an}, say, then

H(Y ) := H(a1 ∧ ... ∧ an).

This is independent of the choice of {a1, ...,an}. For if {b1, ...,bn} is any other
basis of Y , with bi =

∑n
j=1 αijaj for i = 1, ..., n where ∆ := det(αij) 6= 0, then

b1∧...∧bn = ∆·a1∧...∧an and this implies that H(b1∧...∧bn) = H(a1∧...∧an).

The orthogonal complement of Y in Q
r

is defined by

Y ⊥ = {c ∈ Qr : (c,u) = 0 for all u ∈ Y }.

By [18], p. 433 we have

(3.5) H(Y ⊥) = H(Y ).

Express Q
r

as a direct sum Q
r1 ⊕ Qr2 where r = r1 + r2. Suppose that Y ⊆ Qr

is a direct sum of Q-linear subspaces Y1, Y2 of Q
r1
, Q

r2 , respectively, i.e.

Y = Y1 ⊕ Y2 =
{

(u1,u2) : u1 ∈ Y1,u2 ∈ Y2

}
.

Then

(3.6) H(Y ) = H(Y1) ·H(Y2).

Namely, choose bases {b1, ...,bn1}, {cn1+1, ..., cn} of Y1, Y2, respectively; then
{a1, ...,an} with ai = (bi,0) for i = 1, ..., n1,ai = (0, ci) for i = n1 + 1, ..., n is a
basis of Y . Thus, if (a1 ∧ ... ∧ an)I 6= 0 then I = I1 ∪ I2, where I1 ⊆ {1, ..., r1}
has cardinality n1 and I2 ⊆ {r1 + 1, ..., r} has cardinality n − n1. In that case it
is easy to verify that

(a1 ∧ ... ∧ an)I = (b1 ∧ ... ∧ bn1)I1 · (cn1+1 ∧ ... ∧ cn)I2 .

Now (3.6) follows from the identity

H(x1y1, x1y2, ..., xmyn−1, xmyn) = H(x1, ..., xm) ·H(y1, ..., yn)

for x1, ..., xm, y1, ..., yn ∈ Q.

Let Σ be a Gal(Q/K)-action on {1, ..., r} (r ≥ 1) and let ΛΣ be the corresponding
K-algebra defined by (2.1). We have ΛΣ ⊆ Lr, where L is the field defined by

Gal(Q/L) = {σ ∈ Gal(Q/K) : σ(i) = i for i = 1, ..., r}.
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L is a finite, normal extension of K. If w1, ..., wg are the places on L lying above
v ∈ MK , then there are σ1, ..., σg ∈ Gal(Q/K) such that |.|wi = |σi(.)|1/gv for
i = 1, ..., g (recall that | · |v has been extended from K to Q). This implies that
for λ = (λ1, ..., λr) ∈ ΛΣ,

|λ|wi = |λ1, ..., λr|wi = |σi(λ1), ..., σi(λr)|1/gv

= |λσi(1), ..., λσi(r)|
1/g
v = |λ|1/gv ,

whence
|λ|v =

∏
w|v

w∈ML

|λ|w.

It follows that |λ|v is independent of the choice of the continuation of |.|v to Q.
Further,

(3.7) H(λ) =
∏

v∈MK

∏
w|v

w∈ML

|λ|w =
∏

v∈MK

|λ|v for λ ∈ ΛΣ

(so H(λ) can be defined by taking the product over v ∈MK although the coordi-
nates of λ are not all in K).

In order to define a height for K-linear subspaces of ΛΣ, we need the following
lemma.

Lemma 2. Let W be a K-linear subspace of ΛΣ and let {a1, ...,an} be a basis of
W . Then {a1, ...,an} is Q-linearly independent.

Proof. Assume the contrary. Without loss of generality we assume that for some
i < n, {a1, ...,ai} is a maximal Q-linearly independent subset of {a1, ...,an}. Then
ai+1 = α1a1 + ... + αiai for certain, uniquely determined α1, ..., αi ∈ Q. Since
every σ ∈ Gal(Q/K) permutes the coordinates of aj (j = 1, ..., n) we have ai+1 =
σ(α1)a1 + ...+ σ(αi)ai for σ ∈ Gal(Q/K). So by the unicity of αj , σ(αj) = αj for
every σ ∈ Gal(Q/K), i.e. αj ∈ K for j = 1, ..., i. Hence {a1, ...,ai+1} is K-linearly
dependent. But this contradicts that {a1, ...,an} is a basis of W . �

Now we define the height of a K-linear subspace W of ΛΣ by

(3.8) H(W ) := H(a1 ∧ ... ∧ an),

where {a1, ...,an} is any basis of W . Under the action Σ, every σ ∈ Gal(Q/K)
maps a subset I of {1, ..., r} of cardinality n to another such subset but it does not
necessarily preserve the increasing order. It follows that every σ permutes, up to
signs, the coordinates of a1∧ ...∧an. Since signs do not affect the absolute values,
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we can repeat the above arguments leading to (3.7) and conclude that for v ∈MK

the quantity |a1 ∧ ... ∧ an|v does not depend on the choice of the continuation of
v to Q, and that the height can be obtained by taking the product over v ∈MK ,

(3.9) H(W ) =
∏

v∈MK

|a1 ∧ ... ∧ an|v.

§4. The quantitative Subspace theorem.

Our main tool is the quantitative Subspace theorem from [6] which we recall below.
This is an improvement of the quantitative Subspace theorem of Schmidt [21] and
its p-adic generalisation by Schlickewei [15].

For a linear form l(X) := α1X1 + ... + αnXn where a := (α1, ..., αn) ∈ Qn is
non-zero and for a number field K put

H(l) := H(a), K(l) := K(α1/αi, ..., αn/αi)

where i is any index from {1, ..., n} with αi 6= 0. For any field K, any finite-
dimensional K-vector space V , and any subset S of V , the linear scattering of
S in V is defined as the smallest integer h for which there are proper K-linear
subspaces W1, ...,Wh of V with S ⊂ W1 ∪ ... ∪Wh; if such an integer h does not
exist, then the linear scattering of S in V is defined to be ∞. For instance, S has
linear scattering ≥ 2 in V if and only if S contains a basis of V .

Now let K be an algebraic number field, S a finite set of places on K containing all
infinite places, n an integer ≥ 2, δ a real with 0 < δ < 1 and for v ∈ S, {l1v, ..., lnv}
a linearly independent set of linear forms in n variables with algebraic coefficients
such that

(4.1) H(liv) ≤ H, [K(liv) : K] ≤ D for v ∈ S, i = 1, ..., n,

where H ≥ 1, D ≥ 1. By det(l1, ..., ln) we denote the coefficient determinant of n
linear forms l1, ..., ln in n variables.

Lemma 3. The set of x ∈ Kn with

(4.2)


0 <

∏
v∈S

n∏
i=1

|liv(x)|v
|x|v

≤ n− 1
2 (n+δ)

{∏
v∈S
|det(l1v, ..., lnv)|v

}
H(x)−n−δ,

H(x) ≥ n1/2H
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has linear scattering in Kn at most{
260n2

δ−7n
}s log 4D · log log 4D .

Proof. For x = (x1, ..., xn) ∈ Kn, v ∈ MK , put ||x||v := |x|v if v is finite and
||x||v := (|x1|2/s(v) + ...+ |xn|2/s(v)

v )s(v)/2 if v is infinite, and define the Euclidean
height H2(x) :=

∏
v∈MK

||x||v. This height depends only on x and not on K;
hence the Euclidean height can be extended uniquely to a height H2 : Q

n → R.
It is easy to see that |x|v ≤ ||x||v ≤ ns(v)/2|x|v for x ∈ Qn, v ∈ MK ; hence
H(x) ≤ H2(x) ≤ n1/2H(x) for x ∈ Qn. Let H2 := maxi,vH2(liv), where H2(liv)
is the Euclidean height of the coefficient vector of liv. Clearly, every x ∈ Kn with
(4.2) satisfies

(4.3)

 0 <
∏
v∈S

n∏
i=1

|liv(x)|v
||x||v

≤
∏
v∈S
|det(l1v, ..., lnv)|v ·H2(x)−n−δ,

H2(x) ≥ H2,

and by the Theorem of [6], the set of x ∈ Kn with (4.3) has linear scattering at
most {260n2

δ−7n}s log 4D · log log 4D. �

Let K be a number field and S a finite set of places as above, and let Σ be a
Gal(Q/K)-action on {1, ..., r} where r ≥ 2. Further, let W be an n-dimensional
K-linear subspace of ΛΣ, with n ≥ 2. We need an analogue of Lemma 3 for W .
As before, we denote vectors of W by u = (u1, ..., ur). A non-empty subset I of
{1, ..., r} is called independent if {ui : i ∈ I} is Q-linearly independent on W , that
is, for ci ∈ Q (i ∈ I) we have

(4.4)
∑
i∈I

ciui = 0 for all u ∈W =⇒ ci = 0 for i ∈ I.

Let {a1 = (a11, ..., a1r), ...,an = (an1, ..., anr)} be a basis of W . Then for a subset
I of {1, ..., r} of cardinality n we have that I is independent⇐⇒

∑
i∈I ciui = 0 for

u = a1, ...,an implies that ci = 0 for i ∈ I ⇐⇒ (a1 ∧ ... ∧ an)I =
det((aij)i=1,...,n, j∈I) 6= 0. Now Lemma 2 implies that {1, ..., r} has independent
subsets of cardinality n.
In what follows, by Iv (v ∈ S) we always denote independent subsets of {1, ..., r}
of cardinality n, and by I = (Iv : v ∈ S) a collection of such subsets. For such a
collection I we define

∆(I,W ) :=
∏
v∈S
|(a1 ∧ ... ∧ an)Iv |v ·

∏
v/∈S

|a1 ∧ ... ∧ an|v;

this quantity plays the role of
∏
v∈S |det(l1v, ..., lnv)|v. ∆(I,W ) does not depend on

the choice of the basis {a1, ...,an} of W . Namely, let {b1, ...,bn} be another basis
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of W , where bi =
∑n
j=1 αijaj for i = 1, ..., n, and put ∆ := det(αij). Then for

each subset I of {1, ..., r} of cardinality n we have (b1∧...∧bn)I = ∆·(a1∧...∧an)I ;
together with the Product formula this implies that∏
v∈S
|(b1 ∧ ... ∧ bn)Iv |v ·

∏
v/∈S

|b1 ∧ ... ∧ bn|v =
∏

v∈MK

|∆|v ·∆(I,W ) = ∆(I,W ) .

Lemma 4. Let n, r be integers ≥ 2, δ a real with 0 < δ < 1, K an algebraic
number field, S a finite set of places on K of cardinality s containing all infinite
places, Σ a Gal(Q/K)-action on {1, ..., r}, W an n-dimensional K-linear subspace
of ΛΣ, and I = (Iv : v ∈ S) a collection of independent subsets of {1, ..., r} of
cardinality n. Then the set of u = (u1, ..., ur) ∈W with

(4.5)
∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ ∆(I,W ) ·H(u)−n−δ

has linear scattering in W at most{
261n2

r2nδ−7n
}s
.

In the proof of Lemma 4 we use Lemma 3 and a gap principle. This gap principle
is developed in §5. Lemma 4 will be proved in §6.

§5. A gap principle.

Let again K be an algebraic number field with [K : Q] = d, S a finite set of
places on K of cardinality s containing all infinite places, Σ a Gal(Q/K)- action
on {1, ..., r} where r ≥ 2, and W an n-dimensional K-linear subspace of ΛΣ, where
n ≥ 2. Further, I = (Iv : v ∈ S) is a collection of independent subsets of {1, ..., r}
of cardinality n. We shall estimate the linear scattering in W of sets of u ∈ W
with

(5.1)
∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ ∆(I,W )H(u)−n · Q
P
, H(u) < B,

where P ≥ 1, Q ≥ 1, B ≥ 2P . First we prove some auxiliary results. By |S| we
denote the cardinality of a set S.

Lemma 5. Let θ be a real with 0 < θ ≤ 1
2 and q an integer ≥ 1. Then there

exists a set Γ with the following properties:
(i). |Γ| ≤ {e(2 + θ−1)}q, where e = 2.7182...;
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(ii). Γ consists of q-tuples γ = (γ1, ..., γq) with γi ≥ 0 for i = 1, ..., q;
(iii). for every set of reals F1, ..., Fq,M with

(5.2) 0 < Fi ≤ 1, F1 · · ·Fq ≥M, M < 1

there is a tuple γ ∈ Γ with

(5.3) Mγi+(θ/q) < Fi ≤Mγi for i = 1, ..., q.

Proof. This is Lemma 9 (ii) of [6]. �

Lemma 6. Let F be a real ≥ 1 and let S be a subset of W of linear scattering
in W at least

max
(

6F 5d, 4× 7d+2s

)
.

Then there are u1, ...,un ∈ S with

(5.4) 0 <
∏
v/∈S

|u1 ∧ ... ∧ un|v
|u1|v...|un|v

≤ F−1.

Proof. This is a variation on Lemma 10 of [6]. Let ℘ be a prime ideal outside S
of which the norm N℘ is minimal. We assume that S satisfies the condition of
Lemma 6 and moreover that 0 /∈ S and that

(5.5) (N℘)−1/d < |u|℘ ≤ 1 for u ∈ S.

This is no restriction. Namely, for non-zero u ∈ W we have |u|℘ = (N℘)−α/d

with α ∈ Q. Write α = m + β with m ∈ Z and 0 ≤ β < 1, choose λu ∈ K∗ with
|λu|℘ = (N℘)−m/d, and put u′ := λ−1

u u. Then u′ ∈W and (N℘)−1/d < |u′|℘ ≤ 1.
Since the left-hand side of (5.4) does not change when u1, ...,un are multiplied
with scalars from K∗, it suffices to prove Lemma 6 for S ′ := {u′ : u ∈ S} instead
of S.
We assume that Lemma 6 is false, i.e. for all linearly independent u1, ...,un ∈ S
we have

(5.6)
∏
v∈S

|u1 ∧ ... ∧ un|v
|u1|v...|un|v

> F−1.

Fix a linearly independent subset {u1, ...,un} of S (this exists since S has linear
scattering ≥ 2). For y1, ...,ym ∈ W , let [y1, ...,ym] be the K-linear subspace of
W generated by y1, ...,ym. In the remainder of the proof we consider only those
x ∈ S with

(5.7) x /∈ [u1, ...,un−1], x /∈ [u1, ...,un−2,un];
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thus, we exclude at most two proper linear subspaces of W . We write x = x1u1 +
... + xnun with x1, ..., xn ∈ K. For i = 1, 2, ... {Cvi : v 6∈ S} will denote a set of
numbers of the form {|x1 ∧ ...∧xn|v/|x1|v...|xn|v : v 6∈ S} where x1, ...,xn are any
linearly independent elements from S which may be different for each i; by (5.6)
and (3.4) such numbers satisfy

(5.8) 0 < Cvi ≤ 1 for v /∈ S,
∏
v/∈S

Cvi > F−1.

Fix x ∈ S with (5.7). Then {u1, ...,un−1,x}, {u1, ...,un−2,un,x} are linearly
independent. Hence for v ∈MK\S we have

(5.9)


|xn−1|v =

|u1 ∧ ... ∧ un−2 ∧ un ∧ x|v
|u1 ∧ ... ∧ un|v

=
Cv1

Cv2

|x|v
|un−1|v

,

|xn|v =
|u1 ∧ ... ∧ un−1 ∧ x|v
|u1 ∧ ... ∧ un|v

=
Cv3

Cv2

|x|v
|un|v

.

Let y be any vector in S satisfying

(5.10) y 6∈ [u1, ...,un−1], y 6∈ [u1, ...,un−2,un], y 6∈ [u1, ...,un−2,x]

and write y = y1u1 + ...+ ynun with y1, ..., yn ∈ K. Similarly to (5.9) we have

(5.11) |yn−1|v =
Cv4

Cv2

|y|v
|un−1|v

, |yn|v =
Cv5

Cv2

|y|v
|un|v

for v /∈ S.

Further, since {u1, ...,un−2,x,y} is linearly independent we have

|xn−1yn − xnyn−1|v =
|u1 ∧ ... ∧ un−2 ∧ x ∧ y|v

|u1 ∧ ... ∧ un|v
(5.12)

=
Cv6

Cv2

|x|v|y|v
|un−1|v|un|v

for v /∈ S.

Now (5.9), (5.11), (5.12), (5.8) imply

|xn−1yn|v
max(|xn−1yn|v, |xnyn−1|v, |xn−1yn − xnyn−1|v)

=
Cv1Cv5

max(Cv1Cv5, Cv3Cv4, Cv2Cv6)
≥ Cv1Cv5 .

Hence, again by (5.8),

∏
v/∈S

|xn−1yn|v
max(|xn−1yn|v, |xnyn−1|v, |xn−1yn − xnyn−1|v)

> F−2.(5.13a)
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Similarly, we have

∏
v/∈S

|xnyn−1|v
max(|xn−1yn|v, |xnyn−1|v, |xn−1yn − xnyn−1|v)

> F−2,(5.13b)

∏
v/∈S

|xn−1yn − xnyn−1|v
max(|xn−1yn|v, |xnyn−1|v, |xn−1yn − xnyn−1|v)

> F−2.(5.13c)

Define the integer m by

(5.14) (N℘)(m−1)/d < F 2 ≤ (N℘)m/d.

From (5.6) and (3.4) it follows that F > 1. Hence m ≥ 1. We distinguish two
cases.

First case: m = 1.
From the definition of the absolute values it follows that the left-hand side of each
of the inequalities (5.13 a, b, c) is of the form (Na)−1/d, where a is an ideal of OK
composed of prime ideals outside S. This ideal is integral since for every v 6∈ S,
the corresponding factors in the left-hand sides of (5.13 a, b, c) are ≤ 1. We have
a = (1) for otherwise, since ℘ 6∈ S was chosen to have minimal norm and since
m = 1, we would have had (Na)−1/d ≤ (N℘)−1/d ≤ F−2. Therefore, the left-hand
sides of (5.13 a, b, c) are equal to 1. But then, the factors in the products on the
left-hand sides of (5.13 a,b,c) are also equal to 1. It follows that if x,y ∈ S satisfy
(5.7), (5.10), respectively, then

|xn−1yn|v = |xnyn−1|v = |xnyn−1 − xn−1yn|v for v /∈ S.

Hence u := xn−1yn/xnyn−1 satisfies |u|v = |1 − u|v = 1 for v /∈ S, i.e. u, 1 −
u ∈ O∗S (note that u ∈ K). By Theorem 1 of [3], there are at most 3 ×
7d+2s possibilities for u. Fix x ∈ S with (5.7). Then there is a set U of car-
dinality ≤ 3 × 7d+2s such that every y ∈ S with (5.10) satisfies yn−1/yn ∈
U . In other words, S is contained in the union of the proper linear subspaces
[u1, ...,un−1], [u1, ...,un−2,un], [u1, ...,un−2,x], [u1, ...,un−2, αun−1 +un] (α ∈ U)
of W . Hence S has linear scattering in W at most 3 + 3 × 7d+2s < 4 × 7d+2s.
This contradicts our assumption on S in the statement of Lemma 6; therefore, our
assumption that Lemma 6 is false was incorrect.

Second case: m ≥ 2.
We consider again x = x1u1 + ...+ xnun ∈ S with (5.7). By (5.9) with v = ℘ we
have |xn−1/xn|℘ = C℘1|un|℘/C℘3|un−1|℘. Together with (5.5), (5.8), (5.14) this
implies

(N℘)−(1+ 1
2m)/d ≤ F−1(N℘)−1/d <

∣∣∣xn−1

xn

∣∣∣
℘
< F (N℘)1/d ≤ (N℘)(1+ 1

2m)/d.
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We have |xn−1/xn|℘ = (N℘)kx/d for some kx ∈ Z. Clearly,

−1− 1
2
m < kx < 1 +

1
2
m.

Therefore, for kx there are at most m+ 2 possibilities.

Fix π ∈ ℘ such that |π|℘ = (N℘)−1/d. Then

xn−1 = xnπ
kxαx, with αx ∈ K, |αx|℘ = 1.

We call x,y ∈ S congruent if they both satisfy (5.7) and if kx = ky and αx ≡
αy (mod ℘m), i.e. |αx − αy|℘ ≤ (N℘)−m/d. We claim that each congruence class
has linear scattering at most 1. Namely, fix x from a given congruence class, and
take y from the same class. Suppose that y /∈ [u1, ...,un−2,x]. Then

|xn−1yn − xnyn−1|℘
max(|xn−1yn|℘, |xnyn−1|℘, |xn−1yn − xnyn−1|℘)

=
|π|kx

℘ |xnyn|℘|αx − αy|℘
|π|kx

℘ |xnyn|℘max(|αx|℘, |αy|℘, |αx − αy|℘)

=
|αx − αy|℘

max(1, |αx − αy|℘)
≤ (N℘)−m/d ≤ F−2.

Since the other factors in the left-hand side of (5.13c) are ≤ 1, this contradicts
(5.13c). It follows that every y ∈ S with (5.7) which is congruent to x belongs to
[u1, ...,un−2,x]. This proves our claim.
By m ≥ 2 and (5.14) we have (N℘)m < F 4d. Taking into consideration the number
of possibilities for kx, it follows that the number of congruence classes is

< (m+ 2)(N℘)m <

(
4d logF
logN℘

+ 2
)
F 4d.

Hence S has linear scattering

< 2 +
(

4d logF
log 2

+ 2
)
F 4d < 6F 5d;

here we must add 2 because of (5.7). So again, the assumption that Lemma 6 is
false leads to a contradiction with the condition on S. We conclude that Lemma
6 holds true in both cases m = 1 and m ≥ 2. �

Below we state our gap principle:

Lemma 7. Let P,Q,B be reals with P ≥ 1, Q ≥ 1, B ≥ 2P . Then the set of
u ∈W with

(5.1)
∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ ∆(I,W )H(u)−n.
Q

P
, H(u) < B
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has linear scattering in W at most Q5d

(
270n10r · logB

log 2P

)ns+1

.

Proof. Let F be the set of u ∈ W satisfying (5.1) and also u1 · · ·ur 6= 0. Thus,
fromW we exclude solutions of (5.1) belonging to at most r proper linear subspaces
of W . For u ∈ F we have u1 · · ·ur ∈ K∗, so by the Product formula and (3.7),

∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≥
∏
v∈S

|u1...ur|v
|u|rv

=
(∏
v∈S
|u|v

)−r
·
(∏
v/∈S

|u1...ur|v
)−1

(5.15)

≥
( ∏
v∈MK

|u|v
)−r

= H(u)−r ≥ B−r.

Put
κ :=

logB
log 2P

, θ :=
1

2rκ
, N := [(2n− 2)κ] + 1.

By (5.15) and Lemma 5 withM = B−r, there is a set Γ of ns-tuples of non-negative
reals γ = (γiv : v ∈ S, i ∈ Iv) of cardinality

|Γ| ≤ {e(2 + θ−1)}ns

such that for every u ∈ F there is a tuple γ ∈ Γ with

(5.16) (B−r)γiv+(θ/ns) <
|ui|v
|u|v

≤ (B−r)γiv for v ∈ S, i ∈ Iv .

Further, for every u ∈ F there is a j ∈ {1, ..., N} such that

(5.17) B(j−1)/N ≤ H(u) < Bj/N .

Let F(γ, j) be the set of u ∈ F satisfying (5.16), (5.17). Since κ = logB/ log 2P ≥
1, the number of sets F(γ, j) is at most

|Γ| ·N ≤ {e(2 + 2rκ)}ns{(2n− 2)κ+ 1} ≤ 2nκ · (3erκ)ns.

We shall show that each set F(γ, j) has linear scattering in W

(5.18) < max(6F 5d, 4× 7d+2s) with F := 2n!Q.

Since d ≤ 2s we have max(6F 5d, 4 × 7d+2s) ≤ 6(2n!)10sQ5d. Assuming (5.18), it
follows that F has linear scattering in W at most

2nκ(3erκ)ns · 6(2n!)10sQ5d ≤ Q5d · 12nκ(n!)10s(96erκ)ns
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≤ Q5d

(
270n10r

logB
log 2P

)ns+1

− r;

taking into consideration the solutions with u1 · · ·ur = 0, this implies Lemma 7.

So it remains to prove that the linear scattering of F(γ, j) is smaller than the
bound in (5.18). Suppose the contrary. Then by Lemma 6, there are linearly
independent u1, ...,un ∈ F(γ, j) with

(5.19)
∏

v∈MK\S

|u1 ∧ ... ∧ un|v
|u1|v...|un|v

≤ (2n!)−1Q−1.

Take v ∈ S. Let ui = (ui1, ..., uir) for i = 1, ..., n. Suppose for convenience that
Iv = {1, ..., n}. Then by (5.16),

|(u1 ∧ ... ∧ un)Iv |v
|u1|v...|un|v

≤ (n!)s(v) ·max
τ

|uτ(1),1|v
|uτ(1)|v

· · ·
|uτ(n),n|v
|uτ(n)|v

≤ (n!)s(v)
(
B−r

)∑
i∈Iv

γiv

where the maximum is taken over all permutations τ of (1, ..., n). By taking the
product over v ∈ S we obtain, using the first inequality of (5.16) with u1 replacing
u and κ = logB/ log 2P , θ = 1/2rκ,∏

v∈S

|(u1 ∧ ... ∧ un)Iv |v
|u1|v...|un|v

≤ n!
(
B−r

)∑
i,v

γiv(5.20)

< n!
(∏
v∈S

∏
i∈Iv

|u1i|v
|u1|v

)
Brθ

≤ n!∆(I,W )H(u1)−nQP−1B1/2κ

= 2n!Q∆(I,W )H(u1)−nB−1/2κ.

Since {u1, ...,un} is a basis of W we have, in view of (3.7),

∆(I,W ) =
∏
v∈S
|(u1 ∧ ... ∧ un)Iv |v.

∏
v/∈S

|u1 ∧ ... ∧ un|v

=
∏
v∈S

|(u1 ∧ ... ∧ un)Iv |v
|u1|v · · · |un|v

·
∏
v 6∈S

|u1 ∧ ... ∧ un|v
|u1|v · · · |un|v

·H(u1) · · ·H(un) .

Together with (5.20), (5.19), (5.17) and N = [(2n− 2)κ+ 1] this implies that

∆(I,W ) < 2n!Q∆(I,W )H(u1)−nB−1/2κ · (2n!)−1Q−1 ·H(u1)H(u2)...H(un)

= ∆(I,W )B−1/2κH(u1)1−nH(u2)...H(un)

< ∆(I,W )B−1/2κ ·B(1−n)(j−1)/NB(n−1)j/N

= ∆(I,W ) ·B−1/2κ+(n−1)/N

≤ ∆(I,W ),
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which is impossible. Thus, our assumption that the linear scattering of F(γ, j) is
larger than the bound in (5.18) leads to a contradiction. This completes the proof
of Lemma 7. �

§6. Proof of Lemma 4.

Let againK be an algebraic number field, S a finite set of places onK of cardinality
s containing all infinite places, Σ a Gal(Q/K)-action on {1, ..., r} where r ≥ 2, W
an n-dimensional K-linear subspace of ΛΣ where n ≥ 2 and I = (Iv : v ∈ S) a
collection of independent subsets of {1, ..., r} of cardinality n. Further, let 0 < δ <
1. We consider the solutions of

(4.5)
∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ ∆(I,W ) ·H(u)−n−δ in u ∈W .

We shall distinguish between “large” and “small” solutions. The small solutions
are treated by the gap principle. We shall deal with the large solutions u of
(4.5) by choosing a suitable basis {a1, ...,an} for W and then showing that the
corresponding vectors x = (x1, ..., xn) ∈ Kn defined by u = x1a1 + ... + xnan
satisfy an inequality of type (4.2) to which Lemma 3 is applicable.

We first choose the basis. Put

W0 := {u = (u1, ..., ur) ∈W : u1 · · ·ur 6= 0}.

Choose a vector a0 = (a01, ..., a0r) from W0 with minimal height and define the
linear form

l(X) =
r∑
j=1

a−1
0j Xj .

Let
T1 := {u ∈W : l(u) = 0}.

T1 is a proper K-linear subspace of W since l(a0) = r 6= 0. Choose a basis
{a1, ...,an} of W such that ai ∈ W0 and ai /∈ T1 for i = 1, ..., r and such that
subject to these conditions, the product

H(a1)...H(an) is minimal.

Clearly, we may assume that H(a1) ≤ ... ≤ H(an). Thus, putting M := H(an),
we have

(6.1) H(a0) ≤ H(a1) ≤ ... ≤ H(an) = M.
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We must normalise a1, ...,an. The properties of a1, ...,an just mentioned are not
affected when for i = 1, ..., n, the vector ai is replaced by λiai for any non-zero
λi ∈ K. Take λi := (a01 · · · a0r)−1l(ai)−1. Each λi belongs to K∗ (as can be
verified by checking that σ(λi) = λi for σ ∈ Gal(Q/K)) and l(λiai) = (a01...a0r)−1

for i = 1, ..., r. Therefore, we may assume that

(6.2) l(ai) = (a01 · · · a0r)−1 for i = 1, ..., r

and shall do so in the sequel. Because of (6.2) we have some control over the
quantities |ai|v(v ∈ MK , i = 1, ..., n). Namely, let ai = (ai1, ..., air); then by (6.2)
we have 1 = (a01 · · · a0r)(

∑r
j=1 aij/a0j) and together with (3.1) this implies that

(6.3) 1 ≤ rs(v)|a0|r−1
v |ai|v for v ∈MK , i = 1, ..., n.

We need (6.3) to estimate |u|v and |x|v in terms of each other where x = (x1, ..., xn)
∈ Kn is defined by x1a1 + ...+ xnan.

Let T2 be the K-linear subspace of W generated by a1, ...,an−1. For every u ∈
W0\(T1∪T2), {a1, ...,an−1,u} is a basis of W . So since a1, ...,an were chosen such
that H(a1) · · ·H(an) is minimal we have H(a1)...H(an−1)H(u) ≥ H(a1)...H(an).
Hence

(6.4) H(u) ≥M for u ∈W0\(T1 ∪ T2).

Because of (6.4), the set of solutions of (4.5) can be divided into three sets:

A = {u ∈W0\(T1 ∪ T2) : u satisfies (4.5), H(u) ≥ (2M)400r3/δ},

B = {u ∈W0\(T1 ∪ T2) : u satisfies (4.5), M ≤ H(u) < (2M)400r3/δ},
C = {u ∈ T1 ∪ T2 ∪ {u1 = 0} ∪ ... ∪ {ur = 0} : u satisfies (4.5)}.

Clearly, C has linear scattering ≤ r + 2 in W . It remains to estimate the linear
scatterings of A and B.

We first estimate the linear scattering of A in W . Take u ∈ A. Then x =
(x1, ..., xn) ∈ Kn defined by u = x1a1 + ...+xnan is non-zero. By (6.3) and r ≥ n
we have

|u|v = ns(v)|x|vmax(|a1|v, ..., |an|v)(6.5)
≤ ns(v)r(n−1)s(v)|a0|(r−1)(n−1)

v |x|v|a1|v...|an|v
≤ rns(v)|a0|(r−1)(n−1)

v |a1|v...|an|v.|x|v for v ∈MK .

By taking the product over v ∈MK we obtain, using (6.1),

H(u) ≤ rnH(a0)(r−1)(n−1)H(a1)...H(an)H(x)(6.6)
≤ rnM (r−1)(n−1)+nH(x)
≤ rnMrnH(x).
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For v ∈ MK , choose an independent set I ⊂ {1, ..., r} of cardinality n such that
|(a1 ∧ ... ∧ an)I |v = |a1 ∧ ... ∧ an|v. Suppose for convenience that I = {1, ..., n}.
Then

(6.7) ∆ := (a1 ∧ ... ∧ an)I =

∣∣∣∣∣∣
a11 . . . an1
...

...
a1n . . . ann

∣∣∣∣∣∣ .
We have ui =

∑v
j=1 ajixj for i = 1, ..., n. Hence by Cramer’s rule,

(6.8) xi =
n∑
j=1

(∆ij/∆)uj ,

where ∆ij is ± the determinant obtained by deleting the i-th row and j-th column
from ∆. By (3.3) and (6.3) we have for v ∈MK ,

|∆ij |v ≤ {(n− 1)!}s(v)
n∏
i=1
i6=j

|ai|v ≤ {(n− 1)!}s(v)rs(v)|a0|r−1
v |a1|v...|an|v.

By inserting this into (6.8) and using (6.7) we obtain

|x|v ≤ (n!r)s(v)|a0|r−1
v

|a1|v...|an|v
|a1 ∧ ... ∧ an|v

.|u|v for v ∈MK ;

so, by taking the product over v, using n ≤ r and (3.9),

(6.9) H(x) ≤ rn+1M
r+n−1

H(W )
H(u) ≤ rn+1Mr+n−1H(u).

For j = 1, ..., r define the linear form lj by taking the j-th coordinates of a1, ...,an,
i.e.

lj(X) = a1jX1 + ...+ anjXn.

For j = 1, ..., r define the field Kj by Gal(Q/Kj) = {σ ∈ Gal(Q/K) : σ(j) = j}
(where the action by Gal(Q/K) on {1, ..., r} is by means of Σ). The cosets of
Gal(Q/Kj) in Gal(Q/K) are {σ : σ(j) = k} for certain k ∈ {1, ..., r}. Hence [Kj :
K] ≤ r. For σ ∈ Gal(Q/Kj), j = 1, ..., r, i = 1, ..., n we have σ(aij) = ai,σ(j) = aij
hence lj has its coefficients in Kj . It follows that

(6.10) [K(lj) : K] ≤ r for j = 1, ..., r.

Let L = K1...Kr. For w ∈ML we have, by (6.3),

|lj |w = |a1j , ..., anj |w ≤ max(|a1|w, ..., |an|w)

≤ r(n−1)s(w)|a0|(r−1)(n−1)
w |a1|w...|an|w.
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So by taking the product over w ∈ML, on using (6.1),

H(lj) ≤ rn−1M (r−1)(n−1)+n ≤ rn−1Mrn for j = 1, ..., r.

Together with H(u) ≥ (2M)400r3/δ and (6.6) this implies that

H(x) ≥ r−nM−rnH(u) ≥ r−nM−rn(2M)400r3/δ(6.11)
≥ n1/2rn−1Mrn

≥ n1/2 · max
j=1,...,r

H(lj).

We shall show that

(6.12)
∏
v∈S

∏
i∈Iv

|li(x)|v
|x|v

≤ n−1/2
∏
v∈S
|det(li : i ∈ Iv)|v ·H(x)−n−99δ/100.

First observe that by (3.4),∏
v∈S
|det(li : i ∈ Iv)|v =

∏
v∈S
|(a1 ∧ ... ∧ an)Iv |v(6.13)

= ∆(I,W )
(∏
v/∈S

|a1 ∧ ... ∧ an|v
)−1

≥ ∆(I,W )
(∏
v/∈S

|a1|v...|an|v
)−1

.

Further, by (6.5) and (6.3),∏
v∈S
|u|v ≤

∏
v∈S
{rns(v)|a0|(r−1)(n−1)

v |a1|v...|an|v} ·
∏
v∈S
|x|v(6.14)

= r
∏
v∈S

{ n∏
i=1

rs(v)|a0|r−1
v |ai|v

}n−1
n
(∏
v∈S
|a1|v...|an|v

)1/n∏
v∈S
|x|v

≤ r
∏

v∈MK

{ n∏
i=1

rs(v)|a0|r−1
v |ai|v

}n−1
n
(∏
v∈S
|a1|v...|an|v

)1/n∏
v∈S
|x|v

= rnH(a0)(r−1)(n−1)H(a1)...H(an) ·
(∏
v/∈S

|a1|v...|an|v
)−1/n

.
∏
v∈S
|x|v

≤ rnMrn

(∏
v/∈S

|a1|v...|an|v
)−1/n

.
∏
v∈S
|x|v.
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We have li(x) = ui for i = 1, ..., r. Now (6.14), (6.13), (6.9) imply that

∏
v∈S

∏
i∈Iv

|li(x)|v
|x|v

· n 1
2 (n+δ)

(∏
v∈S
|det(li : i ∈ Iv)|v

)−1

·H(x)n+99δ/100

≤
(∏
v∈S

∏
i∈Iv

|ui|v
|u|v

){
rnMrn

}n(∏
v 6∈S

|a1|v...|an|v
)−1

·

· n 1
2 (n+δ)∆(I,W )−1

(∏
v/∈S

|a1|v...|an|v
)
·

·
(
rn+1Mr+n−1

)n+99δ/100

H(u)n+99δ/100

=
(∏
v∈S

∏
i∈Iv

|ui|v
|u|v

)
∆(I,W )−1H(u)n+δ·

· n 1
2 (n+δ)rn

2+(n+1)(n+99δ/100)Mrn2+(r+n−1)(n+99δ/100)H(u)−δ/100.

By (4.5) and by H(u) ≥ (2M)400r3/δ, 0 < δ < 1, r ≥ n ≥ 2 this is ≤ 1. This
proves (6.12).

By Lemma 3 and (6.10), the set of x ∈ Kn with (6.11), (6.12) has linear scattering
in Kn at most

NA :=
{

260n2
(

100
99

)7n

δ−7n

}s
log 4r · log log 4r .

Since u 7→ x is a bijective linear mapping from W to Kn, it follows that the linear
scattering of A in W is at most NA.

We now estimate the linear scattering of B in W . Put

θ := r(ns−1)/(ns+1).

Let k be the smallest integer such that

θk ≥ 400r3/δ .

As r ≥ 2 and (ns+ 1)/(ns− 1) ≤ 3, we have

(6.15) k ≤ 1 +
ns+ 1
ns− 1

(
3 +

log(400/δ)
log r

)
≤ 10 + 5 log(400/δ).

For each u ∈ B, there is a j ∈ {1, ..., k} such that

(6.16)
1
2

(2M)θ
j−1
≤ H(u) < (2M)θ

j

.
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From (4.5) and the lower bound in (6.16) it follows that

∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ ∆(I,W )H(u)−n.
{

1
2

(2M)θ
j−1
}−δ

.

By applying Lemma 7 with P =
{

1
2 (2M)θ

j−1}δ
, Q = 1, B = (2M)θ

j

, on observing
that logB/ log 2P ≤ θ/δ, we obtain that the set of u ∈ B with (6.16) has linear
scattering in W at most

(
270n10rθ/δ

)ns+1 =
(

270n10/δ

)ns+1

r2ns .

Together with (6.15) this implies that B has linear scattering in W at most

NB :=
{

10 + 5 log(400/δ)
}

(270n10/δ)ns+1r2ns

≤
(

270n10r

δ

)2ns

.

Recalling that C has linear scattering in W at most NC := r+2, we conclude that
the set of u ∈W with (4.5) has total linear scattering in W at most

NA +NB +NC

=
(

260n2
(

100
99

)7n

δ−7n

)s
log 4r · log log 4r +

(
270n10r

δ

)2ns

+ r + 2

<

(
261n2

r2nδ−7n

)s
.

This completes the proof of Lemma 4. �

§7. Some linear algebra.

We will have to derive Theorem 4 from Lemma 4 and for this we need some
linear algebra. Let K be an algebraic number field, Σ a Gal(Q/K)-action on
{1, ..., r}, and W an n-dimensional K-linear subspace of ΛΣ. In what follows,
by u, c, λ we denote vectors (u1, ..., ur), (c1, ..., cr), (λ1, ..., λr). Note that we
use both the coordinatewise product cu = (c1u1, ..., crur) and the scalar product
(c,u) = c1u1 + ... + crur. We define the orthogonal complement of W by the
Q-vector space

W⊥ = {c ∈ Qr : (c,u) = 0 for every u ∈W}.
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We have to be a little bit careful since W⊥ is a Q-vector space, whereas W is a
K-vector space.

Lemma 8. W = {u ∈ ΛΣ : (c,u) = 0 for every c ∈W⊥}.

Proof. Let W ′ = {u ∈ ΛΣ : (c,u) = 0 for every c ∈ W⊥}. Then W ′ is a
K-linear subspace of ΛΣ with W ′ ⊇ W and W ′⊥ = W⊥. Let {a1, ...,an} be any
basis of W . Then W⊥ = {c ∈ Qr : (ai, c) = 0 for i = 1, ..., n}. By Lemma
2, {a1, ...,an} is Q-linearly independent. Hence dim

Q
W⊥ = r − n. Similarly,

dim
Q
W ′⊥ = r − dimKW

′. Hence dimKW
′ = n. It follows that W = W ′. �

For c = (c1, ..., cr) ∈ Q
r
, σ ∈ Gal(Q/K) define the vector

(7.1) c(σ) := (σ(cσ−1(1)), ..., σ(cσ−1(r))).

Obviously, c ∈ ΛΣ if and only if c(σ) = c for every σ ∈ Gal(Q/K). We use this to
prove:

Lemma 9. Let P = {P1, ..., Pt} be a symmetric partition of {1, ..., r}. Then
dimK ΛP = t.

Proof. Define the Q-vector space Y = {u ∈ Qr : ui = uj for each pair i P∼ j}
(recall that i P∼ j if and only if i, j belong to the same set of P). Then ΛP =
Y ∩ ΛΣ. We claim that every u ∈ Y is a linear combination of vectors from
ΛP . Namely, take u ∈ Y . Since P is a symmetric partition we have also that
u(σ) ∈ Y for every σ ∈ Gal(Q/K). Let G be the group of σ ∈ Gal(Q/K) such
that σ(ui) = ui and σ(i) = i for i = 1, ..., r. Then G has finite index in Gal(Q/K);
let σ1, ..., σg be a full system of left coset-representatives. Let L be the extension
of K with Gal(Q/L) = G and choose a K-basis ω1, ..., ωg of L. Then the vectors
bi :=

∑g
j=1 σj(ωi)u

(σj) (i = 1, ..., g) belong to Y ; further, by the definition of
G and L, bi is independent of the choice of the coset representatives. Since left
multiplication with σ ∈ Gal(Q/K) permutes the left cosets of G in Gal(Q/K), we
have b(σ)

i =
∑
σσj(ωi)u(σσj) = bi for σ ∈ Gal(Q/K), i.e. bi ∈ Y ∩ ΛΣ = ΛP for

i = 1, ..., g. Now since the matrix (σj(ωi)) is invertible, we have that u is a linear
combination of b1, ...,bg. This proves our claim.

Clearly, dim
Q
Y = t. From what we proved above, it follows that Y is generated

by a K-basis of ΛP . By Lemma 2, this K-basis is Q-linearly independent, hence
consists of t vectors. This implies Lemma 9. �

We can now give an alternative description for the space WP :
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Lemma 10. Let P = {P1, ..., Pt} be a symmetric partition of {1, ..., r}. Then

WP = {u ∈W :
∑
i∈Pj

ciui = 0 for j = 1, ..., t and for every c ∈W⊥}.

Proof. For λ = (λ1, ..., λr) ∈ ΛP define λ′ = (λ′1, ..., λ
′
t) where λ′i = λj for each

j ∈ Pi. Further, for u ∈ W , c ∈ W⊥, j = 1, ..., t we put (c,u)j :=
∑
i∈Pj ciui.

Thus, for u ∈W , c ∈W⊥, λ ∈ ΛP we have

(7.2) (c, λu) =
t∑

j=1

λ′j(c,u)j .

Recalling that WP = {u ∈ W : uΛP j W}, we infer by Lemma 8 that u ∈ WP
if and only if (λu, c) = 0 for every λ ∈ ΛP , c ∈ W⊥. Further, by Lemma 9 and
Lemma 2, among the vectors λ ∈ ΛP , hence also among the vectors λ′, there are t
Q-linearly independent ones. Together with (7.2) this implies that (λu, c) = 0 for
every λ ∈ ΛP if and only if (c,u)j = 0 for j = 1, ..., t. This proves Lemma 10. �

Remark 4. (cf. §1 for notation.) We show that solutions of (1.5) satisfying
(1.15) are (F, S)-non-degenerate. Let l1, ..., lr be the linear factors of F , define
the linear mapping ϕ(x) = (l1(x), ..., lr(x)) and put W = ϕ(Kn). Suppose that
x ∈ OnS satisfies (1.15). Put u = ϕ(x). Then for each proper, non-empty subset
I of {1, ..., r} there is a c ∈ W⊥ such that

∑
i∈I ciui 6= 0. Lemma 10 implies

that u 6∈ WP for each symmetric partition P 6= {{1, ..., r}}; hence u is S-non-
degenerate. Now by definition, x is (F, S)-non-degenerate.

We define the support of c = (c1, ..., cr) ∈W⊥ by

supp(c) := {i ∈ {1, ..., r} : ci 6= 0}.

We say that c has minimal support in W⊥ if c ∈ W⊥ is non-zero and if there is
no non-zero c′ ∈W⊥ with supp(c′) $ supp(c).
We associate a hypergraph H(W ) to W , by taking as set of vertices {1, ..., r} and
as edges those subsets I of {1, ..., r} for which there exists a vector c of minimal
support in W⊥ with supp(c) = I.

We say that two vertices i, j ∈ {1, ..., r} are connected if there are i1, i2, ..., it ∈
{1, ..., r}, such that each of the pairs {i, i1}, {i1, i2}, ..., {it, j} is a subset of an edge
of H(W ). Connectedness is clearly an equivalence relation on {1, ..., r} and the
equivalence classes are called the connected components of H(W ).
The connected components of H(W ) form a symmetric partition. Namely, let
σ ∈ Gal(Q/K). For every c ∈ W⊥, u ∈ W we have (u, c(σ)) = σ((u, c)) = 0,
where c(σ) is defined by (7.1); hence c(σ) ∈ W⊥. It follows that if I is an edge of
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H(W ) then so is σ(I). Consequently, σ maps each connected component of H(W )
to a connected component.

We prove some properties of H(W ). Let P = {P1, ..., Pt} be the symmetric parti-
tion of connected components of H(W ). For j = 1, ..., t, define the linear subspace
of W⊥,

(7.3) Yj := {c ∈W⊥ : supp(c) ⊆ Pj}.

Lemma 11. (i). W⊥ = Y1 ⊕ ...⊕ Yt.
(ii). For the height of W we have H(W ) = H(Y1) · · ·H(Yt).
(iii). W = WP .

Proof. (i). Every non-zero c ∈ W⊥ is a sum of vectors with minimal support
in W⊥. Namely, if c ∈ W⊥ has minimal support then we are done; otherwise,
choose a vector c′ with minimal support in W⊥ such that supp(c′) $ supp(c) and
arrange, by taking a suitable scalar multiple, that a non-zero coordinate of c′ is
equal to the corresponding coordinate of c; then supp(c − c′) $ supp(c) and we
may repeat the argument with c− c′.
Let c ∈ W⊥. We have c =

∑t
j=1

∑
i∈Tj dij , where dij has minimal support in

W⊥, supp(dij) ⊆ Pj , and Tj is some set of indices. Put cj :=
∑
i∈Tj dij . Then

c = c1 + ... + ct, cj ∈ W⊥, supp(cj) ⊆ Pj , i.e. cj ∈ Yj . c1, ..., ct are uniquely
determined by c, since for each i ∈ Pj , the i-th coordinate of cj is equal to the
i-th coordinate of c. This proves (i).

(ii). By (3.5), (3.6) we haveH(W ) = H(W⊥) = H(Y1) · · ·H(Yt). We mention that
(3.5) has been stated for subspaces of Q

r
and not for subspaces of ΛΣ. However,

letting W = QW be the Q-vector space generated by W , we know by Lemma 2
that any basis of W is a basis of W , and by definition (3.8) that H(W ) = H(W );
further, it is obvious that W⊥ = W

⊥
.

(iii). By (i) we can express c ∈W⊥ as c1 + ...+ct with ci ∈W⊥, supp(ci) ⊆ Pi for
i = 1, ..., t. Hence for u ∈ W, c ∈ W⊥ we have (ci,u) = 0 for i = 1, ..., t; together
with Lemma 10 this implies that u ∈WP . This shows (iii). �

We recall that a non-empty subset I of {1, ..., r} is called independent if (4.4)
holds; otherwise I is called dependent. Below we have collected some simple facts
for later use. P = {P1, ..., Pt} denotes again the symmetric partition of connected
components of H(W ).

Lemma 12. (i). A non-empty subset I of {1, ..., r} is dependent if and only if
there is an edge J of HW with J ⊆ I.
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(ii). Each maximal independent subset of {1, ..., r} has cardinality n.
(iii). Each maximal independent subset of Pj (j = 1, ..., t) has the same cardinality,
nj , say.
(iv). Let Ij be a maximal independent subset of Pj for j = 1, ..., t. Then I1∪ ...∪It
is a maximal independent subset of {1, ..., r}. Hence n1 + ...+ nt = n.
(v). Let I be an edge of H(W ), contained in the connected component Pj . Then
there is a subset H of Pj such that for each i ∈ I, (I\{i}) ∪H is an independent
set of cardinality nj .

Proof. We first make some remarks. Let W = QW be the Q-vector space gener-
ated by W . Then by Lemma 2, W has dimension n. Denote by fi the Q-linear
function u 7→ ui on W . Thus, f1, ..., fr generate the vector space of Q-linear
functions on W . Hence rank

Q
{f1, ..., fr} = dim

Q
W = n. Now (4.4) and the fact

that every vector in W is a Q-linear combination of vectors in W imply that I
is (in)dependent if and only if {fi : i ∈ I} is Q-linearly (in)dependent. Further,
c = (c1, ..., cr) ∈W⊥ if and only if

∑n
i=1 cifi = 0.

(i). By the remarks just made we have that I is dependent⇐⇒ there exists a
non-zero c = (c1, ..., cr) ∈ Q

r
with supp(c) ⊆ I,

∑r
i=1 cifi = 0 ⇐⇒ there is a

non-zero c ∈W⊥ with supp (c) ⊆ I⇐⇒ I contains an edge of H(W ).
(ii). The remarks made above imply that a maximal independent subset of
{1, ..., r} has cardinality rank

Q
{f1, ..., fr} = dim

Q
W = n.

(iii). This holds with nj := rank
Q
{fi : i ∈ Pj}.

(iv). We apply (i). Put I = I1∪ ...∪It. If I is dependent then there is an edge J of
H(W ) with J ⊆ I. But then, J ⊆ I ∩Pj = Ij for some j which contradicts that Ij
is independent. Further, for each i ∈ {1, ..., r}\I we have that I∪{i} is dependent;
namely if i ∈ Pj , say, then Ij ∪ {i} is already dependent by the maximality of Ij .
(v). Since I is an edge we have by (i) and the remarks made above that for each
i ∈ I, the set Bi := {fk : k ∈ I\{i}} is linearly independent, and that fi is lin-
early dependent on Bi. Choose i0 ∈ I. By (iii) there is a subset H of Pj such that
{fk : k ∈ (I\{i0}) ∪H} is linearly independent and of cardinality nj . It follows
easily that also for each i ∈ I, {fk : k ∈ (I\{i}) ∪H} is linearly independent and
of cardinality nj . This implies (v). �

§8. Reduction of Theorem 4 to the Subspace theorem.

We recall that by |S| we denote the cardinality of a set S. As before, K is an
algebraic number field, S is a finite set of places on K containing all infinite
places, Σ is a Gal(Q/K)-action on {1, ..., r} and W is an n-dimensional K-linear
subspace of ΛΣ, where r ≥ n ≥ 2. By u we denote vectors (u1, ..., ur), and for
I ⊆ {1, ..., r} we define the partial vector

uI = (ui : i ∈ I).
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Recall that Theorem 4 deals with S-non-degenerate elements u ∈W satisfying

(2.3) u1 · · ·ur 6= 0, ui/uj ∈ O
∗
S for i, j = 1, ..., r.

In this section we show that each such u satisfies a Diophantine inequality of the
type (4.5) considered in Lemma 4.

Let P = {P1, ..., Pt} be the symmetric partition of connected components of the
hypergraph H(W ) associated to W . We recall that O∗P,S = ΛP ∩ (O∗S)r and that
δ(a) = (a, ..., a) (r times) for a ∈ K.

Lemma 13. Suppose that O∗P,S/δ(O∗S) is finite. Then for every u ∈W with (2.3)
we have

H(u) ≤ H(uP1)...H(uPt).

Proof. Take u = (u1, ..., ur) ∈W with (2.3). Define

(8.1) vi :=
uri

u1...ur
for i = 1, ..., r,

and put

(8.2) λk :=
∏
j∈Pi

vj for k ∈ Pi, i = 1, ..., t.

From (2.3) it follows that for k ∈ Pi, i = 1, ..., t we have

λk =
∏
j∈Pi

r∏
l=1

uj
ul
∈ O∗S .

Obviously, λk = λl for each pair k P∼ l. Further, for σ ∈ Gal(Q/K), k ∈ Pi, i =
1, ..., t we have

σ(λk) =
∏
j∈Pi

σ(vj) =
∏
j∈Pi

vσ(j) =
∏

j∈σ(Pi)

vj = λσ(k).

Hence λ ∈ ΛP∩(O∗S)r = O∗P,S . By the finiteness of O∗P,S/δ(O∗S), there is a positive
integer m such that λm ∈ δ(O∗S), i.e.

λmk = ρ ∈ O∗S for k = 1, ..., r.

Together with (8.1), (8.2) this implies that

1 = (v1...vr)m =
t∏
i=1

(
∏
j∈Pi

vj)m = ρt,
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hence ρ is a root of unity. It follows that
∏
j∈Pi vj is a root of unity for i = 1, ..., t.

Let L = K(u1, ..., ur), v = (v1, ..., vr), vI = (vi : i ∈ I). Then for w ∈ ML, i =
1, ..., t we have

|vPi |w = max(|vj |w : j ∈ Pi) ≥
(∏
j∈Pi

|vj |w
)1/|Pi|

= 1,

hence |v|w ≤ |vP1 |w...|vPt |w. By taking the product over w ∈ML we get

(8.3) H(v) ≤ H(vP1)...H(vPt).

Now (8.1) and the Product formula imply that H(vI) = H(uI)r for each subset I
of {1, ..., r}. Together with (8.3) this implies Lemma 13. �

For i = 1, ..., t, let ni be the cardinality of a maximal independent subset of Pi (cf.
Lemma 12) and let Yi = {u ∈W⊥ : supp(u) ⊆ Pi} (cf. (7.3)). We have:

Lemma 14. Let u ∈W with u1 · · ·ur 6= 0. For each i ∈ {1, ..., t} there is an edge
Ji of H(W ) with Ji ⊆ Pi and

(8.4) H(uJi) ≥ 2−ni/2{H(uPi)/H(Yi)}1/(n−1).

Proof. Fix i ∈ {1, ..., t} and put ri := |Pi|. If ri = 1 then uJi , uPi and the basis of
Yi are vectors with only one non-zero coordinate and by the Product formula these
have height equal to 1; so in that case (8.4) is trivially true. Suppose that ri ≥ 2.
Write P for Pi, Y for Yi. Let H be a maximal independent subset of P . By Lemma
12 (iii), H has cardinality ni. We assume that P = {1, ..., ri}, H = {1, ..., ni} which
is no loss of generality. By Lemma 12 (i), for each k ∈ P\H = {ni + 1, ..., ri},
there is an edge Jk of H(W ) with Jk ⊆ H ∪ {k} and k ∈ Jk. For each k ∈ P\H,
there is a vector ck ∈ Y with supp(ck) = Jk. We assume that the k-th coordinate
of ck is 1, which is no restriction. That is, we have

(8.5)

cni+1 = (cni+1,1, ..., cni+1,ni , 1, 0, ..., 0),
cni+2 = (cni+2,1, ..., cni+2,ni , 0, 1, ..., 0),

. . .
cri = (cri,1, ..., cri,ni , 0, 0, ..., 1),

where we have omitted the zero coordinates for the indices in the connected com-
ponents 6= P . Here, cki 6= 0 only if i ∈ Jk. The set {ck : k ∈ P\H} is a
basis of Y . Namely, let c = (α1, ..., αr) ∈ Y . Then supp(c) ⊆ P . Further,
c−
∑
k∈P\H αkck has its support in H. But H does not contain an edge of H(W ),

hence c =
∑
k∈P\H αkck.
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For every subset D of H with D 6= ∅, H\D 6= ∅, there is a k ∈ P\H with
Jk ∩D 6= ∅, Jk ∩ (H\D) 6= ∅. Namely suppose this is not true for some D. Then
for each k ∈ P\H we have either Jk ⊆ D∪{k} or Jk ⊆ (H\D)∪{k}. Hence every
vector ck (k ∈ P\H) defined above has its support either in D′ = D∪{k ∈ P\H :
Jk ⊆ D∪{k}} or in P\D′. But then, as {ck : k ∈ P\H} is a basis of Y , every c ∈ Y
can be expressed as c′ + c′′ with c′, c′′ ∈ Y and supp(c′) ⊆ D′, supp(c′′) ⊆ P\D′.
Hence H(W ) has no edge containing elements of both D′ and P\D′ and this
contradicts that P is a connected component of H(W ).

Hence there is a k1 ∈ P\H with |Jk1 ∩ H| ≥ 2. If Jk1 6⊇ H, then there is a
k2 ∈ P\H with Jk2 ∩ Jk1 ∩H 6= ∅, (Jk1 ∪ Jk2) ∩H % Jk1 ∪H. Continuing in this
way, we get a sequence of elements k1, ..., ka of P\H, with a ≤ ni − 1, such that

(8.6)


|Jk1 ∩H| ≥ 2,
Jkj ∩ (Jk1 ∪ ... ∪ Jkj−1) ∩H 6= ∅ for j = 2, ..., a,
(Jk1 ∪ ... ∪ Jkj ) ∩H % (Jk1 ∪ ... ∪ Jkj−1) ∩H for j = 2, ..., a,
Jk1 ∪ ... ∪ Jka ⊇ H.

Now let u ∈W with u1...ur 6= 0. For A,B ⊆ {1, ..., r} with A ∩B 6= ∅ we have

(8.7) H(uA∪B) ≤ H(uA)H(uB).

Namely, let v = λ−1u with λ = ui for some i ∈ A ∩ B and let L := K(u1, ..., ur).
Both vA,vB have a coordinate 1. Hence |vA∪B |w ≤ |vA|w|vB |w for w ∈ ML. By
taking the product over w ∈ ML we get H(vA∪B) ≤ H(vA)H(vB) which is the
same as (8.7).
By (8.6) and (8.7) we have

H(uH) ≤ H(uJk1
)...H(uJka ) ≤

{
max
i
H(uJki )

}ni−1

.

Hence H(W ) has an edge J ⊆ P with

(8.8) H(uJ) ≥ H(uH)1/(ni−1)

where we agree that the right-hand side is 1 if ni = 1 (in this case, |H| = 1 and
hence H(uH) = 1). We have to relate H(uH) to H(uP ).

It is obvious that the exterior product of the basis of Y given in (8.5), cni+1∧...∧cri
has among its coordinates, up to sign, all numbers 1, ckj (k ∈ P\H, j ∈ H). Let
L be a finite extension of K containing u1, ..., ur and all ckj . Then

(8.9) 1 ≤ |ck|w ≤ |cni+1 ∧ ... ∧ cri |w for k ∈ P\H, w ∈ML .
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We have that the scalar product (u, ck) = 0, whence

uk = −
∑
j∈H

ckjuj for k ∈ P\H.

Together with (3.2) and (8.9) this implies that

|uP |w = max
k∈P
|uk|w ≤ ns(w)

i max
k∈P
|ck|w · |uH |w

≤ ns(w)
i |cni+1 ∧ ... ∧ cri |w|uH |w for w ∈ML .

By taking the product over w ∈ML we obtain

H(uP ) ≤ niH(cni+1 ∧ ... ∧ cri)H(uH) = niH(Y )H(uH).

If H(uP ) > H(Y ) then this implies, together with (8.8),

H(uJ) ≥ max
{

1, n−1
i H(Y )−1H(uP )

}1/(ni−1)

≥ n−1/(ni−1)
i

{
H(uP )/H(Y )

}1/(ni−1) ≥ 2−ni/2
{
H(uP )/H(Y )

}1/(n−1)

.

(8.4) is clearly true also if H(uP ) ≤ H(Y ). This proves Lemma 14. �

The next lemma is the main result of this section:

Lemma 15. Suppose that O∗P,S/δ(O∗S) is finite. Then for every u ∈W satisfying
(2.3) there is a collection I = (Iv : v ∈ S) of independent subsets of {1, ..., r} of
cardinality n such that

(8.10)
∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ 2n/2H(W )(
r
n) ·∆(I,W )H(u)−n−{1/(n−1)}.

Proof. Take i ∈ {1, ..., t}. Let Ji be the edge contained in Pi from Lemma 14. By
Lemma 12 (v), there is a subset H ′ of Pi\Ji such that for every j ∈ Ji, H ′∪(Ji\{j})
is a maximal independent subset of Pi of cardinality ni.

Take u ∈ W with (2.3). Put L := K(u1, ..., ur) and let T be the set of places
in ML lying above those in S. Since ui/uj ∈ O

∗
S we have |ui/uj |w = 1 for

w ∈ML\T, i, j = 1, ..., r, whence

|u1|w = ... = |ur|w for w ∈ML\T.
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For w ∈ T , choose iw ∈ Ji such that |uiw |w = |uJi |w and put Iiw := (Ji\{iw})∪H ′.
Note that |ui|w = |uJi |w = |u|w for w ∈ ML\T, i = 1, ..., r. Together with the
Product formula this implies∏

w∈T

∏
j∈Iiw

|uj |w
|u|w

=
∏
w∈T

({ ∏
j∈Ji∪H′

|uj |w
}
|u|−niw |uJi |−1

w

)

=
∏

j∈Ji∪H′

( ∏
w∈ML

|uj |w

) ∏
w∈ML

(
|u|−niw |uJi |−1

w

)
= H(u)−niH(uJi)

−1.

By inserting (8.4) we get for i = 1, ..., t,

∏
w∈T

∏
j∈Iiw

|uj |w
|u|w

≤ 2ni/2H(Yi)1/(n−1)H(u)−niH(uPi)
−1/(n−1).

Put Iw = ∪ti=1Iiw for w ∈ T . By Lemma 12 (ii),(iv), Iw is an independent subset
of {1, ..., r} of cardinality n. By taking the product over i = 1, ..., t and using
Lemma 12 (iii), Lemma 11 (ii) and Lemma 13 we get

∏
w∈T

∏
j∈Iw

|uj |w
|u|w

≤ 2(n1+...+nt)/2{H(Y1) · · ·H(Yt)}1/(n−1)·(8.11)

·H(u)−(n1+...+nt){H(uP1) · · ·H(uPt)}−1/(n−1)

≤ 2n/2H(W )1/(n−1)H(u)−n−{1/(n−1)}.

For v ∈ S, let g(v) be the number of places on L lying above v. Since L is a normal
extension of K, for every w ∈ ML lying above v ∈ S there is a σw ∈ Gal(Q/K)
such that | · |w = |σw(·)|1/g(v)

v . Hence

(8.12)
∏
j∈Iw

|uj |w
|u|w

=
(∏
j∈Iw

|σw(uj)|v
|u|v

)1/g(v)

=
( ∏
j∈σ−1

w (Iw)

|uj |v
|u|v

)1/g(v)

.

Let Iv = σ−1
w (Iw) for that place w lying above v for which the left-hand side of

(8.12) is minimal and put I := (Iv : v ∈ S). Since σ−1
w maps edges of H(W ) to

edges, it maps independent subsets of {1, ..., r} to independent subsets. Therefore,
I consists of independent sets of cardinality n. By the choices of Iv, v ∈ S and by
(8.12) we have, recalling that we have precisely g(v) places w lying above v,

∏
j∈Iv

|uj |v
|u|v

≤
∏
w|v

∏
j∈Iw

|uj |w
|u|w

for v ∈ S,
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and by inserting this into (8.11) we obtain

(8.13)
∏
v∈S

∏
j∈Iv

|uj |v
|u|v

≤ 2n/2H(W )1/(n−1)H(u)−n−{1/(n−1)}.

We complete the proof of Lemma 15 by deriving a lower bound for ∆(I,W ).
Take any basis {a1, ...,an} of W . Let s1, ..., sp be the non-zero coordinates of
a1 ∧ ... ∧ an and put s = (s1, ..., sp). Note that p ≤

(
r
n

)
. By the remark at the

end of §3, for every σ ∈ Gal(Q/K), σ(s1), ..., σ(sp) is up to signs a permutation
of s1, ..., sp and by (3.9), H(s) =

∏
v∈MK

|s|v. Further, (s1 · · · sp)2 is in K∗ and
therefore,

∏
v∈MK

|s1...sp|v = 1. Let (a1 ∧ ... ∧ an)Iv = siv for v ∈ S. Then

∆(I,W ) =
∏
v∈S
|siv |v ·

∏
v/∈S

|s|v =
(∏
v∈S

|siv |v
|s|v

)
H(s)(8.14)

≥
(∏
v∈S

|s1...sp|v
|s|pv

)
H(s) =

(∏
v∈S
|s|pv ·

∏
v/∈S

|s1...sp|v
)−1

H(s)

≥
( ∏
v∈MK

|s|v
)−p

H(s) = H(s)1−p = H(a1 ∧ ... ∧ an)1−p

= H(W )1−p ≥ H(W )1−(rn).

By inserting this into (8.13) we arrive at

∏
j∈S

∏
j∈Iv

|uj |v
|u|v

≤ 2n/2H(W )
1

n−1 +(rn)−1∆(I,W )H(u)−n−{1/(n−1)}

≤ 2n/2H(W )(
r
n)∆(I,W )H(u)−n−{1/(n−1)}.

This proves Lemma 15. �

§9. Proof of Theorem 4.

K,S, s = |S|, r ≥ 2,Σ and W have the same meaning as before. Let P be the
symmetric partition of connected components of H(W ). We recall that by uc we
denote the coordinatewise product of the vectors u and c. For u = (u1, ..., ur)
with u1...ur 6= 0 we write u−1 for (u−1

1 , ..., u−1
r ). Define the multiplicative group

of u satisfying (2.3),

GS,Σ = {u = (u1, ..., ur) ∈ Λ∗Σ : ui/uj ∈ O
∗
S for i, j = 1, ..., r}.
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Lemma 16. Suppose that dim W = n ≥ 2 and that O∗P,S/δ(O∗S) is finite. Then
the linear scattering of W ∩GS,Σ in W is at most

(266r4)n
2s.

Proof. For u0 ∈ GS,Σ define the K-vector space u−1
0 W = {u−1

0 u : u ∈ W}. Note
that this is again an n-dimensional subspace of ΛΣ. It is no restriction to assume
that

(9.1) H(u−1W ) ≥ H(W ) for every u ∈ GS,Σ.

Namely, suppose that W does not satisfy (9.1). Choose u0 ∈ GS,Σ such that

H(u−1
0 W ) = min

{
H(u−1W ) : u ∈ GS,Σ

}
;

this minimum is assumed since the set at the right-hand side is discrete. Put
W ′ := u−1

0 W . Clearly, W ′ satisfies (9.1). Further, since (u0c,u−1
0 u) = (c,u) we

have W ′⊥ = u0W
⊥. Hence the hypergraphs H(W ) and H(W ′) have the same

edges, i.e. are equal. Moreover, the linear scattering of W ′ ∩ GS,Σ in W ′ is the
same as that of W ∩ GS,Σ in W . Hence it suffices to prove Lemma 16 for W ′

instead of W .

Assume (9.1). We divide W ∩GS,Σ into the sets

D : =
{
u ∈W ∩GS,Σ : H(u) ≥ {2H(W )}r

n}
E : =

{
u ∈W ∩GS,Σ : H(u) < {2H(W )}r

n}
and estimate the linear scatterings of both sets.

Let u ∈ D and let I = (Iv : v ∈ S) be the collection of Lemma 15. Then

∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ 2n/2H(W )(
r
n) ·∆(I,W )H(u)−n−{1/(n−1)}

≤ ∆(I,W ) ·H(u)−n−{1/n},

where we used that H(u) ≥ {2H(W )}rn . By Lemma 4, the set of u ∈ D cor-
responding to a fixed collection I as above has linear scattering in W at most
(261n2

r2nn7n)s. For each Iv we have at most
(
r
n

)
possibilities and so for I at most(

r
n

)s possibilities. It follows that the linear scattering of D in W is at most

ND :=
(
r
n

)s(261n2
r2nn7n)s ≤ 1

2 (266r4)n
2s.
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Now let u = (u1, ..., ur) ∈ E. We rewrite H(u−1W ). Choose any basis {a1, ...,an}
of W . Then (u−1a1 ∧ ... ∧ u−1an)I =

(∏
i∈I ui

)−1(a1 ∧ ... ∧ an)I , hence

H(u−1W ) =
∏
v

|u−1a1 ∧ ... ∧ u−1an|v =
∏
v

max
I

|(a1 ∧ ... ∧ an)I |v
|
∏
i∈I ui|v

,

where the maximum is taken over all independent subsets I of cardinality n of
{1, ..., r}. For v ∈ S, let Iv be a set for which the maximum is assumed and put
I := (Iv : v ∈ S). Since ui/uj ∈ O

∗
S we have |ui/uj |v = 1 for v /∈ S, i, j = 1, ..., r.

Hence |ui|v = |u|v for i = 1, ..., r, v /∈ S. Therefore,

max
I

|(a1 ∧ ... ∧ an)I |v
|
∏
i∈I ui|v

= |u|−nv max
I
|(a1 ∧ ... ∧ an)I |v

= |u|−nv |a1 ∧ ... ∧ an|v for v /∈ S.

It follows that

H(u−1W ) =
∏
v∈S

|(a1 ∧ ... ∧ an)Iv |v∏
i∈Iv |ui|v

·
∏
v/∈S

|a1 ∧ ... ∧ an|v
|u|nv

=
(∏
v∈S

∏
i∈Iv

|ui|v
|u|v

)−1

∆(I,W )H(u)−n.

Together with (9.1) this implies that

(9.2)
∏
v∈S

∏
i∈Iv

|ui|v
|u|v

≤ ∆(I,W )H(u)−nH(W )−1.

Now Lemma 7 with P = H(W ), Q = 1, B = {2H(W )}rn implies that the set of
u ∈ E corresponding to a fixed tuple I as in (9.2) has linear scattering in W at
most

(270n10rn+1)ns+1.

Since for I we have at most
(
r
n

)s possibilities, it follows that the linear scattering
of E in W is at most

NE :=
(
r
n

)s(270n10rn+1
)ns+1 ≤ 1

2 (266r4)n
2s.

We conclude that W ∩GS,Σ has linear scattering in W at most

ND +NE ≤ (266r4)n
2s.

This proves Lemma 16. �
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Proof of Theorem 4.
Let F(W ) be the set of vectors u ∈W satisfying (2.3) and (2.4), i.e. u ∈ GS,Σ and
u is S-non-degenerate. By Lemma 11 (iii), we have W = WP and so by definition
(2.2), F(W ) is empty if O∗P,S/δ(O∗S) is infinite. We have to estimate from above
the number of K∗-cosets in F(W ). We proceed by induction on n = dimKW .

First let n = 2. Then the number of K∗-cosets in F(W ) is precisely the linear
scattering of F(W ) in W . This is 0 if O∗P,S/δ(O∗S) is infinite and by Lemma 16 at
most

(266r4)22s = (233r2)23s

if O∗P,S/δ(O∗S) is finite.

Now let n ≥ 3. Assume that for every K-linear subspace W0 of ΛΣ of dimension
n0 with 2 ≤ n0 < n, the set F(W0) of S-non-degenerate elements of W0 belong-
ing to GS,Σ is the union of at most (233r2)n

3
0sK∗-cosets. We may assume that

O∗P,S/δ(O∗S) is finite. Then by Lemma 16 we have

F(W ) ⊆W1 ∪ ... ∪Wt,

where W1, ...,Wt are proper K-linear subspaces of W and

(9.3) t ≤ (266r4)n
2s.

The notion ‘S-non-degenerate element of W ’ depends on both the element and W
but it follows easily from the definition that for any proper linear subspace W0 of
W , every S-non-degenerate element of W belonging to W0 is an S-non-degenerate
element of W0. Therefore, F(W ) ∩W0 ⊆ F(W0) for W0 ⊆W . We conclude that

F(W ) ⊆ F(W1) ∪ ... ∪ F(Wt).

Together with (9.3) and the induction hypothesis this implies that F(W ) is the
union of at most

(266r4)n
2s · (233r2)(n−1)3s = (233r2){(n−1)3+2n2}s ≤ (233r2)n

3s

K∗-cosets. This completes the proof of Theorem 4. �
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[7] J.H. EVERTSE, I. GAÁL & K. GYŐRY, On the numbers of solutions of decomposable polynomial
equations, Arch. Math. 52 (1989), 337-353.
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