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Introduction.

In his paper ‘Diophantine approximation on abelian varieties’ [1], Faltings proved
among others the following conjecture of Weil and Lang: if A is an abelian variety
over a number field k£ and X a subvariety of A not containing a translate of a
positive dimensional abelian subvariety of A, then X contains only finitely many
k-rational points. One of Faltings’ basic tools was a new non-vanishing result of
his, also proved in [1], the so-called (arithmetic version of the) Product theorem. It
has turned out that this Product theorem has a much wider range of applicability
in Diophantine approximation. For instance, recently Faltings and Wiistholz gave
an entirely new proof [2] of Schmidt’s Subspace theorem [15] based on the Product
theorem.

Faltings’ Product theorem is not only very powerful for deriving new qualitative
finiteness results in Diophantine approximation but, in an explicit form, it can be
used also to derive significant improvements of existing quantitative results. In
the present paper, we work out an explicit version of the arithmetic version of
the Product theorem; except for making explicit some of Faltings’ arguments from
[1] this did not involve anything new. By using the same techniques we improve
Roth’s lemma from [12]. Roth’s lemma was used by Roth in his theorem on the
approximation of algebraic numbers by rationals [12] and later by Schmidt in his
proof of the Subspace theorem [15].

In two subsequent papers we shall apply our improvement of Roth’s lemma to
derive significant improvements on existing explicit upper bounds for the number
of subspaces in the Subspace theorem, due to Schmidt [16] and Schlickewei [14]
and for the number of solutions of norm form equations [17] and S-unit equations
[13].

At the conference on Diophantine problems in Boulder in honour of W.M. Schmidt
(26 June - 1 July, 1994), Wiistholz announced that his student R. Ferretti had
independently obtained results similar to our Theorems 1 and 2. These results
have been published in [3]. Part of the arguments used in the proof of Theorem 1
had already been worked out by van der Put [11] in his lecture at the conference
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‘Diophantine approximation and Abelian varieties, Soesterberg, The Netherlands,
12-15 April 1992.

As the Product theorem appears to have applications outside arithmetic algebraic
geometry, we have tried to make this paper accessible to non-geometers with a
modest knowledge of algebraic geometry.

§1. Statement of the results.

Let n = (ny,...,n,,) be a tuple of positive integers. For h = 1,...,m, denote by
X}, the block of nj, + 1 variables Xy, ..., X n,. For a ring R, denote by R[X] or
R[X1, ..., X,,] the polynomial ring in the (n;+1)+...4(n,, +1) variables X; (h =
1,....m, j = 0,...,n). For a tuple of non-negative integers d = (dy,...,d),
denote by I'}(d) the R-module of polynomials in R[X] which are homogeneous of
degree d; in the block X4, ..., homogeneous of degree d,,, in X,,, i.e. the R-module
generated by the monomials

m nh ) MNh
X! i= H HX;JJ‘.J' with inj =dp, for h=1,..,m.
h=1j=0 §=0
Let I' = Ude(ZZO)mFﬁ(d) be the set of polynomials which are homogeneous

in each block X;, for h = 1,...,m. An n-ideal of R[X] is an ideal generated by
polynomials from I'}. An essential n-prime ideal of R[X] is an n-ideal which is
a prime ideal and which does not contain any of the ideals (Xpno, ..., Xp.n,) (h =
1,...,m).

Let k be an algebraically closed field and denote by P"(k) the n-dimensional
projective space over k. Every point P € P"(k) can be represented by an up to
a scalar multiple unique non-zero vector x = (g, ..., x,) € k"™ of homogeneous
coordinates. Let again n = (ny,...,n,,) be a tuple of positive integers. Define the
multi-projective space P™(k) as the cartesian product

PP (k) := P™ (k) X ... x P (k).

In what follows, P™ (k) with a non-bold face superscript denotes the n-dimensional
(single-) projective space, and P (k) with a bold-face superscript a multi-projective
space. For f € I'} and for P = (P,...,P,) € P*(k) with P, € P" (k) for
h =1,...,m we say that f(P) =0 (or # 0) if f(x1,...,xmn) = 0 (or # 0) for any
vectors of homogeneous coordinates x1, ..., X,,, representing P, ..., P, respectively.
This is well-defined. A (Zariski-) closed subset of P*(k) is a set

{P GPn(k) : fl(P) = O?"'afr(P) - 0}
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(abbreviated {f; =0, ..., f, = 0}), where fi,..., f, € TR\{0}. A closed subset X
of P?(k) is called reducible if it is the union of two closed subsets A, B of P*(k)
with A C X, B C X, and irreducible otherwise. Every closed subset X of P?(k)
can be expressed uniquely as

X=2U..UZ,,

where Z1, ..., Z, are irreducible closed subsets of P*(k) such that Z; € Z; for i,j €
{1,..,r},i # 7 (cf. [18], p. 23). Zi,...,Z, are called the irreducible components
of X. We agree here that we shall use the term ‘subvariety’ exclusively for a
projective subvariety, i.e. a closed irreducible subset.

There is a one-to-one correspondence between subvarieties of P*(k) and essential
n-prime ideals I of k[X]:

[ —V()={PeP*k): f(P)=0 forall fel}.

We say that the subvariety V' of P*(k) is defined over a subfield k; of k if its
corresponding prime ideal can be generated by polynomials with coefficients from
k1. An important class of subvarieties of P*(k) we will encounter are the product
varieties

1% e X Zpy ={(P1y...; Py) : Ph€Z), for h=1,..,m}

where Zj, is a subvariety of P" (k) for h = 1,...,m. It is a theorem, cf. [18], pp. 61/
62, that the cartesian product of subvarieties of P! (k), ..., P" (k), respectively, is
a subvariety of P?(k).

Let FF € I'}. For a tuple of non-negative integers i = (ip; : h = 1,...,m,j =
0,...,np) define the partial derivative of F:

Let d = (dy, ..., d) be a tuple of positive integers. For a tuple i as above, put
1
(i/d) := }; d—h(@'ho + ot ihny, )

The index of F' with respect to P € P?(k) and d, notation iq(F, P), is the largest
number o such that

F(P)=0 forall i with (i/d)<o.

The index of F' at P is some kind of weighted multiplicity of F' at P. The index
is independent of the choice of homogeneous coordinates on P"» for h = 1,...,m.
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Namely, if for h = 1,...,m, Yo, ..., Y4 n, are linearly independent linear forms in
X}, then the differential operators 0/0Y},; are linear combinations of the 9/0Xp;
and vice versa, hence the index does not change when in its definition the operators
0/0Xy; (j =0,...,np) are replaced by 9/0Yy; (j =0,...,np) for h=1,...,m.

For o > 0, define the closed subset of P?(k),

Zy = Zy(F,d) :== {P € PU(k) : iq(F, P) > 0}
={PeP"k)): F;(P)=0 forall i with (i/d)<oc}.

Z, need not be irreducible. The Product theorem of Faltings [1], Thm. 3.1 states
that if Z is an irreducible component of Z, and also of Z, . for some ¢ > 0, and
if the quotients d; /da, ..., dy,—1/d,y, are sufficiently large in terms of € and m, then
Z is a product variety. Below we have stated this result in an explicit form. The
degree deg Z of a subvariety Z of P" is the number of points in the intersection of
Z with a generic linear projective subspace L of P" such that dim Z 4+ dim L = n.
The codimension of Z is n — dim Z.

Theorem 1. Let k be an algebraically closed field of characteristic 0. Further, let

m be an integer > 2, n = (n1,...,Ny, ), d = (dy, ..., d,,) tuples of positive integers
and o, € reals such that c > 0,0 < € <1 and

(1.1)

dh 2 (mM

M
) for h=1,...m—1
€

dn41

where
M:=ni+..+n,,,.

Finally, let F' € TR(d)\{0}, and let Z be an irreducible component of both Z,(F,d)
and Za-+6 (F, d)
Then Z is a product variety

(1.2) Z =71 %X o X Ly,

where Zj, is a subvariety of P™ (k) for h = 1, ...,m. Further, if F' has its coefficients
in a subfield ko of k, then Z1, ..., Z,, are defined over an extension ki of ky with

(1.3) [k1 : kol deg Z1...deg Z,,, < (E> 7

€
m .
where s =) " | codimZ;.

The idea behind the proof of Theorem 1 is roughly as follows. Any irreducible
component Z of both Z, and Z,;. must have in some sense large multiplicity
(analogously, if for a polynomial f in one variable all derivatives of f up to some
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order vanish at P then P has large multiplicity). On the other hand, using inter-
section theory one shows that the multiplicity of Z, can be that large only if this
component is a product variety.

Now let k& = Q be the field of algebraic numbers. We need estimates for the

heights of Z1,...,Z,, in terms of the height of F'. First we define the height of
x = (xgy...,Tpn) € @n+1\{0}. Take any number field K containing x, ..., Z,.

Denote by O the ring of integers of K and let oy,...,0, f = [K : Q] be the
embeddings of K into C. Choose o € Og\{0} such that axo,...,ax, € Ok, let
a = axgOkg + ... + ax,Ok be the ideal generated by axy,...,ax,, and Na =
#(Og /a) the norm of a. Then the height of x is defined by

(1.4 160 = { 5 lj@ |aj<awi>|2)1/2}1/f.

It is easy to show that this does not depend on the choices of « and K. The height
of a non-zero polynomial F € Q[Xj, ..., X,,] is defined by H(F) = H(x) where x
is the vector of non-zero coefficients of F'.

It is obvious that H(Ax) = H(x) for every A € Q . Hence we can define a height

on P*(Q) by H(P) = H(x) where x € @n+1\{0} is any vector representing P. By
using the arithmetic intersection theory of Gillet and Soulé [5] for schemes over

Spec Z, Faltings defined a height h(Z) for subvarieties Z of P*(Q), cf, [1], pp.
552/553 and [7] for more details. This height is always > 0. Further, for points

P € P"(Q) we have
(1.5) h(P) = log H(P).

Philippon [10] and Soulé [19] gave an explicit expression for the Faltings height of
Z in terms of the Chow form of Z. This is the up to a constant unique polynomial
Fy in the r 4+ 1 blocks of n + 1 variables (o = (Cods -+, Con)y -+s & = (Croys -y Grn ),
where r = dim Z such that F; has degree deg Z in each block (; (i = 0,...,r)
and such that Fz((p,...,(,) = 0 if and only if Z and the r + 1 linear hyperplanes
((i;X) =0 (i =0,...,7) have a point in common (cf. [18] pp. 65-66). From the
investigations of Philippon and Soulé it follows that

(1.6) |h(Z) —log H(Fz)| < c¢(n)degZ,

where ¢(n) is effectively computable in terms of n.
Below we give an explicit version of [1], Theorem 3.3.

Theorem 2. Let m,n,d,0,¢,F, Z, Zy, ..., Zm, ko, k1,s = ;" codim Zj, be as in
Theorem 1, except that k = Q. Then

N |
(k1 : ko) degZy ... deg Zp, (; Tz, dhh(Zh))
(1.7) < 2(s/e)*m™ - M?(dy + ... + d,, + log H(F)).
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As mentioned in the Introduction results similar to Theorems 1 (cf. [3]) and 2
were independently obtained by Ferretti.

The following corollary of Theorems 1 and 2 is useful.

Corollary. Let m be an integer > 2,n = (ny,...,ny,),d = (dy, ...,d,,) tuples of
positive integers and € a real such that 0 < e < M + 1 and

€

MM + 1)\
dn > <m (M + >> for h=1,...m—1,
dh+1
where again M := nj+...+n,,. Further, let F' € I‘g(d)\{()}. Then each irreducible

component of Z. is contained in a product variety
Zy X ... X Zm S P*(Q)

where for h = 1,...,m, Zy is a subvariety of P"(Q). Further, if F has its coeffi-
cients in an algebraic number field kg, then Z+, ..., Z,, are defined over an extension
k‘l of k() with

M+1 s

(19) [k : ko] degZ;...deg ng(u> |
€

where 3:2 codim  Zj,
h=1

N1

1.10 ki : ko| degZ;...deg Z,, dv (7

( ) ol des g (};degZh nh( h))

< 2((M;l)s)SmJ‘M\Jz(az1 + ... + d,, +log H(F)).

€

Proof. Put € := ¢/(M 4+ 1). Consider the sequence of closed subsets of P?(Q):

PYQ) =202 20 2 Zyy 2. 2 Zipyigye = Ze.

For ¢ =0,..., M + 1, choose an irreducible component W; of Z;., such that

PP(Q) = Wo 2 Wi D ... D2 W) = Z-

By [18], p. 54, P*(Q) has dimension n; + ... + n,, = M and if V3, V5 are two

subvarieties of P*(Q) with 13 ; Va then dimV; < dim V. It follows that there
isan 1 € {0,,M} with WZ = Wi—i—l- Clearly, W .= Wz = Wi+1 ; ]P)n(@) as it
is contained in {F" = 0}. Further, W is an irreducible component of both Z,_
and Z;/_ . By (1.8), the conditions of Theorems 1 and 2 are satisfied with i€ €
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replacing o,e. Hence W = Z; x ... X Z,,, where Z}, is a subvariety of P"»(Q), for
h =1,...,m. Inequalities (1.9), (1.10) follow by replacing € by ¢/(M + 1) in (1.3),
(1.7), respectively. O

Using the techniques of the proofs of Theorems 1 and 2 one can prove the following
sharpening of a non-vanishing result of Roth from 1955 [12], now known as Roth’s
lemma. Roth used this in his proof of his famous theorem, also in [12], that for
every algebraic number a and every k > 2 there are only finitely many rationals
x/y with z,y € Z,y > 0 and |a — z/y| < y~". In fact, from the Corollary with
ny = ... = Ny, = 1 one can derive Theorem 3 below with instead of (1.11) the more
restrictive condition dj /dp1 > (2m3/e)™ for h=1,...,m — 1.

Theorem 3. (Roth’s lemma). Let m be an integer > 2, let d = (dy,...,dm)
be a tuple of positive integers, let F' € Q[X10, X11;...; Xmo, Xm1] be a non-zero
polynomial which is homogeneous of degree dj, in the pair of variables (Xpo, Xp1)
for h =1,...m and let € be a real with 0 < ¢ < m + 1 such that

dp

(1.11) >2m®/e for h=1,...m—1.

dp+1

Further, let P = (P, ..., P,,) where Py, ..., P,, are points in P1(Q) with

(3m®/e)™
(1.12) H(Py)% > {ed1+“‘+de(F)} forh=1,...,m,

where e = 2.7182.... Then
id(F, P) <e€.

The original lemma proved by Roth in 1955 [12] differs from Theorem 3 in that
instead of (1.11) it has the more restrictive condition

(1.13) dp/dpir > (10m/€)?" for h=1,..,m— 1.

Roth’s lemma with (1.13) was also used by Schmidt in his proof of the Subspace
theorem and by Schmidt and Schlickewei in their proofs of quantitative versions
of the Subspace Theorem. In our improvements of the results of Schmidt and
Schlickewei mentioned in the introduction, it was crucial that (1.13) could be
replaced by (1.11).

Remark. (inspired by a suggestion of the referee). We have formulated the Prod-
uct theorem and its consequences for multi-homogeneous polynomials. There are
affine analogues for polynomials which are not multi-homogeneous. For instance,
for h = 1,...,m, let Y}, = (Ys1,..., Y n,) be a block of affine variables, and let
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f € k[Y1,...,Y,,] be a polynomial whose total degree in the block Y}, is at most
dp, for h = 1,...,m. Denote by i,k tuples (ip; : h =1,..m, j = 0,...,n43),
(kn; = h =1,...,m, j = 1,...,np), respectively. Define the index of f at
a point p as the largest number o such that fix(p) = 0 for all tuples k with
S dy N (kpy 4 e+ kn,) < o, where fi = ([[he, [, 3khj/8Yh’3.hj)f. For
h = 1,...,m, define a block of variables X;, = (Xpno,..., Xnm) such that Y; =
Xpj/Xno for j =1,....n4. Let F =[]}, X f be the multi-homogeneous poly-
nomial in X, ..., X,, corresponding to f. One obtains an analogue of Theorem
1 for f (the same statement with everywhere “affine varieties” replacing “projec-
tive varieties”) simply by applying Theorem 1 to F. We have to check that the
index of f at p = (P11,---,P1,n13 -} Pmls s Do,y ), defined using the variables Y3,
is equal to the index of F' at P = (1,p11,..-,P1,ny5 -3 Ly oo Dmon,, ) defined using
the variables Xp;. This follows by observing first that fx = H~'F}, where H
is a product of powers of Xpo (h = 1,...,m) and i is the same tuple as k aug-
mented with 759 := 0 for h = 1,...,m, and second, in view of Euler’s identity
OH/0Xpno = X,y (en H — 2?21 Xnj0H/0X};) for polynomials H homogeneous of
degree ep, in Xy, that for each tuple i, Fj is a linear combination of fi over tuples
k with kp; < iy for h = 1,...,m, j = 1,...,np, the coefficients being rational
functions whose denominators are products of powers of Xpg (h =1,...,m).

§2. Intersection theory.

Most of the results from intersection theory we need can be found in [4], Chaps,
1,2 and in [9]. Asin §1, k denotes an algebraically closed field and n = (nq, ..., n,)
a tuple of positive integers. The block X}, of n; + 1 variables, the ring k[X] =
k[X1,...,X,,] and the sets I'}(d) will have the meaning of §1. We write P*, ™,
7 (d) for P2 (k), ', T7(d).

For every subvariety Z of P™ there is a unique essential n-prime ideal I of k[X]
such that Z = V(I) ={P € P*: f(P) =0 for every f € I}. The local ring of Z
is defined by

(2.1) Oy := {g :3d € (Z>o)™ with f,g e I'™(d), g ¢ I}.

For any n-ideal J of k[X] we put JOz = {f/g : 3d € (Z>o)™ with f,g €
(d),f e J,g¢I}. Then My := IOz is the maximal ideal of Oyz. The residue
field k(Z) := Oz/Myz is called the function field of Z. The dimension of Z is
dim Z := trdeg;, k(Z). In particular, dimP® = M := n; + ... + n,,. The codimen-
sion of Z is codimZ := M —dim Z; if W is a subvariety of Z then the codimension
of Win Z is codim (W, Z) = dim Z — dim W.

A cycle in P™ is a finite formal linear combination with integer coefficients of
subvarieties V of P, Z = > nyV, say. The components of Z are the subvarieties
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V' for which ny # 0, and ny is called the multiplicity of V in Z. Z is called
effective if all ny > 0. Denote by Z = Z,(P™) the abelian group of cycles in P
all whose components have dimension k£ and put Zj := (0) for £ < 0. We denote
by Z cycles as well as varieties.

For a ring A and an A-module M, we define the length [ 4(M) to be the integer [
for which there exists a sequence of A-modules

M =My 2 M; 2.2 M = (0)

such that M;_1/M; = A/p,; for i = 1,...,1 where p; is a maximal ideal of A (cf. [4],
p. 406); [4(M) is independent of the choice of My, ..., M;. Now let Z = V(I) be a
subvariety of P™ and f € T™\{0} such that f does not vanish identically on Z, i.e.
f ¢ I. We define the divisor of f restricted to Z by attaching certain multiplicities
to the irreducible components of Z N {f = 0} . These irreducible components are
all of codimension 1 in V' (cf. [21], p. 196). For each subvariety W of Z with
codim(W, Z) = 1, the number

(2.2) ordw (f|Z) :==loyw (Ow /(I + (f))Ow)

is a finite, non-negative integer and ordy (f|Z) > 0if and only if I+(f) is contained
in the prime ideal of W, i.e. if W is an irreducible component of Z N {f = 0}.
Now define

(2.3) div(f|12) =) ordw(f|Z) - W,
w

where the sum is taken over all subvarieties W of codimension 1 in Z. By [3], App.
A3, ordw (fg|Z) = ordw (f|Z) + ordw (g|Z) and hence div(fg|(Z) = div(f|Z) +
div(g|Z) whenever f,g do not identically vanish on Z. By abuse of terminology,
we say that f does not identically vanish on a cycle Z = Y nyV if for each
component V' of Z, f does not identically vanish on V. In that case we define
div(f|Z) = > nydiv(f|V). Note that div(f|Z) is effective if Z is effective. We
write div(f) if Z = P™.

Two cycles Z1,Zs € Z,(P") are called rationally equivalent if Z; — Z5 is a lin-
ear combination of cycles div(f|V) — div(g|V'), where V is a (¢t 4+ 1)-dimensional
subvariety of P* and f,g € I'™(d) for some d € (Z>¢)". Addition of cycles in-
duces addition of rational equivalence classes. Note that all divisors div(f) with
feI™(d)(d € (Z>p)™) are rationally equivalent; denote by O(d) the rational
equivalence class of div(f), f € I'™(d). Clearly, O(d;) + O(d2) = O(d; +d3). We
define O(d) for d € Z™ by additivity. Put Pic(n) = {O(d) : d € Z™}, Pict(n) =
{O(d) : d € (Z>o)™}. If M = O(d) € Pic"(n), then write I'(M) or T'y(M) for
re(d).

For a zero-dimensional cycle Z =), npP we define its degree:

degZ := Z np.
P
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Then we have:

Lemma 1. For t = 0,...,M there is a unique function (intersection number)
from Zi(P*) x Pic(n)! to Z : (Z, My, ..., My) — (Z - My...M;) with the following
properties:

(i). (Z - My...M,) is additive in Z, My, ..., My and invariant under permutations
Of./\/ll, ...,Mt,'

(ii). (Z - My..My) =0 if Z is rationally equivalent to 0;

(iii). if Z € Z¢(P™) then (Z) = degZ;

(iv). if My € Pic™(n) then there is an f € T'(M1) not identically vanishing on Z
and for every such f we have (Z - My, ..., M) = (div(f|Z) - Ma...My).

Proof. This comprises some of the results from [4], Chaps. 1, 2. Rationally
equivalent cycles in Zy have the same degree and if Z, Z' € Z, are rationally
equivalent and f, f € T'(M,), then div(f|Z),div(f|Z") are rationally equivalent.
Hence the intersection number can be defined inductively by (iii), (iv). O

We write (Mj...M,,) for (P* - M;..M,,). If among My, ..., M, N; appears e;
times for ¢ = 1,...,s, where e; + ... + e, = ¢ then we write (Z - N{*..N&) for
Z - Mi..M;). The degree of Z € Z, is defined by deg Z := (Z - O(1)").

Remarks (i). By induction on the dimension it follows easily that if Z € Z;
is effective and My, ..., My € Pic™(n) then (Z - M;y..M;) > 0. Moreover, if
Z is a subvariety of P™ and f; € I'(My), ..., fi € I'(M,;) are ‘generic’, then (Z -
My, ..., M) is precisely the cardinality of the set of points VN{f; = ... = fy = 0}.
(ii). Let kg be a perfect subfield of k, i.e. every finite extension of kq is separable.
A ko-subvariety of P™ is a set {P € P*: f(P) = 0 for every f € I} where [ is an
essential n-prime ideal of ko[X]. Every such kg-subvariety Z is a union of equal
dimensional subvarieties of P*,Z = Z; U ... U Z,;, and we put dim Z := dim Zy;
now if dim Z = k and My, ..., M, € Pic"(n) then we define

This is extended by linearity to kg-cycles, i.e. finite formal sums of kg-subvarieties.

We need some further properties of the intersection number. Let e; = (1,0,...,0),
e; = (0,1,...,0),...,e,, = (0,...,0,1) and put L, = O(ey) for h =1, ...,m. Further,
fix d = (dy,...,dm) € (Zso)™ and put L := O(d) = &1Ly + ... + d L. If
Zn =Yy, nv, Va(h =1,...,m) is a cycle in P"* then of course we define

Z1 X ... X Zm = E nVan2...anV1 X .o X Vm.
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Further, we denote by mj, the projection to the h-th factor P* — P™" and by 7}
the inclusion (“pull back”) k[X,] — k[Xq, ..., X,,] = k[X].

Lemma 2. Let Z;, € Z;5 (P") (h = 1,...,m) and Z = Zy X ... X Z,. Put
0=01+ ...+ .

(i). Suppose that f € I'™ does not vanish identically on Z;. Then 7} f does not
vanish identically on Z and

(2.5) div(n] f|Z) = div(f|Z1) X Za X cc. X Zpy .
(ii). Let ey, ..., e, be non-negative integers with e; + ... + e, = §. Then

(Z - L5...Lom) =deg Zy...deg Zy, if (€1, ..cs€m) = (015, 0m)

=0 otherwise.

(iii). (Z-L£%) = (81/61)...6,,)d3 ... d0m deg Z, ... deg Z,,. In particular (LM) = C :=
(M /nql.. g )dyt . dlm.

Proof (i). [4], p. 35, ex. 2.3.1. This is analogous to the set-theoretic statement
that if Z1, ..., Z,, are varieties then ZN{njf =0} = (Z1N{f =0}) x Za X ... X Z,,.

(ii). This follows easily from (i) by induction on §. Another way is as follows.
For h = 1,...,m assume that Zj is a subvariety of P, take generic linear forms
fni € k[Xp] for j =1,...,ep and put Wy, = Z, N {fn1 =0, ..., fre, = 0}. Then by
remark (i) above (Z - L{*...L5m) is the cardinality of the set W = W7 x ... x W,,.
This cardinality is zero if (eq,...e;,) 7# (01, ..., I since then one of the sets Wy, is
empty; while otherwise this cardinality is [, #Wj, = [[,—, deg Zj,.

(iii). By additivity we have

(Z-L%)=(Z-(d1 L1+ ... + dn L))
6' €1 e €1 e
= ) ———dd (2 L] L)

|
et ten =d €1:...€m-
o! S 15
ceeOmy -

O

Lemma 3. Suppose that m > 2. Let Z be a d-dimensional subvariety of P™
that can not be expressed as a product Z = Zy X ... X Z,, with Z;, C P" for
h =1,...,m. Then there are at least two tuples of non-negative integers (e1, ..., €y,)
with e; + ... + ey =6 and (Z - LT*...LE) > 0.
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Proof. cf. [11], p. 79. The idea is as follows. By [18], p. 45, Thm 2, if
X is a closed subset of P™ and f : X — P™ a morphism, then f(X) is closed,
and f maps subvarieties of X to subvarieties of f(X). We apply this with the
projections mp, : P* — P"». Put Z := mp(Z2),0n := dimZy for h = 1,...,m.
Since Z is not a product, Z is a proper subvariety of Z; x ... x Z,,, and therefore,
0=dimZ <dimZ; X ... Xx Z,, =01 + ... + d,,. We prove by induction on m the
following assertion: for each h € {1,...,m} there is a tuple (eq,...,e,,) as in the
statement of Lemma 3 with e;, = ;. This implies Lemma 3 since 01 +...+6,, > 9.

This assertion is obviously true if m = 1. Suppose that the assertion holds for
m = r — 1 where r > 1. We prove the assertion for m = r,h = 1 which clearly
suffices. In the induction step we proceed by induction on §;. If 1 = 0 then
Z = QxW where Q € P™ and W is a subvariety of P2 x ... xP" and the assertion
follows by applying the induction hypothesis to W. If §; > 0 then choose a linear
form f € k[X;] that does not identically vanish on Z;. Then g := 7} f does not
identically vanish on Z. Clearly, m; maps the irreducible components of ZN{g = 0}
to those of Z3 N {f = 0} and the latter have dimension d; — 1. By applying the
second induction hypothesis to the irreducible components of ZN{g = 0}, we infer
that there are non-negative integers eq,...,e,,, with e; + ... +¢e,, =6 and e; = &
such that (div(g|Z)-£$71...L5m) > 0. Hence (Z- £LS*...LSm) > 0. This proves the
assertion. 0

Lemma 4. Let A be a set of polynomials from I'™(d)\{0} and I the ideal generated
by A. Let Zy, ..., Z; be irreducible components of codimension t of X := {P € P™ :
f(P)=0 for f € A}. Then for all tuples of non-negative integers (e, ..., €,,) with
e1+...+e, =M —tone has

> mg (Zi - L5LG) < (L Lo - L),
=1

where mz, :=lo, (Oz,/10z,) fori=1,...,r.

Proof. This is essentially Prop. 2.3 of [1] and Lemma 6.4, p. 76 of [9]. We give
some details of the proof to which we have to refer later. For a subvariety Z of P™
and f € I'"™\{0} not vanishing identically on Z, define the truncated divisor

div¥(f|2) = Y ordw(f|2)W,

WgXx

where the sum is taken over all irreducible components of div(f|Z) which are not an
irreducible component of X. This is extended by linearity to cycles. Put Z, := P™
and choose inductively fi, ..., f € I and define cycles C1, ..., C; as follows:

(2.6) for j =1,...,t, f; does not vanish identically on C;_1,
each Z; (i =1,...,7) is a subvariety of one of the irreducible
components of div(f;|C;_1), and
Cj = div™ (f5]Cj);

12



in the next lemma we explicitly construct such f;. Clearly, the irreducible compo-
nents of C'; have codimension j. Therefore Z1, ..., Z, are irreducible components of
C}. We need some more advanced results from intersection theory to estimate the
multiplicity mz, ¢, of Z; in Cy from below. By [4], Ex. 7.1.10, p. 123, mz, ¢, is
equal to lo, (Oz,/I'Oz,), where I' = (fi, ..., ft). (Note that P™ is smooth whence
that all local rings Oy, are Cohen-McAulay rings). Further, since I’ C I we have
lo,,(0z,/I'Oz,) > lo, (0z,/10z,) = mz,. Hence mz, ¢, > mz,. It follows that

(2.7) Cy = Z myz, Z; + (effective cycle).
i=1
Further, by (2.6) we have
(2.8) div(f;|Cj—1) = C; + (effective cycle) for j=1,...,t.

Now by (2.7), (2.8) and f; € I'(£) we have

> mg (Zi - L5L) < (Co- L5L5,)
=1

<(Cooq - L-LTLE) < (Cpg - L2 L5 LEm) <o < (L8 L5..LE5m). O
Lemma 5. It is possible to choose f1, ..., f+ as in (2.6) such that

c
(29) fz = Znijgij for i = 1, ...,t,

j=1
where C' = (M!/nil..ny,)d*...dlm and gi; € A,ng; € Z,|nij| < C for i =
Lootj=1,..C.

Proof. From (2.6) and Lemma 1 it follows that (C; - LM~%) < (C;_y - LM i)
for i =1, ..., t, whence

(C;- LMY= < (LMy=C for i=1,..,1t.

Letting C; = ZZ:1 ar Vi, where the V), are the components of C; and ap > 0,
we see that u < Y, ax(Vy, - LM7) = (C; - LM~%) < C. Hence each C; has at
most u irreducible components. Suppose we have already chosen fi, ..., fs (0 <
s <t — 1) such that (2.6) and (2.9) are satisfied for i = 1,...;s. Let Vq,...,Vy
be the components of Cs which are not an irreducible component of X. Then
for j = 1,...,u/, there is a g; € A which does not vanish identically on V;. We
construct hy, ..., hy such that for j = 1,..., 4/, h; is not identically zero on Vi, ..., V;
inductively as follows: Take h; = g;. Suppose that h; has been constructed.
There are x; € Vi,...,x; € V; such that hj(x;) # 0 for i« = 1,...,5; further,
there is x;41 € Vj41 with gj41(x;41) # 0. Now there is an a € {0,...,u'} with
(hj + agj+1)(x;) # 0 for i = 1,...,5 + 1; take h;11 = hj + agj+1. Obviously,
fs+1 := hy does not identically vanish on Cs and fi, ..., fs41 satisfy (2.6), (2.9).
By repeating this process we arrive at f1, ..., f; satisfying (2.6), (2.9). OJ
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§3. The Faltings height.

From [1] we have collected some properties of the Faltings height of varieties over Q.
We use the following notation. The extension of a ring homomorphism v : R; —
Rs to R1[X, ..., X¢] — Ro[X1, ..., Xy], defined by applying ¢ to the coefficients of
f € R1[X1, ..., X¢] is denoted also by 1. The ring of integers of a number field K
is denoted by Og. For a non-zero prime ideal g of Ok, let

F, :=Ox/p, Ngp:=#F,.

The multi-projective space P (C), as well as its algebraic subvarieties, can be given
the structure of a complex analytic variety. This implies that we can integrate
differential forms over these varieties (cf. [6], Chap. 0). To every divisor class
M = O(d) € Pic(n) we associate a (1,1)-differential form c¢; (M), its so-called
Chern form:

ifm=1,M=0(1),n=(n), then c;(M) :=w,, = 2—‘/7?8510g(|20|2 + o+ Zn|?) is
the (1, 1)- form associated to the Fubini-Study metric on P"*(C), where Zy, ..., Z,
are the homogeneous coordinates on P, cf. [6], p. 30 for an explicit formula;

if m>1,d=(dy,....,dn), then c;(M) = dymiwn, + ... + dp7) Wy, , where 7, is
the projection P* — P"* and 7jwy, is the pull back of w,, from P™ to P™ (i.e.
Ty W, is defined by precisely the same formula as wy,, in terms of the homogeneous
coordinates of P™* but it is considered as a differential form on P*).

(t,t)-forms can be integrated over ¢-dimensional subvarieties of P*(C). For a cycle
Z =3 nyV € Z,(P*(C)) and a (t,t)-form p on P*(C), we set [, p:= > ny [, p.
By Wirtinger’s theorem (cf. [6], p. 171 or [7], Prop. 3.6), we have for Z €
Z,(P*(C)) and My, ..., My € Pic(n),

(31) /ch(./\/ll) VAPV Cl(Mt) = (ZMlMt)

The form wy, is positive on P" (cf. [6], p. 31). This implies that if Z € Z,(P™(C)) is
effective, if My, ..., M; € Pic™(n), and if f is a real function which is non-negative
everywhere on the components of Z, then

(32) /chl(./\/l1)/\/\01(./\/lt) > 0.

If Z =5 npP is a zero-dimensional cycle in P*(C) and f is a function on P?(C)
then we write [, f for > npf(P). For f € T2(d) we define a function |[f|| on

P?(C) as follows: let Zj, = (Zno, ..., Zhn,) be the complex homogeneous coordi-
nates in P"»(C), Z = (Z1,....2Zn),||Z1]| = (2?20 |Zhj|2)1/2; then put

1(2)
7)) =
N8 = iz iz
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where (dy,...,d,,) = d.
Let Z be a subvariety of P?(Q), defined over an algebraic number field K. Suppose

that f € I'™ has its coefficients in O and does not vanish identically on Z. Let
My, ..., My € Pic(n). Define for each embedding o : K — C:

(33) Ry = KU(Z, f,Ml,...,Mt)

1

-7 /Zxoclog||a<f>||c1w1>A...Aclwt),

where Zx,C = {P € P*(C) : o(g)(P) = 0 for every g € K|[X] vanishing identically
on Z}.

for all P € Z}. This is an essential prime ideal of Ox[X] with I N Og = 0
Let Ji g, ..., Jg,o be the minimal n-prime ideals of O [X] containing I + pOg[X
Then

Now let p be a non-zero prime ideal of Og. Let I = {f € Og[X] : f(P) =0
].

Wip = {F S ]Fn(Fso) g(ﬁ) =0 for g€ le/@OK[X]}

is an F-subvariety of P™(F,,) for i = 1,...,9; Wi, ..., Wy, may be considered as
the irreducible components of the reduction of Z mod gp. Define the local ring

h
Ow, = {E th,g €'}, (d) for some d € (Z>0)™, g ¢ Jip},

put ordw,  (f|Z) := low,, (Ow,, /(I + (f))Ow,,,) (which is finite since I + (f) is
a primary ideal for the maximal ideal of Oy, ), and define the p-divisor of f
restricted to Z,

dlvp(f‘Z) = ZordWm (f|Z)Wzgo
=1

For all but finitely many o we have div,(f|Z) =0 . Now put

_ logNgp

(34) Ko = H@(Za J, M, "'7Mt) [K . Q]

(dlvp(f’Z) . Ml...Mt),

where the latter intersection number is for F- cycles. Finally put

kr(Z, f,My, ..., My) == Zma + Z/{p
o )

where the sums are over all embeddings ¢ : K <— C and all nonzero prime ideals p
of Ok . By linearity we define k., Ky, ki for cycles in Z; with components defined
over K.
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The next result is due to Faltings [1]; implicitly, it implies that xx is independent
of K.

Lemma 6. There are unique functions h : Z;(P*(Q)) x Pic(n)*! — R for
t=0,..., M (heights) with the following properties:

(i). h(Z, My, ..., M) is additive in Z, My, ..., My and invariant under permuta-
tions of My, ..., My;

(ii). for Z € Z,(P*(Q)), Mg € Pic*(n), My, ..., M; € Pic(n), choose any number
field K over which all components of Z are defined, and choose any f € I'(My)
with coefficients in Ok such that f does not identically vanish on Z. Then

(3.5)  h(Z, Mo, ... My) = h(div(f|Z), M1, ... My) + kg (Z, f, M1, ..., My).

Remark. (3.5) holds true also for t = 0, by agreeing that then div(f|Z) = 0.

Proof. Put R := Ok, P% = P} Xgpecr --- XSpeck P™. A subvariety of P}
is by definition an integral closed subscheme of P% and a cycle in P% a finite
formal linear combination with integer coefficients of subvarieties of P%. In [1],
Faltings defined a logarithmic height for cycles in P% by means of the arithmetic
intersection theory on P developed by Gillet and Soulé [5], and he gave a sketchy
proof of the analogue of our Lemma 6 for cycles in P%}. A more detailed proof of
this analogue was given by Gubler [7], Props. 4.3, 5.3.

It is straightforward to translate Gubler’s results into Lemma 6 by going through
the definition of a scheme. Similar to [8], Ex. 3.12 on p. 92, 5.16 on pp. 119-
120 and Ex. 5.10 on p. 125, there is a one-to-one correspondence I < V(I)
between essential n-prime ideals of R[X] and subvarieties of P%, such that V(1)
is a subvariety of V(J) < I D J. Further, for subvarieties V(I) of P} we have
that either / N R = (0) in which case V (I) is flat (over Spec R) (cf. [8], p. 257,
Prop. 9.7) or I N R is a non-zero prime ideal p of R, in which case V(I) maps to
© (under V(I) — Spec R).

Now let Z be a subvariety of P* defined over K, and let I = {f € R[X]: f(P) =0
for P € Z}. Then Z := V(I) is a flat subvariety of P%. Now the height h(Z,.)
defined in Lemma 6 is equal to the height h(Z,.) defined by Gubler (and 1/[K : Q]
times the height defined by Faltings). Faltings and Gubler, Prop. 4.3 have a similar
recurrence relation as (3.5) for the height of flat subvarieties Z of P%, with instead
of Kk only the sum of infinite components k,. The divisor div(f|Z) might have
also non-flat components and the terms &, in (3.5) are precisely the contributions
of the heights of these non-flat components. By Prop. 5.3 of Gubler, the Faltings
height for subvarieties of P} is invariant under base extensions from R to the ring
of integers of any finite extension of K. This implies that in Lemma 6, the height
does not depend on the choice of the field K. O
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If Z € Z,(P*) and among My, ..., My, N; appears e; times for i = 1,..., s where
e1+ ... +es =t +1, then we write h(Z, Ny*.. N¢#) for h(Z, Mo, ..., M;). Further,
for Z € Zy(P") we put h(Z) := h(Z,O(1)tT1). We write again P™ for P*(Q).

Lemma 7. (i). For P € P" we have h(P) = log H(P).

(ii). h(P") = 5 3274 2, 1/1.

(iii). If Z € Z,(P™) is effective and My, ..., My € Pict(n), then

h(Z, Mo, ..., My) > 0.

(iv). Let Z, M, ..., My be as in (iii) and f € T'(My) such that f does not identi-
cally vanish on Z. Then

h(diV(f|Z>,M1, ...,Mt) < h(Z,Mo, ...,Mt) + 1OgH(f)(ZM1Mt)

Proof. (i). In a sufficiently large number field K we can choose the coordinates
x = (xg,....,xy) of P such that zg,...,z, € Ok and the ideal generated by these
coordinates is (1). Then there are «y,...,a,, € Ok with agzg + ... + apz, = 1.
Take f(X) = apXo + ... + apX,,. Then f does not vanish at P, div(f|M) =
0,k,(P, f) = 0 for each prime ideal p # (0) of Ox and

e ()
P = R T el g{ (Z_;! (:)] ) }

Hence

) 1
B(P) = h(dV(fIP) = 3" ko(P, ) = log H(P).
(K : Q] <
(ii). cf. [7], Prop. 4.4. This can be proved by induction on n. Take f = X(y. Then
h(P™) = h(div(f|P™)) + k = h(V) + k, where V = {Xy = 0} and

R:_/ log 2 & 212 Wrn
pr) (2012 + oo+ [2a]2)Y

By the induction hypothesis, h(V) = h(P""!) = %Z?:_ll {:1 1/l and, by a
straightforward but elaborate integration, k = 3 >, 1/1.

(iv). We assume that Z is a subvariety of P™ which is no restriction. Choose
a number field K such that Z and the components of div(f|Z) are defined over
K and the coefficients of f belong to K. By enlarging K if need be, we may
assume that the ideal a generated by the coefficients of f is principal, a = (\),
say. Since div(f|Z) and H(f) do not change when f is replaced by A~! f, we may
assume that a = (1) and shall do so in the sequel. Suppose My = O(d), with
d = (di,....,dn) € (Z>0)™. Let J be the set of tuples of non-negative integers
i=(ip;:h=1,...,m,5=0,..,n;) with Z?io in; =dp, for h=1,...,m. Then

f=>al) ﬁ ﬁ X, with a(i) € K.
ieg h=1j=0

17



1/2
Let o be an embedding : K — C and A, := (Ziej |a(a(i))|2) . By Schwarz’

inequality we have for z = (z1,...,2y,) with z;, = (2no, ..., 2hn,) € C™ 1 for
h=1,...,m that

o()@)] = 1> ola@) [T TL 271 < Aollza][% .2
€T h=1j5=0

Hence ||o(f)|] < A,. Together with (3.2), (3.1) this implies that

Ko log Ag(Z - My..My),

1 1
> — e Q]logA /ch(/\/ll)/\.../\cl(/\/lt)z K Q

where Kk, = ko (Z, f, M1,..., My). Further, for every non-zero prime ideal g of

Ok we have k, = ky(Z, f,My,..., M) > 0. Since a = (1) we have H(f) =
(T1, Ao)Y/IEQ Tt follows that

h(div(f|Z), My, .. My) = W(Z, Mo, .. My) =D ko — Y Ky
hZ, Mo, ... My) + (log H(f)).(Z - My..M,).

(iii). Apply (iv) with f a monomial. Then log H(f) = 0; hence
h(div(f|Z), M1, .... M) < h(Ma, ..., M;). Now (iii) follows easily by induction
on t. 0

Lemma 8. (i). Let Z = Zy X ... X Z,, where Z, € Z5, (P"") for h = 1,....,m

and put 6 = 61 + ... + 6,,. Further, let eq,...,e,, be non-negative integers with
e1+...+en =0+1. Then

WZ, L5 L) = h(Zn). [ [ deg Z;
j#h

if for some h € {1,...,m} we have (ey,...,en) = (01, ..., 0n—1,0n + 1, ..., 0,,) and

hMZ, L5 ...Lom) =0 otherwise.

.. 1 m ) !
(if). h(Z, LOFY) = dSt..don ST 61!.”(§hfl>)'!_”5m!(dhh(zh)nj#h deg Z;).

Proof. This was stated without proof by Faltings [1]. We assume that e; — d; >
.. > em — 0y, and that Zp is a dp-dimensional subvariety of P"» for h = 1,...,m
which are no restrictions. For convenience of notation, put ¢ = 1 if (e; — 91, ..., €, —
dm) = (1,0,...,0) and ¢ = 0 otherwise.
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We proceed by induction on §;. Note that e; — d; > 1; hence e; > 1. Choose a
number field K and a linear form f € O [X;] such that f does not vanish identi-
cally on 7, and such that 74, ..., Z,, and the components of div(f|Z;), div(n] f|Z)
are defined over K. Consider the quantities

U :=h(Z,L5..L5) — ch(Zy) [ ] deg Zn,
h=2

—h (div(ﬂ‘ f12), E‘jl_lﬁ?...ﬁfnfﬂ) — ch(div(f|21)) [ deg Zn-
h=2

If 6; = 0 then div(n] f|Z) = 0,div(f|Z1) = 0 hence v = 0; if 4; > 0 then also
u = 0 by the induction hypothesis. We have to show that U = 0.

By Lemma 6 (ii) we have
(3.7) U=U-u=>» X+ A
o o

where
Ao = ko (Z, T f, LOTHLE) — c.deg Zs... deg Zmkio(Z1, f, O(1) 1)

for v € {0} U{p}, where o stands for the embeddings of K into C and p for the
non-zero prime ideals of Og. If (e; — 01, ..., — 6) = (1,0,...,0), then by (3.1)
we have for each embedding 0 : K — C,

Ko (Z, i f, cil—l...zfi,y»)

1
— x.q ), Clog ||0(7rff)||cl(£1)61_1 Ao ANep(Lp)em

1
= log |lo(f)]|wgt™ 1 /
[K‘Q] Z1><O-(C || H H ZhX (C
= ko (Z1, f1,0(1) 1) deg Z5... deg Zm.

If (e1 — 61, .oy €m — Om) # (1,0,...,0) then s, (Z, i f, L5 71...LS) = 0; namely in
that case either e; — 1 > &1 or e, > dp for some h > 2 which implies that the
restriction of the differential form c1(L£1)* "1 A ... A ¢1 (L)%™ to Z, has degree
larger than 2 dim Z; which is the dimension of Z; over R. It follows that in both
cases,

(3.8) Ao = 0 for each embedding ¢ : K — C.

19



Let p be any prime number and for each prime ideal p of Ox dividing p, put

d, = [F, : Fp]. Then
Z)\@ =ny(f).logp,
lp

where
1 _
ny(f) = m pszp{ (div@(wi‘f]Z) LT 1---£fnm)

— cdeg Zs...deg Zm(divp(f|Zl).(9(1)el_1)}.
By (3.7), (3.8) we have

(3.9) U= ny(f)logp;

hence the right-hand side of (3.9) is independent of the choice of f and K. But by
the unique prime decomposition in Z the numbers log p (p prime) are Q-linearly
independent; therefore the rational numbers n,(f) are independent of the choice
of f and K.

We show that for every prime number p we can choose f with n,(f) = 0. Let
I = {g € Ok[X] : g vanishes identically on Z} and Ji,...,.J, the minimal n-
prime ideals of Ok [X] containing at least one of the ideals I + pO g [X] with p|p.
Let I' = {¢' vanishes identically on Z;}, and Ji, ..., J;, the minimal homogeneous
prime ideals of Ok [X1] containing at least one of the ideals I’ + pO [X1] with p|p.
Choose a linear form f € Ox[X;] with f ¢ 77 ' (J)U...un; 1 (J,)UJjU... Uy,
Such an f exists since each of the ideals in the union is a homogeneous prime ideal
not containing (X1, ..., X1,n,). Thus, div, (7} f|Z) = 0,div,(f|Z1) = 0 for every
©|p which implies that n,(f) = 0. Now (3.9) implies that U = 0. This completes
the proof of (i).

(ii). By the additivity of the height and (i) we have
W(Zy, £27) = W(Z, (di Ly + oo + din L))
d+1
= Y LD genz e cop)

e1l...en!
e1+...+em=0+1
(6+1)! S ntl s
= Sditdyh T Ldom - (h(Z deg Z
251 (Oh + )0yl LR m - (A( ’L)ng 8 Z;)
which is (ii). O

Finally, we need an analogue of Lemma 4 for heights. For a polynomial
f(X1,., X)) = Yia(i) X ... X! with coefficients in a number field K and for
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each embedding o : K — C, put

Ha(f) = (Z \a<a<i>>\2)1/2.

Lemma 9. Let d = (di,...,dm) € (Z>0)™ and A a subset of I'g(d)\{0} such
that every polynomial f € A has algebraic integer coefficients in some number
field K and such that H,(f) < H, for each embedding o : K — C. Put H :=
(I1, H,)YI¥:Q. Further, let Zi, ..., Z, be irreducible components of X := {P €

P?(Q) : f(P) =0 for f € A} of codimension t. Then

I

Z mZih(Zh EM_H_l) <

=1

M!
'd’;l...dfnm{MQ(dl o dy) + tlogH}.

nil..ny,!

Proof. Let f1,..., ft be polynomials satisfying (2.6) and Lemma 5, and C, ..., C;
the cycles defined by (2.6) ; so Cy = P". From the definition of the height of a
polynomial and the fact that the quantities H,(f) satisfy the triangle inequality
it follows that

M!
(3.10)  H(fi)) <C?’H for i=1,..,t, where C= ———d"..dy".
ni....Nm:
By Lemma 7 (iv) we have
h(P™) lizl < 1(n+10 )
2 1 =2 8 m).
j=11=1
Together with Lemma 8 (ii) this implies
ik M +1)!
3.11) AP, LMY =4t ( - dph (P
( ) (", ) ! m }; nilo.(np + 1)Long! nh(P")
1 "y, + log nyp!
<-C-(M+1 ——d
<50 (M ); np+1 "

1 - 1
<-C-(M+1 < ZCM? et dy) .
<10 (M + );nhdh_4c (dy 4 .. + d)

By (2.8) we have div(f;|C;_1) = C;+ (effective cycle) for j =1,...,t. By Lemma 1
(iv) we have (C; - LM=7) < (Cj_y - LM =TT < .. < (Cp-LM) = C for j =0, ..., L.
Further, by Lemma 7 (iii), (iv) and (3.10),

(3.12) h(Cj7 ﬁM—j—l-l) (Cj—la EM—j+2) + (10g CQH) . (Cj_ch—j—H)

<h
< W(Cj_y, LY I2) 4 Clog(C2H)
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for j = 1,...,t. Now from C; = >./_  myz Z;+ (effective cycle), (3.12), (3.11

),
C<Ytijmt (MY g )] i = (dy + o+ di) ™ log(dy + ..+ di) <
(log3/3)(dy + ... + dy,) and t < M it follows that

Zmzih(zi,ﬁM%H) < h(Cy, LY < B(P™, LMY + Ctlog(C*H)
i=1

IA

1
C{ZM2(d1 + ..+ dm) +2tlogC’+tlogH}

IN
Q

1
{ZMQ(dI + ot dy) + 2tM log(dy + ... + dy) + tlogH}

IN
Q

1
{(Z +2 O§3)M2(d1 ot ) +tlogH}

< C{M2(d1 + ..+ dy) + tlogH},

which is Lemma 9. ]

§4. Proof of Theorems 1 and 2.

We use the notation of Theorem 1: £ is an algebraically closed field of characteristic
0, m an integer > 2,n = (ny,...,Ny),d = (di, ..., d,,) are tuples of positive integers
and o, € reals with ¢ > 0,0 < e <1 and

(1.1)

€

M
i > (mM) forh=1,...m—1,
dp1

where M :=nq +...+n,,. We write P for P*(k). Further, F'is a polynomial from
I'?(d)\{0}, and Z is an irreducible component of both Z,(F,d) and Z,;(F,d).

Let A be the set of polynomials

(41 [T )

in;! X
h=1j=0 het joo thi* OXy

for all tuples of nonnegative integersi = (ip; : h=1,....,m,j5 =0, ...,n4),c = (cp; :
h=1,...,m,j=0,..,n) with

(i/d) <o, > (enj+in)=dy forh=1..m

and let I be the ideal in k[X] generated by A. Note that A C I'}(d), and that
X :=Z,(F,d)={PecP": f(P) =0 for P € A}.
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Let kg be a subfield of k containing the coefficients of F', and k; the smallest ex-
tension of ko over which Z is defined. Thus, Z = V(J) with J = (f1, ..., fu), where
fi, ., fu € k1[X]. Letting oy = identity, 09, ...,04 (¢ = [k1 : ko]) be the injective
ko-homomorphisms from ki into k, put J9) := (0;(f1), ..., 0, (fu)), 29 = V(J0))
for j = 1,...,g. Since A C ko[X],ZW, ..., Z9) are irreducible components of X.
Each o induces a isomorphism & ; from Oz to Oz mapping the maximal ideal
My to M. Tt follows that the fields k(ZU)) and k(Z) are isomorphic, whence
that dim Z\9) = dim Z for j = 1, ..., g. Further, since I is generated by polynomials
from ko[X],7; induces an isomorphism from Oz /107 to O ;) /10 5. Therefore,

(4.2) Mz =Mz

(cf. Lemma 4). Let s := codimZ and let ey, ..., e, be non-negative integers with
er+...+en =M —s. Let Lq,...,L,, have the same meaning as in §2, and put
L:=di L1+ ...+ dnLy. By applying Lemma 1 (iv) with polynomials from kq[X],
we infer that

(2D . Lo Lom) = (Z-LS..LEm) for j=1,..,9.
Together with (4.2) and Lemma 4, this implies that
(4.3) (k1 : kolmz(Z.LT...Lom) < (LT...Lom .LF).

We shall estimate my from below, using differential operators similar to Wiistholz
[20]. Here it will be crucial that Z is also an irreducible component of Z,.(F,d).
If Z is not a product variety then by Lemma 3 there are at least two tuples
(€1, ..., €m) for which (Z-L5*...LSm) > 0. Using (1.1) and the lower bound for mz,
we show that for some tuple (eq, ..., e,,), the left-hand side of (4.3) is larger than
the right-hand side, thus arriving at a contradiction.

Lemma 10. For: = 1,...,m, let p; : P* — P" x ... x P" be the projection
onto the last m — i + 1 factors of P* and put ¢; := dimp;(Z) — dimp;+1(Z) for
i=1,...,m, where dimp,,+1(Z) := 0. Let s := codimZ. Then

mz =lo,(02/107) > (¢/s) di ..l ~n.

Proof. We follow the arguments of van der Put [11] and Wiistholz [20]. For
convenience of the reader, we have worked out more details.

Choose P € Z such that Z is smooth in P (i.e. the tangent space of Z at P has
dimension equal to that of Z) and for i = 1, ..., m, p;(Z) is smooth in p;(P) and the
map p; is smooth at P (i.e. the linear map of tangent spaces dp; corresponding
to p; is surjective). Such a point P exists since by [8], Lemma 10.5, p. 271,
the set of such points is a non-empty Zariski open subset of Z. After applying
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a linear transformation if need be, we may assume that P = (Pi,..., P,,) with
P,=(1:0:..:0) € P™ for h=1,...,m. Now define the affine variety

A=AM =A™ x  x A" =P"N {Xm £0, ..., Xmo # 0}.

On A we choose the affine coordinates Y5,; = X3,/ Xpo (h=1,...,m,5=1,...,n4).
Let k[Y] be the polynomial ring in these coordinates. Put F'(Y) :=
F1,Y11,. . Yim, -, 1,Y1, .., Y 0, ) and let IL be the ideal generated by the

polynomials
m Mo

m 1 np
[TIL e v Yo (Yoi) <
h=1j=1 8Yh;] 7= dn j=1
by the Remark at the end of §1, this is the defining ideal of Z,(f,d) N A. Further,
let Z':=ZNAand J ={f € k[Y]: f(P)=0for P € Z'}. Then J' is a minimal
prime ideal containing I, and also a minimal prime ideal containing I/, .. The
local ring of Z/,

vt pgemvige |

is isomorphic to Oz and has maximal ideal M = J'R. Put I := I'R. Then
R/I = 0z/I0z. Therefore, mz = l5(R/I), so it suffices to show that

(4.4) Ln(R/T) > (¢/s) dp = .dmm—om.

Since M = (f1, ey fu)}?, the tangent space of Z at 0 is given by

To(Z ) = {W =(wpj:h=1,...,m,j=1,..,n) € kM

m  np 9
Zzaéj whjz()forl:L...,u}.

h=1j=1

The linear mapping dp; induced by p; from Tp to the tangent space T}, (o) (p:(Z /))
of p;(Z') at p;(0), can be given by dp;(w) = (wp; : h=14,....,m,j =1,...,n4). Our
smoothness assumptions at the beginning of the proof imply that dimTy(Z’) =
dim Z’, dim Tpi(o)(pi(Z/)) =dimp;(Z') = 6; + ... + I, and that dp; is surjective.
Therefore,

dimker (dp;) = dimTo(Z") — dim T}, ) (pi(Z"))
(4 5) :51+---+5i—1 fOIiZQ,...,m,

ker dp; = (0).
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Note that

1—1 np
(4.6)  ker (dp;) = {w e kM : ZZ ;}‘/ﬁ O)wp; =0 for [=1,..,u,
hj
h=175=1

wp; =0 for h=1i,..m,j=1,...,n}
By (4.5), (4.6) , the (nq + ... + m;_1) X u-matrix

o1 )
A, = 0
<6th ( ) h:l,...iifl,jzl ..... np,

with the rows being indexed by (h, j) and the columns by [, has rank (n; — d1) +

..+ (nj—1 — d;i—1). Hence among the rows (9f;/0Y;;)(0) (j = 1,...,n;) of Aiy1
there are precisely n; — d; rows which are linearly independent of each other and
also linearly independent of the rows of A;; we assume w.l.o.g. that these rows
are (0f;/0Y;;)(0) with j = 1,...,n; — J; and [ = 1,...,u. This gives altogether
(n1 —01) + ... + (ny, — 6,») = s linearly independent rows (9f;/0Y4;)(0) (h =
1, ...,m,j = 1, ey Ny, — 5h)

For convenience, write Y7, ..., Y, for the variables Y;; (h=1,....m, j=1,...,np, —
0n) and put ¢; = dp, whenever Y; = Y;;. Obviously (4.4) follows once we have
shown that

(4.7) Ln(R/T) > (¢/5)"cr...cq.

By what we have seen above, the matrix ((0f;/0Y;)(0));=1,....s,1=1,....u has rank s.
We assume w.l.o.g. that det((0f;/0Y;)(0))i<;.i<s is non-zero. Then

3fz> :
D(Y) :=det J .
( ) (ay 1<4,l<s gé

Hence the elements of the inverse matrix (gx;) = (f;/Y;)~" belong to R. Define

the rational functions .
TJ :Zgljfl (]:1778)
=1

Further, define differential operators 0/0T; by

0 ON_ (0 9 N(OTNT
o T AT, ) \ovi' U oY, )\aY; ),

Ti,...,Ts belong to M since g1j € Rand f, € M. If h € R then O0h/0Y; € R
for j = 1,..,s namely if h = f/g with f,g € k[Y],g ¢ J, then O0h/oY; =

_z{g(af/ayj) — f(ag/an)}E R. Further,

i lz afl Z(aglz)fl = 5ij mod M
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Hence det(9T;/dY;) is a unit in R which implies that the elements of (8T;/8Y;)~*

belong to R. It follows that Oh/0T; € Rfor h € R, j = 1,...,s. The op-
erators 0/0T; satisfy the usual rules for differentiaton, e.g., 07;/0T; = 6;; and
OT!/OT; = 1T~ for 1 = 1,2, ... . We have the following crucial fact:

aj1+...+j5f )
T ...0T?

for every f € I and all tuples of non-negative integers (J1y ey Js)
with j1/c1 + ...+ js/cs < €.

(4.8)

Namely, let f € I and ]1/01 + ...+ jS/Cs < e. [ can be expressed as g1 f1 +

g fr With ¢1,...,gr € R, f1, .. ,fr € I,. Hence d1t+is f/9TI*. 0TI can be
expressed as Y. hiyD; fi, with hgy, € R and D; = &+~ s JOTI ... 0T for certain
i1 < J1,.51s < Js. Furthermore, D;f; can be expressed as Zp”ﬂ-Dgfk with
piki € R, D; = ot /gyl gyl with [ < iy < jy,..,0s < is < js. Since
I;.+€ C J we have D, fy € J'; this implies (4.8).

We are now ready to prove Lemma 10. Define an ordering on (Z>)® by defining
i < j if the first non-zero coordinate of j —1i is > 0. For i = (iy,...,45), put

= @irtetie JgTI | 9Tie T = T Tis. Let iy, ..., i be the tuples with i1 /c; +
.. +is/cs <€, ordered such that iy > iz > ... > i;. Define the ideals in R:

JO = j+ (TJ : aHj = (.jla "'7j8) with jl/Cl + ... +j5/CS > 6)7
Jy=Jo+ (T, .., Th) for t=1,..,1.

We have

(4.9) Jo ; J1 ; ; Ji.

Namely, suppose that for some ¢t we have J;.1 = J;. Then Tl+ € J,, Le.
T‘t+1—2 ng + f, where the sum is taken over tuples i > i, and where g; € R

A

and f € I. Since Ti,..,T, € M we have DXT! € M if k # i. Note that
Di++1Ti+1 is a non-zero constant, whence does not belong to M. On the other
hand, D'+ (g;T?) can be expressed as Y h; x DXT! with h; y € Randk < irq <i,
hence Di*+1(g;T') € M. Further, by (4.8), Di*+1 f € M. Thus we arrive at a con-
tradiction and we must conclude that Jy4; 2 Ji. This proves (4.9). Consequently,

(4.10) R/IDR/Jy 2R/ 2 ... 2 R/J 2 (0).

Hence [ 4 (R/I) > [. The tuples (i1, ...,3s) with 0 <i; < [ec;/s] (j =1, ..., s) satisfy
i1/c1+ ... +is/cs < e. Hence

(] ) e

26



This proves (4.7) and hence Lemma 10. O

Proof of Theorem 1. Let s = codim Z = M — (61 +...+ 0, ), where 1, ..., d,, are
the integers from Lemma 10. Let (e, ..., e, ) be a tuple of non-negative integers
withe; +...+ep =M —s=01 + ... + 0, and (Z - LT*...LE™) > 0. We have

=i +...+0m)—(e;+...+€n) >0 fori=2,..m

Namely, take generic fy; € F(Eh) (h = ,m, j =1,...,ep) and put W :=
ZN{fn; =0for h =1,. 1,.. eh} Then W is not empty, hence p; (W)
is not empty. Further, pz( (Z)yN{fnj=0for h=14,..m, j=1,...,ex}.

, J=
) C )
Hence dimp;(Z) = 6; + ... + 0m i+ tem.

bi
> e
From (4.3), Lemma 4 and Lemma 10 it follows that

(4.11) [ky : kol (Z - L5 ... LE) <m (LS .. L8m.L%)
=m, (LT L8 (diLy + oo+ A Ln)®)
1 s!

(n1 —e)lec(nm — em)!)

—1 sdn1761 dnm—em
l cee m

(@)Sdil—"l L S
B E S @ 72 dm TIm
- € ) dl dm—l '

Suppose that Z is not a product variety Z; X ... X Z,,, with Z;, a subvariety of P™»
for h =1,...,m. Then by Lemma 3 there are at least two tuples (eq, ..., e,,) with
(Z - L5...LEm) > 0 so there is such a tuple with (eq,...,em) # (d1,...,0mm). But
then, at least one of the numbers 7; is > 1. Together with (4.11) and condition
(1.1) on dy /da, ..., dp,—1/dy, this implies that

s —M(n2+...41m)
k1 2 kol(Z - £E1...Lom) < <@) : (mM) <1

€ €

dn1—61 dnm—em

A

3
N

3

IN

which is impossible as (Z - L]*...LEm) is a positive integer. It follows that Z is a
product variety Z; X...X Z,, with Zj, a subvariety of P"» and that e;, = d;, = dim Z},
for h =1,...,m. Hence n; = ... = 1, = 0. By inserting this into (4.11) and using
Lemma 2 (ii) we get

[k‘l : k‘o] deg ZldegZ = [k,’l . ]{?0](2 . ,C?..,Lfnm) S (@> .

€

This completes the proof of Theorem 1. OJ
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Proof of Theorem 2. We use the notation introduced at the beginning of this
section, except that k = Q. We assume that F has its coefficients in some number
field K, and that the ideal generated by the coefficients of F' is (1). Similarly
as in the proof of Lemma 7 (iv) this is no restriction. The coefficients of each

polynomial
m np o, m np 1 8 hi
A= (T 5y )

7
h=1j=0 hlehaXh’;J
are obtained by multiplying the coefficient of F' attached to the monomial
[T, th th] with [T}, H;Li (l*”) which is an integer

m nh
< 9D nr 2yt n < gdittdm

It follows that for each embedding ¢ : K — C,

(4.12) H,(F,) < 2@t-tdmpg (F) =: H,.

Recall that the coefficients of F' generate the ideal (1), so that
1/[K:Q]

(413) (H Ha) < 2d1+...+de(F)'

By applying Lemma 6 (iv) with f having coefficients in k¢ and using induction on
the dimension, we see that

hZW, M=ty = p(Z, LMY for i =1,..., [k : kol
Together with Lemma 9, (4.12), (4.13) this implies
(4.14) [ky = kolmzh(Z, LM 51
M!
(R
< 2mM M2 .dV (dy .. A dy, + log H(F)).

We have shown that Z = Z; x ... X Z,,, where Z, is a dj-dimensional subvariety
of P for h =1,...,m. By Lemmas 10, 9 and 8 (ii) we have

(k1 : kolmzh(Z, LM = F1)

pdyt {(M2 +log2)(dy + ... +dp) + slogH(F)}

Z (Z1)
> k1« kol(e/s) dy =%t din =0 - d9*...dSr deg Zi ... deg ZW( dclll(:bg h )
Zn
= n " dhh Zh
[k1 : ko) deg Z1...deg Zy,.(e/5)°d}*...d)m E deg -

By comparing this with (4.14) we see that the term dj*...d}s» cancels and that

dph(Zy,)
ki : ko|deg Z;...deg Z,,
[k1 : ko] deg Zy... deg (Z dog Zn

which is Theorem 2. O

) < 2(5) m™M M2 (dy+...4dp+log H(F)),
€
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§5. Proof of Theorem 3 (Roth’s lemma).

Let m be an integer > 2. Put P := P}(Q) x ... x P}(Q) (m times) and denote by
P} the i-th factor of P. Define the blocks of two variables X}, := (Xpo, Xp1), for
d = (di,...,dm) € (Z>p)™ let T'(d) be the set of polynomials from Q[Xq, ..., X,,]
which are homogeneous of degree dj, in Xy, for h = 1,...,m and let I := UgI'(d).
As usual, we put £, = O(0,...,1,...,0) (1 on the h-th place).

Now let 0 < ¢ < m+ 1 and let d = (dy,...,d,,) be a tuple of positive integers
satisfying (1.11). Further, let F' be a non-zero polynomial from I'(d) and let
P = (Py,...,Py,) where P, € P! for h = 1,...,m. Assume that iq(F,P) > ¢e. We
shall show that for at least one h we have that Pj, does not satisfy (1.12), i.e.

(3m?/e)™
(5.1) H(P,)%™ < (ed1+"'+de(F)) :
This clearly implies Theorem 3.

Put € :=€¢/(m+1). As in the proof of the Corollary, there is an i € {0, ..., m} such
that Z;e and Z(;41)e have a common irreducible component, Z, say, containing P.
Put s := codim Z. Asin Lemma 10, let p; be the projection of P onto the product
of its last m — i+ 1 factors P} x ... x PL and put d; := dim p;(Z) —dim p;41(Z) for
i=1,...,m, where dim p,,+1(Z) := 0; note that §; € {0,1}. Further, let 7}, be the
projection of P onto its h-th factor P} . Then either 7, (Z) = P} or 7,(Z) is a point
in which case m,(Z) = P. We shall show that for some h we have 7,(Z) = P,
and that this P, satisfies (5.1). To this end we need the following improvement of
Lemma 3 for the case n = (1,...,1).

Lemma 11. There are ey, ...,e,, € {0,1} withe; + ... + €, = dimZ = m — s,
(Z-L3...Lom) > 0,m;:=>. . (6; —ej) >0 fori=2,...,m and

j=i

im > <idim7ri(Z)) —dimZ .
=2 i=1

Proof. For any subset i = {i1,...,i;} of {1,...,m} denote by m; the projection of
P onto P} x ... x Pj and put ¢; := dim7;(Z).

We proceed by induction on m. For m = 1, Lemma 11 is trivial. Suppose that
m > 2. For the moment, suppose also that 71(Z) = P}. Let X be the set of points
P in Z such that for some i C {1, ...,m} either 7;(Z) is not smooth at 7;(P) or the
restriction 7;|Z of m; to Z is not smooth at P. Then X is a proper, Zariski-closed
subset of Z. For Q = (p : q) € P, let fo = qX10 — pX11, Zg = Z N {fg = 0}.
There are only finitely many @ € P! such that one of the irreducible components of
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Zq is contained in X. Namely, X has only finitely many irreducible components
and if some irreducible component Z’ of Zg is contained in X, then Z’ is an
irreducible component of X since dim Z’ = dim Z — 1. Now choose Q € P} such
that no irreducible component of Zg is contained in X and let Z’ be any irreducible
component of Zg. We are going to apply the induction hypothesis to Z'.

We have to consider tangent spaces at an appropriate point. Choose P € Z’' such
that for each i C {1,...,m}, m;(Z) is smooth at m;(P), m;|Z is smooth at P, m;(Z")
is smooth at m;(P) and the restriction m|Z’ is smooth at P. Such a P exists since
Z' is not contained in X and the set of P € Z’ such that for some i C {1,...,m}
either m;(Z") is not smooth at 7;(P) or m;|Z’ is not smooth at P is a proper Zariski-
closed subset of Z'.

We assume w.l.o.g. that P = (1:0;...;1:0). Let A := {X109 # 0,..., X;no # 0}
and define affine coordinates Y7 = X11/X10, .-, Yin = X1/ Xmo. Thus, Z' N A is
an irreducible component of (ZNA)N{Y; = 0}. There are polynomials fi, ..., f, €
Q[Y1,..., Y] such that ZNA ={y € A: fi(y) = ... = f-(y) = 0}. The tangent
space of Z at P is given by

m

T:= {y:(y177ym Z afz/ay yj :OforiZI,...,r}.

Since m;|Z is smooth at P, the linear map dm; corresponding to m;, which is the
projection y — (y; : ¢ € i), maps T surjectively to the tangent space T; of m;(Z) at
mi(P). Since Z is smooth at P we have dim 7' = dim Z and since 7;(Z) is smooth
at mi(P) we have dimT; = dimm;(Z) = ¢;.

Similarly, dm; maps the tangent space T of Z’' at P surjectively to the tangent
space T} of mi(Z') at mi(P) and dim 7} = dimm;(Z’). Since Y13 =0 on Z' N A we
have y; =0 on T". Hence T" C T'N{y; = 0}. Further, y; is not identically zero on
T since dim f{1;(T) =dim Z; =1 and dim7" =dimZ’ =dimZ — 1 = dim7T — 1.
Hence 77 =T N {y; = 0}.

We consider y1, ..., ym, as linear functions on 7. Thus, for i C {1,...,m} we have
¢ =dimT; = rank {y; : i € i}.

We have the following crucial fact:

(5.2) dimm(Z') =dimm;(Z)
for each subset i of {1,...,m} with c{1yu; > ¢,
dimﬂ'i(Z/) :dimﬂ'i(Z) -1

for each subset i of {1,...,m} with cfiyui=¢ .

Namely, fori C {1,...,m} let V; = ker dminT=TN{y; = 0for¢ € i}, V' = ker dminN
T'=T'N{y; = 0for i € i}. Thus, V; = V{135 Further, put e; = c(13u; — ¢i; then
e; € {0,1}. Now for i C {1,...,m} we have

dimm;(Z) =dim T’ — dim V{ = dim T — 1 — dim V134
= dimﬂ'{l}ui(zl) —1= dimﬂi(Z) +e —1

30



which is precisely (5.2).

We now complete the induction step. Put 0, := dimp;(Z’') — dimp;41(Z’) for
i =1,...,m, where dimp,,+1(Z’) := 0. Put also ¢; := dimm;(Z), ¢, := dimm;(Z’).
Recall that Z’ = Q x W, where Q € P} and W is a subvariety of P} x ... x PL . By
applying the induction hypothesis to W we infer that there are es, ..., e, € {0,1}
such that

eg+..+ey,=dmZ =dimZ -1,

(Z' - L32..LS) >0,

n = Z(é; —e;) >0 fori=3,..,m,

j=i

M+, = Y ¢ —dimZ'
j=2

Put e; = 1. Obviously, (Z-L5*...L5m) > 0. Let t be the largest index such that y; is
linearly dependent on {y; : i > t}. Then ¢; = dim p;(Z)—dim p;1(Z) = rank {y; :
i >t} —rank {y; : 4 > t+1} = 1. Further, by (5.2) we have §; = 0;,n, = n;, ¢, = ¢
fori>t, 0, =90 —-1=0,0,=9; for2<i<tandn,=mn —1for2<i<t, where
nh = Z;nzz(éé —e;) = 0. Further, ¢, > ¢; — 1 for i <t and dimZ’ = dim Z — 1.
It follows that

Dmi=p M+t
j=2 j=3
> (icé) +t—1—dimZ > (iq) —dim Z .
j=2 j=1

This completes the induction step for the case dimm;(Z) > 0. In the other case
we have Z = @ x W where Q € P} and W is a subvariety of P} x ... x PL and
then the induction step is completed by applying the induction hypothesis to W.
This proves Lemma 11. O

Proof of Theorem 3. Suppose that the integers dy, ..., d,, satisfy (1.11), i.e.
dy/dps1 >2m2/efor h=1,..m—1. Put L:=d L1 + ...+ dpnLm. Let e, ...,em
be the integers from Lemma 11.

Assume that 7, (Z) = P}, for h =1,...,m. Then by Lemma 11,

Mo+ ... + My > codim Z = s .

Together with (4.11) (cf. proof of Theorem 1 with i€, ¢’ replacing o, €, respectively)
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and 7; = 0 this implies that

1<(Z- L9 ..L.om)
ms S d2 n2 dm Nm
<[ — —
-\ ¢ dy -1
s 3\ —$
<(m(m—|—1)> ‘(Qm ) <1
€ €

which is impossible. Therefore there is an h € {1,...,m} with 7,(Z) = P,.

We now show that P, satisfies (5.1). By precisely the same argument as in the
proof of Theorem 2 we have

(53) h(Z, £m—s+1)
<myg' o mldy..dp ((m* +log2)(d1 + ... + dpn) + slog H(F))

< (£> 2m?m! - d ..l (dy + .. + dy + log H(F))
€

€

3m3 m 51 5
< dit..dym(dy + ...+ dp, + log H(F)) .

By Lemmas 6,7 we have
h(Z, ‘Cmferl)
— 1!
- 3 Md{l...d,{yh(z, ch.cimy
Frdoo ot fon=m—s+1 fileeofn!
> dS..dom - dy - h(Z, L5 LT Lo
Together with (5.3) and n; > 0 for i = 2,...,m this implies

(5.4)  dp-h(Z, L5 ...comttLem)

3 3\ m d n2 dm Nm
< o =) . (di+ ... + dm +log H(F))
dl dm—l

€
3m3\"™
< (ﬂ> (di + ... + dm + log H(F))

- €

3m3 " 51—61 O —€
< — dy e dyr e (dy + ..+ dy, + log H(F))

It is no restriction to assume that P, = (a : b) where a, b belong to some number
field K and (a,b) = (1). Then there are o, € Ok with aa + b = 1. Put
f =aXno+ BXp1. Then div(f|Z) =0 and k, = ko (Z, f, LS'...LS7) = 0 for each
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non-zero prime ideal p of Ok . Further, for each embedding ¢ : K — C we have
that ||o(f)|| = (|o(a)|> + |o(b)[?)~'/? is constant on Z x, C. Hence, using (3.1),

Ko = ko (Z, f, LS. L5™)

71 €1 c em
:_[KQ] /ZXUCIOgHO'(f)H'Cl(‘Cl) JANIAY 1(£m)
= —71 (0] ola 2 o 2 _1/2 c el c Em
- [KQ]I g((| ( )‘ +‘ (b)l ) )/ZXU(C 1(£1) ARTA 1(£m)

=log ((Jo(@)* + o (b)[)/25 ) - (Z - L5

By inserting this into (3.5) and using that (a,b) = (1) we obtain

hZ, L LT Lem)
= Ko+ Y Ky =logH(Py)-(Z-LS..L")
o ©

> log H(Py) .

Together with (5.4) this implies (5.1). This completes the proof of Theorem 3. [

References.

1]
2]
3l
(4]

[14]

[15]
[16]

G. FALTINGS, Diophantine approximation on abelian varieties, Annals of Math. 133 (1991),
549-576.

G. FALTINGS & G. WUSTHOLZ, Diophantine approximations on projective spaces, Invent.
Math. 116 (1994), 109-138.

R. FERRETTI, An effective version of Faltings’ Product Theorem, Forum matematicum, to
appear.

W. FULTON, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge,
Band 2, Springer Verlag, Berlin etc., 1984.

H. GILLET & C. SOULE, Arithmetic intersection theory, IHES, Publ. Math. 72 (1990), 93-174.
P. GRIFFITHS & J. HARRIS, Principles of algebraic geometry, Wiley & Sons, New York, 1978.
W. GUBLER, Héhentheorie, Math. Ann. 298 (1994), 427-456.

R. HARTSHORNE, Algebraic geometry, Springer Verlag, Berlin etc., 1977.

J. de JONG, Ample line bundles and intersection theory, in: Diophantine approximation and
abelian varieties, Proc. conf. Soesterberg, Netherlands, 1992, B. Edixhoven, J.-H. Evertse, eds.,
Lecture Notes in Mathematics 1566, Springer Verlag, Berlin etc. 1993, pp. 69-76.

P. PHILIPPON, Sur des hauteurs alternatives, I, Math. Ann. 289, (1991), 255-283.

M. van der PUT, The Product theorem, in: Diophantine approximation and abelian varieties,
B. Edixhoven, J.-H. Evertse, eds., Springer LNM 1566, 1993, pp. 77-82.

K.F. ROTH, Rational approximations to algebraic numbers, Mathematika 2 (1995), 1-20, Corri-
gendum 168.

H.P. SCHLICKEWEI, An explicit upper bound for the number of solutions of the S-unit equation,
J. reine angew. Math. 406 (1990), 109-120.

H.P. SCHLICKEWEI, The quantitative Subspace Theorem for number fields, Compos. Math.
82 (1992), 245-273.

W.M. SCHMIDT, Norm form equations, Ann. Math. 96 (1972), 526-551.

W.M. SCHMIDT, The subspace theorem in diophantine approximations, Compos. Math. 69
(1989), 121-173.

33



[17] W.M. SCHMIDT, The number of solutions of norm form equations, Trans. Am. Math. Soc. 317
(1990), 197-227.

[18] I.R. SHAFAREVICH, Basic Algebraic Geometry, Springer Verlag, Berlin etc., 1977.

[19] C. SOULE, Geometrie d’ Arakelov et theorie des nombres transcendants, in Journées Arithmé-

tiques de Luminy, 1989, G. Lachaud, ed. pp. 355-372, Astérisque 198-199-220, 1991, Soc. Math.
France.

[20] G. WUSTHOLZ, Multiplicity estimates on group varieties, Ann. Math. 129 (1989), 471-500.
[21] O. ZARISKI & P. SAMUEL, Commutative Algebra, Vol. II, Springer Verlag, Berlin etc., 1960.

34



