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Introduction.
In his paper ‘Diophantine approximation on abelian varieties’ [1], Faltings proved
among others the following conjecture of Weil and Lang: if A is an abelian variety
over a number field k and X a subvariety of A not containing a translate of a
positive dimensional abelian subvariety of A, then X contains only finitely many
k-rational points. One of Faltings’ basic tools was a new non-vanishing result of
his, also proved in [1], the so-called (arithmetic version of the) Product theorem. It
has turned out that this Product theorem has a much wider range of applicability
in Diophantine approximation. For instance, recently Faltings and Wüstholz gave
an entirely new proof [2] of Schmidt’s Subspace theorem [15] based on the Product
theorem.

Faltings’ Product theorem is not only very powerful for deriving new qualitative
finiteness results in Diophantine approximation but, in an explicit form, it can be
used also to derive significant improvements of existing quantitative results. In
the present paper, we work out an explicit version of the arithmetic version of
the Product theorem; except for making explicit some of Faltings’ arguments from
[1] this did not involve anything new. By using the same techniques we improve
Roth’s lemma from [12]. Roth’s lemma was used by Roth in his theorem on the
approximation of algebraic numbers by rationals [12] and later by Schmidt in his
proof of the Subspace theorem [15].

In two subsequent papers we shall apply our improvement of Roth’s lemma to
derive significant improvements on existing explicit upper bounds for the number
of subspaces in the Subspace theorem, due to Schmidt [16] and Schlickewei [14]
and for the number of solutions of norm form equations [17] and S-unit equations
[13].

At the conference on Diophantine problems in Boulder in honour of W.M. Schmidt
(26 June - 1 July, 1994), Wüstholz announced that his student R. Ferretti had
independently obtained results similar to our Theorems 1 and 2. These results
have been published in [3]. Part of the arguments used in the proof of Theorem 1
had already been worked out by van der Put [11] in his lecture at the conference
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‘Diophantine approximation and Abelian varieties, Soesterberg, The Netherlands,
12-15 April 1992.

As the Product theorem appears to have applications outside arithmetic algebraic
geometry, we have tried to make this paper accessible to non-geometers with a
modest knowledge of algebraic geometry.

§1. Statement of the results.

Let n = (n1, ..., nm) be a tuple of positive integers. For h = 1, ...,m, denote by
Xh the block of nh + 1 variables Xh0, ..., Xh,nh . For a ring R, denote by R[X] or
R[X1, ...,Xm] the polynomial ring in the (n1+1)+...+(nm+1) variables Xhj (h =
1, ...,m, j = 0, ..., nh). For a tuple of non-negative integers d = (d1, ..., dm),
denote by Γn

R(d) the R-module of polynomials in R[X] which are homogeneous of
degree d1 in the block X1, ..., homogeneous of degree dm in Xm i.e. the R-module
generated by the monomials

Xi :=
m∏
h=1

nh∏
j=0

X
ihj
hj with

nh∑
j=0

ihj = dh for h = 1, ...,m.

Let Γn
R := ∪d∈(Z≥0)mΓn

R(d) be the set of polynomials which are homogeneous
in each block Xh for h = 1, ...,m. An n-ideal of R[X] is an ideal generated by
polynomials from Γn

R. An essential n-prime ideal of R[X] is an n-ideal which is
a prime ideal and which does not contain any of the ideals (Xh0, ..., Xh,nh) (h =
1, ...,m).

Let k be an algebraically closed field and denote by Pn(k) the n-dimensional
projective space over k. Every point P ∈ Pn(k) can be represented by an up to
a scalar multiple unique non-zero vector x = (x0, ..., xn) ∈ kn+1 of homogeneous
coordinates. Let again n = (n1, ..., nm) be a tuple of positive integers. Define the
multi-projective space Pn(k) as the cartesian product

P
n(k) := Pn1(k)× ...× Pnm(k).

In what follows, Pn(k) with a non-bold face superscript denotes the n-dimensional
(single-) projective space, and Pn(k) with a bold-face superscript a multi-projective
space. For f ∈ Γn

k and for P = (P1, ..., Pm) ∈ Pn(k) with Ph ∈ Pnh(k) for
h = 1, ...,m we say that f(P ) = 0 (or 6= 0) if f(x1, ...,xm) = 0 (or 6= 0) for any
vectors of homogeneous coordinates x1, ...,xm, representing P1, ..., Pm respectively.
This is well-defined. A (Zariski-) closed subset of Pn(k) is a set

{P ∈ Pn(k) : f1(P ) = 0, ..., fr(P ) = 0}
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(abbreviated {f1 = 0, ..., fr = 0}), where f1, ..., fr ∈ Γn
k\{0}. A closed subset X

of Pn(k) is called reducible if it is the union of two closed subsets A,B of Pn(k)
with A ( X,B ( X, and irreducible otherwise. Every closed subset X of Pn(k)
can be expressed uniquely as

X = Z1 ∪ ... ∪ Zr,

where Z1, ..., Zr are irreducible closed subsets of Pn(k) such that Zi * Zj for i, j ∈
{1, ..., r}, i 6= j (cf. [18], p. 23). Z1, ..., Zr are called the irreducible components
of X. We agree here that we shall use the term ‘subvariety’ exclusively for a
projective subvariety, i.e. a closed irreducible subset.

There is a one-to-one correspondence between subvarieties of Pn(k) and essential
n-prime ideals I of k[X]:

I ↔ V (I) = {P ∈ Pn(k) : f(P ) = 0 for all f ∈ I}.

We say that the subvariety V of Pn(k) is defined over a subfield k1 of k if its
corresponding prime ideal can be generated by polynomials with coefficients from
k1. An important class of subvarieties of Pn(k) we will encounter are the product
varieties

Z1 × ...× Zm = {(P1, ..., Pm) : Ph ∈ Zh for h = 1, ...,m}

where Zh is a subvariety of Pnh(k) for h = 1, ...,m. It is a theorem, cf. [18], pp. 61/
62, that the cartesian product of subvarieties of Pn1(k), ...,Pnm(k), respectively, is
a subvariety of Pn(k).

Let F ∈ Γn
k . For a tuple of non-negative integers i = (ihj : h = 1, ...,m, j =

0, ..., nh) define the partial derivative of F :

Fi :=
( m∏
h=0

nh∏
j=0

∂ihj

∂X
ihj
hj

)
F.

Let d = (d1, ..., dm) be a tuple of positive integers. For a tuple i as above, put

(i/d) :=
m∑
h=1

1
dh

(ih0 + ...+ ih,nh).

The index of F with respect to P ∈ Pn(k) and d, notation id(F, P ), is the largest
number σ such that

Fi(P ) = 0 for all i with (i/d) ≤ σ.

The index of F at P is some kind of weighted multiplicity of F at P . The index
is independent of the choice of homogeneous coordinates on Pnh for h = 1, ...,m.
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Namely, if for h = 1, ...,m, Yh0, ..., Yh,nh are linearly independent linear forms in
Xh, then the differential operators ∂/∂Yhj are linear combinations of the ∂/∂Xhj

and vice versa, hence the index does not change when in its definition the operators
∂/∂Xhj (j = 0, ..., nh) are replaced by ∂/∂Yhj (j = 0, ..., nh) for h = 1, ...,m.

For σ ≥ 0, define the closed subset of Pn(k),

Zσ = Zσ(F,d) := {P ∈ Pn(k) : id(F, P ) ≥ σ}
= {P ∈ Pn(k)) : Fi(P ) = 0 for all i with (i/d) ≤ σ}.

Zσ need not be irreducible. The Product theorem of Faltings [1], Thm. 3.1 states
that if Z is an irreducible component of Zσ and also of Zσ+ε for some ε > 0, and
if the quotients d1/d2, ..., dm−1/dm are sufficiently large in terms of ε and m, then
Z is a product variety. Below we have stated this result in an explicit form. The
degree deg Z of a subvariety Z of Pn is the number of points in the intersection of
Z with a generic linear projective subspace L of Pn such that dimZ + dimL = n.
The codimension of Z is n− dimZ.

Theorem 1. Let k be an algebraically closed field of characteristic 0. Further, let
m be an integer ≥ 2, n = (n1, ..., nm), d = (d1, ..., dm) tuples of positive integers
and σ, ε reals such that σ ≥ 0, 0 < ε ≤ 1 and

(1.1)
dh
dh+1

≥
(
mM

ε

)M
for h = 1, ...,m− 1

where
M := n1 + ...+ nm.

Finally, let F ∈ Γn
k (d)\{0}, and let Z be an irreducible component of both Zσ(F,d)

and Zσ+ε(F,d).
Then Z is a product variety

(1.2) Z = Z1 × ...× Zm,

where Zh is a subvariety of Pnh(k) for h = 1, ...,m. Further, if F has its coefficients
in a subfield k0 of k, then Z1, ..., Zm are defined over an extension k1 of k0 with

(1.3) [k1 : k0] degZ1...degZm ≤
(
ms

ε

)s
,

where s =
∑m
i=1 codimZi.

The idea behind the proof of Theorem 1 is roughly as follows. Any irreducible
component Z of both Zσ and Zσ+ε must have in some sense large multiplicity
(analogously, if for a polynomial f in one variable all derivatives of f up to some
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order vanish at P then P has large multiplicity). On the other hand, using inter-
section theory one shows that the multiplicity of Zσ can be that large only if this
component is a product variety.

Now let k = Q be the field of algebraic numbers. We need estimates for the
heights of Z1, ..., Zm in terms of the height of F . First we define the height of
x = (x0, ..., xn) ∈ Qn+1\{0}. Take any number field K containing x0, ..., xn.
Denote by OK the ring of integers of K and let σ1, ..., σf , f = [K : Q] be the
embeddings of K into C. Choose α ∈ OK\{0} such that αx0, ..., αxn ∈ OK , let
a = αx0OK + ... + αxnOK be the ideal generated by αx0, ..., αxn, and Na =
#(OK/a) the norm of a. Then the height of x is defined by

(1.4) H(x) :=
{

1
Na

f∏
j=1

( n∑
i=0

|σj(αxi)|2
)1/2}1/f

.

It is easy to show that this does not depend on the choices of α and K. The height
of a non-zero polynomial F ∈ Q[X1, ..., Xn] is defined by H(F ) = H(x) where x
is the vector of non-zero coefficients of F .
It is obvious that H(λx) = H(x) for every λ ∈ Q∗. Hence we can define a height
on Pn(Q) by H(P ) = H(x) where x ∈ Qn+1\{0} is any vector representing P . By
using the arithmetic intersection theory of Gillet and Soulé [5] for schemes over
Spec Z, Faltings defined a height h(Z) for subvarieties Z of Pn(Q), cf, [1], pp.
552/553 and [7] for more details. This height is always ≥ 0. Further, for points
P ∈ Pn(Q) we have

(1.5) h(P ) = logH(P ).

Philippon [10] and Soulé [19] gave an explicit expression for the Faltings height of
Z in terms of the Chow form of Z. This is the up to a constant unique polynomial
FZ in the r + 1 blocks of n + 1 variables ζ0 = (ζ0d, ..., ζ0n), ..., ζr = (ζr0, ..., ζrn),
where r = dimZ such that FZ has degree deg Z in each block ζi (i = 0, ..., r)
and such that FZ(ζ0, ..., ζr) = 0 if and only if Z and the r + 1 linear hyperplanes
(ζi,X) = 0 (i = 0, ..., r) have a point in common (cf. [18] pp. 65-66). From the
investigations of Philippon and Soulé it follows that

(1.6) |h(Z)− logH(FZ)| ≤ c(n)degZ,

where c(n) is effectively computable in terms of n.
Below we give an explicit version of [1], Theorem 3.3.

Theorem 2. Let m,n,d, σ, ε, F, Z, Z1, ..., Zm, k0, k1, s =
∑m
h=1 codim Zh be as in

Theorem 1, except that k = Q. Then

[k1 : k0] degZ1...degZm

( m∑
h=1

1
degZh

· dhh(Zh)
)

≤ 2(s/ε)smM ·M2(d1 + ...+ dm + logH(F )).(1.7)

5



As mentioned in the Introduction results similar to Theorems 1 (cf. [3]) and 2
were independently obtained by Ferretti.

The following corollary of Theorems 1 and 2 is useful.

Corollary. Let m be an integer ≥ 2,n = (n1, ..., nm),d = (d1, ..., dm) tuples of
positive integers and ε a real such that 0 ≤ ε ≤M + 1 and

dh
dh+1

≥
(
mM(M + 1)

ε

)M
for h = 1, ...,m− 1,

where again M := n1+...+nm. Further, let F ∈ Γn

Q

(d)\{0}. Then each irreducible

component of Zε is contained in a product variety

Z1 × ...× Zm $ Pn(Q)

where for h = 1, ...,m, Zh is a subvariety of Pnh(Q). Further, if F has its coeffi-
cients in an algebraic number field k0, then Z1, ..., Zm are defined over an extension
k1 of k0 with

[k1 : k0] degZ1...deg Zm ≤
(
m(M + 1)s

ε

)s
,(1.9)

where s =
m∑
h=1

codim Zh,

[k1 : k0] degZ1...deg Zm

( m∑
h=1

1
deg Zh

· dhh(Zh)
)

(1.10)

≤ 2
(

(M + 1)s
ε

)s
mMM2(d1 + ...+ dm + logH(F )).

Proof. Put ε′ := ε/(M + 1). Consider the sequence of closed subsets of Pn(Q):

P
n(Q) = Z0 ⊇ Zε′ ⊇ Z2ε′ ⊇ ... ⊇ Z(M+1)ε′ = Zε.

For i = 0, ...,M + 1, choose an irreducible component Wi of Ziε′ such that

P
n(Q) = W0 ⊇W1 ⊇ ... ⊇W(M+1) = Z.

By [18], p. 54, Pn(Q) has dimension n1 + ... + nm = M and if V1, V2 are two
subvarieties of Pn(Q) with V1 $ V2 then dimV1 < dimV2. It follows that there
is an i ∈ {0, ...,M} with Wi = Wi+1. Clearly, W := Wi = Wi+1 $ P

n(Q) as it
is contained in {F = 0}. Further, W is an irreducible component of both Ziε′

and Ziε′+ε′ . By (1.8), the conditions of Theorems 1 and 2 are satisfied with iε
′
, ε
′
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replacing σ, ε. Hence W = Z1 × ...× Zm, where Zh is a subvariety of Pnh(Q), for
h = 1, ...,m. Inequalities (1.9), (1.10) follow by replacing ε by ε/(M + 1) in (1.3),
(1.7), respectively. �

Using the techniques of the proofs of Theorems 1 and 2 one can prove the following
sharpening of a non-vanishing result of Roth from 1955 [12], now known as Roth’s
lemma. Roth used this in his proof of his famous theorem, also in [12], that for
every algebraic number α and every κ > 2 there are only finitely many rationals
x/y with x, y ∈ Z, y > 0 and |α − x/y| < y−κ. In fact, from the Corollary with
n1 = ... = nm = 1 one can derive Theorem 3 below with instead of (1.11) the more
restrictive condition dh/dh+1 ≥ (2m3/ε)m for h = 1, ...,m− 1.

Theorem 3. (Roth’s lemma). Let m be an integer ≥ 2, let d = (d1, ..., dm)
be a tuple of positive integers, let F ∈ Q[X10, X11; ...;Xm0, Xm1] be a non-zero
polynomial which is homogeneous of degree dh in the pair of variables (Xh0, Xh1)
for h = 1, ...m and let ε be a real with 0 < ε ≤ m+ 1 such that

(1.11)
dh
dh+1

≥ 2m3/ε for h = 1, ...,m− 1.

Further, let P = (P1, ..., Pm) where P1, ..., Pm are points in P1(Q) with

(1.12) H(Ph)dh >
{
ed1+...+dmH(F )

}(3m3/ε)m

for h = 1, ...,m,

where e = 2.7182.... Then
id(F, P ) < ε .

The original lemma proved by Roth in 1955 [12] differs from Theorem 3 in that
instead of (1.11) it has the more restrictive condition

(1.13) dh/dh+1 ≥ (10m/ε)2m for h = 1, ...,m− 1.

Roth’s lemma with (1.13) was also used by Schmidt in his proof of the Subspace
theorem and by Schmidt and Schlickewei in their proofs of quantitative versions
of the Subspace Theorem. In our improvements of the results of Schmidt and
Schlickewei mentioned in the introduction, it was crucial that (1.13) could be
replaced by (1.11).

Remark. (inspired by a suggestion of the referee). We have formulated the Prod-
uct theorem and its consequences for multi-homogeneous polynomials. There are
affine analogues for polynomials which are not multi-homogeneous. For instance,
for h = 1, ...,m, let Yh = (Yh1, ..., Yh,nh) be a block of affine variables, and let
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f ∈ k[Y1, ...,Ym] be a polynomial whose total degree in the block Yh is at most
dh, for h = 1, ...,m. Denote by i,k tuples (ihj : h = 1, ...,m, j = 0, ..., nh),
(khj : h = 1, ...,m, j = 1, ..., nh), respectively. Define the index of f at
a point p as the largest number σ such that fk(p) = 0 for all tuples k with∑m
h=1 d

−1
h (kh1 + ... + kh,nh) ≤ σ, where fk = (

∏m
h=1

∏nh
j=1 ∂

khj/∂Y
khj
hj )f . For

h = 1, ...,m, define a block of variables Xh = (Xh0, ..., Xhm) such that Yhj =
Xhj/Xh0 for j = 1, ..., nh. Let F =

∏m
h=1X

dh
h0f be the multi-homogeneous poly-

nomial in X1, ...,Xm corresponding to f . One obtains an analogue of Theorem
1 for f (the same statement with everywhere “affine varieties” replacing “projec-
tive varieties”) simply by applying Theorem 1 to F . We have to check that the
index of f at p = (p11, ..., p1,n1 ; ...; pm1, ..., pm,nm), defined using the variables Yhj ,
is equal to the index of F at P = (1, p11, ..., p1,n1 ; ...; 1, ..., pm,nm) defined using
the variables Xhj . This follows by observing first that fk = H−1Fi, where H
is a product of powers of Xh0 (h = 1, ...,m) and i is the same tuple as k aug-
mented with ih0 := 0 for h = 1, ...,m, and second, in view of Euler’s identity
∂H/∂Xh0 = X−1

h0 (ehH −
∑nh
j=1Xhj∂H/∂Xhj) for polynomials H homogeneous of

degree eh in Xh, that for each tuple i, Fi is a linear combination of fk over tuples
k with khj ≤ ihj for h = 1, ...,m, j = 1, ..., nh, the coefficients being rational
functions whose denominators are products of powers of Xh0 (h = 1, ...,m).

§2. Intersection theory.

Most of the results from intersection theory we need can be found in [4], Chaps,
1,2 and in [9]. As in §1, k denotes an algebraically closed field and n = (n1, ..., nm)
a tuple of positive integers. The block Xh of nh + 1 variables, the ring k[X] =
k[X1, ...,Xm] and the sets Γn

k (d) will have the meaning of §1. We write Pn,Γn,
Γn(d) for Pn(k),Γn

k ,Γ
n
k (d).

For every subvariety Z of Pn there is a unique essential n-prime ideal I of k[X]
such that Z = V (I) = {P ∈ Pn : f(P ) = 0 for every f ∈ I}. The local ring of Z
is defined by

(2.1) OZ :=
{
f

g
: ∃d ∈ (Z≥0)m with f, g ∈ Γn(d), g /∈ I

}
.

For any n-ideal J of k[X] we put JOZ := {f/g : ∃d ∈ (Z≥0)m with f, g ∈
Γn(d), f ∈ J, g /∈ I}. Then MZ := IOZ is the maximal ideal of OZ . The residue
field k(Z) := OZ/MZ is called the function field of Z. The dimension of Z is
dimZ := trdegk k(Z). In particular, dimPn = M := n1 + ...+ nm. The codimen-
sion of Z is codimZ := M −dimZ; if W is a subvariety of Z then the codimension
of W in Z is codim (W,Z) = dimZ − dimW .

A cycle in Pn is a finite formal linear combination with integer coefficients of
subvarieties V of Pn, Z =

∑
nV V , say. The components of Z are the subvarieties
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V for which nV 6= 0, and nV is called the multiplicity of V in Z. Z is called
effective if all nV ≥ 0. Denote by Zk = Zk(Pn) the abelian group of cycles in Pn

all whose components have dimension k and put Zk := (0) for k < 0. We denote
by Z cycles as well as varieties.
For a ring A and an A-module M , we define the length lA(M) to be the integer l
for which there exists a sequence of A-modules

M = M0 %M1 % ... %Ml = (0)

such that Mi−1/Mi
∼= A/pi for i = 1, ..., l where pi is a maximal ideal of A (cf. [4],

p. 406); lA(M) is independent of the choice of M0, ...,Ml. Now let Z = V (I) be a
subvariety of Pn and f ∈ Γn\{0} such that f does not vanish identically on Z, i.e.
f /∈ I. We define the divisor of f restricted to Z by attaching certain multiplicities
to the irreducible components of Z ∩ {f = 0} . These irreducible components are
all of codimension 1 in V (cf. [21], p. 196). For each subvariety W of Z with
codim(W,Z) = 1, the number

(2.2) ordW (f |Z) := lOW (OW /(I + (f))OW )

is a finite, non-negative integer and ordW (f |Z) > 0 if and only if I+(f) is contained
in the prime ideal of W , i.e. if W is an irreducible component of Z ∩ {f = 0}.
Now define

(2.3) div(f |Z) =
∑
W

ordW (f |Z) ·W,

where the sum is taken over all subvarieties W of codimension 1 in Z. By [3], App.
A3, ordW (fg|Z) = ordW (f |Z) + ordW (g|Z) and hence div(fg|(Z) = div(f |Z) +
div(g|Z) whenever f, g do not identically vanish on Z. By abuse of terminology,
we say that f does not identically vanish on a cycle Z =

∑
nV V if for each

component V of Z, f does not identically vanish on V . In that case we define
div(f |Z) =

∑
nV div(f |V ). Note that div(f |Z) is effective if Z is effective. We

write div(f) if Z = Pn.

Two cycles Z1, Z2 ∈ Zt(Pn) are called rationally equivalent if Z1 − Z2 is a lin-
ear combination of cycles div(f |V ) − div(g|V ), where V is a (t + 1)-dimensional
subvariety of Pn and f, g ∈ Γn(d) for some d ∈ (Z≥0)n. Addition of cycles in-
duces addition of rational equivalence classes. Note that all divisors div(f) with
f ∈ Γn(d)(d ∈ (Z≥0)m) are rationally equivalent; denote by O(d) the rational
equivalence class of div(f), f ∈ Γn(d). Clearly, O(d1) +O(d2) = O(d1 + d2). We
define O(d) for d ∈ Zm by additivity. Put Pic(n) = {O(d) : d ∈ Zm}, P ic+(n) =
{O(d) : d ∈ (Z≥0)m}. If M = O(d) ∈ Pic+(n), then write Γ(M) or Γk(M) for
Γn
k (d).

For a zero-dimensional cycle Z =
∑
P nPP we define its degree:

degZ :=
∑
P

nP .
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Then we have:

Lemma 1. For t = 0, ...,M there is a unique function (intersection number)
from Zt(Pn)×Pic(n)t to Z : (Z,M1, ...,Mt) 7→ (Z ·M1...Mt) with the following
properties:
(i). (Z ·M1...Mt) is additive in Z,M1, ...,Mt and invariant under permutations
of M1, ...,Mt;
(ii). (Z · M1...Mt) = 0 if Z is rationally equivalent to 0;
(iii). if Z ∈ Z0(Pn) then (Z) = degZ;
(iv). if M1 ∈ Pic+(n) then there is an f ∈ Γ(M1) not identically vanishing on Z
and for every such f we have (Z · M1, ...,Mt) = (div(f |Z) · M2...Mt).

Proof. This comprises some of the results from [4], Chaps. 1, 2. Rationally
equivalent cycles in Z0 have the same degree and if Z,Z

′ ∈ Zt are rationally
equivalent and f, f

′ ∈ Γ(M1), then div(f |Z),div(f |Z ′) are rationally equivalent.
Hence the intersection number can be defined inductively by (iii), (iv). �

We write (M1...Mm) for (Pn · M1...Mm). If among M1, ...,Mt, Ni appears ei
times for i = 1, ..., s, where e1 + ... + es = t then we write (Z · N e1

1 ...N es
s ) for

Z · M1...Mt). The degree of Z ∈ Zt is defined by deg Z := (Z · O(1)t).

Remarks (i). By induction on the dimension it follows easily that if Z ∈ Zt
is effective and M1, ...,Mt ∈ Pic+(n) then (Z · M1...Mt) ≥ 0. Moreover, if
Z is a subvariety of Pn and f1 ∈ Γ(M1), ..., ft ∈ Γ(Mt) are ‘generic’, then (Z ·
M1, ...,Mt) is precisely the cardinality of the set of points V ∩{f1 = ... = ft = 0}.
(ii). Let k0 be a perfect subfield of k, i.e. every finite extension of k0 is separable.
A k0-subvariety of Pn is a set {P ∈ Pn : f(P ) = 0 for every f ∈ I} where I is an
essential n-prime ideal of k0[X]. Every such k0-subvariety Z is a union of equal
dimensional subvarieties of Pn, Z = Z1 ∪ ... ∪ Zq, and we put dim Z := dim Z1;
now if dimZ = k and M1, ...,Mt ∈ Pic+(n) then we define

(2.4) (Z · M1...Mt) :=
q∑
i=1

(Zi · M1...Mt).

This is extended by linearity to k0-cycles, i.e. finite formal sums of k0-subvarieties.

We need some further properties of the intersection number. Let e1 = (1, 0, ..., 0),
e2 = (0, 1, ..., 0), ..., em = (0, ..., 0, 1) and put Lh = O(eh) for h = 1, ...,m. Further,
fix d = (d1, ..., dm) ∈ (Z>0)m and put L := O(d) = d1L1 + ... + dmLm. If
Zh =

∑
Vh
nVhVh(h = 1, ...,m) is a cycle in Pnh then of course we define

Z1 × ...× Zm =
∑

nV1nV2 ...nVmV1 × ...× Vm.

10



Further, we denote by πh the projection to the h-th factor Pn → Pnh and by π∗h
the inclusion (“pull back”) k[Xh] ↪→ k[X1, ...,Xm] = k[X].

Lemma 2. Let Zh ∈ Zδh(Pnh) (h = 1, ...,m) and Z = Z1 × ... × Zm. Put
δ = δ1 + ...+ δm.
(i). Suppose that f ∈ Γn1 does not vanish identically on Z1. Then π∗1f does not
vanish identically on Z and

(2.5) div(π∗1f |Z) = div(f |Z1)× Z2 × ...× Zm .

(ii). Let e1, ..., em be non-negative integers with e1 + ...+ em = δ. Then

(Z · Le11 ...Lemm ) = degZ1...degZm if (e1, ..., em) = (δ1, ..., δm)
= 0 otherwise.

(iii). (Z ·Lδ) = (δ!/δ1!...δm!)dδ11 ...d
δm
m degZ1...degZm. In particular (LM ) = C :=

(M !/n1!...nm!)dn1
1 ...dnmm .

Proof (i). [4], p. 35, ex. 2.3.1. This is analogous to the set-theoretic statement
that if Z1, ..., Zm are varieties then Z∩{π∗1f = 0} = (Z1∩{f = 0})×Z2× ...×Zm.

(ii). This follows easily from (i) by induction on δ. Another way is as follows.
For h = 1, ...,m assume that Zh is a subvariety of Pnh , take generic linear forms
fhj ∈ k[Xh] for j = 1, ..., eh and put Wh = Zh ∩ {fh1 = 0, ..., fh,eh = 0}. Then by
remark (i) above (Z · Le11 ...Lemm ) is the cardinality of the set W = W1 × ...×Wm.
This cardinality is zero if (e1, ...em) 6= (δ1, ..., δm) since then one of the sets Wh is
empty; while otherwise this cardinality is

∏m
h=1 #Wh =

∏m
h=1 deg Zh.

(iii). By additivity we have

(Z · Lδ) = (Z · (d1L1 + ...+ dmLm)δ)

=
∑

e1+...+em=d

δ!
e1!...em!

de11 ...d
em
m (Z · Le11 ...Lemm )

=
δ!

δ1!...δm!
dδ11 ...d

δm
m degZ1...degZm

�

Lemma 3. Suppose that m ≥ 2. Let Z be a δ-dimensional subvariety of Pn

that can not be expressed as a product Z = Z1 × ... × Zm with Zh ⊆ Pnh for
h = 1, ...,m. Then there are at least two tuples of non-negative integers (e1, ..., em)
with e1 + ...+ em = δ and (Z · Le11 ...Lemm ) > 0.

11



Proof. cf. [11], p. 79. The idea is as follows. By [18], p. 45, Thm 2, if
X is a closed subset of Pn and f : X → P

n a morphism, then f(X) is closed,
and f maps subvarieties of X to subvarieties of f(X). We apply this with the
projections πh : Pn → P

nh . Put Zh := πh(Z), δh := dimZh for h = 1, ...,m.
Since Z is not a product, Z is a proper subvariety of Z1 × ...× Zm and therefore,
δ = dimZ < dimZ1 × ... × Zm = δ1 + ... + δm. We prove by induction on m the
following assertion: for each h ∈ {1, ...,m} there is a tuple (e1, ..., em) as in the
statement of Lemma 3 with eh = δh. This implies Lemma 3 since δ1 +...+δm > δ.
This assertion is obviously true if m = 1. Suppose that the assertion holds for
m = r − 1 where r > 1. We prove the assertion for m = r, h = 1 which clearly
suffices. In the induction step we proceed by induction on δ1. If δ1 = 0 then
Z = Q×W where Q ∈ Pn1 and W is a subvariety of Pn2×...×Pnm and the assertion
follows by applying the induction hypothesis to W . If δ1 > 0 then choose a linear
form f ∈ k[X1] that does not identically vanish on Z1. Then g := π∗1f does not
identically vanish on Z. Clearly, π1 maps the irreducible components of Z∩{g = 0}
to those of Z1 ∩ {f = 0} and the latter have dimension δ1 − 1. By applying the
second induction hypothesis to the irreducible components of Z∩{g = 0}, we infer
that there are non-negative integers e1, ..., em with e1 + ... + em = δ and e1 = δ1
such that (div(g|Z) · Le1−1

1 ...Lemm ) > 0. Hence (Z · Le11 ...Lemm ) > 0. This proves the
assertion. �

Lemma 4. LetA be a set of polynomials from Γn(d)\{0} and I the ideal generated
by A. Let Z1, ..., Zt be irreducible components of codimension t of X := {P ∈ Pn :
f(P ) = 0 for f ∈ A}. Then for all tuples of non-negative integers (e1, ..., em) with
e1 + ...+ em = M − t one has

r∑
i=1

mZi(Zi · L
e1
1 ...Lemm ) ≤ (Le11 ...Lemm · Lt),

where mZi := lOZi (OZi/IOZi) for i = 1, ..., r.

Proof. This is essentially Prop. 2.3 of [1] and Lemma 6.4, p. 76 of [9]. We give
some details of the proof to which we have to refer later. For a subvariety Z of Pn

and f ∈ Γn\{0} not vanishing identically on Z, define the truncated divisor

divX(f |Z) :=
∑
W 6⊂X

ordW (f |Z)W,

where the sum is taken over all irreducible components of div(f |Z) which are not an
irreducible component of X. This is extended by linearity to cycles. Put Z0 := Pn

and choose inductively f1, ..., ft ∈ I and define cycles C1, ..., Ct as follows:

(2.6) for j = 1, ..., t, fj does not vanish identically on Cj−1,
each Zi (i = 1, ..., r) is a subvariety of one of the irreducible
components of div(fj |Cj−1), and
Cj := divX(fj |Cj−1);

12



in the next lemma we explicitly construct such fj . Clearly, the irreducible compo-
nents of Cj have codimension j. Therefore Z1, ..., Zr are irreducible components of
Ct. We need some more advanced results from intersection theory to estimate the
multiplicity mZi,Ct of Zi in Ct from below. By [4], Ex. 7.1.10, p. 123, mZi,Ct is
equal to lOZi (OZi/I

′OZi), where I ′ = (f1, ..., ft). (Note that Pn is smooth whence
that all local rings OZi are Cohen-McAulay rings). Further, since I ′ ⊆ I we have
lOZi (OZi/I

′OZi) ≥ lOZi (OZi/IOZi) = mZi . Hence mZi,Ct ≥ mZi . It follows that

(2.7) Ct =
r∑
i=1

mZiZi + (effective cycle).

Further, by (2.6) we have

(2.8) div(fj |Cj−1) = Cj + (effective cycle) for j = 1, ..., t.

Now by (2.7), (2.8) and fj ∈ Γ(L) we have
r∑
i=1

mZi(Zi · L
e1
1 ...Lemm ) ≤ (Ct · Le11 ...Le

m

m )

≤ (Ct−1 · L · Le11 ...Lemm ) ≤ (Ct−2 · L2 · Le11 ...Lemm ) ≤ ... ≤ (Lt · Le11 ...Lemm ). �

Lemma 5. It is possible to choose f1, ..., ft as in (2.6) such that

(2.9) fi =
C∑
j=1

nijgij for i = 1, ..., t,

where C = (M !/n1!...nm!)dn1
1 ...dnmm and gij ∈ A,nij ∈ Z, |nij | ≤ C for i =

1, ..., t, j = 1, ..., C.

Proof. From (2.6) and Lemma 1 it follows that (Ci · LM−i) ≤ (Ci−1 · LM−i+1)
for i = 1, ..., t, whence

(Ci · LM−i) ≤ (LM ) = C for i = 1, ..., t.

Letting Ci =
∑u
k=1 akVk, where the Vk are the components of Ci and ak > 0,

we see that u ≤
∑u
k=1 ak(Vk · LM−i) = (Ci · LM−i) ≤ C. Hence each Ci has at

most u irreducible components. Suppose we have already chosen f1, ..., fs (0 ≤
s ≤ t − 1) such that (2.6) and (2.9) are satisfied for i = 1, ..., s. Let V1, ..., Vu′
be the components of Cs which are not an irreducible component of X. Then
for j = 1, ..., u′, there is a gj ∈ A which does not vanish identically on Vj . We
construct h1, ..., hu′ such that for j = 1, ..., u′, hj is not identically zero on V1, ..., Vj
inductively as follows: Take h1 = g1. Suppose that hj has been constructed.
There are x1 ∈ V1, ...,xj ∈ Vj such that hj(xi) 6= 0 for i = 1, ..., j; further,
there is xj+1 ∈ Vj+1 with gj+1(xj+1) 6= 0. Now there is an a ∈ {0, ..., u′} with
(hj + agj+1)(xi) 6= 0 for i = 1, ..., j + 1; take hj+1 := hj + agj+1. Obviously,
fs+1 := hu′ does not identically vanish on Cs and f1, ..., fs+1 satisfy (2.6), (2.9).
By repeating this process we arrive at f1, ..., ft satisfying (2.6), (2.9). �
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§3. The Faltings height.

From [1] we have collected some properties of the Faltings height of varieties overQ.
We use the following notation. The extension of a ring homomorphism ψ : R1 →
R2 to R1[X1, ..., Xt]→ R2[X1, ..., Xt], defined by applying ψ to the coefficients of
f ∈ R1[X1, ..., Xt] is denoted also by ψ. The ring of integers of a number field K
is denoted by OK . For a non-zero prime ideal ℘ of OK , let

F℘ := OK/℘, N℘ := #F℘.

The multi-projective space Pn(C), as well as its algebraic subvarieties, can be given
the structure of a complex analytic variety. This implies that we can integrate
differential forms over these varieties (cf. [6], Chap. 0). To every divisor class
M = O(d) ∈ Pic(n) we associate a (1, 1)-differential form c1(M), its so-called
Chern form:

if m = 1,M = O(1),n = (n), then c1(M) := ωn =
√

1
2π ∂∂ log(|Z0|2 + ...+ |Zn|2) is

the (1, 1)- form associated to the Fubini-Study metric on Pn(C), where Z0, ..., Zn
are the homogeneous coordinates on Pn, cf. [6], p. 30 for an explicit formula;
if m ≥ 1,d = (d1, ..., dm), then c1(M) = d1π

∗
1ωn1 + ... + dmπ

∗
mωnm , where πh is

the projection Pn → Pnh and π∗hωnh is the pull back of ωnh from P
nh to Pn (i.e.

π∗hωnh is defined by precisely the same formula as ωnh in terms of the homogeneous
coordinates of Pnh but it is considered as a differential form on Pn).

(t, t)-forms can be integrated over t-dimensional subvarieties of Pn(C). For a cycle
Z =

∑
nV V ∈ Zt(Pn(C)) and a (t, t)-form ρ on Pn(C), we set

∫
Z
ρ :=

∑
nV
∫
V
ρ.

By Wirtinger’s theorem (cf. [6], p. 171 or [7], Prop. 3.6), we have for Z ∈
Zt(Pn(C)) and M1, ...,Mt ∈ Pic(n),

(3.1)
∫
Z

c1(M1) ∧ ... ∧ c1(Mt) = (Z.M1...Mt).

The form ωn is positive on Pn (cf. [6], p. 31). This implies that if Z ∈ Zt(Pn(C)) is
effective, ifM1, ...,Mt ∈ Pic+(n), and if f is a real function which is non-negative
everywhere on the components of Z, then

(3.2)
∫
Z

f · c1(M1) ∧ ... ∧ c1(Mt) ≥ 0.

If Z =
∑
nPP is a zero-dimensional cycle in Pn(C) and f is a function on Pn(C)

then we write
∫
Z
f for

∑
nP f(P ). For f ∈ Γn

C
(d) we define a function ||f || on

P
n(C) as follows: let Zh = (Zh0, ..., Zh,nh) be the complex homogeneous coordi-

nates in Pnh(C), Z = (Z1, ...,Zm), ||Zh|| = (
∑nh
j=0 |Zhj |2)1/2; then put

||f ||(Z) =
|f(Z)|

||Z1||d1 ...||Zm||dm
,
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where (d1, ..., dm) = d.

Let Z be a subvariety of Pn(Q), defined over an algebraic number field K. Suppose
that f ∈ Γn has its coefficients in OK and does not vanish identically on Z. Let
M1, ...,Mt ∈ Pic(n). Define for each embedding σ : K ↪→ C:

κσ = κσ(Z, f,M1, ...,Mt)(3.3)

= − 1
[K : Q]

∫
Z×σC

log ||σ(f)||c1(M1) ∧ ... ∧ c1(Mt),

where Z×σC = {P ∈ Pn(C) : σ(g)(P ) = 0 for every g ∈ K[X] vanishing identically
on Z}.

Now let ℘ be a non-zero prime ideal of OK . Let I = {f ∈ OK [X] : f(P ) = 0
for all P ∈ Z}. This is an essential prime ideal of OK [X] with I ∩ OK = 0.
Let J1,℘, ..., Jg,℘ be the minimal n-prime ideals of OK [X] containing I +℘OK [X].
Then

Wi℘ =
{
P ∈ Fn(F℘) : g(P ) = 0 for g ∈ Ji℘/℘OK [X]

}
is an F℘-subvariety of Pn(F℘) for i = 1, ..., g; W1℘, ...,Wg℘ may be considered as
the irreducible components of the reduction of Z mod ℘. Define the local ring

OWi℘
=
{
h

g
: h, g ∈ Γn

OK (d) for some d ∈ (Z≥0)m, g /∈ Ji℘
}
,

put ordWi℘(f |Z) := lOWi℘ (OWi℘/(I + (f))OWi℘) (which is finite since I + (f) is
a primary ideal for the maximal ideal of OWi℘), and define the ℘-divisor of f
restricted to Z,

div℘(f |Z) =
g∑
i=1

ordWi℘
(f |Z)Wi℘.

For all but finitely many ℘ we have div℘(f |Z) = 0 . Now put

(3.4) κ℘ = κ℘(Z, f,M1, ...,Mt) =
logN℘
[K : Q]

(div℘(f |Z) · M1...Mt),

where the latter intersection number is for F℘- cycles. Finally put

κK(Z, f,M1, ...,Mt) :=
∑
σ

κσ +
∑
℘

κ℘

where the sums are over all embeddings σ : K ↪→ C and all nonzero prime ideals ℘
of OK . By linearity we define κσ, κ℘, κK for cycles in Zt with components defined
over K.
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The next result is due to Faltings [1]; implicitly, it implies that κK is independent
of K.

Lemma 6. There are unique functions h : Zt(Pn(Q)) × Pic(n)t+1 → R for
t = 0, ...,M (heights) with the following properties:
(i). h(Z,M0, ...,Mt) is additive in Z,M0, ...,Mt and invariant under permuta-
tions of M0, ...,Mt;
(ii). for Z ∈ Zt(Pn(Q)),M0 ∈ Pic+(n),M1, ...,Mt ∈ Pic(n), choose any number
field K over which all components of Z are defined, and choose any f ∈ Γ(M0)
with coefficients in OK such that f does not identically vanish on Z. Then

(3.5) h(Z,M0, ...,Mt) = h(div(f |Z),M1, ...,Mt) + κK(Z, f,M1, ...,Mt).

Remark. (3.5) holds true also for t = 0, by agreeing that then div(f |Z) = 0.

Proof. Put R := OK , P
n
R = P

n1
R ×SpecR ... ×SpecR P

nm
R . A subvariety of Pn

R

is by definition an integral closed subscheme of Pn
R and a cycle in Pn

R a finite
formal linear combination with integer coefficients of subvarieties of Pn

R. In [1],
Faltings defined a logarithmic height for cycles in Pn

R by means of the arithmetic
intersection theory on Pn

R developed by Gillet and Soulé [5], and he gave a sketchy
proof of the analogue of our Lemma 6 for cycles in Pn

R. A more detailed proof of
this analogue was given by Gubler [7], Props. 4.3, 5.3.

It is straightforward to translate Gubler’s results into Lemma 6 by going through
the definition of a scheme. Similar to [8], Ex. 3.12 on p. 92, 5.16 on pp. 119-
120 and Ex. 5.10 on p. 125, there is a one-to-one correspondence I ↔ V (I)
between essential n-prime ideals of R[X] and subvarieties of Pn

R, such that V (I)
is a subvariety of V (J) ⇔ I ⊇ J . Further, for subvarieties V (I) of Pn

R we have
that either I ∩ R = (0) in which case V (I) is flat (over Spec R) (cf. [8], p. 257,
Prop. 9.7) or I ∩R is a non-zero prime ideal ℘ of R, in which case V (I) maps to
℘ (under V (I)→ Spec R).

Now let Z be a subvariety of Pn defined over K, and let I = {f ∈ R[X] : f(P ) = 0
for P ∈ Z}. Then Z̃ := V (I) is a flat subvariety of Pn

R. Now the height h(Z, .)
defined in Lemma 6 is equal to the height h(Z̃, .) defined by Gubler (and 1/[K : Q]
times the height defined by Faltings). Faltings and Gubler, Prop. 4.3 have a similar
recurrence relation as (3.5) for the height of flat subvarieties Z̃ of Pn

R, with instead
of κK only the sum of infinite components κσ. The divisor div(f |Z̃) might have
also non-flat components and the terms κ℘ in (3.5) are precisely the contributions
of the heights of these non-flat components. By Prop. 5.3 of Gubler, the Faltings
height for subvarieties of Pn

R is invariant under base extensions from R to the ring
of integers of any finite extension of K. This implies that in Lemma 6, the height
does not depend on the choice of the field K. �

16



If Z ∈ Zt(Pn) and among M0, ...,Mt, Ni appears ei times for i = 1, ..., s where
e1 + ...+ es = t+ 1, then we write h(Z,N e1

1 ...N es
s ) for h(Z,M0, ...,Mt). Further,

for Z ∈ Zt(Pn) we put h(Z) := h(Z,O(1)t+1). We write again Pn for Pn(Q).

Lemma 7. (i). For P ∈ Pn we have h(P ) = logH(P ).
(ii). h(Pn) = 1

2

∑n
j=1

∑j
l=1 1/l.

(iii). If Z ∈ Zt(Pn) is effective and M0, ...,Mt ∈ Pic+(n), then
h(Z,M0, ...,Mt) ≥ 0.
(iv). Let Z,M0, ...,Mt be as in (iii) and f ∈ Γ(M0) such that f does not identi-
cally vanish on Z. Then

h(div(f |Z),M1, ...,Mt) ≤ h(Z,M0, ...,Mt) + logH(f).(Z.M1...Mt).

Proof. (i). In a sufficiently large number field K we can choose the coordinates
x = (x0, ...., xn) of P such that x0, ..., xn ∈ OK and the ideal generated by these
coordinates is (1). Then there are α0, ..., αn ∈ OK with α0x0 + ... + αnxn = 1.
Take f(X) = α0X0 + ... + αnXn. Then f does not vanish at P,div(f |M) =
0, κ℘(P, f) = 0 for each prime ideal ℘ 6= (0) of OK and

κσ(P, f) = − 1
[K : Q]

log
|σ(f)(x))|

(
∑n
i=0 |σ(xi)|2)1/2

= log
{( n∑

i=0

|σ(xi)|2
)1/2[K:Q]}

.

Hence
h(P ) = h(div(f |P )) =

1
[K : Q]

∑
σ

κσ(P, f) = logH(P ).

(ii). cf. [7], Prop. 4.4. This can be proved by induction on n. Take f = X0. Then
h(Pn) = h(div(f |Pn)) + κ = h(V ) + κ, where V = {X0 = 0} and

κ = −
∫
Pn(C)

log
|z0|

(|z0|2 + ...+ |zn|2)1/2
· ωn.

By the induction hypothesis, h(V ) = h(Pn−1) = 1
2

∑n−1
j=1

∑j
l=1 1/l and, by a

straightforward but elaborate integration, κ = 1
2

∑n
l=1 1/l.

(iv). We assume that Z is a subvariety of Pn which is no restriction. Choose
a number field K such that Z and the components of div(f |Z) are defined over
K and the coefficients of f belong to K. By enlarging K if need be, we may
assume that the ideal a generated by the coefficients of f is principal, a = (λ),
say. Since div(f |Z) and H(f) do not change when f is replaced by λ−1f , we may
assume that a = (1) and shall do so in the sequel. Suppose M0 = O(d), with
d = (d1, ..., dm) ∈ (Z≥0)m. Let J be the set of tuples of non-negative integers
i = (ihj : h = 1, ...,m, j = 0, ..., nh) with

∑nh
j=0 ihj = dh for h = 1, ...,m. Then

f =
∑
i∈J

a(i)
m∏
h=1

nh∏
j=0

X
ihj
hj with a(i) ∈ K.
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Let σ be an embedding : K ↪→ C and Aσ :=
(∑

i∈J |σ(a(i))|2
)1/2

. By Schwarz’

inequality we have for z = (z1, ..., zm) with zh = (zh0, ..., zh,nh) ∈ Cnh+1 for
h = 1, ...,m that

|σ(f)(z)| = |
∑
i∈J

σ(a(i))
m∏
h=1

nm∏
j=0

z
ihj
hj
| ≤ Aσ||z1||d1 ...||zm||dm .

Hence ||σ(f)|| ≤ Aσ. Together with (3.2), (3.1) this implies that

κσ ≥ −
1

[K : Q]
logAσ

∫
Z

c1(M1) ∧ ... ∧ c1(Mt) ≥ −
1

[K : Q]
logAσ(Z · M1...Mt),

where κσ = κσ(Z, f,M1, ...,Mt). Further, for every non-zero prime ideal ℘ of
OK we have κ℘ = κ℘(Z, f,M1, ...,Mt) ≥ 0. Since a = (1) we have H(f) =
(
∏
σ Aσ)1/[K:Q]. It follows that

h(div(f |Z),M1, ...,Mt) = h(Z,M0, ...,Mt)−
∑
σ

κσ −
∑
℘

κ℘

≤ h(Z,M0, ...,Mt) + (logH(f)).(Z · M1...Mt).

(iii). Apply (iv) with f a monomial. Then logH(f) = 0; hence
h(div(f |Z),M1, ...,Mt) ≤ h(M0, ...,Mt). Now (iii) follows easily by induction
on t. �

Lemma 8. (i). Let Z = Z1 × ... × Zm where Zh ∈ Zδh(Pnh) for h = 1, ...,m
and put δ = δ1 + ... + δm. Further, let e1, ..., em be non-negative integers with
e1 + ...+ em = δ + 1. Then

h(Z,Le11 ...Lemm ) = h(Zh).
∏
j 6=h

degZj

if for some h ∈ {1, ...,m} we have (e1, ..., em) = (δ1, ..., δh−1, δh + 1, ..., δm) and

h(Z,Le11 ...Lemm ) = 0 otherwise.

(ii). h(Z,Lδ+1) = dδ11 ...d
δm
m

∑m
h=1

(δ+1)!
δ1!...(δh+1)!...δm!

(
dhh(Zh)

∏
j 6=h degZj

)
.

Proof. This was stated without proof by Faltings [1]. We assume that e1 − δ1 ≥
... ≥ em − δm and that Zh is a δh-dimensional subvariety of Pnh for h = 1, ...,m
which are no restrictions. For convenience of notation, put c = 1 if (e1−δ1, ..., em−
δm) = (1, 0, ..., 0) and c = 0 otherwise.
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We proceed by induction on δ1. Note that e1 − δ1 ≥ 1; hence e1 ≥ 1. Choose a
number field K and a linear form f ∈ OK [X1] such that f does not vanish identi-
cally on Z1, and such that Z1, ..., Zm and the components of div(f |Z1),div(π∗1f |Z)
are defined over K. Consider the quantities

U :=h(Z,Le11 ...Lemm )− ch(Z1)
m∏
h=2

degZh,

u :=h
(

div(π∗1f |Z),Le1−1
1 Le22 ...Lemm

)
− ch(div(f |Z1))

m∏
h=2

degZh.

If δ1 = 0 then div(π∗1f |Z) = 0,div(f |Z1) = 0 hence u = 0; if δ1 > 0 then also
u = 0 by the induction hypothesis. We have to show that U = 0.

By Lemma 6 (ii) we have

(3.7) U = U − u =
∑
σ

λσ +
∑
℘

λ℘,

where

λv = κv(Z, π∗1f,L
e1−1
1 ...Lemm )− c.degZ2...degZmκv(Z1, f,O(1)e1−1)

for v ∈ {σ} ∪ {℘}, where σ stands for the embeddings of K into C and ℘ for the
non-zero prime ideals of OK . If (e1 − δ1, ..., em − δm) = (1, 0, ..., 0), then by (3.1)
we have for each embedding σ : K ↪→ C,

κσ

(
Z, π∗1f,L

e1−1
1 ...Lemm

)
= − 1

[K : Q]

∫
Z×σC

log ||σ(π∗1f)||c1(L1)e1−1 ∧ ... ∧ c1(Lm)em

= − 1
[K : Q]

∫
Z1×σC

log ||σ(f)||ωe1−1
n1

·
m∏
h=2

∫
Zh×σC

ωehnh

= κσ(Z1, f1,O(1)e1−1) degZ2...degZm.

If (e1 − δ1, ..., em − δm) 6= (1, 0, ..., 0) then κσ(Z, π∗1f,L
e1−1
1 ...Lemm ) = 0; namely in

that case either e1 − 1 > δ1 or eh > δh for some h ≥ 2 which implies that the
restriction of the differential form c1(L1)e1−1 ∧ ... ∧ c1(Lm)em to Zh has degree
larger than 2 dimZh which is the dimension of Zh over R. It follows that in both
cases,

(3.8) λσ = 0 for each embedding σ : K ↪→ C.

19



Let p be any prime number and for each prime ideal ℘ of OK dividing p, put
d℘ := [F℘ : Fp]. Then ∑

℘|p

λ℘ = np(f). log p,

where

np(f) =
1

[K : Q]

∑
℘|p

f℘

{(
div℘(π∗1f |Z) · Le1−1

1 ...Lemm
)

− cdegZ2...degZm(div℘(f |Z1).O(1)e1−1)
}
.

By (3.7), (3.8) we have

(3.9) U =
∑
p

np(f) log p;

hence the right-hand side of (3.9) is independent of the choice of f and K. But by
the unique prime decomposition in Z the numbers log p (p prime) are Q-linearly
independent; therefore the rational numbers np(f) are independent of the choice
of f and K.
We show that for every prime number p we can choose f with np(f) = 0. Let
I = {g ∈ OK [X] : g vanishes identically on Z} and J1, ..., Jg the minimal n-
prime ideals of OK [X] containing at least one of the ideals I + ℘OK [X] with ℘|p.
Let I ′ = {g′ vanishes identically on Z1}, and J ′1, ..., J

′
g′ the minimal homogeneous

prime ideals of OK [X1] containing at least one of the ideals I ′+℘OK [X1] with ℘|p.
Choose a linear form f ∈ OK [X1] with f /∈ π∗−1

1 (J1)∪ ...∪π∗−1
1 (Jg)∪J ′1∪ ...∪J ′g′ .

Such an f exists since each of the ideals in the union is a homogeneous prime ideal
not containing (X10, ..., X1,n1). Thus, div℘(π∗1f |Z) = 0,div℘(f |Z1) = 0 for every
℘|p which implies that np(f) = 0. Now (3.9) implies that U = 0. This completes
the proof of (i).

(ii). By the additivity of the height and (i) we have

h(Z1,Lδ+1) = h(Z, (d1L1 + ...+ dmLm)δ+1)

=
∑

e1+...+em=δ+1

(δ + 1)!
e1!...em!

de11 ...d
em
m h(Z,Le11 ...Lemm )

=
m∑
h=1

(δ + 1)!
δ1!...(δh + 1)!...δm!

· dδ11 ...d
δh+1
h ...dδmm ·

(
h(Zh)

∏
j 6=h

degZj
)

which is (ii). �

Finally, we need an analogue of Lemma 4 for heights. For a polynomial
f(X1, ..., Xr) =

∑
i a(i)Xi1

1 ...X
ir
r with coefficients in a number field K and for
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each embedding σ : K ↪→ C, put

Hσ(f) =
(∑

i

|σ(a(i))|2
)1/2

.

Lemma 9. Let d = (d1, ..., dm) ∈ (Z≥0)m and A a subset of Γn
Q

(d)\{0} such
that every polynomial f ∈ A has algebraic integer coefficients in some number
field K and such that Hσ(f) ≤ Hσ for each embedding σ : K ↪→ C. Put H :=
(
∏
σHσ)1/[K:Q]. Further, let Z1, ..., Zr be irreducible components of X := {P ∈

P
n(Q) : f(P ) = 0 for f ∈ A} of codimension t. Then

r∑
i=1

mZih(Zi,LM−t+1) ≤ M !
n1!...nm!

dn1
1 ...dnmm

{
M2(d1 + ...+ dm) + t logH

}
.

Proof. Let f1, ..., ft be polynomials satisfying (2.6) and Lemma 5, and C0, ..., Ct
the cycles defined by (2.6) ; so C0 = Pn. From the definition of the height of a
polynomial and the fact that the quantities Hσ(f) satisfy the triangle inequality
it follows that

(3.10) H(fi) ≤ C2H for i = 1, ..., t, where C =
M !

n1!...nm!
dn1

1 ...dnmm .

By Lemma 7 (iv) we have

h(Pn) =
1
2

n∑
j=1

j∑
l=1

1
l
≤ 1

2
(n+ log n!).

Together with Lemma 8 (ii) this implies

h(Pn,LM+1) = dn1
1 ...dnmm

m∑
h=1

(M + 1)!
n1!...(nh + 1)!...nm!

· dhh(Pnh)(3.11)

≤ 1
2
C · (M + 1)

m∑
h=1

nh + log nh!
nh + 1

dh

≤ 1
4
C · (M + 1)

m∑
h=1

nhdh ≤
1
4
CM2(d1 + ...+ dm) .

By (2.8) we have div(fj |Cj−1) = Cj+ (effective cycle) for j = 1, ..., t. By Lemma 1
(iv) we have (Cj · LM−j) ≤ (Cj−1 · LM−j+1) ≤ ... ≤ (C0 · LM ) = C for j = 0, ..., t.
Further, by Lemma 7 (iii), (iv) and (3.10),

h(Cj ,LM−j+1) ≤ h(Cj−1,LM−j+2) + (logC2H) · (Cj−1LM−j+1)(3.12)
≤ h(Cj−1,LM−j+2) + C log(C2H)
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for j = 1, ..., t. Now from Ct =
∑r
i=1mZiZi+ (effective cycle), (3.12), (3.11),

C ≤
∑
j1+...+jm=M (M !/j1!...jm!)dj11 ...d

jm
m = (d1 + ...+ dm)M , log(d1 + ...+ dm) ≤

(log 3/3)(d1 + ...+ dm) and t ≤M it follows that

r∑
i=1

mZih(Zi,LM−t+1) ≤ h(Ct,LM−t+1) ≤ h(Pn,LM+1) + Ct log(C2H)

≤ C
{

1
4
M2(d1 + ...+ dm) + 2t logC + t logH

}
≤ C

{
1
4
M2(d1 + ...+ dm) + 2tM log(d1 + ...+ dm) + t logH

}
≤ C

{(1
4

+ 2
log 3

3
)
M2(d1 + ...+ dm) + t logH

}
≤ C

{
M2(d1 + ...+ dm) + t logH

}
,

which is Lemma 9. �

§4. Proof of Theorems 1 and 2.

We use the notation of Theorem 1: k is an algebraically closed field of characteristic
0,m an integer ≥ 2,n = (n1, ..., nm),d = (d1, ..., dm) are tuples of positive integers
and σ, ε reals with σ ≥ 0, 0 < ε ≤ 1 and

(1.1)
dh
dh+1

≥
(
mM

ε

)M
for h = 1, ...,m− 1,

where M := n1 + ...+nm. We write Pn for Pn(k). Further, F is a polynomial from
Γn
k (d)\{0}, and Z is an irreducible component of both Zσ(F,d) and Zσ+ε(F,d).

Let A be the set of polynomials

(4.1)
m∏
h=1

nh∏
j=0

X
chj
hj .

( m∏
h=1

nh∏
j=0

1
ihj !

∂ihj

∂X
ihj
hj

F

)

for all tuples of nonnegative integers i = (ihj : h = 1, ...,m, j = 0, ..., nh), c = (chj :
h = 1, ...,m, j = 0, ..., nh) with

(i/d) ≤ σ,
nh∑
j=0

(chj + ihj) = dh for h = 1, ...,m

and let I be the ideal in k[X] generated by A. Note that A ⊂ Γn
k (d), and that

X := Zσ(F,d) = {P ∈ Pn : f(P ) = 0 for P ∈ A}.
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Let k0 be a subfield of k containing the coefficients of F , and k1 the smallest ex-
tension of k0 over which Z is defined. Thus, Z = V (J) with J = (f1, ..., fu), where
f1, ..., fu ∈ k1[X]. Letting σ1 = identity, σ2, ..., σg (g = [k1 : k0]) be the injective
k0-homomorphisms from k1 into k, put J (j) := (σj(f1), ..., σj(fu)), Z(j) = V (J (j))
for j = 1, ..., g. Since A ⊂ k0[X], Z(1), ..., Z(g) are irreducible components of X.
Each σj induces a isomorphism σj from OZ to OZ(j) mapping the maximal ideal
MZ to MZ(j) . It follows that the fields k(Z(j)) and k(Z) are isomorphic, whence
that dimZ(j) = dimZ for j = 1, ..., g. Further, since I is generated by polynomials
from k0[X], σj induces an isomorphism from OZ/IOZ to OZ(j)/IOZ(j) . Therefore,

(4.2) mZ(j) = mZ

(cf. Lemma 4). Let s := codimZ and let e1, ..., em be non-negative integers with
e1 + ... + em = M − s. Let L1, ...,Lm have the same meaning as in §2, and put
L := d1L1 + ...+ dmLm. By applying Lemma 1 (iv) with polynomials from k0[X],
we infer that

(Z(j) · Le11 ...Lemm ) = (Z · Le11 ...Lemm ) for j = 1, ..., g.

Together with (4.2) and Lemma 4, this implies that

(4.3) [k1 : k0]mZ(Z.Le11 ...Lemm ) ≤ (Le11 ...Lemm .Ls).

We shall estimate mZ from below, using differential operators similar to Wüstholz
[20]. Here it will be crucial that Z is also an irreducible component of Zσ+ε(F,d).
If Z is not a product variety then by Lemma 3 there are at least two tuples
(e1, ..., em) for which (Z ·Le11 ...Lemm ) > 0. Using (1.1) and the lower bound for mZ ,
we show that for some tuple (e1, ..., em), the left-hand side of (4.3) is larger than
the right-hand side, thus arriving at a contradiction.

Lemma 10. For i = 1, ...,m, let pi : Pn → P
ni × ... × Pnm be the projection

onto the last m − i + 1 factors of Pn and put δi := dim pi(Z) − dim pi+1(Z) for
i = 1, ...,m, where dim pm+1(Z) := 0. Let s := codimZ. Then

mZ = lOZ (OZ/IOZ) ≥ (ε/s)sdn1−δ1
1 ...dnm−δmm .

Proof. We follow the arguments of van der Put [11] and Wüstholz [20]. For
convenience of the reader, we have worked out more details.

Choose P ∈ Z such that Z is smooth in P (i.e. the tangent space of Z at P has
dimension equal to that of Z) and for i = 1, ...,m, pi(Z) is smooth in pi(P ) and the
map pi is smooth at P (i.e. the linear map of tangent spaces dpi corresponding
to pi is surjective). Such a point P exists since by [8], Lemma 10.5, p. 271,
the set of such points is a non-empty Zariski open subset of Z. After applying
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a linear transformation if need be, we may assume that P = (P1, ..., Pm) with
Ph = (1 : 0 : ... : 0) ∈ Pnh for h = 1, ...,m. Now define the affine variety

A := AM = An1 × ...× Anm = Pn ∩
{
X10 6= 0, ..., Xm0 6= 0

}
.

On A we choose the affine coordinates Yhj = Xhj/Xh0 (h = 1, ...,m, j = 1, ..., nh).
Let k[Y] be the polynomial ring in these coordinates. Put F

′
(Y) :=

F (1, Y11, ..., Y1,n, ..., 1, Ym1, ..., Ym,nm) and let I ′µ be the ideal generated by the
polynomials

m∏
h=1

nm∏
j=1

∂ihj

∂Y
ihj
hj

F ′ with
m∑
h=1

1
dh

( nh∑
j=1

ihj

)
≤ µ;

by the Remark at the end of §1, this is the defining ideal of Zµ(f,d)∩A. Further,
let Z ′ := Z ∩A and J ′ = {f ∈ k[Y] : f(P ) = 0 for P ∈ Z ′}. Then J ′ is a minimal
prime ideal containing I ′σ and also a minimal prime ideal containing I ′σ+ε. The
local ring of Z ′,

R̂ :=
{
f

g
: f, g ∈ k[Y], g /∈ J ′

}
is isomorphic to OZ and has maximal ideal M̂ := J ′R̂. Put Î := I ′R̂. Then
R̂/Î ∼= OZ/IOZ . Therefore, mZ = lR̂(R̂/Î), so it suffices to show that

(4.4) lR̂(R̂/Î) ≥ (ε/s)sdn1−d1
1 ...dnm−δmm .

Since M̂ = (f1, ..., fu)R̂, the tangent space of Z
′

at 0 is given by

T0(Z
′
) =

{
w = (whj : h = 1, ...,m, j = 1, ..., nh) ∈ kM :

m∑
h=1

nh∑
j=1

∂fl
∂Yhj

(0)whj = 0 for l = 1, ..., u
}
.

The linear mapping dpi induced by pi from T0 to the tangent space Tpi(0)(pi(Z
′
))

of pi(Z ′) at pi(0), can be given by dpi(w) = (whj : h = i, ...,m, j = 1, ..., nh). Our
smoothness assumptions at the beginning of the proof imply that dimT0(Z ′) =
dimZ ′,dimTpi(0)(pi(Z

′
)) = dim pi(Z ′) = δi + ... + δm, and that dpi is surjective.

Therefore,

(4.5)


dim ker (dpi) = dimT0(Z ′)− dimTpi(0)(pi(Z ′))

= δ1 + ...+ δi−1 for i = 2, ...,m,

ker dp1 = (0).
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Note that

ker (dpi) = {w ∈ kM :
i−1∑
h=1

nh∑
j=1

∂fl
∂Yhj

(0)whj = 0 for l = 1, ..., u,(4.6)

whj = 0 for h = i, ...,m, j = 1, ..., nh}.
By (4.5), (4.6) , the (n1 + ...+ ni−1)× u-matrix

Ai =
(
∂fl
∂Yhj

(0)
)
h=1,...,i−1,j=1,...,nh

l=1,...,u

with the rows being indexed by (h, j) and the columns by l, has rank (n1 − δ1) +
... + (ni−1 − δi−1). Hence among the rows (∂fl/∂Yij)(0) (j = 1, ..., ni) of Ai+1

there are precisely ni − δi rows which are linearly independent of each other and
also linearly independent of the rows of Ai; we assume w.l.o.g. that these rows
are (∂fl/∂Yij)(0) with j = 1, ..., ni − δi and l = 1, ..., u. This gives altogether
(n1 − δ1) + ... + (nm − δm) = s linearly independent rows (∂fl/∂Yhj)(0) (h =
1, ...,m, j = 1, ..., nh − δh).

For convenience, write Y1, ..., Ys for the variables Yhj (h = 1, ...,m, j = 1, ..., nh −
δh) and put ci = dh whenever Yi = Yhj . Obviously (4.4) follows once we have
shown that

(4.7) lR̂(R̂/Î) ≥ (ε/s)sc1...cs.

By what we have seen above, the matrix ((∂fl/∂Yj)(0))j=1,...,s,l=1,...,u has rank s.
We assume w.l.o.g. that det((∂fl/∂Yj)(0))i≤j,l≤s is non-zero. Then

D(Y) := det
(
∂fl
∂Yj

)
i≤j,l≤s

/∈ J
′
.

Hence the elements of the inverse matrix (gkl) = (∂fl/∂Yj)−1 belong to R̂. Define
the rational functions

Tj :=
s∑
l=1

gljfl (j = 1, ..., s).

Further, define differential operators ∂/∂Ti by(
∂

∂T1
, ...,

∂

∂Ts

)
=
(

∂

∂Y1
, ...,

∂

∂Ys

)(
∂Ti
∂Yj

)−1

i,j

.

T1, ..., Ts belong to M̂ since glj ∈ R̂ and fl ∈ M̂ . If h ∈ R̂ then ∂h/∂Yj ∈ R̂

for j = 1, ..., s namely if h = f/g with f, g ∈ k[Y], g /∈ J
′
, then ∂h/∂Yj =

g−2

{
g(∂f/∂Yj)− f(∂g/∂Yj)

}
∈ R̂. Further,

∂Ti
∂Yj

=
s∑
l=1

gli
∂fl
∂Yj

+
s∑
l=1

(
∂gli
∂Yj

)
fl ≡ δij mod M̂.
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Hence det(∂Ti/∂Yj) is a unit in R̂ which implies that the elements of (∂Ti/∂Yj)−1

belong to R̂. It follows that ∂h/∂Tj ∈ R̂ for h ∈ R̂, j = 1, ..., s. The op-
erators ∂/∂Ti satisfy the usual rules for differentiaton, e.g., ∂Ti/∂Tj = δij and
∂T li /∂Ti = lT l−1

i for l = 1, 2, ... . We have the following crucial fact:

∂j1+...+jsf

∂T j11 ...∂T jss
∈ M̂(4.8)

for every f ∈ Î and all tuples of non-negative integers (j1, ..., js)
with j1/c1 + ...+ js/cs ≤ ε .

Namely, let f ∈ Î and j1/c1 + ... + js/cs ≤ ε. f can be expressed as g1f1 +
...grfr with g1, ..., gr ∈ R̂, f1, ..., fr ∈ I

′

σ. Hence ∂j1+...+jsf/∂T j11 ...∂T jss can be
expressed as

∑
hikDifk with hik ∈ R̂ and Di = ∂i1+...+is/∂T i11 ...∂T

is
s for certain

i1 ≤ j1, ..., is ≤ js. Furthermore, Difk can be expressed as
∑
plkiD

′

lfk with
plki ∈ R̂, D

′

l = ∂l1+...+ls/∂Y l11 ...∂Y lss with l1 ≤ i1 ≤ j1, ..., ls ≤ is ≤ js. Since
I
′

σ+ε ⊆ J
′

we have D
′

lfk ∈ J
′
; this implies (4.8).

We are now ready to prove Lemma 10. Define an ordering on (Z≥0)s by defining
i < j if the first non-zero coordinate of j − i is > 0. For i = (i1, ..., is), put
Di = ∂i1+...+is/∂T i11 ...∂T

is
s ,T

i = T i11 ...T
is
s . Let i1, ..., il be the tuples with i1/c1 +

...+ is/cs ≤ ε, ordered such that i1 > i2 > ... > il. Define the ideals in R̂:

J0 = Î + (Tj : all j = (j1, ..., js) with j1/c1 + ...+ js/cs > ε),

Jt = J0 + (Ti1 , ...,Tit) for t = 1, ..., l.

We have

(4.9) J0 $ J1 $ ... $ Jl.

Namely, suppose that for some t we have Jt+1 = Jt. Then Tit+1 ∈ Jt, i.e.
Tit+1=

∑
i giT

i + f , where the sum is taken over tuples i > it+1 and where gi ∈ R̂
and f ∈ Î. Since T1, ..., Ts ∈ M̂ we have DkTi ∈ M̂ if k 6= i. Note that
Dit+1Tit+1 is a non-zero constant, whence does not belong to M̂ . On the other
hand, Dit+1(giTi) can be expressed as

∑
hi,kD

kTi with hi,k ∈ R̂ and k ≤ it+1 < i,
hence Dit+1(giTi) ∈ M̂ . Further, by (4.8), Dit+1f ∈ M̂ . Thus we arrive at a con-
tradiction and we must conclude that Jt+1 % Jt. This proves (4.9). Consequently,

(4.10) R̂/Î ⊇ R̂/J0 % R̂/J1 % ... % R̂/Jl ⊇ (0).

Hence lR̂(R̂/Î) ≥ l. The tuples (i1, ..., is) with 0 ≤ ij ≤ [εcj/s] (j = 1, ..., s) satisfy
i1/c1 + ...+ is/cs ≤ ε. Hence

l ≥
s∏
j=1

([
εcj
s

]
+ 1
)
≥ (ε/s)sc1...cs .
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This proves (4.7) and hence Lemma 10. �

Proof of Theorem 1. Let s = codim Z = M−(δ1 + ...+δm), where δ1, ..., δm are
the integers from Lemma 10. Let (e1, ..., em) be a tuple of non-negative integers
with e1 + ...+ em = M − s = δ1 + ...+ δm and (Z · Le11 ...Lemm ) > 0. We have

ηi := (δi + ...+ δm)− (ei + ...+ em) ≥ 0 for i = 2, ...,m.

Namely, take generic fhj ∈ Γ(Lh) (h = 1, ...,m, j = 1, ..., eh) and put W :=
Z ∩ {fhj = 0 for h = 1, ...,m, j = 1, ..., eh}. Then W is not empty, hence pi(W )
is not empty. Further, pi(W ) ⊆ pi(Z) ∩ {fhj = 0 for h = i, ...,m, j = 1, ..., eh}.
Hence dim pi(Z) = δi + ...+ δm ≥ ei + ...+ em.

From (4.3), Lemma 4 and Lemma 10 it follows that

[k1 : k0](Z · Le11 ...Lemm ) ≤ m−1
Z (Le11 ...Lemm .Ls)(4.11)

= m−1
Z (Le11 ...Lemm · (d1L1 + ...+ dmLm)s)

= m−1
Z

s!
(n1 − e1)!...(nm − em)!)

dn1−e1
1 ...dnm−emm

≤ m−1
Z msdn1−e1

1 ...dnm−emm

≤
(
ms

ε

)s
dδ1−n1

1 ...dδm−nmm .dn1−e1
1 ...dnm−emm

=
(
ms

ε

)s
.

(
d2

d1

)η2

...

(
dm
dm−1

)ηm
.

Suppose that Z is not a product variety Z1× ...×Zm with Zh a subvariety of Pnh
for h = 1, ...,m. Then by Lemma 3 there are at least two tuples (e1, ..., em) with
(Z · Le11 ...Lemm ) > 0 so there is such a tuple with (e1, ..., em) 6= (δ1, ..., δm). But
then, at least one of the numbers ηi is ≥ 1. Together with (4.11) and condition
(1.1) on d1/d2, ..., dm−1/dm this implies that

[k1 : k0](Z · Le11 ...Lemm ) ≤
(
ms

ε

)s
·
(
mM

ε

)−M(η2+...+ηm)

< 1

which is impossible as (Z · Le11 ...Lemm ) is a positive integer. It follows that Z is a
product variety Z1×...×Zm with Zh a subvariety of Pnh and that eh = δh = dimZh
for h = 1, ...,m. Hence η1 = ... = ηm = 0. By inserting this into (4.11) and using
Lemma 2 (ii) we get

[k1 : k0] degZ1...degZm = [k1 : k0](Z · Le11 ...Lemm ) ≤
(
ms

ε

)s
.

This completes the proof of Theorem 1. �
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Proof of Theorem 2. We use the notation introduced at the beginning of this
section, except that k = Q. We assume that F has its coefficients in some number
field K, and that the ideal generated by the coefficients of F is (1). Similarly
as in the proof of Lemma 7 (iv) this is no restriction. The coefficients of each
polynomial

Fi :=
m∏
h=1

nh∏
j=0

X
chj
hj

( m∏
h=1

nh∏
j=0

1
ihj !

∂ihj

∂X
ihj
hj

F

)
are obtained by multiplying the coefficient of F attached to the monomial∏m
h=1

∏nh
j=0X

lhj
hj with

∏m
h=1

∏nh
j=0

(
lhj
ihj

)
, which is an integer

≤ 2
∑m

h=1

∑nh

j=1
lhj ≤ 2d1+...+dm .

It follows that for each embedding σ : K ↪→ C,

(4.12) Hσ(Fi) ≤ 2d1+...+dmHσ(F ) =: Hσ.

Recall that the coefficients of F generate the ideal (1), so that

(4.13)
(∏

σ

Hσ

)1/[K:Q]

≤ 2d1+...+dmH(F ).

By applying Lemma 6 (iv) with f having coefficients in k0 and using induction on
the dimension, we see that

h(Z(i),LM−s+1) = h(Z,LM−s+1) for i = 1, ..., [k1 : k0].

Together with Lemma 9, (4.12), (4.13) this implies

[k1 : k0]mZh(Z,LM−s+1)(4.14)

≤ M !
n1!...nm!

dn1
1 ...dnmm ·

{
(M2 + log 2)(d1 + ...+ dm) + s logH(F )

}
≤ 2mMM2dn1

1 ...dnmm (d1 + ...+ dm + logH(F )).

We have shown that Z = Z1 × ...× Zm, where Zh is a δh-dimensional subvariety
of Pnh for h = 1, ...,m. By Lemmas 10, 9 and 8 (ii) we have

[k1 : k0]mZh(Z,LM−s+1)

≥ [k1 : k0](ε/s)sdn1−δ1
1 ...dnm−δnm · dδ11 ...d

δm
m degZ1...degZm

( m∑
h=1

dhh(Zh)
degZh

)

= [k1 : k0] degZ1...degZm.(ε/s)sdn1
1 ...dnmm

m∑
h=1

dhh(Zh)
degZh

.

By comparing this with (4.14) we see that the term dn1
1 ...dnmm cancels and that

[k1 : k0] degZ1...degZm

( m∑
h=1

dhh(Zh)
degZh

)
≤ 2
(
s

ε

)s
mMM2(d1+...+dm+logH(F )),

which is Theorem 2. �
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§5. Proof of Theorem 3 (Roth’s lemma).

Let m be an integer ≥ 2. Put P := P1(Q)× ...× P1(Q) (m times) and denote by
P

1
i the i-th factor of P. Define the blocks of two variables Xh := (Xh0, Xh1), for

d = (d1, ..., dm) ∈ (Z≥0)m let Γ(d) be the set of polynomials from Q[X1, ...,Xm]
which are homogeneous of degree dh in Xh for h = 1, ...,m and let Γ := ∪dΓ(d).
As usual, we put Lh = O(0, ..., 1, ..., 0) (1 on the h-th place).

Now let 0 < ε ≤ m + 1 and let d = (d1, ..., dm) be a tuple of positive integers
satisfying (1.11). Further, let F be a non-zero polynomial from Γ(d) and let
P = (P1, ..., Pm) where Ph ∈ P1 for h = 1, ...,m. Assume that id(F, P ) ≥ ε. We
shall show that for at least one h we have that Ph does not satisfy (1.12), i.e.

(5.1) H(Ph)dh ≤
(
ed1+...+dmH(F )

)(3m3/ε)m

.

This clearly implies Theorem 3.

Put ε′ := ε/(m+1). As in the proof of the Corollary, there is an i ∈ {0, ...,m} such
that Ziε′ and Z(i+1)ε′ have a common irreducible component, Z, say, containing P .
Put s := codim Z. As in Lemma 10, let pi be the projection of P onto the product
of its last m− i+ 1 factors P1

i × ...×P1
m and put δi := dim pi(Z)−dim pi+1(Z) for

i = 1, ...,m, where dim pm+1(Z) := 0; note that δi ∈ {0, 1}. Further, let πh be the
projection of P onto its h-th factor P1

h. Then either πh(Z) = P1
h or πh(Z) is a point

in which case πh(Z) = Ph. We shall show that for some h we have πh(Z) = Ph
and that this Ph satisfies (5.1). To this end we need the following improvement of
Lemma 3 for the case n = (1, ..., 1).

Lemma 11. There are e1, ..., em ∈ {0, 1} with e1 + ... + em = dimZ = m − s,
(Z · Le11 ...Lemm ) > 0, ηi :=

∑m
j=i(δj − ej) ≥ 0 for i = 2, ...,m and

m∑
i=2

ηi ≥
( m∑
i=1

dimπi(Z)
)
− dimZ .

Proof. For any subset i = {i1, ..., it} of {1, ...,m} denote by πi the projection of
P onto P1

i1
× ...× P1

it
and put ci := dimπi(Z).

We proceed by induction on m. For m = 1, Lemma 11 is trivial. Suppose that
m ≥ 2. For the moment, suppose also that π1(Z) = P1

1. Let X be the set of points
P in Z such that for some i ⊆ {1, ...,m} either πi(Z) is not smooth at πi(P ) or the
restriction πi|Z of πi to Z is not smooth at P . Then X is a proper, Zariski-closed
subset of Z. For Q = (p : q) ∈ P1

1, let fQ = qX10 − pX11, ZQ = Z ∩ {fQ = 0}.
There are only finitely many Q ∈ P1

1 such that one of the irreducible components of
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ZQ is contained in X. Namely, X has only finitely many irreducible components
and if some irreducible component Z ′ of ZQ is contained in X, then Z ′ is an
irreducible component of X since dimZ ′ = dimZ − 1. Now choose Q ∈ P1

1 such
that no irreducible component of ZQ is contained in X and let Z ′ be any irreducible
component of ZQ. We are going to apply the induction hypothesis to Z ′.

We have to consider tangent spaces at an appropriate point. Choose P ∈ Z ′ such
that for each i ⊆ {1, ...,m}, πi(Z) is smooth at πi(P ), πi|Z is smooth at P , πi(Z ′)
is smooth at πi(P ) and the restriction πi|Z ′ is smooth at P . Such a P exists since
Z ′ is not contained in X and the set of P ∈ Z ′ such that for some i ⊆ {1, ...,m}
either πi(Z ′) is not smooth at πi(P ) or πi|Z ′ is not smooth at P is a proper Zariski-
closed subset of Z ′.
We assume w.l.o.g. that P = (1 : 0; ...; 1 : 0). Let A := {X10 6= 0, ..., Xm0 6= 0}
and define affine coordinates Y1 = X11/X10, ..., Ym = Xm1/Xm0. Thus, Z ′ ∩ A is
an irreducible component of (Z∩A)∩{Y1 = 0}. There are polynomials f1, ..., fr ∈
Q[Y1, ..., Ym] such that Z ∩ A = {y ∈ A : f1(y) = ... = fr(y) = 0}. The tangent
space of Z at P is given by

T := {y = (y1, ..., ym) ∈ Qm :
m∑
j=1

(∂fi/∂Yj)(0)yj = 0 for i = 1, ..., r}.

Since πi|Z is smooth at P , the linear map dπi corresponding to πi, which is the
projection y 7→ (yi : i ∈ i), maps T surjectively to the tangent space Ti of πi(Z) at
πi(P ). Since Z is smooth at P we have dimT = dimZ and since πi(Z) is smooth
at πi(P ) we have dimTi = dimπi(Z) = ci.
Similarly, dπi maps the tangent space T ′ of Z ′ at P surjectively to the tangent
space T ′i of πi(Z ′) at πi(P ) and dimT ′i = dimπi(Z ′). Since Y1 ≡ 0 on Z ′ ∩ A we
have y1 ≡ 0 on T ′. Hence T ′ ⊆ T ∩{y1 = 0}. Further, y1 is not identically zero on
T since dim f{1}(T ) = dimZ1 = 1 and dimT ′ = dimZ ′ = dimZ − 1 = dimT − 1.
Hence T ′ = T ∩ {y1 = 0}.
We consider y1, ..., ym as linear functions on T . Thus, for i ⊆ {1, ...,m} we have
ci = dimTi = rank {yi : i ∈ i}.
We have the following crucial fact:

dimπi(Z ′) = dimπi(Z)(5.2)
for each subset i of {1, ...,m} with c{1}∪i > ci ,

dimπi(Z ′) = dimπi(Z)− 1
for each subset i of {1, ...,m} with c{1}∪i = ci .

Namely, for i ⊆ {1, ...,m} let Vi = ker dπi∩T= T∩{yi = 0 for i ∈ i}, V ′i = ker dπi∩
T ′= T ′ ∩ {yi = 0 for i ∈ i}. Thus, V ′i = V{1}∪i. Further, put ei = c{1}∪i − ci; then
ei ∈ {0, 1}. Now for i ⊆ {1, ...,m} we have

dimπi(Z ′) = dimT ′ − dimV ′i = dimT − 1− dimV{1}∪i

= dimπ{1}∪i(Z ′)− 1 = dimπi(Z) + ei − 1
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which is precisely (5.2).

We now complete the induction step. Put δ′i := dim pi(Z ′) − dim pi+1(Z ′) for
i = 1, ...,m, where dim pm+1(Z ′) := 0. Put also ci := dimπi(Z), c′i := dimπi(Z ′).
Recall that Z ′ = Q×W , where Q ∈ P1

1 and W is a subvariety of P1
2× ...×P1

m. By
applying the induction hypothesis to W we infer that there are e2, ..., em ∈ {0, 1}
such that

e2 + ...+ em = dimZ ′ = dimZ − 1 ,
(Z ′ · Le22 ...Lemm ) > 0 ,

η′i :=
m∑
j=i

(δ′j − ej) ≥ 0 for i = 3, ...,m ,

η′3 + ...+ η′m ≥
m∑
j=2

c′j − dimZ ′ .

Put e1 = 1. Obviously, (Z ·Le11 ...Lemm ) > 0. Let t be the largest index such that y1 is
linearly dependent on {yi : i ≥ t}. Then δt = dim pt(Z)−dim pt+1(Z) = rank {yi :
i ≥ t}− rank {yi : i ≥ t+1} = 1. Further, by (5.2) we have δ′i = δi, η

′
i = ηi, c

′
i = ci

for i > t, δ′t = δt − 1 = 0, δ′i = δi for 2 ≤ i < t and η′i = ηi − 1 for 2 ≤ i ≤ t, where
η′2 :=

∑m
j=2(δ′j − ej) = 0. Further, c′i ≥ ci − 1 for i ≤ t and dimZ ′ = dimZ − 1.

It follows that

m∑
j=2

ηj =
m∑
j=3

η′j + t− 1

≥
( m∑
j=2

c′j

)
+ t− 1− dimZ ′ ≥

( m∑
j=1

cj

)
− dimZ .

This completes the induction step for the case dimπ1(Z) > 0. In the other case
we have Z = Q ×W where Q ∈ P1

1 and W is a subvariety of P1
2 × ... × P1

m and
then the induction step is completed by applying the induction hypothesis to W .
This proves Lemma 11. �

Proof of Theorem 3. Suppose that the integers d1, ..., dm satisfy (1.11), i.e.
dh/dh+1 > 2m3/ε for h = 1, ...,m− 1. Put L := d1L1 + ...+ dmLm. Let e1, ..., em
be the integers from Lemma 11.

Assume that πh(Z) = P1
h for h = 1, ...,m. Then by Lemma 11,

η2 + ...+ ηm ≥ codim Z = s .

Together with (4.11) (cf. proof of Theorem 1 with iε′, ε′ replacing σ, ε, respectively)
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and η1 = 0 this implies that

1 ≤ (Z · Le11 ...Lemm )

≤
(
ms

ε′

)s(
d2

d1

)η2

...

(
dm
dm−1

)ηm
<

(
m(m+ 1)

ε

)s
·
(

2m3

ε

)−s
≤ 1

which is impossible. Therefore there is an h ∈ {1, ...,m} with πh(Z) = Ph.

We now show that Ph satisfies (5.1). By precisely the same argument as in the
proof of Theorem 2 we have

h(Z,Lm−s+1)(5.3)
≤ m−1

Z ·m!d1...dm
(
(m2 + log 2)(d1 + ...+ dm) + s logH(F )

)
≤
(
s

ε′

)s
2m2m! · dδ11 ...d

δm
m (d1 + ...+ dm + logH(F ))

≤
(

3m3

ε

)m
dδ11 ...d

δm
m (d1 + ...+ dm + logH(F )) .

By Lemmas 6,7 we have

h(Z,Lm−s+1)

=
∑

f1+...+fm=m−s+1

(m− s+ 1)!
f1!...fm!

df1
1 ...d

fm
m h(Z,Lf1

1 ...Lfmm )

≥ de11 ...d
em
m · dh · h(Z,Le11 ...L

eh+1
h ...Lemm ) .

Together with (5.3) and ηi ≥ 0 for i = 2, ...,m this implies

dh · h(Z,Le11 ...L
eh+1
h ...Lemm )(5.4)

≤
(

3m3

ε

)m
dδ1−e11 ...dδm−emm

(
d1 + ...+ dm + logH(F )

)
≤
(

3m3

ε

)m(
d2

d1

)η2

...

(
dm
dm−1

)ηm(
d1 + ...+ dm + logH(F )

)
≤
(

3m3

ε

)m(
d1 + ...+ dm + logH(F )

)
It is no restriction to assume that Ph = (a : b) where a, b belong to some number
field K and (a, b) = (1). Then there are α, β ∈ OK with αa + βb = 1. Put
f = αXh0 + βXh1. Then div(f |Z) = 0 and κ℘ = κ℘(Z, f,Le11 ...Lemm ) = 0 for each
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non-zero prime ideal ℘ of OK . Further, for each embedding σ : K ↪→ C we have
that ||σ(f)|| = (|σ(a)|2 + |σ(b)|2)−1/2 is constant on Z ×σ C. Hence, using (3.1),

κσ = κσ(Z, f,Le11 ...Lemm )

= − 1
[K : Q]

∫
Z×σC

log ||σ(f)|| · c1(L1)e1 ∧ ... ∧ c1(Lm)em

= − 1
[K : Q]

log
(
(|σ(a)|2 + |σ(b)|2)−1/2

) ∫
Z×σC

c1(L1)e1 ∧ ... ∧ c1(Lm)em

= log
(
(|σ(a)|2 + |σ(b)|2)1/2[K:Q]

)
· (Z · Le11 ...Lemm ) .

By inserting this into (3.5) and using that (a, b) = (1) we obtain

h(Z,Le11 ...L
eh+1
h ...Lemm )

=
∑
σ

κσ +
∑
℘

κ℘ = logH(Ph) · (Z · Le11 ...Lemm )

≥ logH(Ph) .

Together with (5.4) this implies (5.1). This completes the proof of Theorem 3. �
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