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§1. Introduction.
Let n be an integer and l1, . . . , ln linearly independent linear forms in n variables with
(real or complex) algebraic coefficients. For x = (x1, . . . , xn) ∈ Zn put

|x| :=
√
x2

1 + · · ·+ x2
n.

In 1972, W.M. Schmidt [17] proved his famous Subspace theorem: for every δ > 0, there
are finitely many proper linear subspaces T1, . . . , Tt of Qn such that the set of solutions of
the inequality

|l1(x) · · · ln(x)| < |x|−δ in x ∈ Zn

is contained in T1 ∪ · · · ∪ Tt.
In 1989, Schmidt managed to prove the following quantitative version of his Subspace

theorem. Suppose that each of the above linear forms li has height H(li) ≤ H defined
below and that the field generated by the coefficients of l1, . . . , ln has degree D0 over Q.
Further, let 0 < δ < 1. Denote by det(l1, . . . , ln) the coefficient determinant of l1, . . . , ln.
Then there are proper linear subspaces T1, . . . , Tt of Qn with

t ≤ (2D0)226nδ−2

such that the set of solutions of

(1.1) |l1(x) · · · ln(x)| < |det(l1, . . . , ln)| · |x|−δ in x ∈ Zn

is contained in
{x ∈ Zn : |x| < max

(
(n!)8/δ,H

)
} ∪ T1 ∪ · · · ∪ Tt.

In 1977, Schlickewei extended Schmidt’s Subspace theorem of 1972 to the p-adic case
and to number fields. In 1990 [15] he generalised Schmidt’s quantitative Subspace theorem
to the p-adic case over Q and later, in 1992 [16] to number fields. Below we state this
result of Schlickewei over number fields and to this end we introduce suitably normalised
absolute values and heights.

Let K be an algebraic number field. Denote its ring of integers by OK and its collection
of places (equivalence classes of absolute values) by MK . For v ∈ MK , x ∈ K, we define
the absolute value |x|v by
(i) |x|v = |σ(x)|1/[K:Q] if v corresponds to the embedding σ : K ↪→ R;
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(ii) |x|v = |σ(x)|2/[K:Q] = |σ̄(x)|2/[K:Q] if v corresponds to the pair of conjugate complex
embeddings σ, σ̄ : K ↪→ C;

(iii) |x|v = (Np)−ordp(x)/[K:Q] if v corresponds to the prime ideal p of OK .
Here Np = #(OK/p) is the norm of p and ordp(x) the exponent of p in the prime ideal
decomposition of (x), with ordp(0) := ∞. In case (i) or (ii) we call v real infinite or
complex infinite, respectively and write v|∞; in case (iii) we call v finite and write v -∞.
These absolute values satisfy the Product formula∏

v

|x|v = 1 for x ∈ K∗

(product taken over all v ∈MK) and the Extension formulas∏
w|v

|x|w =|NL/K(x)|1/[L:K]
v for x ∈ L, v ∈MK ;

∏
w|v

|x|w =|x|v for x ∈ K, v ∈MK ,

where L is any finite extension of K and the product is taken over all places w on L lying
above v.

The height of x = (x1, . . . , xn) ∈ Kn with x 6= 0 is defined as follows: for v ∈MK put

|x|v =
( n∑
i=1

|xi|2[K:Q]
v

)1/2[K:Q] if v is real infinite,

|x|v =
( n∑
i=1

|xi|[K:Q]
v

)1/[K:Q] if v is complex infinite,

|x|v = max(|x1|v, . . . , |xn|v) if v is finite

(note that for infinite places v, | · |v is a power of the Euclidean norm). Now define

H(x) = H(x1, . . . , xn) =
∏
v

|x|v.

By the Product Formula, H(ax) = H(x) for a ∈ K∗. Further, by the Extension formulas,
H(x) depends only on x and not on the choice of the number field K containing the
coordinates of x, in other words, there is a unique function H from Q̄

n\{0} to R such
that for x ∈ Kn, H(x) is just the height defined above; here Q̄ is the algebraic closure
of Q. For a linear form l(X) = a1X1 + · · · + anXn with algebraic coefficients we define
H(l) := H(a) where a = (a1, . . . , an) and if a ∈ Kn then we put |l|v = |a|v for v ∈ MK .
Further, we define the number field K(l) := K(a1/aj , . . . , an/aj) for any j with aj 6= 0;
this is independent of the choice of j. Thus, K(cl) = K(l) for any non-zero algebraic
number c.

We are now ready to state Schlickewei’s result from [16]. Let K be a normal extension
of Q of degree d, S a finite set of places on K of cardinality s and for v ∈ S, {l1v, . . . , lnv}
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a linearly independent set of linear forms in n variables with coefficients in K and with
H(liv) ≤ H for i = 1, . . . , n, v ∈ S. Then for every δ with 0 < δ < 1 there are proper linear
subspaces T1, . . . , Tt of Kn with

t ≤ (8sd)234nds6δ−2
,

such that every solution x ∈ Kn of the inequality

(1.2)
∏
v∈S

n∏
i=1

|liv(x)|v
|liv|v|x|v

< H(x)−n−δ

either lies in T1 ∪ · · · ∪ Tt or satisfies

H(x) < max
(
(n!)9/δ,Hdns/δ

)
.

The restrictions that K be normal and the linear forms liv have their coefficients in K
are inconvenient for applications such as estimating the numbers of solutions of norm
form equations or decomposable form equations where one has to deal with inequalities of
type (1.2) of which the unknown vector x assumes its coordinates in a finite, non-normal
extension K of Q and the linear forms liv have their coefficients outside K.

In this paper, we improve Schlickewei’s quantitative Subspace theorem over number
fields. We drop the restriction that K be normal and we allow the linear forms to have
coefficients outside K. Further, we derive an upper bound for the number of subspaces
with a much better dependence on n and δ: our bound depends only exponentially on
n and polynomially on δ−1 whereas Schlickewei’s bound is doubly exponential in n and
exponential in δ−1. As a special case we obtain a significant improvement of Schmidt’s
quantitative Subspace theorem mentioned above.

In the statement of our main result, the following notation is used:
K is an algebraic number field (not necessarily normal);
S is a finite set of places on K of cardinality s containing all infinite places;
{l1v, . . . , lnv}(v ∈ S) are linearly independent sets of linear forms in n variables with
algebraic coefficients such that

H(liv) ≤ H , [K(liv) : K] ≤ D for v ∈ S, i = 1, . . . , n.

In the sequel we assume that the algebraic closure of K is Q̄. We choose for every place
v ∈MK a continuation of | · |v to Q̄, and denote this also by | · |v; these continuations are
fixed throughout the paper.

THEOREM. Let 0 < δ < 1. Consider the inequality

(1.3)
∏
v∈S

n∏
i=1

|liv(x)|v
|x|v

<
( ∏
v∈S
|det(l1v, . . . , lnv)|v

)
·H(x)−n−δ in x ∈ Kn .
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(i) There are proper linear subspaces T1, . . . , Tt1 of Kn, with

t1 ≤
(
260n2

· δ−7n
)s log 4D · log log 4D

such that every solution x ∈ Kn of (1.3) with

H(x) ≥ H

belongs to T1 ∪ · · · ∪ Tt1 .
(ii) There are proper linear subspaces S1, . . . , St2 of Kn, with

t2 ≤
(
150n4 · δ−1

)ns+1(2 + log log 2H)

such that every solution x ∈ Kn of (1.3) with

H(x) < H

belongs to S1 ∪ · · · ∪ St2 .

Now assume that K = Q, S = {∞} and let l1, . . . , ln be linearly independent linear
forms in n variables with algebraic coefficients such that H(li) ≤ H and [Q(li) : Q] ≤ D
for i = 1, . . . , n. Consider again the inequality

(1.1) |l1(x) · · · ln(x)| < |det(l1, . . . , ln)| · |x|−δ in x ∈ Zn,

where 0 < δ < 1. If x ∈ Zn is primitive, i.e. x = (x1, . . . , xn) with gcd(x1, . . . , xn) = 1,
then H(x) = |x|. Hence our Theorem implies at once the following improvement of
Schmidt’s result:

Corollary. For every δ with 0 < δ < 1 there are proper linear subspaces T1, . . . , Tt of Qn

with
t ≤ 260n2

δ−7n log 4D · log log 4D

such that every solution x ∈ Zn of (1.1) with

H(x) ≥ H , x primitive

lies in T1 ∪ · · · ∪ Tt.

Define the height of an algebraic number ξ by H(ξ) := H(1, ξ). Let K, S be as in the
Theorem and for v ∈ S, let αv be an algebraic number of degree at most D over K and
with H(αv) ≤ H. Let 0 < δ < 1. Consider the inequality

(1.4)
∏
v∈S

min
(
1, |β − αv|v

)
< H(β)−2−δ in β ∈ K .
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By a generalisation of a theorem of Roth, (1.4) has only finitely many solutions. Bombieri
and van der Poorten [1] (only for S consisting of one place) and Gross [9] (in full generality)
derived good upper bounds for the number of solutions of (1.4). It is possible to derive a
similar bound from our Theorem above. Namely, let l1v(x) = x1 − αvx2, l2v(x) = x2 for
v ∈ S and put x = (β, 1) for β ∈ K. Then every solution β of (1.4) satisfies∏

v∈S

|l1v(x)l2v(x)|v
|x|2v

≤
∏
v∈S

min
(
1, |β − αv|v

)
< H(β)−2−δ =

∏
v∈S
|det(l1v, l2v)|v ·H(x)−2−δ .

Now our Theorem with n = 2 implies that (1.4) has at most

(1.5) (24000 · δ−1)2s+1(2 + log log 2H) + (2240 · δ−14)s log 4D · log log 4D

solutions. The bounds of Bombieri and van der Poorten and Gross are of a similar shape,
except that in their bounds the constants are better and the dependence on D is slightly
worse, namely (logD)2 · log logD. Our Theorem can also be used to derive good upper
bounds for the numbers of solutions of norm form equations, S-unit equations and de-
composable form equations; we shall derive these bounds in another paper. Schlickewei
announced that he improved his own quantitative Subspace theorem in another direction
and that he used this to show a.o. that the zero multiplicity of a linear recurrence sequence
of order n with rational integral terms is bounded above in terms of n only. (lectures given
at MSRI, Berkeley, 1993, Oberwolfach, 1993, Conference on Diophantine problems, Boul-
der, 1994).

Remarks about Roth’s lemma.
Following Roth [13], the generalisation of Roth’s theorem mentioned above can be proved
by contradiction. Assuming that (1.4) has infinitely many solutions, one constructs an
auxiliary polynomial F ∈ Z[X1, . . . , Xm] which has large “index” at some point β =
(β1, . . . , βm) where β1, . . . , βm are solutions of (1.4) with H(β1), . . . ,H(βm) sufficiently
large. Then one applies a non-vanishing result proved by Roth in [13], now known as
Roth’s lemma, implying that F cannot have large index at β.

In his proof of the Subspace theorem [17], Schmidt applied the same Roth’s lemma but
in a much more difficult way, using techniques from the geometry of numbers. Schmidt used
these same techniques but in a more explicit form in his proof of his quantitative Subspace
theorem [19]. Schlickewei proved his results [14,15,16] by generalising Schmidt’s arguments
to the p-adic case. Very recently, Faltings and Wüstholz [8] gave a completely different
proof of the (qualitative) Subspace theorem. They did not use geometry of numbers but
instead a very powerful generalisation of Roth’s lemma, discovered and proved by Faltings
in [7], the Arithmetic product theorem ([7], Theorems 3.1, 3.3).

Our approach in the present paper is that of Schmidt. But unlike Schmidt we do not
use Roth’s lemma from [13] but a sharpening of this, which we derived in [6] by making
explicit the arguments used by Faltings in his proof of the Arithmetic product theorem. *)

*) Wüstholz announced at the conference on Diophantine problems in Boulder, 1994, that his student R.

Ferretti independently obtained a similar sharpening.
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Further, in order to obtain an upper bound for the number of subspaces depending only
exponentially on n we also had to modify the arguments from the geometry of numbers
used by Schmidt. For instance, Schmidt applied a lemma of Davenport and it seems that
that would have introduced a factor (2n)! in our upper bound which is doubly exponential
in n. Therefore we wanted to avoid the use of Davenport’s lemma and we did so by making
explicit some arguments from [5].

A modified version of Roth’s lemma is as follows. Let F (X1, . . . , Xm) ∈ Q̄[X1, . . . , Xm]
be a polynomial of degree ≤ dh in Xh for h = 1, . . . ,m. Define the index of F at x =
(x1, . . . , xm) to be the largest real number Θ such that (∂/∂X1)i1 · · · (∂/∂Xm)imF (x) = 0
for all non-negative integers i1, . . . , in with i1/d1 + · · ·+ im/dm ≤ Θ. As before, the height
of ξ ∈ Q̄ is defined by H(ξ) = H(1, ξ) and the height H(F ) of F is by definition the height
of the vector of coefficients of F . By c1, c2, . . . we denote positive absolute constants. Now
Roth’s lemma states that there are positive numbers ω1(m,Θ) and ω2(m,Θ) depending
only on m,Θ, such that if m ≥ 2, 0 < Θ < 1, if

(1.6)
dh
dh+1

≥ ω1(m,Θ) for h = 1, . . . ,m− 1

and if x1, . . . , xm are non-zero algebraic numbers with

(1.7) H(xh)dh ≥
(
cd1+···+dm
1 H(F )

)ω2(m,Θ) for h = 1, . . . ,m,

then F has index ≤ Θ at x = (x1, . . . , xm).
By modifying the arguments of Schmidt and Schlickewei one can show that the set of

solutions x of (1.3) with H(x) ≥ H is contained in some union of proper linear subspaces
of Kn, T1 ∪ · · · ∪ Tt1 with

(1.8) t1 ≤ c(n, δ, s) · {m logω1(m,Θ) + logω2(m,Θ)},

where

(1.9) m = δ−2cn2 s log 4D , Θ = δc−n3 , c(n, δ, s) =
(
cn

2

4 δ−c5n
)s ;

the factor c(n, δ, s) comes from the techniques from the geometry of numbers, while the
factor m logω1(m,Θ) + logω2(m,Θ) comes from the application of Roth’s lemma. Roth
proved his lemma with

(1.10) ω1(m,Θ) = ω2(m,Θ) = (Θ−1)c
m
6 ,

and Schmidt and Schlickewei applied Roth’s lemma with (1.10). By substituting (1.9) and
(1.10) into (1.8) one obtains

t1 ≤ c(n, δ, s)(4D)c
n
7 δ
−2

.

In [6] we derived Roth’s lemma with

ω1(m,Θ) = mc8/Θ, ω2(m,Θ) = (mc9/Θ)m
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and by inserting this and (1.9) into (1.8) one obtains

t1 ≤ c(n, δ, s)c10m log(m/Θ) ≤
(
cn

2

11 δ
−c12n

)s log 4D · log log 4D .

An explicit computation of c11, c12 yields the Theorem.
Recall that in Roth’s lemma there is no restriction on the auxiliary polynomial F

other than (1.6), but an arithmetic restriction (1.7) on F and the point x. Bombieri and
van der Poorten [1] and Gross [9] obtained their quantitative versions of Roth’s theorem by
using instead of Roth’s lemma the Dyson-Esnault-Viehweg lemma [3]. This lemma states
also that under certain conditions a polynomial F has small index at x but instead of the
arithmetic condition (1.7) it has an algebraic condition on F,x. It turned out that this
algebraic condition could be satisfied by the auxiliary polynomial constructed in the proof
of Roth’s theorem but was too strong for the polynomial constructed in the proof of the
Subspace theorem.

§2. Preliminaries.
In this section we have collected some facts about exterior products, inequalities related to
heights and absolute values and results from the geometry of numbers over number fields.

We start with exterior products. Let F be any field. Further, let n, p be integers
with n ≥ 2, 1 ≤ p ≤ n and put N :=

(
n
p

)
. Denote by σ1, . . . , σN the subsets of {1, . . . , n}

of cardinality p, ordered lexicographically: thus, σ1 = {1, . . . , p}, σ2 = {1, . . . , p − 1, p +
1}, . . . , σN−1 = {n − p, n − p + 2, . . . , n}, σN = {n − p + 1, . . . , n}. For vectors x1 =
(x11, . . . , x1n), . . . ,xp = (xp1, . . . , xpn) ∈ Fn put

∆j = ∆j(x1, . . . ,xp) :=

∣∣∣∣∣∣∣
x1,i1 x1,i2 . . . x1,ip

...
...

. . .
...

xp,i1 xp,i2 . . . xp,ip

∣∣∣∣∣∣∣ ,
where σj = {i1 < . . . < ip}, i.e. σj = {i1, . . . , ip} and i1 < . . . < ip. Now define the vector
in FN

x1 ∧ . . . ∧ xn := (∆1, . . . ,∆N ) .

Note that x1 ∧ . . . ∧ xp is multilinear in x1, . . . ,xp. Further, x1 ∧ . . . ∧ xp = 0 if and only
if {x1, . . . ,xp} is linearly dependent. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn define
the scalar product by x · y = x1y1 + · · ·+ xnyn and put

x∗ := (xn,−xn−1, xn−2, . . . , (−1)n−1x1).

Then for x1, . . . ,xn ∈ Fn we have

(2.1) x1 · (x2 ∧ . . . ∧ xn)∗ = det(x1, . . . ,xn) .

Further, we have Laplace’s identity

(x1 ∧ . . . ∧ xp) · (y1 ∧ . . . ∧ yp) =det(xi · yj)1≤i,j≤p(2.2)
for x1, . . . ,xp,y1, . . . ,yp ∈ Fn .
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We use similar notation for linear forms. For the linear form l(X) = a ·X=
∑n
i=1 aiXi,

where a = (a1, . . . , an), we put l∗(X) = a∗ ·X. Further, for p linear forms li(X) = ai ·X
(i = 1, . . . , p) in n variables, we define the linear form in

(
n
p

)
variables

(l1 ∧ . . . ∧ lp)(X) = (a1 ∧ . . . ∧ ap) ·X .

For instance (2.2) can be reformulated as

(2.3) (l1 ∧ . . . ∧ lp) · (x1 ∧ . . . ∧ xp) = det(li(xj))1≤i,j≤p .

Let {a1, . . . ,an}, {b1, . . . ,bn} be two bases of Fn which are related by

(2.4) bi =
n∑
j=1

ξijaj (i = 1, . . . , n)

for certain ξij ∈ F . For j = 1, . . . ,
(
n
p

)
define

Aj := ai1 ∧ . . . ∧ ain−p , Bj := bi1 ∧ . . . ∧ bin−p ,

where {i1 < . . . < in−p} = σj is the j-th subset of {1, . . . , n} of cardinality n − p. Then
{A1, . . . ,A(np)}, {B1, . . . ,B(np)} are two bases of F (np) and they are related by

(2.5) Bi =
N∑
j=1

ΞijAj (i = 1, . . . , N)

where Ξij = det(ξik,jl)1≤k,l≤n−p with σi = {i1 < . . . < in−p} and σj = {j1 < . . . < jn−p}.
We use this to establish a relationship between p-dimensional linear subspaces of Fn and
(
(
n
p

)
− 1)-dimensional linear subspaces of F (np).

Lemma 1. Let 1 ≤ p ≤ n− 1. There is a well-defined injective mapping

fpn : {p-dimensional linear subspaces of Fn} →

{(
(
n
p

)
− 1)-dimensional linear subspaces of F (np)}

with the following property: given any p-dimensional linear subspace V of Fn, choose any
basis {a1, . . . ,ap} of V and choose any vectors ap+1, . . . ,an such that {a1, . . . ,an} is a
basis of Fn. Then {A1, . . . ,A(np)−1} is a basis of fpn(V ).

Proof. Put N :=
(
n
p

)
. It suffices to prove that the K-vector space with basis {A1, . . . ,

AN−1} is uniquely determined by the K-vector space with basis {a1, . . . ,ap} and vice
versa. This follows by observing that if {a1, . . . ,an}, {b1, . . . ,bn} are any two bases of Fn

then by (2.4), (2.5), {a1, . . . ,ap} and {b1, . . . ,bp} generate the same space ⇐⇒ ξij = 0
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for i = 1, . . . , p, j = p+ 1, . . . , n ⇐⇒ ΞiN = 0 for i = 1, . . . , N − 1 ⇐⇒ {A1, . . . ,AN−1}
and {B1, . . . ,BN−1} generate the same space. �

We now mention some inequalities related to absolute values. Let K be an algebraic
number field and {| · |v : v ∈ MK} the absolute values defined in §1. For every v ∈ MK

there is a unique continuation of | · |v to the algebraic closure K̄v of the completion Kv

of K at v which we denote also by | · |v. We fix embeddings α : K ↪→ Q̄, βv : K ↪→ Kv,
γv : Kv ↪→ K̄v, δv : Q̄ ↪→ K̄v such that δvα = γvβv. Although formally incorrect, we
assume for convenience that these embeddings are inclusions so that K ⊂ Kv ⊂ K̄v and
K ⊂ Q̄ ⊂ K̄v. Thus, Q̄ is the algebraic closure of K and | · |v is defined on Q̄.

We recall that the absolute values |·|v (v ∈MK) satisfy the Product formula
∏
v |x|v =

1 for x ∈ K∗. For a finite subset S of MK , containing all infinite places, we define the ring
of S-integers

OS = {x ∈ K : |x|v ≤ 1 for v /∈ S}

where we write v /∈ S for v ∈MK\S. We will often use the immediate consequence of the
Product formula that

(2.6)
∏
v∈S
|x|v ≥ 1 for x ∈ OS\{0} .

In order to be able to deal with infinite and finite places simultaneously, we define for
v ∈MK the quantity s(v) by

s(v) =
1

[K : Q]
if v is real infinite,

s(v) =
2

[K : Q]
if v is complex infinite,

s(v) = 0 if v is finite.

Thus,

(2.7)
∑
v∈MK

s(v) =
∑
v|∞

s(v) = 1 .

For x1, . . . , xn ∈ K̄v, a1, . . . , an ∈ Z we have

(2.8) |a1x1 + · · ·+ anxn|v ≤ (|a1|+ · · ·+ |an|)s(v) max(|x1|v, . . . , |xn|v) .

From the definitions of |x|v one may immediately derive Schwarz’ inequality for scalar
products

(2.9) |x · y|v ≤ |x|v|y|v for v ∈MK , x,y ∈ K̄n
v

and Hadamard’s inequality

(2.10) |det(x1, . . . ,xn)|v ≤ |x1|v · · · |xn|v for v ∈MK , x1, . . . ,xn ∈ K̄n
v .
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More generally, we have

(2.11) |x1 ∧ . . . ∧ xp|v ≤ |x1|v · · · |xp|v for v ∈MK , x1, . . . ,xp ∈ K̄n
v .

By taking a number field K containing the coordinates of x1, . . . ,xp, applying (2.11) and
taking the product over all v we obtain

(2.12) H(x1 ∧ . . . ∧ xp) ≤ H(x1) · · ·H(xp) for x1, . . . ,xp ∈ Q̄n .

We need also a lower bound for |x1 ∧ . . . ∧ xp|v in terms of |x1|v · · · |xp|v when
x1, . . . ,xp ∈ Q̄n. For a field F and a non-zero vector x = (x1, . . . , xn) with coordinates in
some extension of F , define the field

F (x) := F (x1/xj , . . . , xn/xj) for any j with xj 6= 0 .

Lemma 2. Let v ∈ MK and let x1, . . . ,xp be linearly independent vectors in Q̄n with
[K(xi) : K] ≤ D, H(xi) ≤ H for i = 1, . . . , p. Then

(2.13) H−pD
p

≤ |x1 ∧ . . . ∧ xp|v
|x1|v · · · |xp|v

≤ 1 .

In particular, if p = n, then

(2.14) H−nD
n

≤ |det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

≤ 1 .

Remark. Obviously, in (2.10)-(2.14) we can replace the vectors x1, . . . ,xp by linear forms
l1, . . . , lp in n variables.

Proof. The upper bound of (2.13) follows at once from (2.11). It remains to prove the
lower bound. We assume that each of the xi has a coordinate equal to 1 which is no
restriction since (2.13) does not change when the xi are multiplied by scalars. Thus, the
composite L of the fields K(x1), . . . ,K(xp) contains the coordinates of x1, . . . ,xp. Clearly,
[L : K] ≤ Dp. We recall that | · |v has been extended to Q̄ hence to L. There are an
integer g with 1 ≤ g ≤ [L : K] ≤ Dp and a place w on L such that for every x ∈ L we
have |x|v = |x|gw. Together with H(x1 ∧ . . . ∧ xp) ≥ 1 and (2.10) this implies that

|x1 ∧ . . . ∧ xp|v
|x1|v · · · |xp|v

=
( |x1 ∧ . . . ∧ xp|w
|x1|w · · · |xp|w

)g ≥ ( |x1 ∧ . . . ∧ xp|w
|x1|w · · · |xp|w

)Dp
= (|x1|w · · · |xp|w)−D

p( ∏
w′∈ML\{w}

|x1 ∧ . . . ∧ xp|w′
)−Dp

H(x1 ∧ . . . ∧ xp)D
p

≥ (|x1|w · · · |xp|w)−D
p( ∏

w′∈ML\{w}

|x1|w′ · · · |xp|w′
)−Dp

=
(
H(x1) · · ·H(xp)

)−Dp ≥ H−pDp .
10



�

Using the inequalities for exterior products mentioned above, we derive estimates for
the height of a solution of a system of linear equations.

Lemma 3. Let a1, . . . ,ar ∈ Q̄n with H(ai) ≤ H for i = 1, . . . , r and let x ∈ Q̄n\{0} be
such that

ai · x = 0 for i = 1, . . . , r .

(i) If rank{a1, . . . ,ar} = n− 1, then x is uniquely determined up to a scalar and

H(x) ≤ Hn−1 .

(ii) Suppose that rank{a1, . . . ,ar} ≤ n − 1 and that x ∈ Kn, where K is a number field.
Then there is an y ∈ Kn with y 6= 0, ai · y = 0 for i = 1, . . . , r and

H(y) ≤ Hn−1 .

Proof. (i) It is well-known from linear algebra that x is determined up to a scalar. Suppose
that rank{a1, . . . ,an−1} = n− 1 which is no restriction. Then x is also the up to a scalar
unique solution of ai · x = 0 for i = 1, . . . , n − 1. By (2.1), this system is satisfied by the
non-zero vector (a1∧ . . .∧an−1)∗ hence x is a scalar multiple of this vector. Together with
(2.12) this implies that

H(x) = H(a1 ∧ . . . ∧ an−1) ≤ H(a1) · · ·H(an−1) ≤ Hn−1 .

(ii) Let G = Gal(Q̄/K) be the group of automorphisms of Q̄ leaving K invariant. For
y = (y1, . . . , yn) ∈ Q̄n, σ ∈ G, we put σ(y) = (σ(y1), . . . , σ(yn)). Let a1, . . . ,as be the
vectors σ(ai) with i = 1, . . . , r, σ ∈ G. Since x ∈ Kn we have ai · x = 0 for i = 1, . . . , s.
Since x 6= 0 we have rank{a1, . . . ,as} ≤ n − 1. If this rank is < n − 1 we choose vectors
as+1, . . . ,at from (1, 0, . . . , 0), . . . ,(0, . . . , 1) such that rank{a1, . . . ,at} = n− 1. Note that
H(ai) ≤ H and that σ(ai) ∈ {a1, . . . ,at} for i = 1, . . . , t, σ ∈ G. Hence if y is a solution
of the system ai · x = 0 for i = 1, . . . , t then so is σ(y) for σ ∈ G. By (i), this system has
an up to a scalar unique non-zero solution y. Choose y with one of the coordinates equal
to one. Then σ(y) = y for σ ∈ G whence y ∈ Kn. Further,by (i) we have H(y) ≤ Hn−1.
�

Remark. In Lemma 3 we may replace ai · x = 0 by li(x) = 0 for i = 1, . . . , r where the li
are linear forms in n variables with algebraic coefficients.

The discriminant of a number field K (over Q) is denoted by ∆K . The relative
discriminant ideal of the extension of number fields L/K is denoted by dL/K . Recall that
dL/K ⊆ OK . We need the following estimates.

Lemma 4. (i) Let K,L,M be number fields with K ⊆ L ⊆ M . Then dM/K =
NL/K(dM/L) · d[M :K]

L/K .

11



(ii) Let K1, . . . ,Kr be number fields and K = K1 · · ·Kr their composite. Suppose that
[Ki : Q] = di > 1 for i = 1, . . . , r and [K : Q] = d. Then

|∆K |1/(d(d−1)) ≤ max
1≤i≤r

|∆Ki |1/(di(di−1)) .

Proof. (i) cf. [10], pp. 60,66.
(ii) It suffices to prove this for r = 2. So let K = K1K2. If K = K1 or K = K2 then

we are done. So suppose that K 6= K1, K 6= K2. Then by e.g. Lemma 7 of [21] we have

∆K | ∆d/d1
K1

∆d/d2
K2

.

Since d ≥ 2di we have d− 1 ≥ 2(di − 1) for i = 1, 2. Hence

|∆K |1/(d(d−1)) ≤ |∆K1 |1/(d1(d−1))|∆K2 |1/(d2(d−1))

≤
(
|∆K1 |1/(d1(d1−1))|∆K2 |1/(d2(d2−1))

)1/2 ≤ max
i=1,2

|∆Ki |1/(di(di−1)).

�

The next lemma is similar to an estimate of Silverman [20].

Lemma 5. Let x ∈ Q̄n\{0} with Q(x) = K, [K : Q] = d. Then

H(x) ≥ |∆K |1/(2d(d−1)) .

Proof. We assume that one of the coordinates of x, the first, say, is equal to 1, i.e.
x = (1, ξ2, . . . , ξn). This is no restriction since H(λx) = H(x), Q(λx) = Q(x) for non-zero
λ. Suppose we have shown that for ξ ∈ Q̄∗,

(2.15) H(ξ) ≥ |∆F |1/(2f(f−1)) where F = Q(ξ), [F : Q] = f

and H(ξ) = H(1, ξ). Together with Lemma 4 this implies Lemma 5, since

H(x) ≥ max
2≤i≤n

H(ξi) ≥ max
2≤i≤n

|∆Ki |1/(2di(di−1)) ≥ |∆K |1/2d(d−1)) ,

where Ki = Q(ξi), di = [Ki : Q] for i = 2, . . . , n. Hence it remains to prove (2.15).
From the definitions of the |x|v for v ∈MK and x = (1, ξ) it follows that

(2.16) H(ξ) =
(
(Na)−1

f∏
i=1

(1 + |ξ(i)|1/2)
)1/f

,
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where a is the fractional ideal in F generated by 1 and ξ, Na is the norm of a and
ξ(1), . . . , ξ(f) are the conjugates of ξ in C. Let {ω1, . . . , ωf} be a Z-basis of the ideal af−1.
The discriminant of this basis is

DK/Q(ω1, . . . , ωf ) = DK/Q(af−1) = (Na)2f−2∆K

(cf. [10], p. 66, Prop. 13). On the other hand we have 1, ξ, . . . , ξf−1 ∈ af−1, hence
DK/Q(1, ξ, . . . , ξf−1) = aDK/Q(ω1, . . . , ωf ) for some positive a ∈ Z. It follows that

(2.17) |∆K | ≤ (Na)−2(f−1)|DK/Q(1, ξ, . . . , ξf−1)| = (Na)−2(f−1)∆ ,

where
∆ =

(
det(ξ(i))j) 1≤i≤f

0≤j≤f−1

)2
(cf. [10], p. 64). By Hadamard’s inequality we have

|∆| ≤
f∏
i=1

( f−1∑
j=0

|ξ(i)|2j
)
≤

f∏
i=1

(1 + |ξ(i)|2)f−1 .

By inserting this into (2.17) and using (2.16) this gives

|∆K | ≤
(
(Na)−1

f∏
i=1

(1 + |ξ(i)|2)1/2
)2(f−1) = H(ξ)2f(f−1)

which is (2.15). �

McFeat [11] and Bombieri and Vaaler [2] generalised some of Minkowski’s results on
the geometry of numbers to adele rings of number fields. Below we recall some of their
results.

Let K be a number field and v ∈MK . A subset Cv of Kn
v (n-fold topological product

of Kv with the v-adic topology) is called a symmetric convex body in Kn
v if

(i) 0 is an interior point of Cv and Cv is compact;
(ii) if x ∈ Cv, α ∈ Kv and |α|v ≤ 1 then αx ∈ Cv;
(iii) if v|∞ and if x,y ∈ Cv then λx + (1− λ)y ∈ Cv for all λ ∈ R with 0 ≤ λ ≤ 1;

if v -∞ and if x,y ∈ Cv then x + y ∈ Cv.

Note that for finite v, Cv is an Ov-module of rank n, where Ov is the local ring {x ∈ Kv :
|x|v ≤ 1}.

The ring of K-adeles VK is the set of infinite tuples (xv : v ∈MK) ((xv) for short) with
xv ∈ Kv for v ∈MK and |xv|v ≤ 1 for all but finitely many v, endowed with componentwise
addition and multiplication. The n-th cartesian power V nK may be identified with the set
of infinite tuples of vectors (xv) = (xv : v ∈ MK) with xv ∈ Kn

v for all v ∈ MK and
xv ∈ Onv for all but finitely many v. There is a diagonal embedding

φ : Kn ↪→ V nK : x 7→ (xv) with xv = x for v ∈MK .

13



A symmetric convex body in V nK is a cartesian product

C =
∏

v∈MK

Cv = {(xv) ∈ V nK : xv ∈ Cv for v ∈MK}

where for every v ∈ MK , Cv is a symmetric convex body in Kn
v and where for all but

finitely many v, Cv = Onv is the unit ball. For positive λ ∈ R, define the inflated convex
body

λC :=
∏
v|∞

λCv ×
∏
v-∞

Cv

where λCv = {λxv : xv ∈ Cv} for v|∞. Now the i-th successive minimum λi = λi(C) is
defined by

λi := min{λ ∈ R>0 : φ−1(λC) contains i K-linearly independent points}.

Note that φ−1(λC) ⊂ Kn. This minimum does exist since φ(Kn) is a discrete subset of
V nK , i.e. φ(Kn) has finite intersection with any set

∏
vDv such that each Dv is a compact

subset of Kn
v and Dv = Onv for all but finitely many v. There are n successive minima

λ1, . . . , λn and we have 0 < λ1 ≤ . . . ≤ λn <∞.
Minkowski’s theorem gives a relation between the product λ1 · · ·λn and the volume

of C. Similarly as in [2,10] we define a measure on V nK built up from local measures βv on
Kv for v ∈ MK . If v is real infinite then Kv = R and we take for βv the usual Lebesgue
measure on R. If v is complex infinite then Kv = C and we take for βv two times the
Lebesgue measure on the complex plane. If v is finite then we take for βv the Haar measure
on Kv (the up to a constant unique measure such that βv(a + C) = βv(C) for C ⊂ Kv,
a ∈ Kv), normalised such that

βv(Ov) = |Dv|[K:Q]/2
v ;

here Dv is the local different of K at v and |a|v := max{|x|v : x ∈ a} for an Ov-ideal a.
The corresponding product measure on Kn

v is denoted by βnv . For instance, if ρ is a linear
transformation of Kn

v onto itself, then βnv (ρD) = |det ρ|[K:Q]
v βnv (D) for any βnv -measurable

D ⊂ Kn
v . Now let β =

∏
v βv be the product measure on VK and βn the n-fold product

measure of this on V nK . Thus, if for every v ∈ MK , Dv is a βnv -measurable subset of Kn
v

and Dv = Onv for all but finitely many v, then D :=
∏
vDv has measure

(2.18) βn(D) =
∏
v

βnv (Dv) .

In particular, symmetric convex bodies in V nK are βn-measurable and have positive measure.
McFeat ([11], Thms. 5, p. 19 and 6, p. 23) and Bombieri and Vaaler ([2], Thms. 3,6)

proved the following generalisation of Minkowski’s theorem:

Lemma 6. Let K be an algebraic number field of degree d and r2 the number of complex
infinite places of K. Further, let n ≥ 1, C be a symmetric convex body in V nK , and
λ1, . . . , λn its successive minima. Then(πnn!

2

)r2/d
· 2n

n!
|∆K |−n/2d ≤ λ1 · · ·λn · βn(C)1/d ≤ 2n .
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Finally, we need an effective version of the Chinese remainder theorem over K. An
A-ceiling is an infinite tuple (Av) = (Av : v ∈MK) of positive real numbers such that Av
belongs to the value group of | · |v on K∗v for all v ∈MK , Av = 1 for all but finitely many
v, and

∏
v Av = A.

Lemma 7. Let K be a number field of degree d, A > 1, (Av) an A-ceiling, and (av) a
K-adele.
(i) If A ≥ |∆K |1/2d, then there is an x ∈ K with

|x|v ≤ Av for v ∈MK and x 6= 0 .

(ii) If A ≥ (d/2)|∆K |1/2, then there is an x ∈ K with

|x− av|v ≤ Av for v ∈MK .

Proof. Let r1 be the number of real and r2 the number of complex infinite places of K.
(i). The one-dimensional convex body C = {(xv) ∈ VK : |x|v ≤ Av for v ∈ MK} has

measure

β(C) =
(∏
v

Av
)d2r1(2π)r2

∏
v-∞

|Dv|d/2v

= 2d(π/2)r2Ad|∆K |−1/2 ≥ 2dAd|∆K |−1/2 ,

in view of the identity
∏
v-∞ |Dv|v = |∆K |−1/d. So if A ≥ |∆K |1/2d then β(C) ≤ 1. Then

by Lemma 6 the only successive minimum λ1 of C is ≤ 1 hence C contains φ(x) for some
non-zero x ∈ K.

(ii). By [11], p. 29, Thm. 8, there is such an x if A ≥ (d/2)(2/π)r2 |∆K |1/2. This
implies (ii). See [12], Thm. 3 for a similar estimate. �

§3. A gap principle.
Let K be an algebraic number field of degree d and S a finite set of places on K of
cardinality s containing all infinite places. Further, let n be an integer ≥ 2 and let δ, C be
reals with 0 < δ < 1 and C ≥ 1. For v ∈ S, let l1v, . . . , lnv be linearly independent linear
forms in n variables with coefficients in K̄v. In this section, we consider the inequality

∏
v∈S

n∏
i=1

|liv(x)|v
|x|v

≤ C ·
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−n−δ(3.1)

in x ∈ Kn, x 6= 0.
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The linear scattering of a subset S of Kn is the smallest integer h for which there exist
proper linear subspaces T1, . . . , Th of Kn such that S is contained in T1 ∪ . . . ∪ Th; we
say that S has infinite linear scattering if such an integer h does not exist. For instance,
S contains n linearly independent vectors ⇐⇒ S has linear scattering ≥ 2. Clearly, the
linear scattering of S1 ∪ S2 is at most the sum of the linear scatterings of S1 and S2. In
this section we shall prove:

Lemma 8. (Gap principle). Let A,B be reals with 1 ≤ A < B. Then the set of solutions
of (3.1) with

A ≤ H(x) < B

has linear scattering at most

C2d ·

(
150n4

δ

)ns+1(
1 + log

( log 2B
log 2A

))
.

Remark. This gap principle is similar to ones obtained by Schmidt and Schlickewei,
except that we do not require a large lower bound for A. Thus, our gap principle can be
used also to deal with “very small” solutions of (3.1).

In the proof of Lemma 8 we need some auxiliary results which will be proved first.
We put e = 2.7182 . . . and denote by |A| the cardinality of a set A.

Lemma 9. Let θ be a real with 0 < θ ≤ 1/2 and q an integer ≥ 1.

(i) There exists a set Γ1 with the following properties:
|Γ1| ≤ (e/θ)q−1;
Γ1 consists of tuples γ = (γ1, . . . , γq) with γi ≥ 0 for i = 1, ..., q and γ1 + · · ·+ γq = 1− θ;
for all reals F1, . . . , Fq, L with

(3.2) 0 < Fi ≤ 1 for i = 1, . . . , q, F1 · · ·Fq ≤ L

there is a tuple γ ∈ Γ1 with Fi ≤ Lγi for i = 1, . . . , q.
(ii) There exists a set Γ2 with the following properties:
|Γ2| ≤

(
e(2 + θ−1)

)q
;

Γ2 consists of q-tuples of non-negative real numbers γ = (γ1, . . . , γq);
for all reals G1, . . . , Gq,M with

(3.3) 0 < Gi ≤ 1 for i = 1, . . . , q, 0 < M < 1, G1 · · ·Gq ≥M

there is a tuple γ ∈ Γ2 with Mγi+θ/q < Gi ≤Mγi for i = 1, ..., q.

Proof. (i) is a special case of Lemma 4 of [4]. We prove only (ii). Put h = [θ−1] + 1,
g = qh. There are reals c1, . . . , cq with

Gi = M ci , ci ≥ 0 for i = 1, . . . , q, c1 + · · ·+ cq ≤ 1 .
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Define the integers f1, . . . , fq by

(3.4) fi ≤ gci < fi + 1 for i = 1, . . . , q ,

and put γi = fi/g for i = 1, . . . , q. Then

0 ≤ γi ≤ ci < γi +
1
hq

< γi +
θ

q

and therefore,
Mγi+θ/q < M ci = Gi ≤Mγi for i = 1, . . . , q .

By (3.4) and c1 + · · · + cq ≤ 1 we have f1 + · · · + fq ≤ g(c1 + · · · + cq) ≤ g. This implies
that γ = (γ1, . . . , γq) belongs to the set

Γ2 := {(f1/g, . . . , fq/g) : f1, . . . , fq ∈ Z, fi ≥ 0 for i = 1, . . . , q, f1 + · · ·+ fq ≤ g} .

For integers x > 0, y ≥ 0 we have

(3.5)
(
x+ y

y

)
≤ (x+ y)x+y

xxyy
=

(
1 +

y

x

)x(
1 +

x

y

)y
≤

(
e
(
1 +

x

y

))y

where the expression at the right is 1 if y = 0. Hence

|Γ2| =
(
g + q

q

)
=
(

(h+ 1)q
q

)
≤
(
e(h+ 1)

)q ≤ (e(2 + θ−1)
)q
. �

Lemma 10. Let K,S, n have the same meaning as in Lemma 8 and put d := [K : Q],
s := |S|. Further, let F be a real ≥ 1 and let V be a subset of Kn of linear scattering

≥ max
(
2F 2d, 4× 7d+2s

)
.

Then there are x1, . . . ,xn ∈ V with

(3.6) 0 <
∏
v 6∈S

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

≤ F−1 .

Proof. We assume that 0 6∈ V and F > 1 which are no restrictions by Hadamard’s
inequality. Denote by [y1, . . . ,ym] the linear subspace of Kn generated by y1, . . . ,ym.
Choose a prime ideal p of K not corresponding to a place in S with minimal norm Np.
Define the integer m by

(Np)m−1 ≤ F d < (Np)m .

Then m ≥ 1. We distinguish between the cases m ≥ 2 and m = 1.
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The case m ≥ 2. Let v be the place corresponding to p and let R = {x ∈ K : |x|v ≤ 1}
be the local ring at p. The maximal ideal {x ∈ K : |x|v < 1} of R is principal; let π be a
generator of this maximal ideal. For i = 0, . . . ,m, let Ti be a full set of representatives for
the residue classes of R modulo πm−i. Note that

(3.7) |Ti| = |R/(πm−i)| = |OK/pm−i| = (Np)m−i .

For i = 0, . . . ,m, a ∈ Ti define the n× n-matrix

Ai,a =


πi a 0
0 πm−i

1
. . .

0 1

 .

We claim that for every row vector x ∈ Rn there are i ∈ {0, . . . ,m}, a ∈ Ti and y ∈ Rn
with

x = yAi,a .

Namely, let x = (x1, . . . , xn). If x1 6≡ 0 (mod πm) then for some i ∈ {0, . . . ,m − 1} we
have x1 = πiy1 with y1 ∈ R, |y1|v = 1 and there is an a ∈ Ti with x2 ≡ ay1 (mod πm−i).
If x1 ≡ 0 (mod πm) then we have x1 = πiy1, x2 ≡ ay1 (mod πm−i) where i = m, y1 ∈ R
and a is the only element of Ti. Define y2 ∈ R by x2 = ay1 + πm−iy2 and put yi = xi for
i ≥ 3. Then clearly x = yAi,a where y = (y1, . . . , yn).

Let B1, . . . , Br be the matrices Ai,a (i = 0, . . . ,m, a ∈ Ti) in some order. We partition
V into classes V1, . . . ,Vr such that x ∈ V belongs to class Vi if there are λ ∈ K∗ with
|λ|v = |x|v and y ∈ Rn such that x = λBiy. By m ≥ 2 and (3.7) we have

r =
m∑
j=0

|Tj | =
m∑
j=0

(Np)m−j < 2(Np)m < 2F 2d

and the latter number is at most the linear scattering of V. Therefore, at least one of
the classes Vi has linear scattering ≥ 2, i.e. Vi contains n linearly independent vectors
x1, . . . ,xn. For j = 1, . . . , n there are λj ∈ K∗ with |λj |v = |xj |v and yj ∈ Rn such that
xj = λjBiyj . Therefore,

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

= |det(λ1x1, . . . , λnxn)|v

= |detBi|v · |det(y1, . . . ,yn)|v
≤ |detBi|v = |πm|v = (Np)−m/d < F−1.

By Hadamard’s inequality we have for w ∈MK\(S ∪ {v}) that
|det(x1, . . . ,xn)|w/(|x1|w · · · |xn|w) ≤ 1. By taking the product over v and w ∈ MK\(S ∪
{v}) we obtain (3.6).
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The case m = 1. Suppose that there are no x1, . . . ,xn ∈ V with (3.6). Let x1, . . . ,xn be
any linearly independent vectors from V. There is an ideal a ⊆ OK , composed of prime
ideals not corresponding to places in S, such that

(3.8)
∏
v 6∈S

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

= (Na)−1/d .

If a & OK then since m = 1 we have Na ≥ Np > F d which together with (3.8) contradicts
our assumption on V. Therefore, a = OK and so the left-hand side of (3.8) is equal to 1.
Together with Hadamard’s inequality this implies that

(3.9) |det(x1, . . . ,xn)|v = |x1|v · · · |xn|v for v 6∈ S .

Since V has linear scattering ≥ 3 there are linearly independent x1, . . . ,xn in V and there
is an xn+1 ∈ V with

(3.10) xn+1 6∈ [x1, . . . ,xn−1], xn+1 6∈ [x1, . . . ,xn−2,xn] .

We fix x1, . . . ,xn+1. Let y be any vector in V with

(3.11) y 6∈ [x1, . . . ,xn−1], y 6∈ [x1, . . . ,xn−2,xn], y 6∈ [x1, . . . ,xn−2,xn+1] .

We have xn+1 =
∑n
i=1 aixi, y =

∑n
i=1 yixi with ai, yi ∈ K. We repeatedly apply (3.9).

We have det(x1, . . . ,xn−1,xn+1) = andet(x1, . . . ,xn) where an 6= 0 by (3.10). Together
with (3.9) this implies

|an|v =
|det(x1, . . . ,xn−1,xn+1)|v
|det(x1, . . . ,xn)|v

=
|xn+1|v
|xn|v

for v 6∈ S .

Similarly,

|an−1|v =
|det(x1, . . . ,xn−2,xn,xn+1)|v

|det(x1, . . . ,xn)|v
=
|xn+1|v
|xn−1|v

for v 6∈ S .

By (3.11) we have similar properties for yn, yn−1. Summarising, we have

(3.12) |ai|v =
|xn+1|v
|xi|v

, |yi|v =
|y|v
|xi|v

for i = n− 1, n, v 6∈ S .

It is easy to see that by (3.11),

an−1yn − anyn−1 =
det(x1, . . . ,xn−2,xn+1,y)

det(x1, . . . ,xn)
6= 0 .

Together with (3.9), (3.12) this implies that

|an−1yn − anyn−1|v =
|xn+1|v|y|v
|xn−1|v|xn|v

= |an−1yn|v = |anyn−1|v for v 6∈ S .
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This implies that

anyn−1

an−1yn
∈ O∗S , 1− anyn−1

an−1yn
=
an−1yn − anyn−1

an−1yn
∈ O∗S ,

where O∗S is the group of S-units {x ∈ K : |x|v = 1 for v 6∈ S}. By Theorem 1 of [4], there
are at most 3 × 7d+2s elements ξ ∈ O∗S with 1 − ξ ∈ O∗S . As we have just seen, for every
y ∈ V with (3.11) there is such a ξ with anyn−1/an−1yn = ξ or, which is the same,

y ∈
[
x1, . . . ,xn−2,

an−1

an
· ξxn−1 + xn

]
.

Taking into consideration that in (3.11) we excluded three linear subspaces for y, it follows
that V has linear scattering at most 3 + 3× 7d+2s < 4× 7d+2s, contrary to our assumption
on V. Thus, our supposition that there are no x1, . . . ,xn in V with (3.6) leads to a
contradiction. This completes the proof of Lemma 10. �

Proof of Lemma 8. We assume that |liv|v = 1 for i = 1, . . . , n, v ∈ S which is
clearly no restriction. Let D be any real with 2A ≤ D < 2B. Put

ζ :=
δ

2n− 2
.

First we estimate the linear scattering of the set of solutions x ∈ Kn of

(3.1)
∏
v∈S

n∏
i=1

|liv(x)|v
|x|v

≤ C ·
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−n−δ ,

with

(3.13)
D

2
≤ H(x) <

D1+ζ

2
.

For i = 1, . . . , n, let S1(i,D) be the set of x ∈ Kn with (3.1), (3.13) and

(3.14)
∏
v∈S

|liv(x)|v
|x|v

< H(x)−n−δ .

Further, let S2(D) be the set of x ∈ Kn with (3.1), (3.13) and

(3.15)
∏
v∈S

|liv(x)|v
|x|v

≥ H(x)−n−δ for i = 1, . . . , n .

We first estimate the linear scattering of S1(i,D) for i = 1, . . . , n. Fix i and put

θ :=
δ

2(n+ δ)
.
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Note that by Schwarz’ inequality we have

(3.16)
|ljv(x)|v
|x|v

≤ |ljv|v · |x|v
|x|v

≤ 1 for j = 1, . . . , n, v ∈ S .

From (3.14) and (3.16) and from Lemma 9 (i) with the above choice of θ, with q = s and
with L = H(x)−n−δ, we infer that there is a set Γ1 of s-tuples γ = (γv : v ∈ S) with γv ≥ 0
for v ∈ S and

∑
v∈S γv = 1− θ, of cardinality

(3.17) |Γ1| ≤ (e/θ)s−1 ≤
(
e(2 +

2n
δ

)
)s−1

such that for every x ∈ S1(i,D) there is a γ ∈ Γ1 with

(3.18)
|liv(x)|v
|x|v

≤

(
H(x)−n−δ

)γv
for v ∈ S .

For each γ ∈ Γ1, let S1(i,D, γ) be the set of x ∈ S1(i,D) satisfying (3.18). We claim that
S1(i,D, γ) has linear scattering smaller than

A := max
(
2× (2n3/2)2d, 4× 7d+2s

)
.

Namely, suppose that for some γ ∈ Γ1 this is not true. Then by Lemma 10 with F = 2n3/2

there are x1, . . . ,xn ∈ S1(i,D, γ) with

(3.19) 0 <
∏
v 6∈S

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

≤ (2n3/2)−1 .

We assume that

(3.20) H(x1) ≤ · · · ≤ H(xn)

which is obviously no restriction.
Let xk = (xk1, . . . , xkn) for k = 1, . . . , n. Take v ∈ S. Let liv(X) = α1X1+· · ·+αnXn.

After a permutation of coordinates if necessary, we may assume that |α1|v = maxi |αi|v.
Then, since |liv|v = 1, we have |α1|v ≥ n−s(v)/2. Denote by ∆j the determinant of the
(n− 1)× (n− 1)-matrix obtained by removing the j-th row from x12 . . . x1n

...
...

xn2 . . . xnn

 .

By Hadamard’s inequality, (3.18) and (3.20) we have

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

≤ ns(v)/2

|x1|v · · · |xn|v
·

∣∣∣∣∣det

 liv(x1) x12 . . . x1n

...
...

...
liv(xn) xn2 . . . xnn

∣∣∣∣∣
v

21



=
ns(v)/2

|x1|v · · · |xn|v
· |

n∑
j=1

±liv(xj)∆j |v

≤ n3s(v)/2 · max
1≤j≤n

|liv(xj)|v
|xj |v

·

(
|∆j |v

∏
k 6=j

|xk|−1
v

)
≤ n3s(v)/2 max

1≤j≤n

(
H(xj)−n−δ

)γv
≤ n3s(v)/2

(
H(x1)−n−δ

)γv
.

By taking the product over v ∈ S we get

∏
v∈S

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

≤ n3/2
(
H(x1)−n−δ

)∑
v∈S

γv

= n3/2
(
H(x1)−n−δ

)1−θ = n3/2H(x1)−n−δ/2 .

Together with (3.19) and the Product formula this implies

1
H(x1) · · ·H(xn)

≤ 1
2
H(x1)−n−δ/2 .

By (3.13) we have H(x1) ≥ 1
2D and H(x2), . . . ,H(xn) ≤ 1

2D
1+ζ , where ζ = δ/(2n − 2) .

By inserting these inequalities we obtain

1 ≤ 1
2
H(x1)1−n−δ/2H(x2) · · ·H(xn) =

1
2
H(x1)−(n−1)(1+ζ)H(x2) · · ·H(xn)

≤ 1
2

(D/2)−(n−1)(1+ζ)(D1+ζ/2)n−1

= 2δ/2−1 < 1 .

Thus, our assumption that one of the sets S1(i,D, γ) has linear scattering ≥ A leads to a
contradiction. Now by (3.17), by d ≤ 2s, and by the fact that the number of possibilities
for γ is at most |Γ1| ≤

(
e(2 + 2n/δ)

)s−1, the set S1(i,D) has linear scattering

< max
(
2× (2n3/2)2d, 4× 7d+2s

)
·
(
e(2 + 2n/δ)

)s−1

< 4× (2n)6s(9n/δ)s−1 <
1
n

(
600n7

δ

)s
.

Hence ∪ni=1S1(i,D) has linear scattering

(3.21) <

(
600n7

δ

)s
.
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We now estimate the linear scattering of S2(D). By (3.15) we have for x ∈ S2(D)
that

(3.22)
∏
v∈S

n∏
i=1

|liv(x)|v
|x|v

≥ H(x)−n(n+δ) .

Put
θ :=

δ

2n(n+ δ)
.

By (3.16) and (3.22) and by Lemma 9 (ii) with this value of θ, with q = ns and with
M = H(x)−n(n+δ), there is a set Γ2 of ns-tuples γ = (γiv : i = 1, . . . , n, v ∈ S) of
non-negative reals, with

(3.23) |Γ2| ≤ (2 + e/θ)ns ≤

(
2 +

2en(n+ δ)
δ

)ns

such that for every x ∈ S2(D) there is a tuple γ ∈ Γ2 with

H(x)−n(n+δ)(γiv+θ/ns) <
|liv(x)|v
|x|v

≤ H(x)−n(n+δ)γiv(3.24)

for i = 1, . . . , n, v ∈ S .

Let S2(D, γ) be the set of x ∈ S2(D) satisfying (3.24). We show that each set S2(D, γ)
has linear scattering smaller than

(3.25) B := max
(
2× (2nn/2C

)2d
, 4× 7d+2s

)
.

Suppose again that this is not true for some γ ∈ Γ2. Put F := 2nn/2C. Then by Lemma
10 there are x1, . . . ,xn ∈ S2(D, γ) such that

(3.26) 0 <
∏
v 6∈S

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

≤ F−1

and

(3.27) H(x1) ≤ · · · ≤ H(xn) .

Take v ∈ S. For j = 1, . . . , n, choose αj ∈ Kv with |αj |v = |xj |v. For i = 1, . . . , n, put
yi := (α−1

1 liv(x1), . . . , α−1
n liv(xn)). Then by (3.24), (3.27),

|yi|v ≤ ns(v)/2 max
1≤j≤n

|liv(xj)|v
|xj |v

≤ ns(v)/2 max
1≤j≤n

H(xj)−n(n+δ)γiv(3.28)

≤ ns(v)/2H(x1)−n(n+δ)γiv for i = 1, . . . , n .
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Put ∆v := det(l1v, . . . , lnv). Now Hadamard’s inequality, (3.28) and the lower bound in
(3.24) imply that

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

= |∆v|−1
v ·
|det(liv(xj))|v
|x1|v · · · |xn|v

= |∆v|−1
v |det(y1, . . . ,yn)|v ≤ |∆v|−1

v |y1|v · · · |yn|v

≤ (nn/2)s(v)|∆v|−1
v H(x1)−n(n+δ)(

∑n

i=1
γiv)

≤ (nn/2)s(v)|∆v|−1
v H(x1)n(n+δ)θ/s

(
n∏
i=1

|liv(x1)|v
|x1|v

)
.

By taking the product over v ∈ S and inserting

∏
v∈S

n∏
i=1

|liv(x1)|v
|x1|v

≤ C ·
∏
v∈S
|∆v|v ·H(x1)−n−δ

which follows since x1 satisfies (3.1), we get

∏
v∈S

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

< nn/2 ·
( ∏
v∈S
|∆v|v

)−1
H(x1)n(n+δ)θ

(∏
v∈S

n∏
i=1

|liv(x1)|v
|x1|v

)
< nn/2C ·H(x1)n(n+δ)θ−n−δ = nn/2CH(x1)−n−δ/2 .

Together with (3.26) and the Product formula this gives

1
H(x1) · · ·H(xn)

=
∏
v

|det(x1, . . . ,xn)|v
|x1|v · · · |xn|v

< nn/2F−1C ·H(x1)−n−δ/2 <
1
2
H(x1)−n−δ/2 .

By inserting H(x1) ≥ D/2, H(xi) < D1+ζ/2 for i = 1, . . . , n which follow from (3.13) we
obtain

1 <
1
2
H(x1)1−n−δ/2H(x2) · · ·H(xn)

≤ 1
2

(D/2)1−n−δ/2 · (D1+ζ/2)n−1

= 2δ/2 −1D1−n−δ/2 +(n−1)(1+ζ) = 2δ/2 −1 < 1

which is impossible. Thus, by assuming that some set S2(D, γ) has linear scattering ≥ B
we arrive at a contradiction. Hence each set S2(D, γ) has linear scattering < B and
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together with (3.23), (3.25) this implies that S2(D) has linear scattering at most

B · |Γ2| ≤ 4× (4n)2nsC2d ·

(
2 +

2en(n+ δ)
δ

)ns
< 4C2d × (4n)2ns

(
9n2/δ

)ns
< 4C2d ×

(
150n4

δ

)ns
.

Together with the upper bound for the linear scattering of ∪ni=1S1(i,D) in (3.21), this
implies that the set of solutions of (3.1) satisfying (3.13) has linear scattering at most

(3.29)

(
600n7

δ

)s
+ 4C2d

(
150n4

δ

)ns
< 5C2d

(
150n4

δ

)ns
;

here we used that n ≥ 2.
We now consider the solutions of (3.1) with A ≤ H(x) < B. Let k be the smallest

integer with
(2A)(1+ζ)k ≥ 2B .

Then

k < 1 +
log(log 2B/ log 2A)

log(1 + ζ)
(3.30)

<
2
ζ

(
1 + log

( log 2B
log 2A

))
<

4n
δ

(
1 + log

( log 2B
log 2A

))
.

For every solution x ∈ Kn of (3.1) with A ≤ H(x) < B there is a j ∈ {1, . . . , k} with

1
2

(2A)(1+ζ)j−1
≤ H(x) <

1
2

(2A)(1+ζ)j .

Together with (3.29) (taking D = (2A)(1+ζ)j−1
) and (3.30) this implies that the set of

solutions x ∈ Kn of (3.1) with A ≤ H(x) < B has linear scattering at most

5C2d

(
150n4

δ

)ns
· k < 5C2d

(
150n4

δ

)ns
· 4n
δ

(
1 + log

( log 2B
log 2A

))

< C2d

(
150n4

δ

)ns+1

·

(
1 + log

( log 2B
log 2A

))
.

This completes the proof of Lemma 8. �
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Proof of part (ii) of the Theorem. Apply Lemma 8 with C = 1, A = 1, B = H. It
follows that the set of solutions of∏

v∈S

n∏
i=1

|liv(x)|v
|x|v

≤
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−n−δ

in x ∈ Kn with H(x) < H, x 6= 0 has linear scattering at most(
150n4

δ

)ns+1(
1 + log

( log 2H
log 2

))
<

(
150n4

δ

)ns+1(
2 + log log 2H

)
.

�

§4. Reductions.
In this section we reduce part (i) of the Theorem to a modified version Theorem A. After
that, we derive Theorem A from Theorems B and C stated in this section. Theorem B
will be proved in §§5-6 and Theorem C in §§7-9. As before, we use the following notation:

K is an algebraic number field of degree d with ring of integers OK and discriminant
∆K ;
S is a finite set of places on K of cardinality s, containing all infinite places;
for v ∈ S, {l1v, . . . , lnv} is a linearly independent set of linear forms in n variables
with coefficients in Q̄;
δ is a real with 0 < δ < 1.

As before, for a field F and a non-zero vector x = (x1, . . . , xn) with coordinates in
some extension of F we define F (x) = F (x1/xj , . . . , xn/xj) for j with xj 6= 0 and for a
linear form l with vector of coefficients a we put F (l) = F (a). Further we define

D := max{[K(liv) : K] : v ∈ S, i = 1, . . . , n},
H := max{H(liv) : v ∈ S, i = 1, . . . , n},
∆ := |∆L|, where L is the composite of the fields K(liv) (v ∈ S, i = 1, . . . , n).

We call a non-zero vector x ∈ Q̄n primitive if whenever Q(x) = K0 we have

(4.1)


x ∈ OnK0

, |x|v ≤
(
|∆K0 |1/2[K0:Q]H(x)

)s(v) for v ∈MK0 , v|∞,∏
v∈MK0
v-∞

|x|v ≥ |∆K0 |−1/2[K0:Q] .

For instance, x ∈ Qn is primitive if and only if its coordinates are coprime rational integers.
For every non-zero x ∈ Q̄n there is a λ ∈ Q̄∗ such that λx is primitive. Namely, suppose
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that Q(x) = K0. Then there is a λ1 ∈ Q̄∗ such that x′ := λ1x ∈ Kn
0 . By Lemma 7 (i) and∑

v|∞ s(v) = 1 there is a λ2 ∈ K∗0 such that

|λ2|v ≤ |x′|−1
v

(
|∆K0 |1/2[K0:Q]H(x′)

)s(v) for v ∈MK0 , v|∞ ,

|λ2|v ≤ |x′|−1
v for v ∈MK0 , v -∞ .

For x′′ := λ2x′ = λ1λ2x this implies that for v ∈MK0 , v|∞,

|x′′|v ≤
(
|∆K0 |1/2[K0:Q]H(x′)

)s(v) =
(
|∆K0 |1/2[K0:Q]H(x′′)

)s(v)

and that |x′′|v ≤ 1 for v -∞, whence x′′ ∈ OnK0
. Moreover,∏

v∈MK0
v-∞

|x′′|v = H(x′′) ·
( ∏
v∈MK0
v|∞

|x′′|v
)−1 ≥ |∆K0 |−1/2[K0:Q] .

Hence x′′ is primitive.
It will be convenient to consider instead of inequality (1.3) in the Theorem,

∏
v∈S

n∏
i=1

|liv(x)|v ≤
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−δ(4.2)

in primitive x ∈ Kn\{0} .

We shall derive part (i) of the Theorem from:

THEOREM A. Put

T :=
(
240n2

δ−5n
)s log 4D · log log 4D .

Assume that

(4.3) for each infinite place v on K and for i = 1, . . . , n, the linear form liv has its
coefficients in Q̄ ∩Kv.

Then the set of solutions of (4.2) with

(4.4) H(x) ≥ 1
2

(2H∆)e
T

has linear scattering ≤ T .

The lower bound in (4.4) is chosen large enough to swallow the constants appearing in
the proof of Theorem A. In particular, since we have to use geometry of numbers over
number fields, in our estimates there will be constants depending on the discriminants of
certain number fields and these are swallowed because of the ∆ in the lower bound. In
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what follows we derive part (i) of the Theorem from Theorem A and we use an idea of
Schlickewei [16] to deal with ∆.

As we want to derive part (i) of the Theorem, we consider the solutions of

(1.3)
∏
v∈S

n∏
i=1

|liv(x)|v
|x|v

≤
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−n−δ in x ∈ Kn\{0}

where K,S, n, δ and the liv are as above but the liv do not necessarily satisfy (4.3) for v|∞.
By Lemma 8, the set of solutions of (1.3) with

H ≤ H(x) <
1
2

(2H)200nDns2/δ

has linear scattering at most

(4.5) A :=

(
150n4

δ

)ns+1(
1 + log(200nDns2/δ)

)
.

If λ ∈ K∗ is such that x′ := λx is primitive, then H(x′) = H(x) and the left-hand side of
(1.3) does not change when x is replaced by x′. Hence the linear scattering of the set of
solutions of (1.3) with H(x) ≥ H is at most A+B, where B is the linear scattering of the
set of solutions of (1.3) with

(4.6) x is primitive, H(x) ≥ 1
2

(2H)200nDns2/δ .

From now on, we consider only the solutions of (1.3) with (4.6). We need some lemmas.

Lemma 11. Every solution x of (1.3) with (4.6) satisfies an inequality

(4.7)


∏
w∈S0

n∏
i=1

|l′iw(x)|w
|x|w

≤
∏
w∈S0

|det(l′1w, . . . , l
′
nw)|w ·H(x)−n−99δ/100,

Q(x) = K0 , x is primitive, H(x) ≥ 1
2 (2H)200nDns2/δ ,

where K0 is a subfield of K, S0 is the set of places on K lying below those in S and for
w ∈ S0, {l′1w, . . . , l′nw} is a linearly independent set of linear forms in n variables with
algebraic coefficients, such that

(4.8) for each infinite place w ∈MK0 and for i = 1, . . . , n, l′iw has its coefficients in
the completion K0,w of K0 at w,

D′ := max{[K0(l′iw) : K0] : w ∈ S0, i = 1, . . . , n} ≤ d2D2,

H ′ := max{H(l′iw) : w ∈ S0, i = 1, . . . , n} ≤ 2H2.

Moreover, the tuple
(
K0; l′iw (w ∈ S0, i = 1, . . . , n)

)
belongs to a fixed set C of cardinality

at most 23s independent of x.
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Proof. Fix a solution x of (1.3) with (4.6) and put K0 := Q(x). Clearly, K0 is a subfield of
K. For w ∈ S0, let Gw denote the set of places in S lying above w and put gw := |Gw|. The
linear forms l′iw in (4.7) will be determined uniquely by the linear forms liv we start with
and by K0 and the choice of a v ∈ Gw for each w ∈ S0. Thus, the number of possibilities
for the tuple

(
K0; l′iw (w ∈ S0, i = 1, . . . , n)

)
is at most the number of possiblities for K0

and v ∈ Gw for w ∈ S0 which is

r :=
∑
K0

∏
w∈S0

gw .

We estimate r from above. Let L be the normal closure of [K : Q], G the Galois group
of L/Q and H the Galois group of L/K. The number of subfields of K is precisely the
number of subgroups of G containing H. Each such subgroup is a union of (left) cosets
of H in G. There are precisely d = [K : Q] cosets of H in G, hence there are at most 2d

unions of cosets. Therefore, K has at most 2d subfields. Further, for a fixed subfield K0

we have ∏
w∈S0

gw ≤ 2
∑

w∈S0
gw = 2s .

Hence
r ≤ 2d+s ≤ 23s .

We now construct the linear forms l′iw. In an intermediate step we will get linear
forms l′′iw. For each w ∈ S0 and each v ∈ Gw there is a real number f(v|w) such that

|ξ|v = |ξ|f(v|w)
w for all ξ ∈ K0 .

We have

(4.9)
1

[K : K0]
≤ f(v|w) ≤ 1 for w ∈ S0, v ∈ Gw,

∑
v∈Gw

f(v|w) ≤ 1 .

For w ∈ S0 choose v ∈ Gw such that(
|l1v(x) · · · lnv(x)|v
|det(l1v, . . . , lnv)|v|x|nv

)1/f(v|w)

is minimal and put l′′iw := liv for i = 1, . . . , n. Thus,

Aw(x) ≤ Av(x)1/f(v|w) for v ∈ Gw ,

where

Aw(x) :=
|l′′1w(x) · · · l′′nw(x)|w
|det(l′′1w, . . . , l′′nw)|w|x|nw

, Av(x) :=
|l1v(x) · · · lnv(x)|v
|det(l1v, . . . , lnv)|v|x|nv

.
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Hence

(4.10) Aw(x) ≤

( ∏
v∈Gw

Av(x)

)cw
where cw :=

( ∑
v∈Gw

f(v|w)
)−1

.

By (4.9) we have 1 ≤ cw ≤ [K : K0] ≤ [K : Q] ≤ 2s. Further, by Schwarz’ inequality we
have |liv(x)|v ≤ |liv|v|x|v and so by Lemma 2,

Av(x) ≤ |l1v|v · · · |lnv|v
|det(l1v, . . . , lnv)|v

≤ HnDn for v ∈ Gw .

By inserting this into (4.10) we get

Aw(x) ≤
(
HnDn

)(cw−1)gw
∏
v∈Gw

Av(x) ≤
(
HnDn

)2sgw ∏
v∈Gw

Av(x) .

Now by taking the product over w ∈ S0, using that
∑
w∈S0

gw = s, we get∏
w∈S0

Aw(x) ≤ H2nDns2 ·
∏
v∈S

Av(x) .

By (1.3) we have
∏
v∈S Av(x) ≤ H(x)−n−δ. Hence∏

w∈S0

Aw(x) ≤ H2nDns2H(x)−n−δ

or, rewriting this,

(4.11)
∏
w∈S0

n∏
i=1

|l′′iw(x)|w
|x|w

≤ H2nDns2
∏
w∈S0

|det(l′′1w, . . . , l
′′
nw)|w ·H(x)−n−δ .

We recall that Q(x) = K0 and that x satisfies (4.6). Note that the l′′iw depend only on K0

and certain choices of v ∈ Gw for w ∈ S0. Moreover,

(4.12) [K0(l′′iw) : K0] ≤ dD, H(l′′iw) ≤ H for w ∈ S0, i = 1, . . . , n,

since l′′iw = liv for some v ∈ Gw and [K0(l′′iw) : K0] ≤ [K(liv) : Q] ≤ dD.
We now construct the linear forms l′iw from the l′′iw. The collection {l′iw : w ∈ S0, i =

1, . . . , n} will be determined uniquely by {l′′iw : w ∈ S0, i = 1, . . . , n}. For the finite places
w ∈ S0 and for the infinite places w ∈ S0 with K0,w = C we put l′iw := l′′iw for i = 1, . . . , n.
Note that if K0,w = C then l′iw has its coefficients in Q̄ ∩ K0,w. Now suppose there are
places w ∈ S0 with K0,w = R and take one of these. We assume that for i = 1, . . . , n, one
of the coefficients of l′′iw is 1 which is no restriction since (4.11) and (4.12) do not change
when the l′′iw are multiplied with constants. For i = 1, . . . , n we write

l′′iw = miw +
√
−1niw , l̄′′iw = miw −

√
−1niw ,
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where miw, niw are linear forms with coefficients in R = K0,w and l̄′′iw is the complex
conjugate of l′′iw. Note that

det(l′′1w, . . . , l
′′
nw) =

∑
cI∆I ,

where the sum is taken over all subsets I of {1, . . . , n}, cI is a power of
√
−1 and ∆I is

the determinant of n linear forms, the i-th being miw if i ∈ I and niw if i 6∈ I. Choose I
such that |∆I |w is maximal. Put l′iw := miw if i ∈ I and l′iw := niw if i 6∈ I. Then

|det(l′′1w, . . . , l
′′
nw)|w ≤ 2ns(w)|det(l′1w, . . . , l

′
nw)|w ,

|l′iw(x)|w ≤ |l′′iw(x)|w for i = 1, . . . , n .

These inequalities hold for each w ∈ S0 with K0,w = R and clearly also for the other places
in S0. By inserting these into (4.11) and using that H(x) ≥ 1

2 (2H)200nDns2/δ we get

∏
w∈S0

n∏
i=1

|l′iw(x)|w
|x|w

≤ 2nH2nDns2
∏
w∈S0

|det(l′1w, . . . , l
′
nw)|w ·H(x)−n−δ

≤
∏
w∈S0

|det(l′1w, . . . , l
′
nw)|w ·H(x)−n−99δ/100 .

Now the proof of Lemma 11 is complete, except that we still have to verify (4.8).
If w ∈ S0 is finite or if K0,w = C then (4.12) implies at once that [K0(l′iw) : K0] ≤
d2D2, H(l′iw) ≤ 2H2 for i = 1, . . . , n. Let w ∈ S0 be a place with K0,w = R (supposing
there is any). Take i ∈ {1, . . . , n}. The linear form l′iw is either the real or imaginary part
of l′′iw, hence a constant multiple of l′′iw ± l̄′′iw. Therefore, K0(l′iw) ⊆ K1, where K1 is the
composite of K0(l′′iw), K0(l̄′′iw). By (4.12) and the fact l̄′′iw is conjugate to l′′iw over K0 we
have [K0(l̄′′iw) : K0] = [K0(l′′iw) : K0] ≤ dD. Hence

[K0(l′iw) : K0] ≤ [K1 : K0] ≤ d2D2 .

Since l′iw is a constant multiple of l′′iw ± l̄′′iw we have H(l′iw) = H(l′′iw ± l̄′′iw). Further, since
both l′′iw and l̄′′iw have a 1 among their coefficients, their coefficients belong to K1 and

|l′′iw ± l̄′′iw|v ≤ 2s(v)|l′′iw|v|l̄′′iw|v for v ∈MK1 .

We have H(l′′iw) = H(l̄′′iw) since l′′iw, l̄′′iw are conjugate over Q. Together with (4.12) this
implies that

H(l′iw) = H(l′′iw ± l̄′′iw) =
∏

v∈MK1

|l′′iw ± l̄′′iw|v ≤
∏

v∈MK1

(
2s(v)|l′′iw|v|l̄′′iw|v

)
= 2H(l′′iw)H(l̄′′iw) ≤ 2H2 .

This completes the proof of Lemma 11. �
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We now consider the solutions of a fixed system (4.7). Put

∆′ := |∆L′ |

where L′ is the composite of the fields K0(l′iw) for w ∈ S0, i = 1, . . . , n.

Lemma 12. For every solution x of (4.7) we have

H(x) ≥ 1
2
(
2H ′∆′

)(8s3D2)−2ns

.

Proof. Put f(Q) := 1 and for a number field M 6= Q, put f(M) := |∆M |1/2m(m−1) where
m = [M : Q]. Let x be a solution of (4.7). By Lemma 5 we have H(x) ≥ f(K0). Further,
for w ∈ S0, i = 1, . . . , n we have by (4.6) and (4.8),

H(x) ≥ 2H2 ≥ H ′ ≥ H(l′iw) ≥ f(Q(l′iw)) .

Together with Lemma 4, (ii), noting that L′ is also the composite of the fields K0, Q(l′iw)
(w ∈ S0, i = 1, . . . , n), this implies that

(4.13) H(x) ≥ f(L′) = |∆′|1/2a(a−1)

where a = [L′ : Q]. By (4.8) and d ≤ 2s, n ≥ 2 we have

a ≤ [K0 : Q]
∏
w∈S0

n∏
i=1

[K0(l′iw) : K0] ≤ d(d2D2)ns ≤
(
4
√

2s3D2
)ns

.

Further, by (4.6) we have H(x) ≥ 4H2 ≥ 2H ′. Together with (4.13) this implies that

H(x) ≥ max(2H ′, |∆′|1/2a
2
) ≥ (2H ′∆′)1/4a2

≥ 1
2
(
2H ′∆′

)(8s3D2)−2ns

.

�

Derivation of part (i) of the Theorem from Theorem A.
We first estimate the linear scattering of the set of solutions of (4.7). Put

T ′ :=

(
240n

(
49δ/50

)−5

)ns
log 4D′ · log log 4D′ .

First consider the solutions of (4.7) with

H(x) ≥ 1
2

(2H ′∆′)e
T ′

.
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Put R :=
∏
w∈S0

|det(l′1w, . . . , l
′
nw)|w. Let x be a solution of (4.7) with (4.14). We know

that x is primitive, i.e. satisfies (4.1). By Lemma 4 (i) we know that |∆K0 | ≤ ∆′. Together
with (4.14) this implies that∏

w 6∈S0

|x|w ≥
∏
w-∞

|x|w ≥ |∆K0 |−1/2[K0:Q] ≥ ∆′−1 ≥ H(x)−δ/100 .

Hence ∏
w∈S0

n∏
i=1

|l′iw(x)|w ≤ R ·
( ∏
w∈S0

|x|w
)n ·H(x)−n−99δ/100

= R ·
( ∏
w 6∈S0

|x|w
)−n ·H(x)−99δ/100 ≤ R ·H(x)−49δ/50 .

By applying Theorem A to this inequality, with D′,H ′,∆′, 49δ/50 replacing D,H,∆, δ, we
infer that the set of solutions of (4.7) satisfying (4.14) has linear scattering at most T ′.

By Lemma 12, the solutions x of (4.7) for which (4.14) does not hold satisfy in fact

(4.15)
1
2

(2H ′∆′)(8s3D2)−2ns
≤ H(x) <

1
2

(2H ′∆′)e
T ′

.

By Lemma 8, the set of solutions of (4.7) with (4.15) has linear scattering at most(
150n4 × 100

99δ

)ns+1

·
(
1 + log{eT

′
(8s3D2)2ns}

)
≤ (2T ′ − 1)

(
152n4

δ

)ns+1

.

Hence the linear scattering of the set of all solutions of (4.7) is at most 2T ′(152n4/δ)ns+1.
By Lemma 11, every solution x satisfying (4.6) of the inequality (1.3) we started with
satisfies one of at most 23s systems (4.7). Hence the set of solutions of (1.3) satisfying (4.6)
has linear scattering at most 23s+1T ′(152n4/δ)ns+1. In view of n ≥ 2, ns + 1 ≤ 3ns/2,
D′ ≤ d2D2 ≤ 4s2D2, log 4D′ log log 4D′ ≤ 100× 2s · log 4D log log 4D this is at most

23s+1

(
152n4

δ

)ns+1(
(240n

(
50/49δ

)5)ns log 4D′ log log 4D′

< 200
(

221523/2(50/49)5n6n240nδ−7

)ns
· log 4D log log 4D

<
(
254n2

δ−7n
)s log 4D log log 4D =: B .

From an earlier observation we know that the linear scattering of the set of solutions of
(1.3) not satisfying (4.6) is at most A where A is given by (4.5). Hence the linear scattering
of the set of all solutions of (1.3) is at most

A+B =
(

150n4

δ

)ns+1

·
(
1 + log(200nDns2/δ)

)
+
(
254n2

δ−7n
)s log 4D log log 4D

<
(
260n2

δ−7n
)s log 4D log log 4D .
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This completes the proof of part (i) of the Theorem. �

We derive Theorem A from two other Theorems B and C. In the statements of these
theorems we need some notation which is introduced below. As before, K is a number
field and S a finite set of places on K of cardinality s containing all infinite places. Define
the ring of S-integers

OS = {x ∈ K : |x|v ≤ 1 for v 6∈ S} .

In what follows, by a tuple (N, γ, L̂;Q) we always mean a tuple consisting of

(4.16) -an integer N ≥ 2;
-a tuple of reals γ = (γiv : v ∈ S, i = 1, . . . , N);
-a system of linear forms L̂ = {l̂iv : v ∈ S, i = 1, . . . , N} in N variables such
that each l̂iv has algebraic coefficients and such that for v ∈ S, {l̂1v, . . . , l̂Nv} is
linearly independent;
-a real Q > 1.

Further, a tuple (N, γ, L̂) without Q will always consist of N, γ, L̂ as in (4.16). For a tuple
(N, γ, L̂;Q) as above we define the set

Π(N, γ, L̂;Q) := {y ∈ ONS : |l̂iv(y)|v ≤ Qγiv for v ∈ S, i = 1, . . . , N}

and
V (N, γ, L̂;Q) := the K-vector space generated by Π(N, γ, L̂;Q) .

Obviously, V (N, γ, L̂;Q) ⊆ KN .
The idea to prove Theorem A is as follows. We first show that for every solution x

of (4.2) there is a proper linear subspace W of Kn and a tuple (N, γ, L̂;Q) with N =
(
n
k

)
where k = dimKW such that

x ∈W, fkn(W ) = V (N, γ, L̂;Q), dimK V (N, γ, L̂;Q) = N − 1,

where fkn is the injective mapping defined in Lemma 1 from the k-dimensional linear
subspaces of Kn to the (N − 1)-dimensional linear subspaces of KN ; moreover, the tuple
(N, γ, L̂) can be chosen from a finite set independent of x. This is stated in a quantitative
form in Theorem B. Second we show that for a fixed tuple (N, γ, L̂) and for varying Q

with dimK V (N, γ, L̂;Q) = N − 1 there are only finitely many possibilities for the space
V (N, γ, L̂;Q); this is stated in a quantitative form in Theorem C. Now the injectivity of
the map fkn implies that there are only finitely many possibilities for W . Thus, it follows
that the set of solutions of (4.2) is contained in the union of finitely many proper linear
subspaces of Kn.

THEOREM B. Let K,S, n, s, δ, the system of linear forms {liv : v ∈ S, i = 1, . . . , n},
D,H,∆ and T have the same meaning and satisfy the same conditions as in Theorem A, so

34



that in particular 0 < δ < 1 and the linear forms liv satisfy (4.3). Then for every solution
x of

∏
v∈S

n∏
i=1

|liv(x)|v ≤
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−δ(4.2)

in primitive x ∈ Kn

with

(4.4) H(x) ≥ 1
2

(2H∆)e
T

,

there are a proper linear subspace W of Kn and a tuple (N, γ, L̂;Q) with N =
(
n
k

)
where

k = dimKW , such that the four conditions (4.17)-(4.20) below are satisfied:

x ∈W, fkn(W ) = V (N, γ, L̂;Q), dimK V (N, γ, L̂;Q) = N − 1;(4.17)
γ = (γiv : v ∈ S, i = 1, . . . , N) with(4.18)

γiv ≤ s(v) for v ∈ S, i = 1, . . . , N and
∑
v∈S

N∑
i=1

γiv ≤ −δ/6n3 ;

L̂ = {l̂iv : v ∈ S, i = 1, . . . , N} with(4.19)

H(l̂iv) ≤ Hn, [K(l̂iv) : K] ≤ Dn, |l̂iv|v = 1 for v ∈ S, i = 1, . . . , N ;

Q ≥
{1

2
(2H∆)e

T }3n
,(4.20)

and such that (N, γ, L̂) ∈ C where C is a fixed set independent of x of cardinality at most

C1 :=
(
30 · n42n · δ−1

)ns+n
.

THEOREM C. Let K,S be as in Theorem B, let 0 < ε < 1 and let (N, γ, L̂) be a tuple
for which N ≥ 2 and for which

γ = (γiv : v ∈ S, i = 1, . . . , N) with(4.21)

γiv ≤ s(v) for v ∈ S, i = 1, . . . , N,
∑
v∈S

N∑
i=1

γiv ≤ −ε ;

L̂ = {l̂iv : v ∈ S, i = 1, . . . , N} with(4.22)

H(l̂iv) ≤ Ĥ, [K(l̂iv) : K] ≤ D̂, |l̂iv|v = 1 for v ∈ S, i = 1, . . . , N .

Then there is a collection of (N − 1)-dimensional linear subspaces of KN of cardinality at
most

C2 := 230N8s2ε−4 log 4D̂ · log log 4D̂
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such that for every Q with

dimK V (N, γ, L̂;Q) = N − 1,(4.23)

Q > (2Ĥ)e
C2

,(4.24)

the vector space V (N, γ, L̂;Q) belongs to this collection.

Qualitative forms of Theorems B, C were proved implicitly by Schmidt and Schlick-
ewei. In the proof of Theorem B, which is in §§5,6, we use geometry of numbers over
number fields; here we make explicit the arguments from [5], §3.3. In the proof of The-
orem C which is in §§7-9 we use the “Roth-machinery;” here we closely follow Schmidt,
[18], [19].

Derivation of Theorem A from Theorems B and C.
Let x be a solution of (4.2) satisfying (4.4) and W the proper linear subspace of Kn

and (N, γ, L̂;Q) the tuple from Theorem B. We show that W belongs to a collection
independent of x of cardinality ≤ T . Since by (4.17) we have x ∈W this implies Theorem
A.

By Theorem B we have at most

(4.25) C1 =
(
30n42nδ−1

)ns+n ≤ (211n2
δ−2n

)s
possibilities for the tuple (N, γ, L̂). We apply Theorem C to each possible tuple. By
N =

(
n
k

)
for some k ≤ n− 1, (4.18) and (4.19) we must apply Theorem C with(

n

k

)
, Hn, Dn, δ/6n3

replacing N, Ĥ, D̂, ε, respectively. Let C ′2 be the quantity obtained from C2 by replacing
N, D̂, ε by

(
n
k

)
, Dn, δ/6n3, respectively. Since

(
n
k

)
≤ 2n we have

C ′2 ≤ 23028ns264n12δ−4 log(4Dn) log log(4Dn)(4.26)

<
(
229n2

δ−3n
)s log 4D log log 4D .

Together with (4.20) this implies that

Q ≥
{1

2
(2H∆)e

T }3n ≥ (2Hn)e
T

≥ (2Hn)e
C′2 .

Hence Q satisfies (4.24) with C ′2 replacing C2 and Hn replacing Ĥ. Therefore, by Theorem
C, the number of possibilities for the vector space V (N, γ, L̂;Q) with fixed N, γ, L̂ and
varying Q is at most C ′2. On combining this with (4.25), (4.26), we obtain that the
number of possibilities for the space V (N, γ, L̂;Q) with varying N, γ, L̂, Q is at most

C1C
′
2 <

(
240n2

δ−5n
)s log 4D log log 4D = T .

Because of the injectivity of the maps fkn, the vector space W is uniquely determined by
V (N, γ, L̂;Q). Hence for W we have at most T possibilities. This implies Theorem A. �
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§5. Parallelepipeds.
Let K be an algebraic number field and VK its ring of adeles. We shall derive upper and
lower bounds for the volume of a parallelepiped in V nK and then derive estimates for the
product of the successive minima of this parallelepiped. This will be an important tool in
the proof of Theorem B.

We use the following notation: Gal(F ′/F ) is the Galois group of a Galois field ex-
tension F ′/F ; for a linear form l(X) = α1X1 + · · · + αnXn with α1, . . . , αn ∈ F ′ and for
σ ∈ Gal(F ′/F ) we put σ(l)(X) := σ(α1)X1 + · · · + σ(αn)Xn; and a set of linear forms
{l1, . . . , lm} with coefficients in F ′ is called self-conjugate over F if for every i ∈ {1, . . . ,m}
and σ ∈ Gal(F ′/F ) there is a λ ∈ F ′∗ such that λσ(li) ∈ {l1, . . . , lm}.

Fix a place v ∈MK . As before, Kv denotes the completion of K at v. Let

x ∈ Kn
v \{0}

and let
Lv = {l1v, . . . , lnv}

be a linearly independent set of linear forms in n variables such that for i = 1, . . . , n,

liv has its coefficients in Kv if v is infinite,
liv has its coefficients in K̄v if v is finite,
liv(x) 6= 0.

Define the v-adic parallelepiped depending on x,

(5.1) Πv(x) :=
{

y ∈ Kn
v : |liv(y)|v ≤ |liv(x)|v for i = 1, . . . , n

}
.

We need estimates for the volume βnv (Πv(x)) of Πv(x) where βnv is the measure on Kn
v

defined in §2.
Let

L̂v = {l1v, . . . , lmv,v}

be a minimal set of linear forms containing Lv that is self-conjugate over Kv. Such a set
exists since by assumption the coefficients of l1v, . . . , lnv are algebraic over Kv. If v is
infinite then L̂v = Lv, mv = n and if v is finite then L̂v ⊇ Lv, mv ≥ n.

Take j ∈ {1, . . . ,mv}. There are i ∈ {1, . . . , n}, λ ∈ K̄∗v , σ ∈ Gal(K̄v/K) such that
ljv = λσ(liv). Then for y ∈ Πv(x) we have, noting that |σ(x)|v = |x|v for x ∈ K̄v,

|ljv(y)|v = |λ|v|σ(liv(y))|v = |λ|v|liv(y)|v
≤ |λ|v|liv(x)|v = |λσ(liv(x))|v = |ljv(x)|v.

Hence

(5.2) Πv(x) =
{

y ∈ Kn
v : |liv(y)|v ≤ |liv(x)|v for i = 1, . . . ,mv

}
.
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Put
βv(x) := {βnv (Πv(x))}1/d where d := [K : Q],

Rv(x) := max
{i1,...,in}⊆{1,...,mv}

|det(li1v, . . . , linv)|v
|li1v(x) · · · linv(x)|v

.

As before, for a linear form l(X) = a1X1 + · · · + anXn with coefficients in K̄v we define
the field Kv(l) := Kv(a1/aj , . . . , an/aj) where aj 6= 0. We use the following notation if v
is finite:

Dv is the local different of K at v;(5.3)
Ov = {x ∈ Kv : |x|v ≤ 1} is the local ring of Kv;
Kiv := Kv(liv) for i = 1, . . . ,mv;
Oiv = {x ∈ Kiv : |x|v ≤ 1} is the local ring of Kiv for i = 1, . . . ,mv;
div is the discriminant of the ring extension Oiv/Ov for i = 1, . . . ,mv;
δv := min

1≤i≤mv
|div|v,

where |a|v := max{|x|v : x ∈ a} for any Ov-ideal a. Since Ov is a principle ideal domain,
Oiv is a free Ov-module of rank [Kiv : Kv]. We recall that div is the Ov-ideal generated
by the discriminant of any Ov-basis {ω1, . . . , ωt} of Oiv, that is DKiv/Kv (ω1, . . . , ωt) =
{det(σi(ωj))}2 where σ1, . . . , σt are the Kv-isomorphisms of Kiv.

Lemma 13. We have

(5.4)


βv(x) = 2n/dRv(x)−1 if v is real infinite,

βv(x) = (2π)n/dRv(x)−1 if v is complex infinite,

δn/2v |Dv|n/2v Rv(x)−1 ≤ βv(x) ≤ |Dv|n/2v Rv(x)−1 if v is finite.

Proof. Πv(x), R(x) and δv do not change when we replace liv by liv(x)−1liv for i =
1, . . . , n. Therefore, we may assume that liv(x) = 1 for i = 1, . . . , n and shall do so in
the sequel. Then liv has its coefficients in Kiv; namely we know that for some λi ∈ K̄∗v ,
λiliv has its coefficients in Kiv but then λi = λiliv(x) ∈ Kiv. Similarly, if ljv = λσ(liv) for
some λ ∈ K∗v , σ ∈ Gal(K̄v/Kv) then this holds with λ = 1 i.e. ljv = σ(liv). Hence we can
extend {l1v, . . . , lnv} to a minimal set of linear forms {l1v, . . . , lmv,v} such that for each
i ∈ {1, . . . ,mv} and σ ∈ Gal(K̄v/Kv), the linear form σ(liv) belongs also to this set. Put
Πv := Πv(x), Rv := Rv(x). Then

Πv =
{

y ∈ Kn
v : |liv(y)|v ≤ 1 for i = 1, . . . ,mv

}
,(5.5)

Rv = max
{i1,...,in}⊆{1,...,mv}

|det(li1v, . . . , linv)|v.(5.6)

38



First we assume that for i = 1, . . . , n, liv has its coefficients in Kv. Then mv = n and

(5.7) Rv = |det(l1v, . . . , lnv)|v.

Let a1, . . . ,an be the vectors given by liv(aj) = δij for i, j = 1, . . . , n and define the linear
transformation Ay = y1a1 + · · ·+ ynan for y = (y1, . . . , yn) ∈ Kn

v . Thus,

(5.8) Πv = A(Onv ) = {Ay : y ∈ Onv }

where we use Ov to denote the unit ball {x ∈ Kv : |x|v ≤ 1} also if v is infinite.
First, let v be a real infinite place. Then | · |v = | · |1/d where | · | is the usual absolute

value on R and βnv the Lebesgue measure on Rn. Further, βv(Ov) = 2. Now from (5.8), a
well-known property of the Lebesgue measure and (5.7) it follows that

βnv (Πv) = |detA|βv(Ov)n = |det(l1v, . . . , lnv)|−1βv(Ov)n

= 2nR−dv

which is (5.4).
Second, let v be a complex infinite place. Then | · |v = | · |2/d, βv is two times the

Lebesgue measure on the complex plane, and βv(Ov) = 2π. For y ∈ Cn we define vectors
w, z ∈ Rn by y = w +

√
−1z and we identify Cn with R2n by y 7→ (w, z). Further, we

define real linear mappings M,N by A = M +
√
−1N . Thus,

Ay = (Mw −Nz, Nw +Mz).

Together with (5.8), (5.7) this implies that

βnv (Πv) = ∆βv(Ov)n = ∆(2π)n

where

∆ =
∣∣∣det

(
M −N
N M

) ∣∣∣ =
∣∣∣det

(
M +

√
−1N −N

−
√
−1(M +

√
−1N) M

) ∣∣∣
=
∣∣∣det

(
M +

√
−1N −N

0 M −
√
−1N

) ∣∣∣ =
∣∣∣detA · detA

∣∣∣
=
∣∣∣detA

∣∣∣2 = R−dv .

This implies (5.4).
Now assume that v is finite. Clearly, the vectors a1, . . . ,an are linearly independent

and belong to Πv. Further, every y ∈ Πv can be expressed as
∑n
i=1 liv(y)ai; since liv(y) ∈

Ov for i = 1, . . . , n, it follows that Πv is a free Ov-module with basis {a1, . . . ,an}. Choose
a non-zero α ∈ Ov such that αOnv = {ax : x ∈ Onv } ⊆ Πv. Then by (5.8) αOnv has index (as
an abelian group) |α−ndetA|dv in Πv. All cosets of αOnv in Πv have the same βnv -measure
since βnv is translation invariant. Hence

βnv (Πv) = |α−ndetA|dv · βnv (αOnv ).
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Further, αOnv has index |α|−ndv in Onv , hence βnv (Onv ) = |α|−ndv βnv (αOnv ). Therefore,

βnv (Πv) = |detA|dvβnv (Onv ) = |det(l1v, . . . , lnv)|−dv |Dv|n/d2
v(5.9)

= R−dv |Dv|nd/2v

where we used again (5.7). Since δv = 1 this implies (5.4).
We now assume that at least one of the linear forms liv does not have its coefficients in

Kv. Then v is finite. We shall reduce this case to the previous one, by using an argument
from [2].

Partition {1, . . . ,mv} into sets C1, . . . , Ct such that i, j belong to the same set if and
only if ljv = σ(liv) for some σ ∈ Gal(K̄v/Kv). Then for i ∈ Ck (k = 1, . . . , t) we have
[Kiv : Kv] = |Ck|.

Fix k ∈ {1, . . . , t}, p ∈ Ck. Let {ωph : h ∈ Ck} be an Ov-basis of Opv. Let ξh ∈ Kv

for h ∈ Ck. Then

|
∑
h∈Ck

ωphξh|v ≤ 1⇐⇒
∑
h∈Ck

ωphξh ∈ Opv ⇐⇒ h ∈ Ov for h ∈ Ck(5.10)

⇐⇒ |h|v ≤ 1 for h ∈ Ck.

For i ∈ Ck let τi be the Kv-isomorphism from Kpv to Kiv with τi(lpv) = liv and put
ωih := τi(ωph) for h ∈ Ck; then {ωih : h ∈ Ck} is an Ov-basis of Oiv. Hence (5.10) can be
extended to

(5.11) |
∑
h∈Ck

ωihξh|v ≤ 1 for i ∈ Ck ⇐⇒ |ξh|v ≤ 1 for h ∈ Ck.

We can express lpv as
lpv =

∑
h∈Ck

ωphfh

where fh (h ∈ Ck) is a linear form in n variables with coefficients in Kv. By applying τi
we obtain

(5.12) liv =
∑
h∈Ck

ωihfh for i ∈ Ck.

Now (5.11) implies that for y ∈ Kn
v ,

|liv(y)|v ≤ 1 for i ∈ Ck ⇐⇒ |fh(y)|v ≤ 1 for h ∈ Ck.

By combining the linear forms fh (h ∈ Ck) for k = 1, . . . , t we obtain altogether mv linear
forms f1, . . . , fmv with coefficients in Kv such that for y ∈ Kn

v ,

(5.13) |liv(y)|v ≤ 1 for i = 1, . . . ,mv ⇐⇒ |fh(y)|v ≤ 1 for h = 1, . . . ,mv.
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Together with (5.5) this implies that

(5.14) Πv =
{

y ∈ Kn
v : |fh(y)|v ≤ 1 for h = 1, . . . ,mv

}
.

We assume that

|det(f1, . . . , fn)|v = max
{i1,...,in}⊆{1,...,m}

|det(fi1 , . . . , fin)|v

which is clearly no restriction. By (5.13) we have rank {f1, . . . , fmv} = rank {l1v, . . . , lmv,v}
= n. Hence f1, . . . , fn are linearly independent. Therefore, there are αij ∈ Kv such that

(5.15) fi =
n∑
j=1

αijfj for i = n+ 1, . . . ,mv.

By Cramer’s rule we have

|αij |v =
|det(f1, . . . , fi, . . . , fn)|v
|det(f1, . . . , fn)|v

≤ 1 for i = n+ 1, . . . ,mv, j = 1, . . . , n.

Therefore, |fh(y)|v ≤ 1 for h = 1, . . . , n implies that |fh(y)|v ≤ 1 for h = 1, . . . ,mv.
Together with (5.14) this implies that

Πv =
{

y ∈ Kn
v : |fh(y)|v ≤ 1 for h = 1, . . . , n

}
.

Hence we have, similarly as in (5.9),

(5.16) βnv (Πv) = |det(f1, . . . , fn)|−dv |Dv|nd/2v .

We have to compare |det(f1, . . . , fn)|v with Rv. From (5.12), (5.15) and the inequali-
ties |ωij |v ≤ 1, |αij |v ≤ 1 for 1 ≤ i, j ≤ mv it follows that

ljv =
v∑
h=1

θjhfh with |θjh|v ≤ 1 for j = 1, . . . ,mv, h = 1, . . . , n.

This implies that for each subset {i1, . . . , in} of {1, . . . ,mv} of cardinality n we have

|det(li1v, . . . , linv)|v ≤ |det(f1, . . . , fn)|v

which implies, together with (5.6),

(5.17) Rv ≤ |det(f1, . . . , fn)|v.

41



Fix again k ∈ {1, . . . , t}. Let (ωij)i,j∈Ck be the inverse of the matrix (ωij)i,j∈Ck . To
obtain an inequality reverse to (5.17) we need upper bounds for the numbers |ωij |v. Put
dk := det(ωij)i,j∈Ck . For h, l ∈ Ck we have

|dkωhl|v ≤ 1

since dkωhl is a determinant in some of the numbers ωij . Further, for each i ∈ Ck, the i-th
row of the matrix (ωij)i,j∈Ck consists of an Ov-basis of Oiv while the other rows are the
conjugates over Kv of the i-th row. Hence for each i ∈ Ck, d2

k generates the discriminant
ideal div of Oiv over Ov. This implies that

|dk|v = |div|1/2v for i ∈ Ck.

Hence
|ωhl|v ≤ |dk|−1

v ≤ |div|−1/2
v for h, l, i ∈ Ck.

Putting ωhl := 0 if h, l do not belong to the same set Ck we obtain

(5.18) |ωhl|v ≤
(

min
i=1,...,mv

|div|v
)−1/2 ≤ δ−1/2

v for h, l = 1, . . . ,mv.

By (5.12) we have

fi =
∑
j∈Ck

ωij ljv for h = 1, . . . , t, i, j ∈ Ck.

This implies that

det(f1, . . . , fn) =
∑

{i1,...,in}⊆{1,...,mv}

θi1,...,indet(li1v, . . . , linv),

where θi1,...,in is some n × n determinant with entries from the numbers ωhl (h, l ∈
{1, . . . ,mv}). So by (5.18), we have |θi1,...,in |v ≤ δ

−n/2
v . It follows that

|det(f1, . . . , fn)|v ≤ δ−n/2v Rv.

Together with (5.16), (5.17) this implies that

δnd/2v R−dv |Dv|nd/2v ≤ βnv (Πv) ≤ R−dv |Dv|nd/2v

which is equivalent to (5.4). This completes the proof of Lemma 13. �

Now let S be a finite set of places on K, containing all infinite places. For each v ∈ S,
let {l1v, . . . , lnv} be a linearly independent set of linear forms in n variables with algebraic
coefficients such that if v is an infinite place then for i = 1, . . . , n the coefficients of liv
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belong to Q̄∩Kv. As before, let L be the composite of the fields K(liv) (v ∈ S, i = 1, . . . , n)
and put ∆ := |∆L|. Let

x ∈ Kn

and define the parallelepiped in V nK ,

Π(x) :=
∏
v∈S

Πv(x)×
∏
v/∈S

Onv ,

where Πv(x) is defined by (5.1). According to the definition in §2 we have

λΠ(x) =
∏
v|∞

λΠv(x)×
∏
v∈S
v-∞

Πv(x)×
∏
v/∈S

Onv for λ ∈ R, λ > 0;

note that λΠ(x) is precisely the set of adelic vectors (yv) ∈ V nK satisfying{
|liv(yv)|v ≤ λs(v)|liv(x)|v for v ∈ S, i = 1, . . . , n,
|yv|v ≤ 1 for v /∈ S.

The set Π(x) is convex symmetric. Denote the successive minima of Π(x) by

λ1(x), . . . , λn(x).

Further, put

R(x) : =
∏
v∈S

Rv(x)(5.20)

=
∏
v∈S

max
{i1,...,in}⊆{1,...,mv}

|det(li1v, . . . , linv)|v
|li1v(x)|v · · · |linv(x)|v

where for each v ∈ S, {l1v, . . . , lmv,v} is a minimal set of linear forms containing
{l1v, . . . , lnv} which is self-conjugate over Kv.

Lemma 14. 1
n!R(x) ≤ λ1(x) · · ·λn(x) ≤ ∆n/2dR(x) where d = [K : Q].

Proof. Put β(x) := {βn(Π(x))}1/d. Denote by r1 the number of real and by r2 the
number of complex infinite places of K. For finite v ∈ S, let δv be the number defined by
(5.3). By Lemma 13 and the identity∏

v-∞

|Dv|v = |∆K |−1/d

we have, for some constant F with

(5.21)
( ∏
v∈S
v-∞

δv
)n/2 ≤ F ≤ 1,

43



β(x) =
∏
v∈S

βv(x)
∏
v/∈S

|Dv|n/2v(5.22)

= 2r1n/d(2π)r2n/dF
∏
v-∞

|Dv|n/2v

∏
v∈S

Rv(x)−1

= 2n(π/2)r2n/dF |∆K |−n/2dR(x)−1.

Let v ∈ S, v finite. For each j ∈ {1, . . . ,mv} there is an i ∈ {1, . . . , n} such that up to
a constant the linear forms liv, ljv are conjugate over Kv. Hence the local discriminants
div, djv of Oiv/Ov and Ojv/Ov, respectively, are equal. Together with (5.3) this implies
that

δv = min
i=1,...,n

|div|v.

Further, the local discriminant div divides the global discriminant dK(liv)/K and by Lemma
4 (i), dK(liv)/K divides dL/K . Hence

|dL/K |v ≤ min
i=1,...,n

|dK(liv)/K |v ≤ min
i=1,...,n

|div|v = δv.

Therefore, ∏
v∈S
v-∞

δv ≥
∏
v∈S
v-∞

|dL/K |v ≥
∏
v-∞

|dL/K |v = NK/Q(dL/K)−1/d.

Together with (5.21) this implies that

NK(dL/K)−n/2d ≤ F ≤ 1.

By inserting this into (5.22), using that by Lemma 4 (i) we have

∆ = |∆L| ≥ NK/Q(dL/K)|∆K |,

we obtain

(5.23) 2n(π/2)r2n/d∆−n/2dR(x)−1 ≤ β(x) ≤ 2n(π/2)r2n/d|∆K |−n/2dR(x)−1.

Together with Lemma 6 this implies that

λ1(x) · · ·λn(x) ≥ 2n

n!

(
πnn!

2

)r2/d
|∆K |−n/2dβ(x)−1

≥ 1
n!
R(x)

(
2n

πn
· π

nn!
2

)r2/d
≥ 1
n!
R(x)

and

λ1(x) · · ·λn(x) ≤ 2nβ(x)−1 ≤
(

2
π

)r2n/d
∆n/2dR(x) ≤ ∆n/2dR(x).

This completes the proof of Lemma 14. �
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§6. Proof of Theorem B.
We use the following lemma instead of Davenport’s lemma used by Schmidt and Schlick-
ewei.

Lemma 15. Let K be an algebraic number field of degree d and let b1, . . . ,bn be linearly
independent vectors in Kn. Further, for each infinite place v on K, let l1v, . . . , lnv be
linearly independent linear forms in n variables with coefficients in Kv and let µ1v, . . . , µnv
be real numbers with

0 < µ1v ≤ µ2v ≤ . . . ≤ µnv.

Suppose

(6.1) |liv(bj)|v ≤ µjv for 1 ≤ i, j ≤ n, v|∞.

Then there are permutations κv of (1, . . . , n) for each infinite place v on K, and vectors

v1 = b1, vi =
i−1∑
j=1

ξijbj + bi with ξij ∈ OK for 1 ≤ j < i ≤ n

such that

|lκv(i),v(vj)|v ≤ {2d|∆K |1/2}s(v)(i+j)min(µiv, µjv) for 1 ≤ i, j ≤ n, v|∞.

Proof. We proceed by induction on n. For n = 1 the assertion is trivial. Let n ≥
2 and suppose that Lemma 15 holds for n − 1. Let V be the vector space with basis
{b1, . . . ,bn−1}. We identify V with Kn−1.

Take an infinite place v. There are α1v, . . . , αnv ∈ Kv, not all zero, such that

n∑
k=1

αkvlkv(bj) = 0 for j = 1, . . . , n− 1.

Choose κv(n) ∈ {1, . . . , n} such that

|ακv(n),v|v = max{|α1v|v, . . . , |αnv|v}

and put Cv := {1, . . . , n}\{κv(n)}. Then ακv(n),v 6= 0. Put

βiv := −αiv/ακv(n),v for i ∈ Cv.

Thus,

lκv(n),v(bj) =
∑
k∈Cv

βkvlkv(bj) for j = 1, . . . , n− 1, v|∞(6.2)

with |βkv|v ≤ 1 for k ∈ Cv.
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The restrictions of liv (i = 1, . . . , n) to V form a system of linear forms of rank n− 1 and
the restriction of lκv(n) to V is linearly dependent on the restrictions of lkv (k ∈ Cv) to
V . Hence the restrictions of lkv (k ∈ Cv) to V are linearly independent. By applying the
induction hypothesis to b1, . . . ,bn−1 and the linear forms lkv (k ∈ Cv, v|∞) we infer that
there are a function κv from {1, . . . , n− 1} to Cv for each v|∞, and vectors

(6.3) v1 = b1, vi =
i−1∑
j=1

ξijbj + bi with ξij ∈ OK for 1 ≤ j < i ≤ n− 1, v|∞

such that

|lκv(i),v(vj)|v ≤ {2d|∆K |1/2}(i+j)s(v) min(µiv, µjv) for 1 ≤ j ≤ i ≤ n− 1, v|∞.

Recalling that | · |1/s(v)
v is the usual absolute value, whence satisfies the triangle inequality,

this implies together with (6.2) that

|lκv(n),v(vj)|v ≤
(n−1∑
k=1

{2d|∆K |1/2}k+j

)s(v)

µjv

≤ {2d|∆K |1/2}s(v)(n+j)µjv

for v|∞, j = 1, . . . , n− 1. Therefore,

|lκv(i),v(vj)|v ≤{2d|∆K |1/2}s(v)(i+j) min (µiv, µjv)(6.4)
for i = 1, . . . , n, j = 1, . . . , n− 1, v|∞.

Because of (6.3), the proof of Lemma 15 is complete once we have shown that there is a
vector

vn = bn + ξ1v1 + · · ·+ ξn−1vn−1 with ξ1, . . . , ξn−1 ∈ OK
such that

(6.5) |lκv(i),v(vn)|v ≤ {2d|∆K |1/2}(n+i)s(v)µiv for i = 1, . . . , n, v|∞.

Write l′iv for lκv(i),v. Then l′1v, . . . , l
′
n−1,v are linearly independent on V hence

det(l′iv(bj)i,j=1,...,n−1) 6= 0. Therefore, there are γjv ∈ Kv such that

(6.6) l′iv(bn) =
n−1∑
j=1

γjvl
′
iv(bj) for i = 1, . . . , n− 1, v|∞.

Further, by (6.2), (6.6) we have

n−1∑
j=1

γjvl
′
nv(bj) =

n−1∑
k=1

βκv(k),v

{n−1∑
j=1

γjvl
′
kv(bj)

}
(6.7)

=
n−1∑
k=1

βκv(k),vl
′
kv(bn).
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By (6.3), b1, . . . ,bn−1 can be expressed as linear combinations of v1, . . . ,vn−1. Hence
there are γ′jv ∈ Kv with

∑n−1
j=1 γjvbj =

∑n−1
j=1 γ

′
jvvj . Together with (6.6), (6.7) this

implies

(6.8) l′iv(bn) =
n−1∑
j=1

γ′jvl
′
iv(vj) + αiv for i = 1, . . . , n, v|∞,

where

αiv = 0 for i = 1, . . . , n− 1,(6.9)

αnv = l′nv(bn)−
n−1∑
k=1

βκv(k),vl
′
kv(bn).

By Lemma 7 (ii), there are ξ1, . . . , ξn−1 ∈ K with

|ξj + γ′jv|v ≤
{
d

2
|∆K |1/2

}s(v)

for v|∞, j = 1, . . . , n− 1,

|ξj |v ≤ 1 for v -∞, j = 1, . . . , n− 1.

Hence ξj ∈ OK for j = 1, . . . , n− 1. Put

vn = bn + ξ1v1 + · · ·+ ξn−1vn−1, δjv := ξj + γ′jv for j = 1, . . . , n− 1, v|∞.

Then, by (6.8),

l′iv(vn) =
n−1∑
j=1

δjvl
′
iv(vj) + αiv with |δjv|v ≤

{
d

2
|∆K |1/2

}s(v)

(6.10)

for j = 1, . . . , n− 1, v|∞.

Take v|∞. Using again that | · |1/s(v)
v satisfies the triangle inequality we have by (6.9),

(6.2),

|αnv|v ≤
{
|l′nv(bn)|1/s(v)

v +
n−1∑
k=1

|βκv(k),v|1/s(v)
v |l′kv(bn)|1/s(v)

v

}s(v)

≤ ns(v)µnv

and clearly also |αjv|v ≤ js(v)µjv for j = 1, . . . , n − 1. Together with (6.9), (6.4) this
implies for i = 1, . . . , n,

|l′iv(vn)|v ≤
{ n∑
j=1

|δjv|1/s(v)
v |l′iv(vj)|1/s(v)

v + |αiv|1/s(v)
v

}s(v)

≤
{ m∑
j=1

d

2
|∆K |1/2

(
2d|∆K |1/2

)i+j
min(µiv, µjv)1/s(v) + iµ

1/s(v)
iv

}s(v)

≤
(

2d|∆K |1/2
)(n+i)s(v)

µiv

47



which is precisely (6.5). This proves Lemma 15. �

Let K be an algebraic number field of degree d, S a finite set of places on K containing
all infinite places, n ≥ 2 an integer, 0 < δ < 1 a real and for v ∈ S, let {l1v, . . . , lnv} be a
linearly independent set of linear forms in n variables with algebraic coefficients. Suppose
that for each infinite place v and each i ∈ {1, . . . , n}, the coefficients of liv belong to Kv∩Q̄,
and that

[K(liv) : K] ≤ D,H(liv) ≤ H for v ∈ S, i = 1, . . . , n.

By Lemma 4 (i), we have |∆K0 |1/[K0:Q] ≤ |∆K |1/d for each subfield K0 of K. This
implies that if x ∈ Kn is primitive, i.e. satisfies (4.1), then

x ∈ OnK , |x|v ≤
(
|∆K |1/2dH(x)

)s(v) for v|∞,(6.11) ∏
v-∞

|x|v ≥ |∆K |−1/2d.

Hence every primitive solution x of (4.2) with (4.4) is also a solution of

∏
v∈S

n∏
i=1

|liv(x)|v ≤
∏
v∈S
|det(l1v, . . . , lnv)|v ·H(x)−δ(6.12)

in x ∈ Kn with (6.11) and with H(x) ≥ 1
2

(2H∆)e
T

,

where
T =

(
240n2

δ−5n
)s
, ∆ = |∆L|,

with L being the composite of the fields K(liv) (v ∈ S, i = 1, . . . , n). We will show that
for every solution x of (6.12) there is a tuple (N, γ, L̂;Q) as in Theorem B.

Since (6.12) does not change when the liv are multiplied with constants we may
assume that |liv|v = 1 for v ∈ S, i = 1, . . . , n and we shall do so in the sequel. For
v ∈ S, let {l1v, . . . , lmv,v} be a minimal set of linear forms containing l1v, . . . , lnv which is
self-conjugate over Kv. Thus, mv = n if v|∞. We assume also w.l.o.g. that |liv|v = 1 for
i = n+1, . . . ,mv. Further, if liv, ljv are (up to a constant) conjugate over Kv then they are
also conjugate over K, hence [K(liv) : K] = [K(ljv) : K], H(liv) = H(ljv). Summarising,

(6.13) [K(liv) : K] ≤ D, H(liv) ≤ H, |liv|v = 1 for v ∈ S, i = 1, . . . ,mv.

By inserting this into Lemma 2 we get

(6.14) 1 ≥ |li1v ∧ · · · ∧ lipv|v ≥ H−pD
p

for each v ∈ S and each linearly independent subset {li1v, . . . , lipv} of {l1v, . . . , lmv,v}.
Further, by Schwartz’ inequality we have

(6.15) |liv(y)|v ≤ |liv|v|y|v ≤ |y|v for y ∈ Kn, v ∈ S, i = 1, . . . ,mv.
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We shall frequently use (6.14), (6.15).
Let x be a solution of (6.12). To x we associate the adelic parallelepiped

Π(x) =
{

(yv) ∈ V nK : |liv(yv)|v ≤ |liv(x)|v for v ∈ S, i = 1, . . . , n
|yv|v ≤ 1 for v /∈ S.

}
Recall that by (5.2) we may extend the set of indices i from {1, . . . , n} to {1, . . . ,mv}:

(6.16) Π(x) =
{

(yv) ∈ V nK : |liv(yv)|v ≤ |liv(x)|v for v ∈ S, i = 1, . . . ,mv

|yv|v ≤ 1 for v /∈ S.

}
As before, λ1(x), . . . , λn(x) denote the successive minima of Π(x) and

R(x) =
∏
v∈S

max
{i1,...,in}⊆{1,...,mv}

|det(li1v, . . . , linv)|v
|li1v(x) · · · linv(x)|v

.

In what follows we write λ1, . . . , λn, R for λ1(x), . . . , λn(x), R(x), remembering that
these quantities depend on x. From (6.12) it follows that

(6.17) R ≥
∏
v∈S

|det(l1v, . . . , lnv)|v
|l1v(x) · · · lnv(x)|v

≥ H(x)δ.

Hence

(6.18) R ≥
{

1
2

(2H∆)e
T

}δ
.

(6.11) and (6.17) imply that

(6.19) |x|v ≤
{
|∆K |1/2dR1/δ

}s(v)

for v ∈MK .

Let φ be the diagonal embedding of Kn into V nK . By (6.16) we have for y ∈ Kn, λ > 0
that

y ∈ φ−1(λΠ(x))⇐⇒|liv(y)|v ≤ λs(v)|liv(x)|v for v ∈ S, i = 1, . . . ,mv,(6.20)
|y|v ≤ 1 for v /∈ S.

Lemma 16. (i) Let λ > 0. Then for every y ∈ φ−1(λΠ(x)) we have

|y|v ≤ |det(l1v, . . . , lnv)|−1
v {n|∆K |1/2dR1/δλ}s(v) for v ∈ S.

(ii) λ1 ≥ n−1H−nsD
n |∆K |−1/2dR−1/δ.

(iii) There is an α ∈ K∗ such that for all λ > 0 and all y ∈ φ−1(λΠ(x)) we have

αy ∈ OnK , αy ∈ φ−1

(
{|∆K |1/2dHnsD2n

λ}Π(x)
)
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Proof. Let y ∈ φ−1(λΠ(x)). Fix v ∈ S and put ∆v := det(l1v, . . . , lnv). Let aj be the
coefficient vector of (l1v ∧ · · · ∧ lj−1,v ∧ lj+1,v ∧ · · · ∧ lnv)∗ (cf. §2). Then

(6.21) y =
n∑
j=1

∆−1
v ljv(y)aj .

By (6.20) and (6.15) we have for j = 1, . . . , n,

|ljv(y)|v ≤ |ljv(x)|vλs(v) ≤ |x|vλs(v).

Together with (6.19) this implies

(6.22) |ljv(y)|v ≤
(
|∆K |1/2dR1/δλ

)s(v)

.

By (6.14) we have

|aj |v = |l1v ∧ . . . ∧ lj−1,v ∧ lj+1,v ∧ . . . ∧ lnv|v ≤ 1.

Together with (6.21), (6.22) this implies that

|y|v ≤ ns(v)|∆v|−1
v {|∆K |1/2dR1/δλ}s(v)

which is (i).
(ii). Choose y ∈ φ−1(λ1Π(x)) with y 6= 0. Then |y|v ≤ 1 for v /∈ S. Hence by (i) and

(6.14),

1 ≤ H(y) ≤
∏
v∈S
|y|v ≤

(∏
v∈S
|∆v|−1

v

)
.n|∆K |1/2dR1/δλ1

≤ nHnsDn |∆K |1/2dR1/δλ1

which implies (ii).
(iii). Fix v ∈ S, v finite. Let M be the composite of the fields K(l1v), . . . ,K(lnv).

The value group of | · |v on K, which is GK,v := {|x|v : x ∈ K∗} has finite index, ev, say,
in the value group GM,v := {|x|v : x ∈M∗} of | · |v on M . Note that

(6.23) 1 ≤ ev ≤ [M : K] ≤ Dn.

For i = 1, . . . , n, there is a γi ∈ Q̄∗ such that l′iv := γiliv has its coefficients in M . Hence,
putting again ∆v := det(l1v, . . . , lnv),

|∆v|v =
|det(l′1v, . . . , l

′
nv)|v

|l′1v|v · · · |l′nv|v
∈ GM,v.

Put
Cv := |∆v|evv ;
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then Cv ∈ GK,v. By Lemma 7 (i) there is an α ∈ K∗ with

(6.24)



|α|v ≤ Cv for v ∈ S, v -∞,
|α|v ≤ 1 for v /∈ S,

|α|v ≤ |∆K |1/2d
(∏
w∈S
w-∞

Cv

)−s(v)

for v|∞.

Now let y ∈ φ−1(λΠ(x)), where λ > 0 and y 6= 0. By (i) and s(v) = 0 for finite v we have
|y|v ≤ C−1/ev

v for finite v ∈ S. Further, by (6.14) we have Cv ≤ 1. Hence

(6.25) |αy|v ≤ C1−1/ev
v ≤ 1 for v ∈ S, v -∞.

Since also |αy|v ≤ 1 for v /∈ S we have αy ∈ OnK . Further, by (6.23) we have |α|v ≤ 1 for
all finite places v while by (6.21), (6.14) and (6.23) we have for each infinite place v,

|α|v ≤
{
|∆K |1/2d ·

∏
w∈S
w-∞

|det(l1w, . . . , lnw)|−eww

}s(v)

≤
{
|∆K |1/2d

∏
w∈S
w-∞

(
HnDn

)ew}s(v)

≤
(
|∆K |1/2dHnsD2n

)s(v)

.

Hence

|liv(αy)|v ≤ (|∆K |1/2dHnsD2n
λ)s(v)|liv(x)|v for v ∈ S, i = 1, . . . ,mv.

Together with (6.25) and (6.20) this implies (iii). �

Lemma 17. There are linearly independent vectors v1, . . . ,vn ∈ OnK and permutations
κv of (1, . . . , n) for each v|∞, all depending on x, with the following properties:
(i) for j = 1, . . . , n, the vectors v1, . . . ,vj belong to the K-vector space generated by
φ−1(λjΠ(x));
(ii) we have

(6.26)


|lκv(i),v(vj)|v ≤ |lκv(i),v(x)|v{Gλmin(i,j)}s(v)

for v|∞, i = 1, . . . , n, j = 1, . . . , n,
|liv(vj)|v ≤ |liv(x)|v for v ∈ S, v -∞, i = 1, . . . ,mv, j = 1, . . . , n,

where
G := |∆K |1/2dHnsD2n

(2d|∆K |1/2)2n.

Proof. Choose linearly independent vectors b′1, . . . ,b
′
n with b′j ∈ φ−1(λjΠ(x)) for j =

1, . . . , n and put bj := αb′j , where α is the number from Lemma 16 (iii). Then for j =
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1, . . . , n, the vectors b1, . . . ,bj belong to the K-vector space generated by φ−1(λjΠ(x)).
Moreover,

bj ∈ OnK , bj ∈ φ−1

(
{|∆K |1/2dHnsD2n

λj}Π(x)
)

for j = 1, . . . , n.

Together with (6.20) this implies that

(6.27)


|liv(bj)|v ≤ (|∆K |1/2dHnsD2n

λj)s(v)|liv(x)|v
for v|∞, i = 1, . . . , n, j = 1, . . . , n,

|liv(bj)|v ≤ |liv(x)|v for v ∈ S, v -∞, i = 1, . . . ,mv, j = 1, . . . , n,
bj ∈ OnK for j = 1, . . . , n.

We apply Lemma 15 with the vectors b1, . . . ,bn, the linear forms liv(x)−1liv (v|∞, i =
1, . . . , n) and the numbers µjv = (|∆K |1/2dHnsD2n

λj)s(v) (v|∞, j = 1, . . . , n). It follows
that there are vectors v1, . . . ,vn with

(6.28) v1 = b1, vj =
j−1∑
k=1

ξjkbk + bj with ξjk ∈ OK for 1 ≤ k < j ≤ n,

and permutations κv of (1, . . . , n) for v|∞ such that

|lκv(i)(x)|−1
v |lκv(i),v(vj)|v ≤ (2d|∆K |1/2)(i+j)s(v) min(µiv, µjv)(6.29)

≤ {Gλmin(i,j)}s(v) for v|∞, i, j = 1, . . . , n.

From (6.27) and the fact that the numbers ξjk in (6.28) belong to OK it follows that

vj ∈ OnK , |liv(vj)|v ≤ |liv(x)|v for v ∈ S, v -∞, i = 1, . . . ,mv, j = 1, . . . , n.

Together with (6.29) this implies (6.26). Further, (6.28) implies that for j = 1, . . . , n, the
vectors v1, . . . ,vj are linear combinations of b1, . . . ,bj , whence belong to the K-vector
space generated by φ−1(λjΠ(x)). This completes the proof of Lemma 17. �

Lemma 18. There is a set Γ of cardinality

|Γ| ≤ (n!)−s(30n42nδ−1)ns+n

consisting of tuples of real numbers

(c; d) = (civ : v ∈ S, i = 1, . . . ,mv; di : i = 1, . . . , n)

with

civ ≤ 11
10δ s(v) for v ∈ S, i = 1, . . . ,mv(6.30)

d1 ≤ 0, − 11
10δ ≤ d1 ≤ . . . ≤ dn(6.31)
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such that for every solution x of (6.12) there is a tuple (c; d) ∈ Γ with

Rciv−{1/c(n)s} < |liv(x)|v ≤ Rciv for v ∈ S, i = 1, . . . ,mv,(6.32)
Rdj ≤ λj < Rdj+{1/c(n)} for v ∈ S, j = 1, . . . , n,(6.33)

where
c(n) := 4n32n.

Proof. Put
uiv := |liv(x)|v(R−11/10δ)s(v) for v ∈ S, i = 1, . . . ,mv.

By (6.15),(6.19), (6.18) we have for v ∈ S, i = 1, . . . ,mv,

(6.34) uiv ≤ |x|v(R−11/10δ)s(v) ≤ (|∆K |1/2dR−1/10δ)s(v) ≤ 1.

We call two indices i, k ∈ {1, . . . ,mv} v-conjugate if there are λ ∈ Q̄∗, σ ∈
Gal(K̄v/Kv) such that lkv = λσ(liv); then |λ|v = 1 since |liv|v = |lkv|v = 1. This implies
that |liv(x)|v = |lkv(x)|v whence

(6.35) uiv = ukv for v ∈ S and for v-conjugate i, k ∈ {1, . . . ,mv}.

Further, by the definition of R (cf. (5.20)) and by (6.14) and (6.18) we have

∏
v∈S

n∏
i=1

uiv =
(∏
v∈S

n∏
i=1

|liv(x)|v
)
R−11n/10δ(6.36)

≥ R−1

(∏
v∈S
|det(l1v, . . . , lnv)|v

)
R−11n/10δ

≥ H−nsD
n

R−1−11n/10δ ≥ R−2n/δ.

(Note that the product is taken over i = 1, . . . , n, not over i = 1, . . . ,mv). By Lemma 9
(ii), (6.34), (6.36) there is a set Γ1 of ns-tuples of non-negative reals γ = (γiv : v ∈ S, i =
1, . . . , n) independent of x of cardinality

|Γ1| ≤ (2 + 2e · c(n)δ−1)ns

such that for some tuple γ ∈ Γ1, we have

(6.37)
(
R−2n/δ

)γiv+{δ/2c(n)ns}

< uiv ≤
(
R−2n/δ

)γiv
for v ∈ S, i = 1, . . . , n.

For i = 1, . . . ,mv, let tiv be the smallest index from {1, . . . , n} that is v-conjugate to i.
Put

γ′iv := γtiv,v for v ∈ S, i = 1, . . . ,mv .
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Clearly, tiv = tjv and hence γ′iv = γ′jv whenever i, j are v-conjugate. Together with (6.35)
and (6.37) this implies that (R−2n/δ)γ

′
iv+{δ/2c(n)ns} < uiv ≤ (R−2n/δ)γ

′
iv for v ∈ S, i =

1, . . . ,mv. Putting

civ := 11
10δ s(v)− 2n

δ γ
′
iv for v ∈ S, i = 1, . . . ,mv,

we can rewrite this as

Rciv−{1/c(n)s} < |liv(x)|v ≤ Rciv for v ∈ S, i = 1, . . . ,mv,

which is (6.32). Since γiv ≥ 0 we have civ ≤ (11/10δ)s(v) for v ∈ S, i = 1, . . . ,mv which is
(6.30). Finally, c = (civ : v ∈ S, i = 1, . . . ,mv) depends only on γ ∈ Γ1. Hence for c we
have at most |Γ1| possibilities.

Define the numbers

vj := R−11/10δλ−1
j for j = 1, . . . , n.

By Lemma 16 (ii) and (6.18) we have λ1 ≥ R−11/10δ. Hence

(6.38) 1 ≥ v1 ≥ v2 ≥ · · · ≥ vn.

Further, by Lemma 14 and (6.18),

(6.39) v1 · · · vn =
R−11n/10δ

λ1 · · ·λn
≥ R−11n/10δ∆−n/2dR−1 > R−2n/δ.

By Lemma 9 (ii), (6.38) and (6.39) there is a set Γ2 of n-tuples of non-negative reals
δ = (δ1, . . . , δn) independent of x, of cardinality

|Γ2| ≤ (2 + 2e · c(n)δ−1)n

such that for some tuple δ ∈ Γ2 we have

(6.40) (R−2n/δ)δj+{δ/2c(n)n} < vj = R−11/10δλ−1
j ≤ (R−2n/δ)δj for j = 1, . . . , n.

By (6.38), inequalities (6.40) remain valid after replacing δ1, . . . , δn by

δ′1 := min(δ1, . . . , δn), δ′2 := min(δ2, . . . , δn), . . . , δ′n := δn,

respectively. Putting
dj := − 11

10δ + 2n
δ δ
′
j for j = 1, . . . , n,

we infer from (6.40) that

Rdj ≤ λj < Rdj+1/c(n) for j = 1, . . . , n,
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which is (6.33). From the definitions of d1, . . . , dn it follows at once that −11/10δ ≤ d1 ≤
. . . ≤ dn. Further, since x ∈ φ−1(Π(x)) we have λ1 ≤ 1. Hence d1 ≤ 0. This implies
(6.31). Finally, the tuple d = (d1, . . . , dn) depends only on δ ∈ Γ2. Hence for d we have
at most |Γ2| possibilities. It follows that the number of possibilities for (c,d) is at most

|Γ1| · |Γ2| ≤ (2 + 2e · c(n)δ−1)ns+n

< (n!)−s{n(2 + 8en32nδ−1)}ns+n < (n!)−s(30n42nδ−1)ns+n.

This completes the proof of Lemma 18. �

Let x be a solution of (6.12) and (c; d) the corresponding tuple from Lemma 18. Let
κv(v|∞) be the permutations from Lemma 17. Further, for each finite place v ∈ S, choose
κv(1), . . . , κv(n) from {1, . . . ,mv} such that

lκv(1), . . . , lκv(n) are linearly independent,(6.41)
cκv(1),v + · · ·+ cκv(n),v is minimal.

Define the linear forms

l′iv(X) := lκv(i),v(X) for v ∈ S, i = 1, . . . , n

and the numbers
eiv := cκv(i),v for v ∈ S, i = 1, . . . , n.

Thus, for every solution x of (6.12) we have constructed a tuple

(6.42) T := (l′iv : v ∈ S, i = 1, . . . , n; eiv : v ∈ S, i = 1, . . . , n; di : i = 1, . . . , n).

By (6.32) we have

(6.43) Reiv−{1/c(n)s} < |l′iv(x)|v ≤ Reiv for v ∈ S, i = 1, . . . , n.

We recall that

(6.33) Rdj ≤ λj < Rdj+{1/c(n)} for v ∈ S, j = 1, . . . , n.

We derive some other properties of T .

Lemma 19. (i) T belongs to a set independent of x of cardinality at most

C1 =
(
30n42nδ−1

)ns+1
.

(ii) For v ∈ S, l′1v, . . . , l
′
nv are linearly independent linear forms with

H(l′iv) ≤ H, [K(l′iv) : K] ≤ D, |l′iv|v = 1 for i = 1, . . . , n .
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(iii) eiv ≤ 11
10δ s(v) for v ∈ S, i = 1, . . . , n.

(iv)
∑
v∈S eiv < −1 + (4n22n)−1.

(v) d1 ≤ 0, − 11
10δ ≤ d1 ≤ · · · ≤ dn.

(vi) 1− (3n22n)−1 < d1 + · · ·+ dn < 1 + (3n22n)−1.

Proof. (i). By (6.41), for finite places v ∈ S the indices κv(i), and hence the linear forms
l′iv and the numbers eiv are uniquely determined by the tuple c from Lemma 18. For
infinite places v, the linear forms l′iv are uniquely determined by the permutations κv of
(1, . . . , n) from Lemma 17, while the numbers eiv depend only on κv and c. Therefore, T
is uniquely determined by κv (v|∞) and (c; d). It follows that for T we have at most

(n!)r(n!)−s(30n42nδ−1)ns+1 ≤ C1

possibilities where r is the number of infinite places of K.
(ii). Let v ∈ S, i = 1, . . . , n. From the definition of l′1v, . . . , l

′
nv it follows at once

that these linear forms are linearly independent. Further, we have l′iv = ljv for some
j ∈ {1, . . . ,mv}. Now (ii) follows at once from (6.13).

(iii). This follows at once from (6.30) and the fact that eiv = cjv for some j ∈
{1, . . . ,mv}.

(iv). We recall that R =
∏
v∈S Rv, where

Rv =
|det(l1v, . . . , lnv)|v
|l1v(x) · · · lnv(x)|v

for v|∞

Rv =
|det(li1v, . . . , linv)|v
|li1v(x) · · · linv(x)|v

for v ∈ S, v -∞,

where {i1, . . . , in} is a subset of {1, . . . ,mv} for which the right-hand side is maximal.
Fix v ∈ S. First let v be finite. By (6.41) and the definition of e1v, . . . , env we have

ci1v + · · ·+ cinv ≥ e1v + · · ·+ env. Together with (6.32) and (6.14) this gives

R−1
v ≥ |li1v(x) · · · linv(x)|v > Rci1v+···+cinv−{n/c(n)s}

≥ Re1v+···+env−{n/c(n)s}.

If v is infinite then e1v, . . . , env is a permutation of c1v, . . . , cnv whence by (6.32) we have
also

R−1
v ≥ |l1v(x) · · · lnv(x)|v > Rc1v+···+cnv−{n/c(n)s}

= Re1v+···+env−{n/c(n)s}.

Hence
R−1 =

∏
v∈S

R−1
v > R

∑
i,v

eiv−{n/c(n)}

which implies that
∑
i,v eiv < −1 + 1/4n22n.

(v). This is (6.31).
(vi). By (6.33), Lemma 14 and (6.18) we have

Rd1+···+dn ≤ λ1 · · ·λn < ∆n/2dR < R1+{1/3n22n}
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and
Rd1+···+dn > λ1 · · ·λnR−n/c(n) ≥ 1

n!
R1−n/c(n) > R1−{1/3n22n}.

This implies (vi). �

Lemma 20. There are linearly independent vectors v1, . . . ,vn ∈ OnK such that

(6.44) |l′iv(vj)|v ≤ Gs(v)Reiv+s(v)dmin(i,j)+{s(v)/c(n)} for v ∈ S, i, j = 1, . . . , n,

where
G = |∆K |1/2dHnsD2n

(2d|∆K |1/2)2n

and such that x lies in the K-vector space generated by v1, . . . ,vr where r is the largest
integer with dr ≤ 0.

Proof. We take the vectors v1, . . . ,vn from Lemma 17. These belong to OnK and are
linearly independent. By (6.26), (6.43), (6.31), (6.33) we have, recalling that l′iv = lκv(i),v

for infinite places v and l′iv = ljv for some j ∈ {1, . . . ,mv} for finite places v,

|l′iv(vj)|v ≤ |l′iv(x)|v · {Gλmin(i,j)}s(v)

≤ Gs(v)Reiv+s(v)dmin(i,j)+{s(v)/c(n)} for v ∈ S, i, j = 1, . . . , n,

which is (6.44).
Let t be the largest integer with λt ≤ 1 (which exists since x ∈ φ−1(Π(x)), whence

λ1 ≤ 1) and let V be the K-vector space generated by φ−1(λtΠ(x)). We have x ∈ V since
otherwise λt+1 ≤ 1. By Lemma 17 we have v1, . . . ,vt ∈ V . Since λt+1 > 1 ≥ λt we have
dimV = t; hence {v1, . . . ,vt} is a basis of V and therefore x is in the space generated by
v1, . . . ,vt. By (6.33) we have Rdt ≤ λt ≤ 1, whence dt ≤ 0 and therefore r ≥ t. This
proves Lemma 20. �

Let again x be a solution of (6.12) and let T be a tuple as in (6.42) for which (6.43),
(6.33), Lemma 19 and Lemma 20 hold. Below we construct a tuple (N, γ, L̂;Q) satisfying
(4.17)-(4.20) of Theorem B such that (N, γ, L̂) depends only on T . This implies Theorem
B since by Lemma 19 (i) the number of possibilities for T is at most the number C1 from
Theorem B.

Put

(6.45) Q := R3n/δ.

Note that by (6.18) we have (4.20), i.e. Q ≥ { 1
2 (2H∆)e

T }3n.
There is an integer k with

(6.46) 1 ≤ k ≤ n− 1, dk+1 > 0, dk+1 − dk >
1
n2
.

Namely, by Lemma 19 (v) we have d1 ≤ 0 and by Lemma 19 (vi) we have

dn ≥
1
n

(d1 + · · ·+ dn) >
1
n
− 1

3n32n
> 0.
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Therefore, there is an r ∈ {1, . . . , n− 1} with dr ≤ 0, dr+1 > 0. Let k be the integer from
{r, r + 1, . . . , n− 1} for which dk+1 − dk is maximal. Then clearly dk+1 > 0 and

dk+1 − dk ≥
1

n− r

{
(dn − dn−1) + · · ·+ (dr+1 − dr)

}
=

1
n− r

(dn − dr) ≥
1

n− 1

(
1
n
− 1

3n32n

)
>

1
n2
.

Put

(6.47) N :=
(
n

k

)
.

As before, let σ1, . . . , σN be the sequence of subsets of {1, . . . , n} of cardinality n − k,
ordered lexicographically. Thus, σ1 = {1, . . . , n − k}, . . . , σN−1 = {k, k + 2, . . . , n}, σN =
{k + 1, k + 2, . . . , N}. Define the set of linear forms

(6.48) L̂ = {l̂iv : v ∈ S, i = 1, . . . , N}

with
l̂iv := αivl

′
i1,v ∧ . . . ∧ l

′
in−k,v

for v ∈ S, i = 1, . . . , N

where {i1 < . . . < in−k} = σi and αiv ∈ Q̄∗ is chosen such that

(6.49) |l̂iv|v = 1 for v ∈ S, i = 1, . . . , N.

By Lemma 19 (ii), the fact that K(l̂iv) is the composite of the fields K(l′i1v), . . . ,K(l′in−kv)
and by (6.14) we have

(6.50) [K(l̂iv) : K] ≤ Dn, H(l̂iv) ≤ Hn for v ∈ S, i = 1, . . . , N.

Further, l̂1v, . . . , l̂Nv are linearly independent since l′1v, . . . , l
′
nv are linearly independent.

Hence L̂ satisfies condition (4.19) of Theorem B. Note that by Lemma 19 (ii), Lemma 2
we have

(6.51) 1 ≤ |αiv|v = |l′i1,v ∧ . . . ∧ l
′
in−k,v

|−1
v ≤ HnDn for v ∈ S, i = 1, . . . , N.

For i = 1, . . . , N, v ∈ S define the numbers

(6.52) êiv := ei1v + · · ·+ ein−kv, d̂i = di1 + · · ·+ din−k ,

where again {i1 < . . . < in−k} = σi. Define the tuple

(6.53) γ = (γiv : v ∈ S, i = 1, . . . , N)
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with

γiv : =
δ

3n

{
1

c(n)s
+ êiv + s(v)

(
d̂i +

n

c(n)
)}

for v|∞, i = 1, . . . , N − 1,

γNv : =
δ

3n

{
1

c(n)s
+ êNv + s(v)

(
d̂N−1 +

n

c(n)
)}

for v|∞,

γiv : =
δ

3n

{
min

(
0,

1
c(n)s

+ êiv
)}

for v ∈ S, v -∞, i = 1, . . . , N,

where c(n) = 1/4n32n. The special choices for γNv (v|∞) will turn out to be crucial. It is
easily verified that indeed (N, γ, L̂) depends only on the tuple T in (6.42).

We show that γ satisfies (4.18):

Lemma 21. (i) γiv ≤ s(v) for v ∈ S, i = 1, . . . , N .

(ii)
∑
v∈S

∑N
i=1 γiv ≤ −δ/6n3.

Proof. (i). Obviously, γiv ≤ 0 = s(v) if v is finite. Let v be an infinite place and
i ∈ {1, . . . , N}. First we have 1/s ≤ 2s(v). Second, by Lemma 19 (iii) (with σi = {i1 <
. . . < in−k}),

êiv = ei1v + · · ·+ ein−kv ≤ (n− k)
11
10δ

s(v) ≤ 11n
10δ

s(v).

Third, by Lemma 19 (v),(vi),

d̂i = di1 + · · ·+ din−k ≤ d1 + · · ·+ dn − kd1 ≤ 1 +
1

3n22n
+

11n
10δ

.

By inserting this and 1/c(n)s ≤ 2s(v)/c(n) = 1/2n32ns(v) into (6.53) we obtain

γiv ≤
δ

3n

{
1

2n32n
+

11n
10δ

+ 1 +
1

3n22n
+

11n
10δ

}
s(v) ≤ s(v).

(ii). By (6.53) we have, taking into consideration the special choices for γNv (v|∞),
d̂N − d̂N−1 = dk+1 − dk by (6.52), and

∑
v|∞ s(v) =

∑
v∈S s(v) = 1,

∑
v∈S

N∑
i=1

γiv(6.54)

≤ δ

3n

{∑
v∈S

N∑
i=1

(
1

c(n)s
+ êiv + s(v)(d̂i +

n

c(n)
)
)
− (d̂N − d̂N−1)(

∑
v|∞

s(v))
}

=
δ

3n

{
N

c(n)
+
(∑
v∈S

N∑
i=1

êiv

)
+ (d̂1 + · · ·+ d̂N ) +

Nn

c(n)
− (dk+1 − dk)

}
.
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Note that by (6.52),

∑
v∈S

N∑
i=1

êiv =
(
n− 1
k

)(∑
v∈S

n∑
i=1

eiv

)
, d̂1 + · · ·+ d̂N =

(
n− 1
k

)
(d1 + · · ·+ dn).

Together with Lemma 19 (iv), (vi) this implies that

∑
v∈S

N∑
i=1

êiv ≤
(
n− 1
k

)(
−1 +

1
4n22n

)
,

d̂1 + · · ·+ d̂N ≤
(
n− 1
k

)(
1 +

1
3n22n

)
.

By inserting these inequalities and also (6.46), i.e. dk+1 − dk > 1/n2, and c(n) =
1/4n32n, N ≤ 2n−1,

(
n−1
k

)
≤ 2n−2 into (6.54) we obtain

∑
v∈S

N∑
i=1

γiv

<
δ

3n

{
(n+ 1)N
c(n)

+
(
n− 1
k

)(
−1 +

1
4n22n

+ 1 +
1

3n22n

)
− 1
n2

}
≤ δ

3n

{
(n+ 1).2n−1

4n3.2n
+ 2n−2.

7
12n2.2n

− 1
n2

}
< − δ

3n
· 1

2n2
= − δ

6n3
.

�

We have shown that (N, γ, L̂;Q) satisfies (4.20), (4.19), (4.18). We complete the proof
of Theorem B by showing that there is a vector space W for which (4.17) holds.

Lemma 22. Let v1, . . . ,vn be the linearly independent vectors from Lemma 20 and let
W be the K-vector space generated by v1, . . . ,vk. Then

dimW = k, x ∈W, fkn(W ) = V (N, γ, L̂;Q).

Proof. It is obvious that dimW = k. Further, by (6.46) we have k ≥ r where r is the
largest integer with dr ≤ 0 and this implies together with Lemma 20 that x ∈W .

It remains to prove that Ŵ = V , where Ŵ := fkn(W ), V := V (N, γ, L̂;Q). For
i = 1, . . . , N define the vector

v̂i := vi1 ∧ . . . ∧ vin−k ,

where {i1 < . . . < in−k} = σi. Then Ŵ has basis {v̂1, . . . , v̂N−1}. Further, V is the
K-vector space generated by

Π : = Π(N, γ, L̂;Q)

= {ŷ ∈ ONS : |l̂iv(ŷ)|v ≤ Qγiv for v ∈ S, i = 1, . . . , N}.
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We show that v̂1, . . . , v̂N−1 ∈ Π and that every vector v̂0 ∈ Π is linearly dependent on
v̂1, . . . , v̂N−1. This clearly implies that Ŵ = V .

Take v ∈ S and i, j ∈ {1, . . . , N}. Suppose that σi = {i1, . . . , in−k}, σj =
{j1, . . . , jn−k}. By Laplace’s rule (2.3) and by (6.48) we have

(6.55) |l̂iv(v̂j)|v = |αiv|v
∣∣∣∣det

(
(l′pv(vq))p∈σi,q∈σj

)∣∣∣∣
v

.

By (6.51) we have |αiv|v ≤ HnDn and by (6.44), taking the maximum over all permutations
κ of σj , ∣∣∣∣det

(
(l′pv(vq))p∈σi,q∈σj

)∣∣∣∣
v

≤ (n!)s(v) max
κ

n−k∏
t=1

|litv(vκ(jt))|v

≤ (n!)s(v) max
κ

n−k∏
t=1

(
Gs(v)Reitv+s(v)dmin(it,κ(jt))+s(v)/c(n)

)
.

Together with (6.55) this implies

(6.56) |l̂iv(v̂j)|v ≤ (n!Gn−k)s(v)HnDnRêiv+(d0+n/c(n))s(v),

where

d0 := max
κ

n−k∑
t=1

dmin(it,κ(jt)).

Since d1 ≤ . . . ≤ dn we have d̂1 ≤ . . . ≤ d̂N , whence

d0 ≤ max
κ

{
min

(
di1 + · · ·+ din−k , dκ(j1) + · · ·+ dκ(jn−k)

)}
(6.57)

= min(d̂i, d̂j) = d̂min(i,j).

Further, by (6.18) and s(v) ≤ 1, we have

(n!Gn−k)s(v)HnDn ≤ n!
{
|∆K |1/2dHnsD2n

(2d|∆K |1/2)2n

}n−k
HnDn(6.58)

≤ R1/c(n)s.

By inserting (6.57) and (6.58) into (6.56) we obtain

(6.59) |l̂iv(v̂j)|v ≤ Rêiv+{d̂min(i,j)+n/c(n)}s(v)+1/c(n)s for v ∈ S, i, j = 1, . . . , N.

We are interested only in v1, . . . ,vN−1. (6.59) implies that for infinite places v and
for i = 1, . . . , N, j = 1, . . . , N − 1,

(6.60) |l̂iv(v̂j)|v ≤ Rêiv+{d̂min(i,N−1)+n/c(n)}s(v)+1/c(n)s = Qγiv .
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Further, since v1, . . . ,vn ∈ OnK we have v̂j ∈ ONK i.e. |v̂j |v ≤ 1 for every finite place v and
for j = 1, . . . , N − 1. Together with Schwarz’ inequality and (6.49) this implies that for
finite v ∈ S and for i = 1, . . . , N, j = 1, . . . , N − 1,

|l̂iv(v̂j)|v ≤ |l̂iv|v|v̂j |v ≤ 1,

which implies, together with (6.59),

|l̂iv(v̂j)|v ≤ Rmin(0,êiv+1/c(n)s) = Qγiv .

It follows that indeed v̂1, . . . , v̂N−1 ∈ Π.
Take v̂0 ∈ Π. We show that v̂0 is linearly dependent on v̂1, . . . , v̂N−1 or, which is the

same, det(v̂0, v̂1, . . . , v̂N−1) = 0.
Fix v ∈ S. Then

det(v̂0, . . . , v̂N−1) = det(l̂1v, . . . , l̂Nv)−1βv(6.61)

with βv := det
((
l̂iv(v̂j)

)
1≤i≤N

0≤j≤N−1

)
.

By (6.49), (6.50) and Lemma 2 we have

|det(l̂1v, . . . , l̂Nv)|−1
v ≤

(
Hn
)N(Dn)N ≤ H(2D)n2n

.

Further, since v0, . . . ,vN−1 ∈ Π we have

|βv|v ≤ (N !)s(v) max
κ
|l̂1v(v̂κ(0)) · · · l̂Nv(v̂κ(N))|v(6.63)

≤ 2n2ns(v)Qγ1v+···+γNv

where the maximum is taken over all permutations κ of 0, . . . , N−1. By combining (6.61),
(6.62), (6.63) we obtain

|det(v̂0, . . . , v̂N−1)|v ≤ (2H)(2D)n2n

Qγ1v+···+γNv .

By taking the product over v ∈ S and using Lemma 21 (ii) and (4.20) we obtain∏
v∈S
|det(v̂0, . . . , v̂N−1)|v ≤ (2H)s(2D)n2n

Q
∑

v∈S

∑N

i=1
γiv

≤ (2H)s(2D)n2n

Q−δ/6n
3
< 1 .

But since v̂0, . . . , v̂N−1 ∈ Π we have v̂j ∈ ONS for j = 0, . . . , N − 1, whence
det(v̂0, . . . , v̂N−1) is an S-integer. Recalling that by the Product formula,

∏
v∈S |a|v ≥ 1

for every non-zero S-integer a, we infer that

det(v̂0, . . . , v̂N−1) = 0.

This completes the proof of Lemma 22 and hence of Theorem B. �
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§7. Non-vanishing results.
We derive a non-vanishing result for polynomials which is crucial in the proof of Theorem
C.

Let m,N be integers ≥ 2. For h = 1, . . . ,m denote by Xh the block of N vari-
ables (Xh1, . . . , XhN ). Q̄[X1, . . . ,Xm] is the ring of polynomials in the mN variables
X1, . . . ,Xm with coefficients from Q̄. We use i to denote a tuple of non-negative integers
(ihj : h = 1, . . . ,m, j = 1, . . . , N). For such a tuple i we define the partial derivative of
F ∈ Q̄[X1, . . . ,Xm],

Fi :=
m∏
h=1

N∏
j=1

(
1
ihj !

∂ihj

∂X
ihj
hj

)
F.

Let d = (d1, . . . , dm) be a tuple of positive integers and for a tuple i as above, put

(i/d) :=
m∑
h=1

1
dh

{
ih1 + · · ·+ ihN

}
.

Definition. Let x = (x1, . . . ,xm) ∈ Q̄mN , where xh = (xh1, . . . , xhN ) ∈ Q̄N and let
F ∈ Q̄[X1, . . . ,Xm]. If F 6= 0 then the index of F at x with respect to d, notation
Indx,d(F ), is defined as the largest number σ such that

Fi(x) = 0 for all i with (i/d) ≤ σ;

if F = 0 then we define Indx,d(F ) =∞.

It is easy to verify that for F,G ∈ Q̄[X1, . . . ,Xm], x ∈ Q̄mN we have

(7.1) Indx,d(FG) = Indx,d(F ) + Indx,d(G).

We say that F ∈ Q̄[X1, . . . ,Xm] is homogeneous of degree dh in Xh for h = 1, . . . ,m
if F is a linear combination of monomials

m∏
h=1

N∏
j=1

X
ihj
hj with ih1 + · · ·+ ihN = dh for h = 1, . . . ,m.

For a tuple of positive integers d = (d1, . . . , dm), let ΓN (d) be the set of polynomials
F ∈ Q̄[X1, . . . ,Xm] homogeneous of degree dh in Xh for h = 1, . . . ,m.

For F ∈ Q̄[X1, . . . ,Xm], define the height

H(F ) := H(aF ),

where aF is the vector of coefficients of F . Further, for a number field K and a place v on
K, put

|F |v := |aF |v;
thus, if F has its coefficients in K, then H(F ) =

∏
v∈MK

|F |v. We have

(7.2) H(Fi) ≤ 2d1+···+dmH(F ), |Fi|v ≤ 2(d1+···+dm)s(v)|F |v for F ∈ ΓN (d),

since Fi is obtained by multiplying the coefficients of F by certain products
(
d1
j1

)
· · ·
(
dm
jm

)
.

We recall Theorem 3 of [6] (e = 2.7182 . . .):
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Lemma 23. (Roth’s lemma). Let m be an integer ≥ 2, d = (d1, . . . , dm) a tuple of
positive integers and Θ a real with 0 < Θ ≤ 1. Suppose that

(7.3)
dh
dh+1

≥ 2m2

Θ
for h = 1, . . . ,m− 1.

Further, let F ∈ Q̄[X11, X12, . . . , Xm1, Xm2] be a non-zero polynomial in 2m variables
which is homogeneous of degree dh in (Xh1, Xh2) for h = 1, . . . ,m and let xh = (xh1, xh2)
(h = 1, . . . ,m) be non-zero elements of Q̄2 with

(7.4) H(xh)dh ≥
{
ed1+···+dmH(F )

}(3m2/Θ)m

for h = 1, . . . ,m.

Then F has index < mΘ at x = (x1, . . . , xm) w.r.t. d.

We need a generalisation of this for polynomials in ΓN (d) where N ≥ 2. The next
non-vanishing result is a sharpening of a result of Schmidt, cf. [18], p. 191, Theorem 10B.
The height of an (N − 1)-dimensional linear subspace of Q̄N

V = {x ∈ Q̄N : a1x1 + · · ·+ aNxN = 0} with a = (a1, . . . , aN ) ∈ Q̄N\{0}

is defined by

(7.5) H(V ) := H(a).

Lemma 24. Let m,N be integers ≥ 2,d = (d1, . . . , dm) a tuple of positive integers and
Θ a real with 0 < Θ ≤ 1. Suppose again that

(7.6)
dh
dh+1

≥ 2m2

Θ
for h = 1, . . . ,m− 1.

Further, let F be a non-zero polynomial from ΓN (d) and let V1, . . . , Vm be (N − 1)-
dimensional linear subspaces of Q with

(7.7) H(Vh)dh ≥
{
ed1+···+dmH(F )

}(N−1)(3m2/Θ)m

for h = 1, . . . ,m.

Then there is a xh ∈ Vh for h = 1, . . . ,m such that for x = (x1, . . . ,xm) we have

(7.8) Indx,d(F ) < mΘ.

Proof. For N = 2 this is precisely Lemma 23 (note that the space Vh = {λxh : λ ∈ Q̄}
has height H(Vh) = H(xh)) so we assume that N ≥ 3. We use Schmidt’s argument [18],
pp. 192-194 to reduce this to N = 2.
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Suppose that

Vh = {x ∈ Q̄N : bh1x1 + · · ·+ bhNxN = 0} where bh = (bh1, . . . , bhN ) ∈ QN\{0}.

After permuting the variables if need be, we may assume that

(7.9) bh1 6= 0 for h = 1, . . . ,m.

Let K be a number field containing bhj for h = 1, . . . ,m, j = 1, . . . , N . Put

ch := (1, bh2/bh1, . . . , bhN/bh1), chj := (1, bhj/bh1)

for h = 1, . . . ,m, j = 1, . . . , N . Then

H(Vh) = H(ch) =
∏

v∈MK

|ch|v ≤
∏

v∈MK

(|ch2|v · · · |chN |v)

= H(ch2) · · ·H(chN ).

Hence, again after a permutation of the variables if necessary we may assume that

(7.10) H(bh1, bh2) = H(ch2) ≥ H(Vh)1/(N−1) for h = 1, . . . ,m.

Now suppose that there are no xh ∈ Vh (h = 1, . . . ,m) with (7.8). The idea is to
arrive at a contradiction by applying Lemma 23 to F ∗ := F (X11, X12, 0, . . . , 0; . . . ;
Xm1, Xm2, 0, . . . , 0) but this fails if F ∗ = 0. Therefore we proceed completely similarly to
Schmidt [18], pp. 192-194. Since our terminology is different, we give the argument for
convenience of the reader.

Let I be the set of tuples

(7.11) i = (i11, i12, 0, . . . , 0; . . . ; im1, im2, 0, . . . , 0) with (i/d) ≤ mΘ.

We write x ∈ Q̄mN as (x1, . . . ,xm) where xh = (xh1, . . . , xhN ) for h = 1, . . . ,m. For each
i ∈ I, Fi vanishes identically on the vector space

V := V1 × · · · × Vm = {x ∈ Q̄mN : lh(x) = 0 for h = 1, . . . ,m},

where
lh = bh1Xh1 + · · ·+ bhNXhN .

We use that the linear forms

(7.12) Xhj (h = 1, . . . ,m, j = 3, . . . , N) are linearly independent on V.

Namely, otherwise we have an identity

m∑
h=1

N∑
j=3

αhjXhj =
m∑
h=1

βhlh =
m∑
h=1

βh

(
bh1Xh1 + · · ·+ bhmXhm

)
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for certain αhj ∈ Q̄, not all zero, and certain βh ∈ Q̄, not all zero, but this is impossible
by (7.9).

Rename the variables Xhj (h = 1, . . . ,m, j = 1, 2) as Y1, . . . , Y2m and the variables
Yhj (h = 1, . . . ,m, j = 3, · · · , N) as Y2m+1, . . . , YmN . We can express F as

F = Y s0mN

(
F (1)(Y1, . . . , YmN−1) + YmNG

(1)(Y1, . . . , YmN )
)

where s0 ≥ 0, F (1) ∈ Q̄[Y1, . . . , YmN−1] is non-zero and G(1) ∈ Q̄[Y1, . . . , YmN ]. The
coefficients of F (1) are among the coefficients of F , hence H(F (1)) ≤ H(F ). By (7.11),
for each i ∈ I Fi is obtained by partially differentiating F to variables from Y1, . . . , Y2m.
Therefore,

Fi = Y s0mN

(
F

(1)
i + YmNG

(1)
i

)
for i ∈ I.

Each Fi (i ∈ I) vanishes identically on V whereas by (7.12) YmN does not vanish
identically on V ; hence F (1)

i + YmNG
(1)
i vanishes identically on V . But then F (1)

i vanishes
identically on V1 := V ∩ (YmN = 0) for i ∈ I.

Similarly, F (1) can be expressed as

F (1) = Y s1mN−1

(
F (2)(Y1, . . . , YmN−2) + YmN−1G

(2)(Y1, . . . , YmN−1)
)
,

with F (2) 6= 0, H(F (2)) ≤ H(F (1)) ≤ H(F ), and we have

F
(1)
i = Y s1mN−1

(
F

(2)
i + YmN−1G

(2)
i

)
for i ∈ I.

Each F (1)
i (i ∈ I) vanishes identically on V1 and by (7.12) YmN−1 does not vanish identically

on V1. Hence we may conclude as above that for each i ∈ I, F (2)
i vanishes identically on

V2 := V1 ∩ (YmN−1 = 0) = V ∩ (YmN−1 = YmN = 0).
Continuing like this we arrive at a non-zero polynomial F (m(N−2))(Y1, . . . , Y2m) with

H(F (m(N−2))) ≤ H(F ) such that for each i ∈ I, F (m(N−2))
i vanishes identically on

Vm(N−2) = V ∩ (Y2M+1 = · · · = YmN = 0)

=
{

x ∈ Q̄mn : bh1xh1 + bh2xh2 = 0, xhj = 0 for h = 1, . . . ,m, j = 3, . . . , N
}
.

This means that

(7.13) Indx,d(F (m(N−2))) ≥ mΘ for every x ∈ Vm(N−2).

Define

V ∗ :=
{

(x11, x12; . . . ;xm1, xm2) ∈ Q̄2m : bh1xh1 + bh2xh2 = 0 for h = 1, . . . ,m
}
,

F ∗(X11, X12, . . . , Xm1, Xm2) :=
( m∏
h=1

Xah
h1

)
F (m(N−2)),
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where ah ∈ Z≥0 is chosen such that F ∗ is homogeneous of degree dh in (Xh1, Xh2) for
h = 1, . . . ,m. By (7.1), (7.13) F ∗ has index ≥ mΘ w.r.t d at each point of V ∗, so in
particular at the point

x∗ = (x∗1, . . . ,x
∗
m) with x∗h = (bh2,−bh1) for h = 1, . . . ,m.

We have H(F ∗) = H(F (m(N−2))) ≤ H(F ). Together with (7.10), (7.7) this implies that

H(x∗h)dh = H(bh1, bh2)dh ≥ H(Vh)dh/(N−1) ≥ {ed1+···+dmH(F )}(3m
2/Θ)m

≥ {ed1+···+dmH(F ∗)}(3m
2/Θ)m

which is condition (7.4) of Lemma 23. Further, condition (7.3) of Lemma 23 follows from
(7.6). This implies that F ∗ has index < mΘ at x∗, contrary to what we showed above.
Thus, the assumption that Lemma 24 is false leads to a contradiction. This completes our
proof. �

We need another simple non-vanishing result which is a special case of [18], p. 184,
Lemma 8A. For convenience of the reader we give a short proof.

Lemma 25. Let K be a field of characteristic 0 and F ∈ K[X1, . . . , Xr] a non-zero
polynomial with degXiF ≤ si for i = 1, . . . , r. Further, let B1, . . . , Br be positive reals.
Then there are rational integers x1, . . . , xr, i1, . . . , ir with

|xj | ≤ Bj , 0 ≤ ij ≤ sj/Bj for j = 1, . . . , r,(7.14)
∂i1+···+ir

∂Xi1
1 · · · ∂X

ir
r

F (x1, . . . , xr) 6= 0.(7.15)

Proof. We proceed by induction on r. First let r = 1 and put a := [B1], b := [s1/B1]. F
cannot be divisible by

∏a
j=−a(X− j)b+1 which is a polynomial of degree (2a+1)(2b+1) >

s1 = degF . Therefore there are integers x1, i1 with |x1| ≤ a ≤ B1, 0 ≤ i1 ≤ b ≤ s1/B1

such that (d/dX1)i1F (x1) 6= 0.
Now suppose that r ≥ 2 and that Lemma 25 holds for polynomials in fewer than r

variables. By applying Lemma 25 with r = 1 and the field K(X2, . . . , Xr) replacing K it
follows that there are integers x1, i1 with |x1| ≤ B1, 0 ≤ i1 ≤ s1/B1 such that

G(X2, . . . , Xr) :=
(

∂i1

∂Xi1
1

F

)
(x1, X2, . . . , Xr) 6≡ 0.

Now the induction hypothesis applied to G implies that there are rational integers x2, . . . ,
xr, i2, . . . , ir with |xj | ≤ Bj , 0 ≤ ij ≤ (degXjG)/Bj ≤ sj/Bj for j = 2, . . . , r, such that(

∂i2+···+ir

∂Xi2
2 · · · ∂X

ir
r

G

)
(x2, . . . , xr) 6= 0.

This implies (7.15). �

Let V be an (N −1)-dimensional linear subspace of Q̄N . A grid of size A in V is a set

Γ = {x1a1 + · · ·+ xN−1aN−1 : x1, . . . , xN−1 ∈ Z, |xi| ≤ A for i = 1, . . . , N − 1},
where {a1, . . . ,aN−1} is any basis of V . We call {a1, . . . ,aN−1} also a basis of Γ. The
next lemma is our final non-vanishing result:
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Lemma 26. Let m,N, d1, . . . , dm, F, V1, . . . , Vm,Θ have the meaning of Lemma 24 and
satisfy the conditions of Lemma 24, i.e. m,N ≥ 2, 0 < Θ ≤ 1, (7.6), and (7.7). Further, for
h = 1, . . . ,m, let Γh be any grid in Vh of size N/Θ. Then there are x1 ∈ Γ1, . . . ,xm ∈ Γm
such that for x = (x1, . . . ,xm) we have

Indx,d(F ) < 2mΘ.

Proof. For h = 1, . . . ,m let {ah1, . . . ,ah,N−1} be a basis of Γh. By Lemma 24 there is a
tuple i = (i11, . . . , imN ) of non-negative integers with (i/d) < mΘ, such that Fi does not
vanish identically on V1 × · · · × Vm. But then, the polynomial

G(Y11, . . . , Ym,N−1) := Fi

(N−1∑
j=1

Y1ja1j , . . . ,
N−1∑
j=1

Ymjamj
)

is not identically zero. Since G is of degree ≤ dh in the variable Yhj and by Lemma 25,
there are integers yhj , khj with

(7.16) |yhj | ≤ N/Θ, 0 ≤ khj ≤ dhΘ/N for h = 1, . . . ,m, j = 1, . . . , N − 1,

such that

g :=
( m∏
h=1

N−1∏
j=1

∂khj

∂Y
khj
hj

)
G

(
y11, . . . , ym,N−1

)
6= 0.

Put

xh :=
N−1∑
j=1

yhjahj for h = 1, . . . ,m.

Then xh ∈ Γh for h = 1, . . . ,m. Further, g is a linear combination with algebraic co-
efficients of numbers Fi+e(x), where x = (x1, . . . ,xm) and e is a tuple of non-negative
integers (e1, . . . , em,N ) with

N∑
j=1

ehj ≤
N−1∑
j=1

khj for h = 1, . . . ,m.

Hence there is such a tuple e with Fi+e(x) 6= 0. Together with (7.16) this implies that

Indx,d(F ) < ((i + e)/d) = (i/d) + (e/d)

≤ mΘ +
m∑
h=1

1
dh

N∑
j=1

ehj ≤ mΘ +
m∑
h=1

1
dh

N−1∑
j=1

khj

≤ mΘ +
m∑
h=1

(
1
dh

(N − 1)dhΘ/N
)
< 2mΘ.

This completes the proof of Lemma 26. �
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§8. Auxiliary results for the proof of Theorem C.
We use the notation from Theorem C. Thus, K is a number field of degree d, S a finite
set of places on K of cardinality s containing all infinite places, ε a real with 0 < ε < 1, N
an integer ≥ 2, γ = (γiv : v ∈ S, i = 1, . . . , N) a tuple of reals with

(4.21) γiv ≤ s(v) for v ∈ S, i = 1, . . . , N,
∑
v∈S

N∑
i=1

γiv ≤ −ε,

and L̂ = {l̂iv : v ∈ S, i = 1, . . . , N} a system of linear forms in N variables with algebraic
coefficients, such that for each v ∈ S, {l̂1v, . . . , l̂Nv} is linearly independent and such that

(4.22) H(l̂iv) ≤ Ĥ, [K(l̂iv) : K] ≤ D̂, |l̂iv|v = 1 for v ∈ S, i = 1, . . . , N.

We shall frequently use that by Lemma 2,

(8.1) Ĥ−ND̂
N

≤ |det(l̂1v, . . . , l̂Nv)|v ≤ 1 for v ∈ S.

As the tuple (N, γ, L̂) will be kept fixed, we write Π(Q), V (Q) for Π(N, γ, L̂;Q),
V (N, γ, L̂;Q) respectively. Thus,

Π(Q) = {y ∈ ONS : |l̂iv(y)|v ≤ Qγiv for v ∈ S, i = 1, . . . , N}

and V (Q) is the K-vector space generated by Π(Q). We assume that Q satisfies

dimKV (Q) = N − 1,(4.23)

Q > (2Ĥ)e
C2
, with C2 = 230N8s2ε−4 log 4D̂ · log log 4D̂.(4.24)

Our first auxiliary result is an inequality between Q and the height H(V (Q)) of V (Q).
Our proof is similar to Schmidt [19], Lemma 7.3 except that we do not use reciprocal
parallelepipeds.

Lemma 27. There is an (N −1)-dimensional linear subspace V of KN with the following
property:
for every Q with (4.23), (4.24) we have

V (Q) = V

or

(8.2) H(V (Q)) ≥ Qε/3sD̂
N

.

Proof. Fix Q with (4.23), (4.24). By (4.23), there are linearly independent vectors
g1, . . . ,gN−1 in Π(Q). Put

g∗ := (g1 ∧ · · · ∧ gN−1)∗
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(cf. §2). Then by (2.1),

(8.3) V (Q) = {x ∈ KN : g∗ · x = 0}.

Define the linear forms

(8.4) l∗kv =
(
l̂1v ∧ . . . ∧ l̂k−1,v ∧ l̂k+1,v ∧ . . . ∧ l̂Nv

)∗
and put

(8.5) Dkv := l∗kv(g
∗) for v ∈ S, k = 1, . . . , N.

By Laplace’s rule (2.3) we have

Dkv = det
(

(liv(gj)) 1≤i≤N,i 6=k
1≤j≤N−1

)
for v ∈ S, k = 1, . . . , N.

Since g1, . . . ,gN−1 ∈ Π(Q) we have |liv(gj)|v ≤ Qγiv for v ∈ S, i = 1, . . . , N , j =
1, . . . , N − 1. Hence

|Dkv|v ≤ (N !)s(v) max
κ

∏
i 6=k

|liv(gκ(i))|v(8.6)

≤ (N !)s(v)Qγ1v+···+γNv−γkv for v ∈ S, k = 1, . . . , N,

where the maximum is taken over all bijective mappings κ from {1, . . . , N}\{k} to {1, . . . ,
N − 1}.

Suppose for the moment that there is a tuple (iv : v ∈ S) with

iv ∈ {1, . . . , N}, Div,v 6= 0 for v ∈ S(8.7) ∑
v∈S

γiv,v ≥ −
ε

2
.(8.8)

By (8.6), (4.21) and (8.8) we have

(8.9)
∏
v∈S
|Div,v|v ≤ N !Q(

∑
v∈S

∑N

i=1
γiv)−(

∑
v∈S

γiv,v) ≤ N !Q−ε/2.

We estimate the left-hand side of (8.9) from below. Fix v ∈ S and put k := iv. Choose
λ ∈ Q̄∗ such that the linear form λl∗kv has its coefficients in the field K(l∗kv) =: L. There
is a place w on L such that |x|v = |x|gw for x ∈ L, where by (4.22) we have

1 ≤ g ≤ [L : K] ≤ D̂N−1.
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Note that by (8.7) we have λDkv ∈ L∗. Now the Product formula applied to λDkv and
Schwarz’ inequality applied to (8.5) give

1 =
( ∏
q∈ML

|λDkv|q
)g

= |λDkv|gw
(∏
q 6=w

|λDkv|q
)g

≤ |λDkv|gw
(∏
q 6=w

|λl∗kv|q · |g∗|q
)g

=
(

|λDkv|w
|λl∗kv|w · |g∗|w

)g( ∏
q∈ML

|λl∗kv|q · |g∗|q
)g

=
(
|λDkv|v
|λl∗kv|v|g∗|v

) (
H(λl∗kv) ·H(g∗)

)g
≤
(
|Dkv|v

|l∗kv|v · |g∗|v

) (
H(l∗kv) ·H(g∗)

)D̂N−1

,

and this implies that

(8.10) |Dkv|v ≥ |l∗kv|vH(l∗kv)
−D̂N−1

· |g∗|vH(g∗)−D̂
N−1

.

By (8.4), Lemma 2 and (4.22) we have

|l∗kv|v ≥ Ĥ−(N−1)D̂N−1
,

while by (8.4), (2.13) and (4.22) we have

(8.11) H(l∗kv) ≤
∏
i 6=k

H(l̂iv) ≤ ĤN−1.

By inserting this into (8.10) we get, recalling that k = iv,

|Div,v|v ≥ Ĥ−2ND̂N |g∗|vH(g∗)−D̂
N

for v ∈ S.

Further, since g1, . . . ,gN−1 ∈ Π(Q) we have g1, . . . ,gN−1 ∈ ONS . Hence g∗ ∈ ONS , i.e.

|g∗|v ≤ 1 for v 6∈ S.

Together with (8.3), i.e. H(g∗) = H(V (Q)), these inequalities imply that

∏
v∈S
|Div,v|v ≥ Ĥ−2NsD̂N

(∏
v∈S
|g∗|v

)
H(g∗)−sD̂

N

≥ Ĥ−2NsD̂NH(g∗)H(V (Q))−sD̂
N

≥ Ĥ−2NsD̂NH(V (Q))−sD̂
N

.
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By combining this with (8.9) and (4.24) we obtain

H(V (Q))−sD̂
N

≤ N !Ĥ2NsD̂NQ−ε/2 ≤ Q−ε/3,

which is equivalent to (8.2).
We now assume that there is no tuple (iv : v ∈ S) satisfying both (8.7) and (8.8).

We show that there is a fixed (N − 1)-dimensional linear subspace V of KN , independent
of Q, such that V (Q) = V . For v ∈ S, let

Iv := {i ∈ {1, . . . , N} : Div 6= 0}.

In view of (8.5) we have

(8.12) l∗iv(g
∗) = 0 for v ∈ S, i ∈ {1, . . . , N}\Iv.

By (8.4), (4.22) and (2.13) we have

H(l∗iv) ≤ ĤN−1 for v ∈ S, i = 1, . . . , N.

Together with Lemma 3 (ii) this implies that there is a non-zero vector h ∈ KN with

l∗iv(h) = 0 for v ∈ S, i ∈ {1, . . . , N}\Iv,(8.13)

H(h) ≤
(

max
v∈S

i=1,...,N

H(l∗iv)
)N−1

≤ Ĥ(N−1)2
.(8.14)

(If Iv = {1, . . . , N} for each v ∈ S then (8.13) is an empty condition and (8.14) is satisfied
by for instance h = (1, 0, . . . , 0)). Fix a non-zero h ∈ KN with (8.13), (8.14) and put

V := {x ∈ KN : x · h = 0}.

Our aim is to show that V (Q) = V . Since V (Q) is the vector space generated by Π(Q)
and both V (Q) and V have dimension N − 1, it suffices to show that Π(Q) ⊂ V or which
is the same x · h = 0 for every x ∈ Π(Q).

Fix x ∈ Π(Q). For v ∈ S, let Av be the N ×N -matrix whose i-th row consists of the
coefficients of l̂iv and let A∗v the N ×N -matrix whose i-th row consists of the coefficients
of l∗iv. Then by (2.1), (8.4) we have

tA∗v ·Av = ∆vI,

where tA∗v is the transpose of A∗v, ∆v = det(l̂1v, . . . , l̂Nv) and I is the unit matrix. This
implies that

x · h = ∆−1
v

N∑
i=1

l̂iv(x)l∗iv(h)
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so in view of (8.13),

(8.15) x · h = ∆−1
v

∑
i∈Iv

l̂iv(x)l∗iv(h) for v ∈ S.

By (8.1) we have

(8.16) |∆v|−1
v ≤ ĤND̂N for v ∈ S.

Further, by (2.12) and (4.24) we have

|l∗iv|v ≤
∏
j 6=i

|l̂jv|v = 1 for v ∈ S, i = 1, . . . , N

and together with Schwarz’ inequality this implies

(8.17) |l∗iv(h)|v ≤ |l∗iv|v|h|v ≤ |h|v for v ∈ S, i ∈ Iv.
For v ∈ S, choose jv ∈ Iv such that γjv,v = maxi∈Iv γiv. Since x ∈ Π(Q) we have

|l̂iv(x)|v ≤ Qγiv ≤ Qγjv,v for v ∈ S, i ∈ Iv.
Together with (8.15), (8.16), (8.17) this implies that

|x · h|v = |∆v|−1
v |

∑
i∈Iv

l̂iv(x)l∗iv(h)|v(8.18)

≤ Ns(v)ĤND̂N max
i∈Iv
|l∗iv(h)|v|l̂iv(x)|v

≤ Ns(v)ĤND̂N |h|vQγjv,v for v ∈ S.
Further, since x ∈ Π(Q) we have x ∈ ONS , whence |x|v ≤ 1 for v 6∈ S. Together with
Schwarz’ inequality this implies that

(8.19) |x · h|v ≤ |x|v · |h|v ≤ |h|v for v 6∈ S.
Since jv ∈ Iv for v ∈ S, the tuple (jv : v ∈ S) satisfies (8.7), so by our assumption it does
not satisfy (8.8). This means that

(8.20)
∑
v∈S

γjv,v < −ε/2.

Now assume that x ·h 6= 0. Then, by the Product formula and (8.18), (8.19), (8.20), (8.14)
we have

1 =
∏

v∈MK

|x · h|v =
∏
v∈S
|x · h|v

∏
v 6∈S

|x · h|v

≤ N · ĤNsD̂N
∏
v∈S
|h|vQ

∑
v∈S

γjv,v ·
∏
v 6∈S

|h|v

≤ N · ĤNsD̂NH(h)Q−ε/2

≤ N · ĤNsD̂N+(N−1)2
Q−ε/2

but this contradicts (4.24). Hence x ·h = 0. This completes the proof of Lemma 27. �

We need another, easier, gap principle, which is similar to [19], Lemma 7.6.
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Lemma 28. Let A,B be reals with

B > A > (2Ĥ)e
C2
,

where C2 is the constant in (4.24). There is a collection of (N − 1)-dimensional linear
subspaces of KN of cardinality at most

T (A,B) := 1 + 4ε−1 log(logB/ logA)

such that for every Q with (4.23) and with

A ≤ Q < B

the vector space V (Q) belongs to this collection.

Proof. Let E > (2Ĥ)e
C2 . Suppose there are Q with (4.23) and with

(8.21) E ≤ Q < E1+ε/2.

Let QE be the smallest such Q and put VE := V (QE). Then QE satisfies (4.24). We first
show that for all Q with (4.23) and (8.21) we have

(8.22) V (Q) = VE .

Take linearly independent x1, . . . ,xN−1 ∈ Π(QE). (8.22) follows once we have shown that
for every Q ∈ [QE , E1+ε/2) and every xN ∈ Π(Q) we have xN ∈ VE or, which is the same,
det(x1, . . . ,xN ) = 0.

Take xN ∈ Π(Q). Fix v ∈ S. By (8.1) we have

|det(x1, . . . ,xN )|v = |det(l̂1v, . . . , l̂Nv)|−1
v |det(l̂iv(xj))|v(8.23)

≤ ĤND̂N |det(l̂iv(xj))|v.

Further, we have |l̂iv(xj)|v ≤ QγivE for i = 1, . . . , N, j = 1, . . . , N − 1 and also, by (4.21)
we have

|l̂iv(xN )|v ≤ Qγiv = QγivE (Q/QE)γiv ≤ QγivE (Q/QE)s(v)

≤ QγivE (E1+ε/2/QE)s(v) ≤ Qγiv+s(v)ε/2
E

for i = 1, . . . , N . Therefore (taking again the maximum over all permutations κ of
(1, . . . , N)),

|det(l̂iv(xj))|v ≤ (N !)s(v)
N∏
i=1

|l̂iv(xκ(i))|v ≤ (N !)s(v)Q
γ1v+···+γNv+s(v)ε/2
E .

By inserting this into (8.23) we get

|det(x1, . . . ,xN )|v ≤ (N !)s(v)ĤND̂NQ
γ1v+···+γNv+s(v)ε/2
E for v ∈ S.
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By taking the product over v ∈ S and using (4.21) and that QE satisfies (4.24) we obtain∏
v∈S
|det(x1, . . . ,xN )|v ≤ N !ĤNsD̂NQ

(∑
v∈S

∑N

i=1
γiv

)
+ε/2

E

≤ N !ĤNsD̂NQ
−ε/2
E < 1.

Further, we know that x1, . . . ,xN ∈ ONS , whence det(x1, . . . ,xN ) ∈ OS and that
∏
v∈S |a|v

≥ 1 for non-zero a ∈ OS . Hence det(x1, . . . ,xN ) = 0 which is what we wanted to show.
Now let k be the smallest integer with (1 + ε/2)k > logB/ logA. Put Ei := A(1+ε/2)i

for i = 0, . . . , k− 1. Then Ei ≥ A > (2Ĥ)e
C2 . Let I be the set of indices i ∈ {0, . . . , k− 1}

for which there is a Q with (4.23) and with Ei ≤ Q < E
1+ε/2
i . Then I has cardinality at

most

k < 1 +
log(logB/ logA)

log(1 + ε/2)
< 1 +

4
ε

log(logB/ logA) = T (A,B).

For every Q ∈ [A,B) with (4.23) there is an i ∈ I such that Q ∈
[A(1+ε/2)i , A(1+ε/2)i+1

) = [Ei, E
1+ε/2
i ). Above we proved that V (Q) = VEi . Hence the

spaces V (Q) with Q satisfying (4.23) and A ≤ Q < B belong to the collection {VEi : i ∈ I}
which has cardinality at most T (A,B). This proves Lemma 28. �

In the proof of Theorem C we need an auxiliary polynomial with certain properties,
to which Lemma 26 in §7 will be applied. Let m ≥ 2. For h = 1, . . . ,m, denote as before
by Xh the block of variables (Xh1, . . . , XhN ). For v ∈ S, we introduce new variables

Uhiv := l̂iv(Xh) (h = 1, . . . ,m, i = 1, . . . , N).

Let d = (d1, . . . , dN ) be a tuple of positive integers. Denote by R(d) the set of non-zero
polynomials in Z[X1, . . . ,Xm] which are of degree dh in the block Xh for h = 1, . . . ,m and
whose coefficients have gcd 1. In what follows, i, j denote tuples of non-negative integers
(ihk : h = 1, . . . ,m, k = 1, . . . , N), (jhk : h = 1, . . . ,m, k = 1, . . . , N), respectively. For
F ∈ R(d) we put as usual

Fi :=
( m∏
h=1

N∏
k=1

1
ihk!

∂ihk

∂Xihk
hk

)
F.

For each v ∈ S, {l̂1v, . . . , l̂Nv} is linearly independent, whence Fi can be expressed as

Fi =
∑

j

c(i, j, v)U j11
11v · · ·U

jmN
mNv,

where the sum is taken over tuples j with

(8.24)
N∑
k=1

jhk = dh −
N∑
k=1

ihk for h = 1, . . . ,m.

As before, we put

(i/d) :=
m∑
h=1

1
dh
·
N∑
k=1

ihk.
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Lemma 29. (Polynomial theorem). Let Θ be a real with 0 < Θ < 1/N , m an integer
with

(8.25) m > 4Θ−2 log(2NsdD̂Ns)

and d = (d1, . . . , dm) any m-tuple of positive integers. Then there is a polynomial F ∈
R(d) with the following properties:
(i) H(F ) ≤ (2mN3N1/2Ĥ)d1+···+dm ;
(ii) for all v ∈ S and all tuples i, j with (8.24) and with

(i/d) < 2mΘ,

max
k=1,...,N

∣∣∣ m∑
h=1

jhk
dh
− m

N

∣∣∣ > 3mNΘ,(8.26)

we have c(i, j, v) = 0;
(iii) for all tuples i we have∏

v∈S
max

j
|c(i, j, v)|v ≤ (24mN Ĥ2NsD̂N )d1+···+dm .

Proof. Let K1 be the composite of the fields K(l̂iv) (v ∈ S, i = 1, . . . , N). Then each l̂iv
is proportional to a linear form with coefficients in K1. By [K : Q] = d and (4.22) we have
[K1 : Q] ≤ dD̂Ns. Let t be the maximal number of pairwise non-proportional linear forms
among l̂iv (v ∈ S, i = 1, . . . , N). Then t ≤ Ns. By (8.25) we have

(8.27) m > 4Θ−2 log(2t[K1 : Q]).

This is precisely the condition on m in the Index theorem and the Polynomial theorem of
[19], §9, and from these theorems we infer that there is a polynomial F ∈ R(d) with (i)
and (ii). This is proved by using Siegel’s lemma from [2]: the equations c(i, j, v) = 0 can be
translated into a system of linear equations in the unknown integer coefficients of F , (8.27),
(8.26) guarantee that the number of unknowns is larger than the number of equations, and
then Siegel’s lemma implies that this system of linear equations has a non-zero integral
solution whose coordinates have absolute values bounded above by the right-hand side of
(i).

We prove (iii). Fix v ∈ S. Since the coefficients of F have gcd 1 and by (i) we have

|F |v = H(F )s(v) ≤ (2mN · 3N1/2Ĥ)(d1+···+dm)s(v).

Together with (7.2) this implies that for each tuple i,

|Fi|v ≤
(

2mN+1 · 3N1/2Ĥ

)(d1+···+dm)s(v)

(8.28)

≤
(

2mN+3N1/2Ĥ

)(d1+···+dm)s(v)

.
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We have

(8.29) Xhi =
N∑
k=1

ηikUhkv (h = 1, . . . ,m, i = 1, . . . , N),

where (ηij) is the inverse matrix of the coefficient matrix Av of l̂1v, . . . , l̂Nv. We have
ηik = ±∆ik ·∆−1

v , where ∆ik is the determinant of the matrix obtained by removing the
i-th row and the k-th column from Av, and ∆v = detAv = det(l̂1v, . . . , l̂Nv). By (4.22)
and Hadamard’s inequality we have |∆ij |v ≤ 1 for i = 1, . . . , N, j = 1, . . . , N . Together
with (8.1) this implies that

(8.30) |ηik|v ≤ |det(l̂1v, . . . , l̂Nv)|−1
v ≤ ĤND̂N for i = 1, . . . , N, j = 1, . . . , N.

Write
Fi(X1, . . . ,Xm) =

∑
j

p(i, j)Xj11
11 · · ·X

jmN
mN ,

where the summation is over tuples j with (8.24). By inserting (8.29) we get

(8.31) Fi =
∑

j

p(i, j)
m∏
h=1

N∏
k=1

( N∑
l=1

ηklUhlv

)jhk
.

Put
A := max

j
|p(i, j)|v, B := max(1,max

k,l
|ηkl|v).

We have Fi =
∑

p c(i,p, v)
∏m
h=1

∏N
l=1 U

phl
hlv where the summation is over tuples p = (phl).

If v is an infinite place then we have, recalling that | · |1/s(v)
v satisfies the triangle inequality,

|c(i,p, v)|1/s(v)
v ≤

∑
j

A1/s(v)
m∏
h=1

N∏
k=1

( N∑
l=1

B1/s(v)
)jhk

≤ N2(d1+···+dm)
(
ABd1+···+dm

)1/s(v)

since j runs through tuples with (8.24). If v is a finite place then

|c(i,p, v)|v ≤ A ·max
j
B

∑
h,k

jhk ≤ ABd1+···+dm .

So for both cases v infinite, v finite we have

|c(i,p, v)|v ≤ N2s(v)(d1+···+dm)ABd1+···+dm .

By estimating A from above using A ≤ |Fi|v and (8.28), and B from above using (8.30)
we obtain

|c(i,p, v)|v ≤
(
N2s(v) · {2mN+3N1/2Ĥ}s(v) · ĤND̂N

)d1+···+dm

≤ (24mNs(v)Ĥ2ND̂N )d1+···+dm for v ∈ S.
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By taking the product over v ∈ S we get∏
v∈S

max
p
|c(i,p, v)|v ≤

(
24mN Ĥ2NsD̂N

)d1+···+dm

which is (iii). This completes the proof of Lemma 29. �

§9. Proof of Theorem C.
Let (N, γ, L̂) be a tuple as in Theorem C satisfying N ≥ 2, (4.21), (4.22). Put

(9.1) Θ :=
ε

30N3
,

and let m be the smallest integer satisfying the condition of Lemma 29, i.e.

(8.25) m > 4Θ−2 log(2NsdD̂Ns).

Then by (9.1) we have

(9.2) m < 4000N7sε−2 log 4D̂.

We assume that the collection of subspaces V (Q) with Q satisfying (4.23), (4.24) has
cardinality > C2 and shall derive a contradiction from that. Then this collection consists
of more than

1 + (m− 1)t, with t = 2 + [4ε−1 log(4m2Θ−1)]

subspaces, since

1 + (m− 1)t ≤ 5mε−1 log(4m2Θ−1) < 5mε−1 log(120N3m2ε−1)
< 5× 4000 ·N7sε−3 log 4D̂ · log(120× 40002N17s2ε−5(log 4D̂)2)
< 230N8s2ε−4 log 4D̂ · log log 4D̂ = C2.

Let V be the subspace from Lemma 27. Then there are reals Q′1, Q
′
2, . . . , Q

′
1+(m−1)t with

(4.23), (4.24) and Q′1 < Q′2 < . . . < Q′1+(m−1)t such that the spaces V (Q′1), . . . ,
V (Q′1+(m−1)t) are different and different from V . Put

Q1 := Q′1, Q2 := Q′t+1, . . . , Qm := Q′(m−1)t+1

and
Vh := V (Qh) for h = 1, . . . ,m.

There are t > 1 + 4ε−1 log{4m2/Θ} different spaces V (Q) with Qh ≤ V (Q) < Qh+1;
together with Lemma 28 this implies that

(9.3) Qh+1 ≥ Q4m2/Θ
h for h = 1, . . . ,m− 1.
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Define positive integers d1, . . . , dm by

d1 := 1 +
[

logQm
Θ logQ1

]
,(9.4)

d1 logQ1 ≤ dh logQh <d1 logQ1 + logQh for h = 1, . . . ,m.(9.5)

Thus,

(9.6) d1 logQ1 ≤ dh logQh < d1 logQ1 · (1 + Θ) for h = 1, . . . ,m.

Let d = (d1, . . . , dm) and let F ∈ R(d) be the polynomial from Lemma 29 which exists
since m satisfies (8.25). We want to apply Lemma 26. We have N ≥ 2 and m ≥ 2, 0 <
Θ ≤ 1 by (9.1), (8.25), respectively. We verify that d1, . . . , dm, F, V1, . . . , Vm satisfy the
other conditions of Lemma 26, i.e. (7.6), (7.7).

By (9.6), (9.3), (9.1) we have

dh
dh+1

=
dh logQh

dh+1 logQh+1
· logQh+1

logQh
≥ (1 + Θ)−1 · 4m2/Θ

> 2m2/Θ for h = 1, . . . ,m− 1,

which is (7.6).
By Lemma 27, Vh = V (Qh) 6= V , (9.5) and the fact that Q1 satisfies (4.24) we have

H(Vh)dh ≥ Qdh·ε/3sD̂
N

h ≥ Qd1·ε/3sD̂N
1 ≥ (2Ĥ)d1e

C2ε/3sD̂N

≥ (2Ĥ)d1·eC2/2 for h = 1, . . . ,m.

On the other hand, by Lemma 29 (i), d1 + · · ·+ dm ≤ md1, (9.1) and (9.2) we have

{
ed1+···+dmH(F )

}(N−1)(3m2/Θ)m

≤
{
e · 2mN · 3N1/2Ĥ

}(N−1)(3m2/Θ)m(d1+···+dm)

≤ (2Ĥ)2mN2·(3m2/Θ)m·md1 ≤ (2Ĥ)d1·(3m2/Θ)2m

= (2Ĥ)d1·exp{2m log(90m2N2/ε)}

≤ (2Ĥ)d1·exp{8000N7sε−2 log 4D̂·log(109N16ε−3(log 4D̂)2)}

< (2Ĥ)d1·eC2/2
.

Therefore,

H(Vh)dh >
{
ed1+···+dmH(F )

}(N−1)(3m2/Θ)m for h = 1, . . . ,m,

which is (7.7). Hence indeed, m,N,Θ, d1, . . . , dm, F, V1, . . . , Vm satisfy the conditions of
Lemma 26.
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For h = 1, . . . ,m, choose a linearly independent set of vectors {gh1, . . . ,gh,N−1} from
Π(Qh) (which exists by (4.23)) and let Γh be the grid of size N/Θ,

Γh :=
{
x1gh1 + · · ·+ xN−1gh,N−1 : x1, . . . , xN1 ∈ Z, |x1|, . . . , |xN−1| ≤ N/Θ

}
.

Now Lemma 26 implies that there are x1 ∈ Γ1, . . . ,xm ∈ Γm and a tuple of non-negative
integers i with (i/d) < 2mΘ, such that

(9.7) f := Fi(x1, . . . ,xm) 6= 0.

From ghj ∈ Π(Qh) it follows that ghj ∈ ONS for j = 1, . . . , N , hence xh ∈ ONS for
h = 1, . . . , N . Further, Fi has its coefficients in Z. Hence f ∈ OS\{0} which implies∏
v∈S |f |v ≥ 1. Below, we show that ∏

v∈S
|f |v < 1.

Thus, the assumption that there are more than C2 different subspaces among V (Q) with
Q running through the reals with (4.23), (4.24) does indeed lead to a contradiction.

Fix v ∈ S. Put

uhiv := l̂iv(xh) for h = 1, . . . ,m, i = 1, . . . , N.

Since ghj ∈ Π(Qh), i.e. |l̂iv(ghj)|v ≤ Qγivh for i = 1, . . . , N and j = 1, . . . , N − 1, and since
xh is in the grid Γh of size N/Θ, we have, using (2.8),

(9.8) |uhiv|v ≤ (N2/Θ)s(v)Qγivh for h = 1, . . . ,m, i = 1, . . . , N.

By Lemma 29 (ii) we have

(9.9) f =
∗∑
j

c(i, j, v)uj11
11v · · ·u

jmN
mNv,

where the summation is over all tuples of non-negative integers j = (j11, . . . , jmN ) with

(9.10)



∣∣∣ m∑
h=1

jhk
dh
− m

N

∣∣∣ ≤ 3mNΘ for k = 1, . . . , N,

N∑
k=1

jhk = dh −
N∑
k=1

ihk for h = 1, . . . , N.

Now by (9.8), (9.9), by the trivial fact that there are at most Nd1+···+dm tuples j with
(9.10) and by

∑
h,k jhk ≤ d1 + · · ·+ dm ≤ md1, we have

|f |v ≤ N (d1+···+dm)s(v) · ∗max
j
|c(i, j, v)|v|u11v|j11

v · · · |umNv|jmNv(9.11)

≤
{

(N3/Θ)s(v) ·Av ·Qcv1
}md1

,
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where

Av :=
(

max
j
|c(i, j, v)|v

)1/md1

,

cv :=
1
m

∗
max

j

m∑
h=1

N∑
k=1

γkv
jhk
dh

.
dh logQh
d1 logQ1

,

and the maximum is taken over all tuples j with (9.10).
We estimate cv from above. For each tuple j with (9.10) we have, recalling that

γkv ≤ s(v) by (4.21) and 1 ≤ dh logQh/d1 logQ1 ≤ 1 + Θ by (9.6),

m∑
h=1

N∑
k=1

γkv
jhk
dh
· dh logQh
d1 logQ1

=
N∑
k=1

{
(γkv − s(v))

m∑
h=1

jhk
dh
· dh logQh
d1 logQ1

}

+ s(v)
{ N∑
k=1

m∑
h=1

jhk
dh
· dh logQh
d1 logQ1

}

≤
N∑
k=1

{(
γjv − s(v)

) m∑
h=1

jhk
dh

}
+ s(v)(1 + Θ)

{ N∑
k=1

m∑
h=1

jhk
dh

}

≤
{ N∑
k=1

(
γkv − s(v)

)}(m
N
− 3mNΘ

)
+ s(v)(1 + Θ)N(

m

N
+ 3mNΘ)

< m

( N∑
k=1

γkv

)(
1
N
− 3NΘ

)
+ s(v) · 7mN2Θ;

here we used that by (9.1) and 0 < ε < 1 we have Θ < 1/30N3. Hence

cv ≤
( N∑
k=1

γkv

)(
1
N
− 3NΘ

)
+ s(v) · 7N2Θ for v ∈ S.

Together with (4.21), (9.1) this implies that

∑
v∈S

cv ≤
(∑
v∈S

N∑
k=1

γkv

)(
1
N
− 3NΘ

)
+ 7N2Θ(9.12)

≤ −ε
(

1
N
− ε

10N2

)
+

7
30

ε

N
< − ε

2N
.

Further, by Lemma 29 (iii) and d1 + · · ·+ dm ≤ md1 we have

(9.13)
∏
v∈S

Av ≤ 24mN Ĥ2NsD̂N .
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Now (9.11), (9.13), (9.12), (9.1), (9.2) and the fact that Q1 satisfies (4.24) imply that

∏
v∈S
|f |v ≤

{
(N3/Θ) · (

∏
v∈S

Av) ·Q
∑

v∈S
cv

1

}md1

≤
{

(N3/Θ) · 24mN Ĥ2NsD̂N ·Q−ε/2N1

}md1

≤

{(
30N6

ε
· 216000N8sε−2 log 4D̂Ĥ2NsD̂N

)2N/ε

·Q−1
1

}md1ε/2N

< 1.

This completes the proof of Theorem C. �
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