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§1. Introduction.

Let n be an integer and [q,...,[, linearly independent linear forms in n variables with
(real or complex) algebraic coefficients. For x = (z1,...,z,) € Z" put
x| := /22 + -+ + 22.

In 1972, W.M. Schmidt [17] proved his famous Subspace theorem: for every 6 > 0, there
are finitely many proper linear subspaces 771, ...,T; of Q" such that the set of solutions of
the inequality

11(x) -1 (x)] < |x|7° inxeZ"

is contained in 17 U ---UT;.

In 1989, Schmidt managed to prove the following quantitative version of his Subspace
theorem. Suppose that each of the above linear forms [; has height H(l;) < H defined
below and that the field generated by the coefficients of [y, ...,[, has degree D over Q.
Further, let 0 < § < 1. Denote by det(ly,...,l,) the coefficient determinant of i1,...,1I,.
Then there are proper linear subspaces 17, ..., T; of Q™ with

226n6—2

t < (2Do)
such that the set of solutions of
(1.1) (%) 1o (x)] < |det(ly,...,0,)] - |x|™° inxeZ"

is contained in
{x € Z" : |x| < max ((n!)8/5,H)} UuTnu---UT;.

In 1977, Schlickewei extended Schmidt’s Subspace theorem of 1972 to the p-adic case
and to number fields. In 1990 [15] he generalised Schmidt’s quantitative Subspace theorem
to the p-adic case over Q and later, in 1992 [16] to number fields. Below we state this
result of Schlickewei over number fields and to this end we introduce suitably normalised
absolute values and heights.

Let K be an algebraic number field. Denote its ring of integers by Ok and its collection
of places (equivalence classes of absolute values) by M. For v € Mg, x € K, we define
the absolute value |z|, by

(i) |z], = |o(x)|YEQ if » corresponds to the embedding o : K «— R;

1



(ii) |z|, = |o(2)[> QU = |5 (2)|?>/K:Q if v corresponds to the pair of conjugate complex
embeddings 0,5 : K — C;

(iii) |z|, = (Np) o9 @)/IK:Ql if 4 corresponds to the prime ideal p of Ok-.

Here Np = #(Ok/p) is the norm of p and ord,(x) the exponent of p in the prime ideal

decomposition of (x), with ord,(0) := oco. In case (i) or (ii) we call v real infinite or

complex infinite, respectively and write v|oco; in case (iii) we call v finite and write v { co.

These absolute values satisfy the Product formula

H|x|U:1 for z € K~

(product taken over all v € M) and the Extension formulas

H|$|w :lNL/K(l')H/[LK] fOI'ZL’EL,UGMK;

w]|v

H |z|w =|z|, for z e K,ve Mg,

w]|v

where L is any finite extension of K and the product is taken over all places w on L lying
above v.
The height of x = (z1,...,2,) € K™ with x # 0 is defined as follows: for v € M put

x| =( Z |xi|3[K:Q])1/2[K:Q] if v is real infinite,
i=1

x| =( Z |xi|£,K:@])1/[K:Q] if v is complex infinite,

i=1
|x|, =max(|z1|y,...,|Tn|y) if v is finite
(note that for infinite places v, |- |, is a power of the Euclidean norm). Now define

H(x) = H(zy,...,2n) = [ ] [X]o-

By the Product Formula, H(ax) = H(x) for a € K*. Further, by the Extension formulas,
H(x) depends only on x and not on the choice of the number field K containing the
coordinates of x, in other words, there is a unique function H from Q™\{0} to R such
that for x € K", H(x) is just the height defined above; here Q is the algebraic closure
of Q. For a linear form I(X) = a1 X7 + - -+ + a, X,, with algebraic coefficients we define
H(l) :== H(a) where a = (aq,...,a,) and if a € K™ then we put |l|, = |a|, for v € M.
Further, we define the number field K(I) := K(a1/a;,...,ay/a;) for any j with a; # 0;
this is independent of the choice of j. Thus, K(cl) = K(I) for any non-zero algebraic
number c.

We are now ready to state Schlickewei’s result from [16]. Let K be a normal extension
of Q of degree d, S a finite set of places on K of cardinality s and for v € S, {l14,...,ln}
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a linearly independent set of linear forms in n variables with coefficients in K and with
H(l;y) < Hfori=1,...,n,0€S. Then for every 6 with 0 < < 1 there are proper linear
subspaces T1,...,T; of K™ with

234nd86672

t < (8sd) :

such that every solution x € K" of the inequality

(1.2) 11 o ()]0 _ H(x) b

vegint llivlolxlo

either lies in T} U - - - U T} or satisfies
H(x) < max ((n!)g/‘s, Hd'”s/‘s).

The restrictions that K be normal and the linear forms [;, have their coefficients in K
are inconvenient for applications such as estimating the numbers of solutions of norm
form equations or decomposable form equations where one has to deal with inequalities of
type (1.2) of which the unknown vector x assumes its coordinates in a finite, non-normal
extension K of Q and the linear forms [;, have their coefficients outside K.

In this paper, we improve Schlickewei’s quantitative Subspace theorem over number
fields. We drop the restriction that K be normal and we allow the linear forms to have
coefficients outside K. Further, we derive an upper bound for the number of subspaces
with a much better dependence on n and d: our bound depends only exponentially on
n and polynomially on §~! whereas Schlickewei’s bound is doubly exponential in n and
exponential in §~!. As a special case we obtain a significant improvement of Schmidt’s
quantitative Subspace theorem mentioned above.

In the statement of our main result, the following notation is used:

K is an algebraic number field (not necessarily normal);

S is a finite set of places on K of cardinality s containing all infinite places;

{liv, -+, lno }(v € 9) are linearly independent sets of linear forms in n variables with

algebraic coefficients such that

H(ly,)<H, [K(ly):K|<D forvesS, i=1,...,n.

In the sequel we assume that the algebraic closure of K is Q. We choose for every place
v € Mg a continuation of | - |, to Q, and denote this also by | - |,; these continuations are
fixed throughout the paper.

THEOREM. Let 0 < § < 1. Consider the inequality

n

(1.3) 1111 [LCI (T 1det(ro, .- lno)lo) - H(x)™°  inxeK".
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i) There are proper linear subspaces 11, ...,T;, of K™, with
(i) prop p voo Tty :

t < (260"2 . 5_7”)8 log4D -loglog4D
such that every solution x € K™ of (1.3) with
H(x)>H

belongs to 17 U --- UTy,.
(ii) There are proper linear subspaces St,...,Ss, of K™, with

ty < (150n* - 571)" 1 (2 + log log 2H)
such that every solution x € K™ of (1.3) with
H(x)< H
belongs to S1 U ---US,,.

Now assume that K = Q, S = {oo} and let ly,...,l, be linearly independent linear
forms in n variables with algebraic coefficients such that H(l;) < H and [Q(l;) : Q] < D

for e =1,...,n. Consider again the inequality

(1.1) (%) 1o (x)] < |det(ly,...,0,)] - |x|™°  inxeZ"

where 0 < § < 1. If x € Z" is primitive, i.e. x = (x1,...,2y,) with ged(zq,...,2,) = 1,
then H(x) = |x|. Hence our Theorem implies at once the following improvement of

Schmidt’s result:

Corollary. For every § with 0 < 6 < 1 there are proper linear subspaces T4, ..., Ty of Q"
with .
t < 200m" 5= Jog 4D - loglog 4D

such that every solution x € 7™ of (1.1) with
H(x) > H, x primitive
liesinTy U---UT;.
Define the height of an algebraic number £ by H (&) := H(1,£). Let K, S be as in the

Theorem and for v € S, let a, be an algebraic number of degree at most D over K and
with H(o,) < H. Let 0 < ¢ < 1. Consider the inequality

(1.4) [ min (1,18 - auls) <H(B) > inBeK.

veS



By a generalisation of a theorem of Roth, (1.4) has only finitely many solutions. Bombieri
and van der Poorten [1] (only for S consisting of one place) and Gross [9] (in full generality)
derived good upper bounds for the number of solutions of (1.4). It is possible to derive a
similar bound from our Theorem above. Namely, let 11, (x) = 1 — a2, loy(x) = z2 for
v € S and put x = (f,1) for § € K. Then every solution 3 of (1.4) satisfies

H |l1v(x)l2;(x)|v < H min (1, 18— Ozv|v)
ves |X|U vES

<H(B) >0 =[] Idet(l1y, lov)|s - H(x) >0 .
veS

Now our Theorem with n = 2 implies that (1.4) has at most
(1.5) (24000 - 67112 + loglog 2H) + (2*°.67'*)*log4D - loglog4D

solutions. The bounds of Bombieri and van der Poorten and Gross are of a similar shape,
except that in their bounds the constants are better and the dependence on D is slightly
worse, namely (log D)? - loglog D. Our Theorem can also be used to derive good upper
bounds for the numbers of solutions of norm form equations, S-unit equations and de-
composable form equations; we shall derive these bounds in another paper. Schlickewei
announced that he improved his own quantitative Subspace theorem in another direction
and that he used this to show a.o. that the zero multiplicity of a linear recurrence sequence
of order n with rational integral terms is bounded above in terms of n only. (lectures given
at MSRI, Berkeley, 1993, Oberwolfach, 1993, Conference on Diophantine problems, Boul-
der, 1994).

Remarks about Roth’s lemma.

Following Roth [13], the generalisation of Roth’s theorem mentioned above can be proved
by contradiction. Assuming that (1.4) has infinitely many solutions, one constructs an
auxiliary polynomial F' € Z[X3,...,X,,] which has large “index” at some point § =
(B1,...,0m) where Bi,..., B, are solutions of (1.4) with H(f),...,H(By) sufficiently
large. Then one applies a non-vanishing result proved by Roth in [13], now known as
Roth’s lemma, implying that F' cannot have large index at (.

In his proof of the Subspace theorem [17], Schmidt applied the same Roth’s lemma but
in a much more difficult way, using techniques from the geometry of numbers. Schmidt used
these same techniques but in a more explicit form in his proof of his quantitative Subspace
theorem [19]. Schlickewei proved his results [14,15,16] by generalising Schmidt’s arguments
to the p-adic case. Very recently, Faltings and Wiistholz [8] gave a completely different
proof of the (qualitative) Subspace theorem. They did not use geometry of numbers but
instead a very powerful generalisation of Roth’s lemma, discovered and proved by Faltings
in [7], the Arithmetic product theorem ([7], Theorems 3.1, 3.3).

Our approach in the present paper is that of Schmidt. But unlike Schmidt we do not
use Roth’s lemma from [13] but a sharpening of this, which we derived in [6] by making
explicit the arguments used by Faltings in his proof of the Arithmetic product theorem. *)

*) Wiistholz announced at the conference on Diophantine problems in Boulder, 1994, that his student R.

Ferretti independently obtained a similar sharpening.



Further, in order to obtain an upper bound for the number of subspaces depending only
exponentially on n we also had to modify the arguments from the geometry of numbers
used by Schmidt. For instance, Schmidt applied a lemma of Davenport and it seems that
that would have introduced a factor (2)! in our upper bound which is doubly exponential
in n. Therefore we wanted to avoid the use of Davenport’s lemma and we did so by making
explicit some arguments from [5].

A modified version of Roth’s lemma is as follows. Let F\(X1,...,X,,) € Q[X1,..., X,]
be a polynomial of degree < dj in X} for h = 1,...,m. Define the index of F' at x =
(21,...,7m,) to be the largest real number © such that (9/0X)% -+ (8/0X;,) F(x) =0
for all non-negative integers iy, ..., i, with i;/dy +- -+ i /dm, < ©. As before, the height
of £ € Q is defined by H(¢) = H(1,£) and the height H(F) of F is by definition the height
of the vector of coefficients of F'. By c1,co, ... we denote positive absolute constants. Now
Roth’s lemma states that there are positive numbers wy(m,®) and ws(m,O) depending
only on m,©, such that if m > 2,0 < © < 1, if

d
(1.6) h >wi(m,0) forh=1,....m—1
dh+1
and if x1, ..., z,, are non-zero algebraic numbers with
(1.7) H(zp)® > (¢httdm ) 2"™ for h=1,...,m,

then F' has index < O at x = (21,...,Tm).
By modifying the arguments of Schmidt and Schlickewei one can show that the set of

solutions x of (1.3) with H(x) > H is contained in some union of proper linear subspaces
of K™, Ty U---UT}, with

(1.8) t1 < ¢(n, 6, s) - {mlogwi (m, ©) + logwa(m, ©)},
where
(1.9) m = 5*203810g 4D, ©=9dc3", c(n,d,s) = (CZZ(S—CW)S :

the factor ¢(n,d, s) comes from the techniques from the geometry of numbers, while the
factor mlogwi(m,®) + logwa(m, ©) comes from the application of Roth’s lemma. Roth
proved his lemma with

(1.10) w1(m,0) = wy(m,B) = (O71)%" |

and Schmidt and Schlickewei applied Roth’s lemma with (1.10). By substituting (1.9) and
(1.10) into (1.8) one obtains

t1 < c(n,é, s)(ZlD)c?‘r2 :
In [6] we derived Roth’s lemma with
wi(m,0) =m=/0, ws(m,0)=(m=®/0)™
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and by inserting this and (1.9) into (1.8) one obtains
t1 < ¢(n,d, s)ciomlog(m/O) < (0711125_‘312”)8 log4D -loglog4D .

An explicit computation of ¢q1, ¢12 yields the Theorem.

Recall that in Roth’s lemma there is no restriction on the auxiliary polynomial F
other than (1.6), but an arithmetic restriction (1.7) on F' and the point x. Bombieri and
van der Poorten [1] and Gross [9] obtained their quantitative versions of Roth’s theorem by
using instead of Roth’s lemma the Dyson-Esnault-Viehweg lemma [3]. This lemma states
also that under certain conditions a polynomial F' has small index at x but instead of the
arithmetic condition (1.7) it has an algebraic condition on F,x. It turned out that this
algebraic condition could be satisfied by the auxiliary polynomial constructed in the proof
of Roth’s theorem but was too strong for the polynomial constructed in the proof of the
Subspace theorem.

§2. Preliminaries.

In this section we have collected some facts about exterior products, inequalities related to

heights and absolute values and results from the geometry of numbers over number fields.
We start with exterior products. Let F' be any field. Further, let n,p be integers

withn > 2,1 <p <nand put N := (Z) Denote by o1,...,0n the subsets of {1,...,n}

of cardinality p, ordered lexicographically: thus, o1 = {1,...,p}, oo = {1,...,p—1L,p+

1},...,onc1 ={n—pn—p+2,...,n}, on = {n—p+1,...,n}. For vectors x; =
(1'11,...,.T1n),...,xp:(.prl,...,.fI?pn)EFn put
L1,ip T1,iq e xl,ip

Aj = Aj(Xl,...,Xp) =

xp,il xp,ig e mp,ip
where 0; = {iy < ... <ip}, i.e. 0; ={i1,...,%p} and i1 < ... <i,. Now define the vector
in N
Xl/\.../\Xn = (Al,...,AN) .
Note that x; A ... A X, is multilinear in x;,...,x,. Further, x; A... Ax, = 0 if and only

if {x1,...,x%,} is linearly dependent. For x = (z1,...,2y), ¥y = (y1,.--,Yn) € F" define
the scalar product by x -y = z1y1 + -+ - + Yy, and put

X" = (Tp, —Tn-1,Tn—2,---, (=) tay).
Then for xq,...,x, € F" we have
(2.1) X1+ (Xo A AX)" =det(xy,...,X,) .

Further, we have Laplace’s identity

(22) (Xl VANRRAAN Xp) . (Y1 VANRRAAN yp) :det(xi . yj')lgi’jgp
for x1,...,%p,¥1,...,yp € F" .



We use similar notation for linear forms. For the linear form I(X) = a-X= >"" a;X;,
where a = (aq,...,a,), we put [*(X) = a* - X. Further, for p linear forms [;(X) = a; - X
(¢=1,...,p) in n variables, we define the linear form in (Z) variables

(LA AN)X)=(arA...ANay) - X
For instance (2.2) can be reformulated as
(2.3) (ll VANAN lp) . (Xl VANA Xp) = det(li(Xj))lgijjgp .

Let {ay,...,a,}, {b1,...,b,} be two bases of F" which are related by

n

j=1
for certain §; € F'. For j =1,..., (Z) define

Aj ::ail/\.../\ain_p, Bj ::bil/\---/\b

n—p)

where {i; < ... <i,_p} = 0, is the j-th subset of {1,...,n} of cardinality n — p. Then
{Aq,..., A( )}, {By4,... ,B( )} are two bases of F(3) and they are related by

n n
p p

N
(2.5) B;=) EjA; (i=1,...,N)

Jj=1

where Z;; = det(&, j,) i<k, i<n—p With o; = {i1 < ... <inp_p}and o; = {j1 < ... < jn—p}
We use this to establish a relationship between p-dimensional linear subspaces of F" and

((g) — 1)-dimensional linear subspaces of F (2.

Lemma 1. Let 1 < p < n — 1. There is a well-defined injective mapping

fpn : {p-dimensional linear subspaces of F"} —

{((Z) — 1)-dimensional linear subspaces of F(Z)}
with the following property: given any p-dimensional linear subspace V' of F™, choose any
basis {ai,...,a,} of V and choose any vectors a,t1,...,a, such that {a;,...,a,} is a
basis of F™. Then {Aq,... ,A(n)il} is a basis of fpn (V).

Proof. Put N := (g) It suffices to prove that the K-vector space with basis {A4,...,

An_1} is uniquely determined by the K-vector space with basis {aj,...,a,} and vice
versa. This follows by observing that if {a;,...,a,}, {b1,...,b,} are any two bases of F"
then by (2.4), (2.5), {ai,...,a,} and {by,...,b,} generate the same space <= §;; =0



fori=1,....p,7=p+1,....n < ZE;xy=0fori=1,... N—-1 <= {A4,...,An_1}
and {Bq,...,By_1} generate the same space. O

We now mention some inequalities related to absolute values. Let K be an algebraic
number field and {| - |, : v € Mk} the absolute values defined in §1. For every v € My
there is a unique continuation of | - |, to the algebraic closure K, of the completion K,
of K at v which we denote also by | - |,. We fix embeddings a : K — Q, 3, : K — K,,
Yo 1 Ky — K, 6, : Q — K, such that §,a = ~,8,. Although formally incorrect, we
assume for convenience that these embeddings are inclusions so that K ¢ K, C K, and
K c Q Cc K,. Thus, Q is the algebraic closure of K and |- |, is defined on Q.

We recall that the absolute values ||, (v € M) satisfy the Product formula [, |z|, =
1 for z € K*. For a finite subset S of M, containing all infinite places, we define the ring
of S-integers

Os={reK:|z|, <1 forv¢S}

where we write v ¢ S for v € Mg\S. We will often use the immediate consequence of the
Product formula that

(2.6) [zl =1 forz € 0s\{0} .

vES

In order to be able to deal with infinite and finite places simultaneously, we define for
v € Mg the quantity s(v) by

1
s(v) = if v is real infinite,
L)
2
s(v) = if v is complex infinite,
T L)
s(v) =0 if v is finite.
Thus,
(2.7) Z s(v) = Z s(v)=1.
vEMgk v|oo
For z1,...,2n € Ky, a1,...,a, € Z we have
(2.8) la121 + -+ anply < (Jar| + -+ |an])* @ max(|z1 |y, . . . [Znlo) -

From the definitions of |x|, one may immediately derive Schwarz’ inequality for scalar
products

(2.9) X y|o < |X|o]y|e forve Mg, x,y € K
and Hadamard’s inequality
(2.10) |det(x1, ..., %n)|o < |X1]o |Xnle forve Mg, xi,...,%x, € K .
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More generally, we have
(2.11) X1 Ao AXply < IXalo e [Xple for v € Mg, x1,...,%x, € K" .

By taking a number field K containing the coordinates of x1,...,%,, applying (2.11) and
taking the product over all v we obtain

(2.12) H(xi A...Axp) < H(x1)---H(xp) forxy,...,x, €Q".
We need also a lower bound for |[x; A ... A x|, in terms of [xif,---[xp[, when
X1,...,Xp € Q™. For a field F' and a non-zero vector x = (z1,...,x,) with coordinates in

some extension of F', define the field

F(x):= F(x1/xj,...,xn/x;) for any j with z; #0 .

Lemma 2. Let v € Mg and let x1,...,x, be linearly independent vectors in Q" with
[K(x;): K| <D, H(x;) <H fori=1,...,p. Then

X1 A A Xl

(2.13) H™PP" < <1.
[X1]o - [Xplo
In particular, if p = n, then
(2.14) gt < 14t Xa)lo g
|X1 ’v : ‘Xn‘v
Remark. Obviously, in (2.10)-(2.14) we can replace the vectors x1, ..., %, by linear forms

li,...,l, in n variables.

Proof. The upper bound of (2.13) follows at once from (2.11). It remains to prove the
lower bound. We assume that each of the x; has a coordinate equal to 1 which is no
restriction since (2.13) does not change when the x; are multiplied by scalars. Thus, the
composite L of the fields K (xy),. .., K(x,) contains the coordinates of x;, ..., x,. Clearly,
[L : K] < DP. We recall that | - |, has been extended to Q hence to L. There are an
integer g with 1 < g < [L : K| < DP and a place w on L such that for every x € L we
have |z|, = |z]9,. Together with H(x; A...Ax,) > 1 and (2.10) this implies that

X1 AL AXply _ X1 A AXplwyg (|x1/\.../\xp|w)DP
%o - [Xplo Xafw - [Xplw 7 T Xl [Xp
— _DP
= (X1l ) (0 [T A ARplw) T Hxa AL AX)P"
w'eMp\{w}
—DP —_DP
> (%1l Ppl) ™ C T b [xplor)
w e M \{w}

= (H(x)-- H(xp)) " > HP" .
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Using the inequalities for exterior products mentioned above, we derive estimates for
the height of a solution of a system of linear equations.

Lemma 3. Let a;,...,a, € Q" with H(a;) < H fori=1,...,r and let x € Q"\{0} be
such that

a;-x=0 fori=1,...,r.
(i) If rank{a;,...,a,} =n — 1, then x is uniquely determined up to a scalar and
H(x) < H" !,

(ii) Suppose that rank{a;,...,a,} < n — 1 and that x € K™, where K is a number field.
Then there isany € K" withy #0,a;-y=0fori=1,...,r and

H(y) < H" ',

Proof. (i) It is well-known from linear algebra that x is determined up to a scalar. Suppose
that rank{ay,...,a,_1} = n — 1 which is no restriction. Then x is also the up to a scalar
unique solution of a; - x =0 for i = 1,...,n — 1. By (2.1), this system is satisfied by the
non-zero vector (a; A...Aa,_1)" hence x is a scalar multiple of this vector. Together with
(2.12) this implies that

H(x)=H(aiA...Na,_1) < H(a))---H(a,_1) < H" .

(ii) Let G = Gal(Q/K) be the group of automorphisms of Q leaving K invariant. For
vy =, --yyn) € Q", 0 € G, we put o(y) = (6(y1),-..,0(yn)). Let ay,...,as be the
vectors o(a;) withi=1,...,r, 0 € G. Since x € K" we have a; - x =0 fori=1,...,s.
Since x # 0 we have rank{a;,...,a,} < n — 1. If this rank is < n — 1 we choose vectors
asi1,...,a¢ from (1,0,...,0),...,(0,...,1) such that rank{a;,...,a;} = n — 1. Note that
H(a;) < H and that o(a;) € {a1,...,a;} fori=1,...,t, 0 € G. Hence if y is a solution
of the system a; -x =0 for i = 1,...,t then so is o(y) for 0 € G. By (i), this system has
an up to a scalar unique non-zero solution y. Choose y with one of the coordinates equal
to one. Then o(y) =y for 0 € G whence y € K". Further,by (i) we have H(y) < H" 1.
]

Remark. In Lemma 3 we may replace a; -x = 0 by [;(x) =0 for ¢ = 1,...,r where the [;
are linear forms in n variables with algebraic coefficients.

The discriminant of a number field K (over Q) is denoted by Ag. The relative
discriminant ideal of the extension of number fields L/K is denoted by 0,k . Recall that
07,k € Ok. We need the following estimates.

Lemma 4. (i) Let K,L,M be number fields with K C L C M. Then 0y /g =
[M:K]
Npyc@uyn) oL
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(ii) Let K,..., K, be number fields and K = K --- K, their composite. Suppose that
[K;:Q]=d; >1fori=1,...,r and [K : Q] = d. Then

1/(di(di=1))

|AK]1/(d(d_1)) < max |Ag,
1<i<r

Proof. (i) cf. [10], pp. 60,66.
(ii) It suffices to prove this for r = 2. So let K = K1 K5. If K = K; or K = K5 then
we are done. So suppose that K # K, K # K,. Then by e.g. Lemma 7 of [21] we have

d/di A d/d
AK\AK/l AK/Q"’.

Since d > 2d; we have d — 1 > 2(d; — 1) for i = 1,2. Hence

A g | AD) < A M=) A (1 (da(d=D))

< (|AK1’1/(d1(d1_1))|AK2’1/(d2(d2_1)))1/2 < max |Ag, 1/(di(di—1))

i=1,2

The next lemma is similar to an estimate of Silverman [20].
Lemma 5. Let x € Q"\{0} with Q(x) = K, [K : Q] = d. Then

H(x) > |AK\1/(2d(d_1)) )

Proof. We assume that one of the coordinates of x, the first, say, is equal to 1, i.e.
x = (1,&2,...,&,). This is no restriction since H(\x) = H(x), Q(A\x) = Q(x) for non-zero
A. Suppose we have shown that for £ € Q*,

(2.15) H(g) > |Ap|/ U= where F' = Q(&),[F: Q) = f
and H(§) = H(1,&). Together with Lemma 4 this implies Lemma 5, since

H(x) > max H(§;) > max |AKi|1/(2di(di—1)) > |AK|1/2d(d_1)) ’
2<i<n 2<i<n

where K; = Q(&;), d; = [K; : Q] for i = 2,...,n. Hence it remains to prove (2.15).
From the definitions of the |x|, for v € Mk and x = (1,¢) it follows that

f
(2.16) H() = (Vo) (L + [€Dp/2) Y

=1
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where a is the fractional ideal in F' generated by 1 and &, Na is the norm of a and
€M €Y are the conjugates of ¢ in C. Let {wy,...,w;} be a Z-basis of the ideal af .
The discriminant of this basis is

Dy jg(wi, ... ,wr) = Dgjg(al ™) = (Na)> 2 Ak

(cf. [10], p. 66, Prop. 13). On the other hand we have 1,¢,...,6/~1 € a/~! hence
Dg (L€, ... I = aDgg(wi, ... ,wy) for some positive a € Z. It follows that

(2.17) Ak] < (Na) 20 DDy gL, ... )| = (Na) 20 DA,

where )

A= (det(ﬁ(i))j) 1<i<s )

0<j<f-1

(cf. [10], p. 64). By Hadamard’s inequality we have

fof-r f
A< TT O 1691 H1+|€()I
i=1 j=0 i=1

By inserting this into (2.17) and using (2.16) this gives

f
|Ak| < ((Na)_1 H(1 + |§(i)|2)1/2)2(f—1) — H(6)MU-D

=1

which is (2.15). O

McFeat [11] and Bombieri and Vaaler [2] generalised some of Minkowski’s results on
the geometry of numbers to adele rings of number fields. Below we recall some of their
results.

Let K be a number field and v € M. A subset C, of K' (n-fold topological product
of K, with the v-adic topology) is called a symmetric convex body in K" if

(i) 0 is an interior point of C, and C, is compact;
(ii) if x € Cy, @ € K, and |a|, < 1 then ax € Cy;
(iii) if v|oo and if x,y € C, then Ax+ (1 — \)y € C,, for all A € R with 0 < X\ < 1;

if v{ oo and if x,y € C, then x +y € C,,.

Note that for finite v, C, is an O,-module of rank n, where O, is the local ring {z € K, :
|z], < 1}

The ring of K-adeles Vi is the set of infinite tuples (x, : v € Mg) ((x,) for short) with
xy € Ky for v € Mg and |z, |, < 1 for all but finitely many v, endowed with componentwise
addition and multiplication. The n-th cartesian power V7 may be identified with the set
of infinite tuples of vectors (x,) = (x, : v € Mg) with x, € K]} for all v € Mg and
x, € O for all but finitely many v. There is a diagonal embedding

¢: K" — Vg :x— (x,) with x, =x for ve Mg .

13



A symmetric convex body in V7 is a cartesian product

C= [] Cv=A{(xv) € Vit :x, €C, for v € Mg}

’UEMK

where for every v € Mg, C, is a symmetric convex body in K]’ and where for all but
finitely many v, C;, = O} is the unit ball. For positive A € R, define the inflated convex

body
)\O::HACUXHCU

v|oo vfoo

where \C, = {)\x, : x, € C,} for v|oo. Now the i-th successive minimum \; = \;(C) is
defined by

A == min{\ € Ry : ¢ (AC) contains i K-linearly independent points}.

Note that ¢~}(AC) C K™. This minimum does exist since ¢(K") is a discrete subset of
Vi, i.e. ¢(K™) has finite intersection with any set [[, D, such that each D, is a compact
subset of K] and D, = O} for all but finitely many v. There are n successive minima
Al,...,Ap and we have 0 < A\; < ... <\, < o0.

Minkowski’s theorem gives a relation between the product A;--- )\, and the volume
of C. Similarly as in [2,10] we define a measure on V}? built up from local measures 3, on
K, for v € Mg. If v is real infinite then K, = R and we take for (3, the usual Lebesgue
measure on R. If v is complex infinite then K, = C and we take for 3, two times the
Lebesgue measure on the complex plane. If v is finite then we take for 3, the Haar measure
on K, (the up to a constant unique measure such that 3,(a + C) = 3,(C) for C C K,,
a € K,), normalised such that

Bv(Ov) = |@v‘LK:Q]/2 3

here ®,, is the local different of K at v and |a|, := max{|z|, : * € a} for an O,-ideal a.
The corresponding product measure on K' is denoted by 3;'. For instance, if p is a linear

transformation of K onto itself, then 3]/ (pD) = |det p|f[UK:Q] B (D) for any (;-measurable
D c K. Now let 8 =[], B, be the product measure on Vi and " the n-fold product
measure of this on V2. Thus, if for every v € Mg, D, is a ;) -measurable subset of K
and D, = Oy for all but finitely many v, then D := [] D, has measure

(2.18) p(D) =[] B (D.) -

In particular, symmetric convex bodies in V¢ are #"-measurable and have positive measure.
McFeat ([11], Thms. 5, p. 19 and 6, p. 23) and Bombieri and Vaaler ([2], Thms. 3,6)
proved the following generalisation of Minkowski’s theorem:

Lemma 6. Let K be an algebraic number field of degree d and ro the number of complex
infinite places of K. Further, let n > 1, C be a symmetric convex body in V3, and
A1, ..., A its successive minima. Then

whpl\r2/d 2™
( 5 ) . F|AK|7TL/2d S )‘1"')\n 'ﬁn(c)l/d S on
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Finally, we need an effective version of the Chinese remainder theorem over K. An
A-ceiling is an infinite tuple (A,) = (A, : v € Mg) of positive real numbers such that A,
belongs to the value group of | - |, on K for all v € Mg, A, =1 for all but finitely many
v, and [[, 4, = A.

Lemma 7. Let K be a number field of degree d, A > 1, (A,) an A-ceiling, and (a,) a
K-adele.
(i) If A > |Ag|'/??, then there is an x € K with

|z|, < A, forve Mg and z #0 .

(i) If A > (d/2)|Ak|'/?, then there is an x € K with

|z — ayl, < A, forve Mg .

Proof. Let r; be the number of real and r5 the number of complex infinite places of K.
(i). The one-dimensional convex body C' = {(z,) € Vi : |z]|, < A, for v € Mk} has
measure

8(0) = ([T 40) 2 2n)= [ 12,142

v{oo

— Qd(W/Q)TQAd‘AK‘_l/Z > QdAd’AK|_1/2 7

in view of the identity H,UTOO Dyle = |Ax |~V Soif A>|Ag|?? then 3(C) < 1. Then
by Lemma 6 the only successive minimum \; of C'is < 1 hence C contains ¢(x) for some
non-zero x € K.

(ii). By [11], p. 29, Thm. 8, there is such an = if A > (d/2)(2/7)"2|Ak|'/?. This
implies (ii). See [12], Thm. 3 for a similar estimate. O

§3. A gap principle.

Let K be an algebraic number field of degree d and S a finite set of places on K of
cardinality s containing all infinite places. Further, let n be an integer > 2 and let 9, C' be
reals with 0 < d <1 and C' > 1. For v € S, let ly,,...,l., be linearly independent linear
forms in n variables with coefficients in K. In this section, we consider the inequality

(3.1) 1111 iv ()l < C- ] Idet(lre, ..y bnw)lo - H(x) ™"

veS
inxe K", x#0.
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The linear scattering of a subset & of K™ is the smallest integer h for which there exist
proper linear subspaces T71,...,T, of K™ such that S is contained in 77 U ... U T}; we
say that S has infinite linear scattering if such an integer h does not exist. For instance,
S contains n linearly independent vectors <= S has linear scattering > 2. Clearly, the
linear scattering of S; U Sy is at most the sum of the linear scatterings of S; and S5. In
this section we shall prove:

Lemma 8. (Gap principle). Let A, B be reals with 1 < A < B. Then the set of solutions
of (3.1) with
A<H(x)<B

has linear scattering at most
1500t )" log 2B
cx. [ 21 1+ log (=2 .
( ) +log (log 2A)

Remark. This gap principle is similar to ones obtained by Schmidt and Schlickewei,
except that we do not require a large lower bound for A. Thus, our gap principle can be
used also to deal with “very small” solutions of (3.1).

In the proof of Lemma 8 we need some auxiliary results which will be proved first.
We put e = 2.7182. .. and denote by |A| the cardinality of a set A.

Lemma 9. Let 0 be a real with 0 < 6 < 1/2 and q an integer > 1.

(i) There exists a set I'y with the following properties:

Ty| < (e/8)11;

I'y consists of tuples v = (7y1,...,7,) with~; >0 fori=1,..,qandy1+---+v,=1—0;
for all reals F1, ... ,F;, L with

(3.2) 0<F, <1 fori=1,....,q, Fy---F,<L

there is a tuple v € I'y with F; < L fori=1,...,q.

(ii) There exists a set I's with the following properties:

ITo| < (e(2+671))%;

'y consists of g-tuples of non-negative real numbers v = (v1,...,7%q);

for all reals G1,...,Gq, M with

(3.3) 0<G; <1 fori=1,...,q, 0O<M<1, Gi---Gg>M

there is a tuple v € I'y with MYit0/4 « G; < MY fori=1,...,q.

Proof. (i) is a special case of Lemma 4 of [4]. We prove only (ii). Put h = [071] + 1,
g = gh. There are reals cy,...,c, with

Gi=M ¢;>0 fori=1,...,q, c1+---+¢c,<1.
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Define the integers f1,..., f; by
(34) fi<ge, < fi+1 fori=1,...,q,

and put v; = f;/g for i =1,...,q. Then

1 0
O<yi<c <7+t —<7+-
hq q

and therefore,
M~yi+9/q<MCi:Gi§Mw forizl,---aQ-

By (3.4) and ¢1 + -4+ ¢4, <1 we have fi + -+ f; < g(c1 + -+ -+ ¢4) < g. This implies
that v = (71,...,7,) belongs to the set

:{(fl/ga"'afq/g):flv"'7quZ7 fiZOfOTizl,-..,q, f1++fq§g}

For integers x > 0,y > 0 we have

ar (7)== () (5) < ()

where the expression at the right is 1 if y = 0. Hence

+ h+1 _
ITy| = (9 . q) - (( ] )q) < (e(h+1)" < (e(2+671)". O
Lemma 10. Let K,S,n have the same meaning as in Lemma 8 and put d := [K : Q],

= |S|. Further, let F' be a real > 1 and let V be a subset of K™ of linear scattering
> max (2F2d,4 X 7d+25) .

Then there are X1,...,X, € V with

(36) H |det X1y )‘U < F_l .

|X1|v |Xn|v o

Proof. We assume that 0 ¢ V and F' > 1 which are no restrictions by Hadamard’s
inequality. Denote by [yi,...,ym] the linear subspace of K™ generated by yi,...,¥Ym.
Choose a prime ideal p of K not corresponding to a place in S with minimal norm Np.
Define the integer m by

(Np)™ P < F? < (Np)™

Then m > 1. We distinguish between the cases m > 2 and m = 1.
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The case m > 2. Let v be the place corresponding to p and let R = {x € K : |x|, < 1}
be the local ring at p. The maximal ideal {z € K : |z|, < 1} of R is principal; let m be a
generator of this maximal ideal. For ¢ = 0,...,m, let T; be a full set of representatives for
the residue classes of R modulo 7™~ . Note that

(3.7) T = [R/ (x| =[Ok /p™ | = (Np)™ " .
Fori=0,...,m, a € T; define the n X n-matrix
t a 0
0 mmt
Ai a — 1
0 1

We claim that for every row vector x € R™ there are i € {0,...,m}, a € T; andy € R"
with
Xx=yAiq .

Namely, let x = (z1,...,2,). If 1 Z 0 (mod 7™) then for some i € {0,...,m — 1} we
have z1 = 7'y with y; € R, |y1], = 1 and there is an a € T; with 25 = ay; (mod 7™7%).
If 1 = 0 (mod 7™) then we have z1 = 7ly;, 72 = ay; (mod 7™~ %) where i = m, y; € R
and a is the only element of Tj. Define ys € R by x3 = ay; + 7™y, and put y; = z; for
i > 3. Then clearly x =yA; , where y = (y1,...,Yn)-

Let By, ..., B, be the matrices A4; , (1 =0,...,m, a € T;) in some order. We partition
YV into classes Vq,...,V, such that x € V belongs to class V; if there are A € K* with
|Aly = |x|, and y € R™ such that x = AB;y. By m > 2 and (3.7) we have

r=>Y |Tj| =) (Np)™ 7 <2(Np)™ < 2F>
=0 j=0

and the latter number is at most the linear scattering of V. Therefore, at least one of
the classes V; has linear scattering > 2, i.e. V; contains n linearly independent vectors
X1,...,Xp. For j =1,...,n there are \; € K* with |\;|, = |x;|, and y; € R" such that
x; = AjB;y;. Therefore,

|det(x1,...,xp)|

|X1|v e |Xn|v

Y = |det()\1x1, e ,/\nxn)|v

= |detBi|U ’ ‘det(y17 S 7yn)|v
< |detB;|, = |7™], = (Np)~™4 < F~1.

By Hadamard’s inequality we have for w € Mg \(S U {v}) that
|det(x1, ...y Xp)|w/(|X1|w - |Xn|w) < 1. By taking the product over v and w € Mg\ (S U
{v}) we obtain (3.6).
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The case m = 1. Suppose that there are no xi,...,x, € V with (3.6). Let x1,...,x, be
any linearly independent vectors from V. There is an ideal a C Ok, composed of prime
ideals not corresponding to places in S, such that

(3.8) H |det(x1, ..., Xpn)|v _ (Na)-/4

‘Xllv |Xn|v

If a & Ok then since m = 1 we have Na > Np > F¢ which together with (3.8) contradicts
our assumption on V. Therefore, a = Ok and so the left-hand side of (3.8) is equal to 1.
Together with Hadamard’s inequality this implies that

(3.9) |det(x1,...,Xp)|o = [X1|o -+ |Xn|o forv &S .

Since V has linear scattering > 3 there are linearly independent x;,...,x, in V and there
is an x,41 € V with

(3.10) Xnt1 € [X1,- s Xn—1], Xnt1 & [X1,. .y Xn—2,Xp] -
We fix x1,...,%x,41. Let y be any vector in V with
(3.11) Y& I[Xl,o s Xno1]y, YE XL,y Xn—2,Xn], Y& I[X1,-e Xn—2,Xnt1] -

We have X, 41 = Y iy iXi, Y = 2 oiy YiX; with a;,y; € K. We repeatedly apply (3.9).
We have det(x1,...,Xp—1,Xnt+1) = apdet(xy,...,x,) where a, # 0 by (3.10). Together
with (3.9) this implies

|det(X17~--7xn—laxn+1)|v |Xn—|—1|v
an |, = = forvégs§ .
[anlo |det(x1, ..., %Xp)|v 1Xn v
Similarly,
det _
|an_1|v _ | € (X17 ) Xn 27Xnaxn+1)‘v _ ‘Xn+1|v for v gs '
|det(x1,...,%xp)|v 1%n_1]v

By (3.11) we have similar properties for y,,, ¥,—1. Summarising, we have

(3.12) lail, = |Xn+1|v, [Yilo = Yo fori=n—1,n,v¢gs.
| i|U | i|v
It is easy to see that by (3.11),
det(x1, ..., Xp—2,Xp+1,y)

£0.

p—1Yn — AnYn—1 =
n—1Yn nYn—1 det(xl,...,xn)

Together with (3.9), (3.12) this implies that

|Xn+1‘v|3’|v

‘X 1| |X | - ‘a”_lyn‘v = |anyn—1’v for v Q S .
n—1llv|Sn|v

’an—lyn - anyn—l‘v =
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This implies that

a — a _ Ay — —a _
nyn160271_ nynlznlyn nyn16027

An—1Yn An—1Yn An—1Yn

where OF is the group of S-units {z € K : |z|, = 1 for v ¢ S}. By Theorem 1 of [4], there
are at most 3 x 7972 elements £ € OF with 1 — ¢ € O%. As we have just seen, for every
y € V with (3.11) there is such a & with a,y,—1/an—1Yy, = £ or, which is the same,

An—1

y € X1, Xp-2; '§XH—1 + Xn

n

Taking into consideration that in (3.11) we excluded three linear subspaces for y, it follows
that V has linear scattering at most 3+ 3 x 79125 < 4 x 79+2%_contrary to our assumption

on V. Thus, our supposition that there are no xi,...,x, in V with (3.6) leads to a
contradiction. This completes the proof of Lemma 10. U
Proof of Lemma 8. We assume that |l;,], = 1 for i = 1,...,n, v € S which is

clearly no restriction. Let D be any real with 24 < D < 2B. Put

)
20 —2

¢:

First we estimate the linear scattering of the set of solutions x € K™ of

(3.1) HHM < O [ ldet(tio, - lo)lo - H(x) ™",

veS i=1 ’X|v veS

with

D D¢
2

(3.13) < H(x) < =

Fori=1,...,n, let S1(i, D) be the set of x € K™ with (3.1), (3.13) and

(3.14) 11 LCI H(x)™" 9.

liv v —n— .
(3.15) HM>H(X)TL6 fori=1,...,n.

We first estimate the linear scattering of S1(i, D) for i = 1,...,n. Fix ¢ and put

)
b= 2(n+0)
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Note that by Schwarz’ inequality we have

< <1 forj=1,...,n,veS.
pp %[

From (3.14) and (3.16) and from Lemma 9 (i) with the above choice of 0, with ¢ = s and
with L = H(x)™"7%, we infer that there is a set 'y of s-tuples y = (v, : v € S) with v, > 0
forve Sand ) g7 =1—0, of cardinality

(3.17) T < (/)7 < (e2+ 5)""

such that for every x € S1(i, D) there is a y € I'y with
FY'U
(3.18) v ()l < (H(x)”5> forvesS.

For each v € I'1, let S1(4, D,7) be the set of x € S;(7, D) satisfying (3.18). We claim that

S1(i, D, v) has linear scattering smaller than

A :=max (2 x (2n3/2)2 4 x 72y

Namely, suppose that for some v € T'; this is not true. Then by Lemma 10 with F' = 2n3/2

there are x1,...,%, € S1(i, D,v) with

|det(X1,...,Xn)|v 3/2\—1
1 < (2 '
(319 0<vl;£ X1]o - [Xn]w = )

We assume that
(3.20) H(x;) <--- < H(xy,)

which is obviously no restriction.

Let x; = (1, ..., Tkn) for k=1,...,n. Takev € S. Let [;,(X) = an X1+ -+ a, X
After a permutation of coordinates if necessary, we may assume that |a1], = max; |a;l,-
Then, since |l;,|, = 1, we have |ay|, > n~*()/2_ Denote by A; the determinant of the
(n — 1) X (n — 1)-matrix obtained by removing the j-th row from

I12 ... Tin

Tno2 .. Tpn

By Hadamard’s inequality, (3.18) and (3.20) we have
liv X T oo In
|det(x1, ..., Xn )]0 ns(@©)/2 (x1) 12 1

< - |det
|X1|v"'|xn|v |X1|v"'|xn|v

liv(Xp) Tn2 oo Tpp )
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s(v)/2 n
n
e T Hliv (%) Ao
‘X1|U"'|Xn‘v ’; (XJ) J’
Liv (%)
§n3s(v)/2_ max ’ZU AN PA |A |v |Xk| 1
1<j<n |Xy kl;lj

< 3s(v)/2 N—n—35)\"
< n*™7 max (H(x;)™"™)

< n?’S(U)/Q (H(Xl)fnf(S)Vv

By taking the product over v € S we get

H |det(x1,...,%Xn)|o < n3/2 (H(Xl)fn%)zves%

|X1|v : |Xn|v

_ n3/2 (H(Xl)—n—5)1—0 _ n3/2H(X1)—n—5/2 )
Together with (3.19) and the Product formula this implies

1

X1 —n—46/2 )
) Hixy) ~ 20 1)

N =

By (3.13) we have H(x;) > 3D and H(x2),...,H(x,) < D', where ( =46/(2n —2) .
By inserting these inequalities we obtain

1 1
L GHe)! TR H () Hixa) = G H )™ OO H () - H )
< %(D/Q)_(n_l)(l-f—C)(D1+C/2)n_1
=20/271 < 1.

Thus, our assumption that one of the sets Sy(i, D,) has linear scattering > A leads to a
contradiction. Now by (3.17), by d < 2s, and by the fact that the number of possibilities

for v is at most |T'y| < (e(2 + 2n/5))871, the set Sp(i, D) has linear scattering

< max (2 x (2n3/2)%4 4 x 7d+25) (e(2+ 2n/5))s_1

1 7\°
<4 (2n)%* (9n/0) ! < — (603" )

Hence U ;S81(4, D) has linear scattering

(3.21) < <6ogn7>
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We now estimate the linear scattering of S3(D). By (3.15) we have for x € Sa(D)
that

(3.22) 1111 lio (%) 1o > H(x) ")
veSi=1 [xlo
Put
B 0
-~ 2n(n+9)

By (3.16) and (3.22) and by Lemma 9 (ii) with this value of 6, with ¢ = ns and with
M = H(x) (%) there is a set T'y of ns-tuples Y= Vo : i =1,...,n,v € §) of
non-negative reals, with

(3.23) Tl < (24+¢/0)" < (2 4+ M)

such that for every x € So(D) there is a tuple y € I'y with

(3.24) H(X)*”(”+5)(’Yiv+9/n8) < [Liw (%) | < H(X),n(nJﬂ;)%v

x|, T

fori=1,...,n, ves.

Let S2(D,~) be the set of x € Sy(D) satisfying (3.24). We show that each set Sz(D,7)
has linear scattering smaller than

(3.25) B = max (2 x (20"/20)*" 4 x 79+25) |

Suppose again that this is not true for some v € I's. Put F := 2n"/2C. Then by Lemma
10 there are x1,...,x%, € So(D,7) such that

d t oo n v —
(3.26) 0<H|e(xl’ o)l g1
oS |X1|v"'|xn’v
and
(3.27) H(x;) <--- < H(xp) .

Take v € S. For j = 1,...,n, choose a; € K, with |oj|, = |x;j|,. Fori=1,...,n, put
yi == (o] "iw(x1), ..., a5 iy(x,)). Then by (3.24), (3.27),

liv i) v _ )
(3.28) yilo <0502 may oGl sz o pr(s,y-ntno
1<i<n [x5y 1<j<n
< W2 H (%)Y fori=1,...,n.
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Put A, := det(lyy,...,lny). Now Hadamard’s inequality, (3.28) and the lower bound in
(3.24) imply that
|det (Xl, .. )|

|X1|U : |Xn|v

|det(liv (%5)) o

|X1|v e |xn|v

= A"

= |Av|;1|det(3’1>"-ayn)’v < |Av|;1|3’1|v""yn’v
n s(v — —n(n+do " iv
< (n /2)()|A IV H (x1) (n+8)(D 7" Yiv)

< (n n/Q)S(U)lA = 1H( )n(n—|—5)9/s <H |iv Xl)”u) .

!Xﬂv

By taking the product over v € S and inserting

l'L’U v
[T < o T -

veSi=1 veES

which follows since x; satisfies (3.1), we get

H|det X1y >|'u
!Xﬂv : ‘Xn’v

vES
*1 n n |lzv Xl |v
( H ’Av,v) e (H H %1 | )

veES veS i=1
< nn/20 . H(Xl>n(n—|—5)9—n—6 — nn/2CH(Xl)—n—6/2 )

Together with (3.26) and the Product formula this gives

H |det(x1, ..., %Xpn)|v
H(Xl) !Xﬂv : ‘X’n’v

1
<n"?F7IC - H(x) "2 < §H(x1)_"_5/2 :

By inserting H(x1) > D/2, H(x;) < D**¢/2 for i = 1,...,n which follow from (3.13) we
obtain

1
1< EH(xl)l_”_‘s/zH(xz) - H(xp)

1
< §(1)/2)1—11—6/2 . (D1+C/2>n—1
— 25/2 —1D1—’I’L—(5/2 —|—(n—1)(1—|—§) — 2(5/2 —1 < 1

which is impossible. Thus, by assuming that some set So(D,~) has linear scattering > B
we arrive at a contradiction. Hence each set Sa(D,~) has linear scattering < B and
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together with (3.23), (3.25) this implies that Sa(D) has linear scattering at most

B |a| < 4 x (4n)" G- (2 T M)

< 4C* x (4n)?"s (9n2/5)n5

4 ns
cact (190

Together with the upper bound for the linear scattering of Ul ;S1(i, D) in (3.21), this
implies that the set of solutions of (3.1) satisfying (3.13) has linear scattering at most

7 S 4 ns 4 ns
(3.29) (603” ) + 402 (—152" ) < 50 (—152” ) :

here we used that n > 2.
We now consider the solutions of (3.1) with A < H(x) < B. Let k be the smallest
integer with

(24)1+9" > 9B
Then

log(log 2B/ log2A)
log(1+ ()

2 log2B 4dn log2B
- 1+1 — (141 .
< C( + 0g<log2A)) < ) ( + Og(log2A))

For every solution x € K™ of (3.1) with A < H(x) < B thereis a j € {1,...,k} with

(3.30) k<1+

1 j—1 1 J
5(2A)<1+<> < H(x) < 5<2A)<1+<> .

= (24)0+977") and (3.30) this implies that the set of
< H(x) < B has linear scattering at most

15004\ 15004\ 4n log 2B
2d . 2d L
5C ( 5 ) k< 5C ( 5 > 5<1+1og(10g2A)>
ns+1
< C2d 15071/4 ) 1+10 (10g2B)
) & log2A’ |~

This completes the proof of Lemma 8. 0J

Together with (3.29) (taking D
solutions x € K™ of (3.1) with A
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Proof of part (ii) of the Theorem. Apply Lemma 8 with C' =1, A=1, B=H. It
follows that the set of solutions of

in x € K™ with H(x) < H, x # 0 has linear scattering at most

1504\ " . (log2H) _ ((150m* "8+1<2+1 log 21)
5 &\ g2 5 0808 2H) -

84. Reductions.

In this section we reduce part (i) of the Theorem to a modified version Theorem A. After
that, we derive Theorem A from Theorems B and C stated in this section. Theorem B
will be proved in §§5-6 and Theorem C in §§7-9. As before, we use the following notation:

K is an algebraic number field of degree d with ring of integers Ok and discriminant
Ak;

S is a finite set of places on K of cardinality s, containing all infinite places;

for v € S, {l1y,.-.,lny} is a linearly independent set of linear forms in n variables
with coefficients in Q;

0 is areal with 0 < < 1.

As before, for a field F' and a non-zero vector x = (x1,...,x,) with coordinates in
some extension of F' we define F(x) = F(z1/xj,...,zy/x;) for j with z; # 0 and for a
linear form [ with vector of coefficients a we put F'(I) = F(a). Further we define

D :=max{[K(liy) : K]: ve S,i=1,...,n},
H :=max{H(l;,): veS,i=1,...,n},
A :=|Ap|, where L is the composite of the fields K(l;,) (v €S, i=1,...,n).

We call a non-zero vector x € Q" primitive if whenever Q(x) = K, we have
x € Ok, x|, < (!AKOII/Q[K‘”@]H(X))S(U) for v € Mg,, v|oo,

(4.1) IT Ixlo = [Ag,| /2000

’UEMKO

vfoo

For instance, x € Q" is primitive if and only if its coordinates are coprime rational integers.
For every non-zero x € Q" there is a A € Q* such that Ax is primitive. Namely, suppose
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that Q(x) = Ky. Then there is a A\; € Q* such that x' := A\;x € K. By Lemma 7 (i) and
D ujoo S(v) =1 there is a Ay € K such that

ol

A2fy < |x'|;1(|AK 1/2[K°:Q]H(X’))s(v) for v € Mg,, v|oco,

Aalo < |X|51 forv e Mg, vioco.
For x” := Aox’ = A1 Aox this implies that for v € Mk, v|oo,
|X//|u < (|AKO|1/2[K0:Q]H(X/))8(v) _ (|AKO’1/2[K0:Q]H(X//))S(v)

and that [x"], <1 for v { oo, whence x" € O}, . Moreover,

[T =86 (T ) = (A [/

vEMKO UGMKO

vfoo v|oo

Hence x” is primitive.
It will be convenient to consider instead of inequality (1.3) in the Theorem,

(4.2) IT TGOl < T 1detan, - lun)lo - H(x) ™

veS i=1 ves
in primitive x € K"\{0} .

We shall derive part (i) of the Theorem from:
THEOREM A. Put
T := (2407 575%) " 1og 4D - loglog 4D .

Assume that

(4.3) for each infinite place v on K and for ¢ =1,...,n, the linear form l;, has its
coefficients in Q N K.

Then the set of solutions of (4.2) with

6T

(4.4) H(x) > ~(2HA)

N[ —

has linear scattering < T

The lower bound in (4.4) is chosen large enough to swallow the constants appearing in
the proof of Theorem A. In particular, since we have to use geometry of numbers over
number fields, in our estimates there will be constants depending on the discriminants of
certain number fields and these are swallowed because of the A in the lower bound. In
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what follows we derive part (i) of the Theorem from Theorem A and we use an idea of
Schlickewei [16] to deal with A.
As we want to derive part (i) of the Theorem, we consider the solutions of

(1.3) 1111 v ()l < [ ldet(lro, .. lno)lo - Hx)™"°  inx € K"\{0}

where K, S,n,d and the [;, are as above but the /;, do not necessarily satisfy (4.3) for v|co.
By Lemma 8, the set of solutions of (1.3) with

1 n 2
H< H(X) < 5(21'_1)20OnD s°/6

has linear scattering at most

ns+1
1 4
(4.5) A= < 5(;” ) (1 + log(200nD"s2/5)) .

If A € K* is such that x’ := Ax is primitive, then H(x') = H(x) and the left-hand side of
(1.3) does not change when x is replaced by x’. Hence the linear scattering of the set of
solutions of (1.3) with H(x) > H is at most A+ B, where B is the linear scattering of the
set of solutions of (1.3) with

—_

(4.6) x is primitive, H(x) > = (2H)200nD"s°/3

[\

From now on, we consider only the solutions of (1.3) with (4.6). We need some lemmas.

Lemma 11. Every solution x of (1.3) with (4.6) satisfies an inequality

[l () | —n—995/100
” ” < ” det(lhy, - s ) w - H(x)™" ,
(4.7) L. IX\w det(l o - H{x)

we Sy
. . png?
Q(x) = Ko , x is primitive, H(x) > %(2[{)200 D"s?/5

where K is a subfield of K, Sy is the set of places on K lying below those in S and for
w € So, {1} Is a linearly independent set of linear forms in n variables with
algebraic coefficients, such that

(4.8) for each infinite place w € Mk, and fori =1,...,n, l,, has its coefficients in
the completion K ,, of Ky at w,
D' := max{[Ko(l},) : Ko]: w€ So,i=1,...,n} < d*’D?,
H' :=max{H(l,,): we Sp,i=1,...,n} <2H?.

Moreover, the tuple (KO; I, (we Sy, i=1,... ,n)) belongs to a fixed set C of cardinality
at most 23° independent of x.
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Proof. Fix a solution x of (1.3) with (4.6) and put Ky := Q(x). Clearly, Ky is a subfield of
K. For w € Sy, let G, denote the set of places in S lying above w and put g,, := |G4,|. The
linear forms [}, in (4.7) will be determined uniquely by the linear forms /;, we start with
and by Ky and the choice of a v € GG, for each w € Sy. Thus, the number of possibilities
for the tuple (KO; L, (we Sy, i=1,... ,n)) is at most the number of possiblities for K

and v € GG, for w € Sy which is

r::Z ng.

Ko weSy

We estimate r from above. Let L be the normal closure of [K : Q], G the Galois group
of L/Q and H the Galois group of L/K. The number of subfields of K is precisely the
number of subgroups of G containing H. Each such subgroup is a union of (left) cosets
of H in G. There are precisely d = [K : Q] cosets of H in G, hence there are at most 2%
unions of cosets. Therefore, K has at most 2¢ subfields. Further, for a fixed subfield K

we have
[T o <25t _
wE Sy

Hence
r< 20t < 9%

We now construct the linear forms /},,. In an intermediate step we will get linear
forms I/ . For each w € Sy and each v € G, there is a real number f(v|w) such that

€l = 1€)11") for all € € Ky .

We have

(4.9) [K-ilKo] < f(vjw) <1 for w e Sy,v € Gy, Z flojw) <1.
’ VEG,

For w € Sy choose v € GGy, such that

( 13009) -+ Ly (3], )1/f<vw>

[det(l1v, -y lnw)o|x[?

is minimal and put I/ :=1;, for i =1,...,n. Thus,

Ay(x) < AU(X)l/f(Ulw) for v e Gy, ,

where
A (X) — |llllw(x) e l;’iw(x)|’w (X) - |l1'u(x) tc an(X)’U
) et W Tl ) et L) LT
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Hence
(4.10) Ayp(x) < ( H AU(X)> where ¢, 1= ( Z f(v|w))_1 :
VEG,, VEG

By (4.9) we have 1 < ¢, < [K : K¢] < [K : Q] < 2s. Further, by Schwarz’ inequality we
have [l;y(X)]v < |liv]o|X|» and so by Lemma 2,

’llv|v""lnv‘v D™
A, < < H" f Gy -
5) = et o)l = orve

By inserting this into (4.10) we get
Aw(X) < (HnDn)(wal)gw H AU(X> < (HnDn)259w H A@(X) )
VEG ., VEG,,
Now by taking the product over w € Sy, using that Zweso Juw = 8, we get
[T Au(x) < B*P" T Aulx) -
wGSo veS

By (1.3) we have [], g Av(x) < H(x)""~°. Hence

H Aw(X) < HZnD”SQH(X)—n—(S

or, rewriting this,

Ly w n
(4.11) 11 HM < H2P" T (det (- Uty - H(x) ™70

weESy 1=1 wE Sy

We recall that Q(x) = Ky and that x satisfies (4.6). Note that the I/}, depend only on K
and certain choices of v € G, for w € Sy. Moreover,

(4.12) [Ko(ll,) : Ko) <dD, HI/,) <H forw€e Sy, i=1,...,n,

since ! = l;,, for some v € G, and [Ko(l,) : Ko] < [K(l;) : Q] < dD.

We now construct the linear forms I}, from the /! . The collection {l},, : w € Sp, i =
1,...,n} will be determined uniquely by {l’, : w € Sy, i =1,...,n}. For the finite places
w € Sp and for the infinite places w € Sy with Ky, = C we put I, ;=1 fori=1,...,n.
Note that if Ky, = C then [}, has its coefficients in Qn Ky . Now suppose there are

places w € Sy with Ky ., = R and take one of these. We assume that for ¢ =1,...,n, one
of the coefficients of I/ is 1 which is no restriction since (4.11) and (4.12) do not change
when the [ are multiplied with constants. For i = 1,...,n we write

" / 711 /
liw = Miyw + _lniw y lz‘w = My — _lniw )
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where My, N4y are linear forms with coefficients in R = Ky ,, and l_;fw is the complex
conjugate of [}/ . Note that

det(Iy, -, lny) = > _crAp

where the sum is taken over all subsets I of {1,...,n}, ¢; is a power of v/—1 and Aj is
the determinant of n linear forms, the i-th being m;,, if ¢ € I and ny,, if i € I. Choose [
such that |Ayl,, is maximal. Put [} := m;, if i € I and I}, := n;, if i ¢ I. Then

‘det( Tws* l;{w)‘w 2ns<w> ’det( lws - 7l;1w)”w )
|lzw( )|7~U§|lzw( )|’w fOI'Zzl,...,TL.

These inequalities hold for each w € Sy with Ky, = R and clearly also for the other places
in Sp. By inserting these into (4.11) and using that H(x) > %(2H)200”Dn52/5 we get

T7 7 el \x\w <2 g2 T 1detlye. ) - Hx) "

weSyi=1 we Sy

< T Idet(fh,, - - 1)l - H(x)~" 9907100

wE Sy

Now the proof of Lemma 11 is complete, except that we still have to verify (4.8).
If w e Sy is finite or if Ky, = C then (4.12) implies at once that [Ko(l},) : Ko] <
d*D?* H(l,) <2H? fori=1,...,n. Let w € Sy be a place with Ky, = R (supposing
there is any). Take ¢ € {1,...,n}. The linear form I, is either the real or imaginary part
of I’ ., hence a constant multiple of I + 17 . Therefore, Ko(l},) C K1, where K is the
composite of Ko(I%,), Ko(l!,). By (4.12) and the fact [/, is conjugate to I/, over K, we
have [Ko(I))) : Ko] = [Ko(I!!,) : Ko] < dD. Hence

[Ko(l},,) : Ko] < [K;: Ko) <d?D?.

Since I}, is a constant multiple of I + 1" we have H(l,) = H(I}, 41! ). Further, since
both I/ and I/, have a 1 among their Coefﬁcients, their coefficients belong to K3 and

1 |, < 25 1 |, for v e My, .

iw v

We have H(I!)) = H(I!,) since I/, I/ are conjugate over Q. Together with (4.12) this
implies that

H(l,)=H(, £0,) = [ Wxtle< JT @@l

vEMEK, vEMEK,
— DH(I,)H(T,) < 2H? .

This completes the proof of Lemma 11. O
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We now consider the solutions of a fixed system (4.7). Put
= |Ap/|
where L' is the composite of the fields Ky(l},,) for w € Sy, i =1,...,n.

Lemma 12. For every solution x of (4.7) we have

(SS3D2)72ns

H(x) > - (2H'A)

l\DIH

Proof. Put f(Q) := 1 and for a number field M # Q, put f(M) := |Ay|Y/?™("=1) where
= [M : Q]. Let x be a solution of (4.7). By Lemma 5 we have H(x) > f(Kj). Further,
for w € Sy, i =1,...,n we have by (4.6) and (4.8),

H(x) >2H? > H' > H(l},,) > f(Q(l},)) .

Together with Lemma 4, (ii), noting that L’ is also the composite of the fields Ko, Q(l,,,)
(w € Sy, i =1,...,n), this implies that

(4.13) H(x) > f(L') = |A"|}/?e(a=1)
where a = [L' : Q]. By (4.8) and d < 2s, n > 2 we have
a < [Ko: Q] [] [[IKo(t,) : Ko < d(d*D*)™ < (4v25°D?)"™
’LUGSQ =1
Further, by (4.6) we have H(x) > 4H? > 2H’. Together with (4.13) this implies that

(883D2)72n5

H(x) > max(2H',|A'|Y/2%°) > (2H'A")/*" > Z(2H'A')

1
2

Derivation of part (i) of the Theorem from Theorem A.
We first estimate the linear scattering of the set of solutions of (4.7). Put

T = (240" (495/50)‘5> log4D" - loglog 4D’ .

First consider the solutions of (4.7) with

H(x) > s A"

[\
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Put R = [[,eq, [det(l1y, -, lhy)|w- Let x be a solution of (4.7) with (4.14). We know
that x is primitive, i.e. satisfies (4.1). By Lemma 4 (i) we know that |Ag,| < A’. Together
with (4.14) this implies that

H %[ > H |X|w > |AKO|_1/2[K0:Q} > AT > H(X)—6/100 )
w¢So wfoo

Hence

H H 1 (X)|w < R - ( H |X|w)n - H(x)~"—999/100
weSy =1 weSy
—R. ( H |X|w)_n-H(X)_99§/100 < R'H(X)_496/50 )
U)QSO
By applying Theorem A to this inequality, with D', H') A’ /49§ /50 replacing D, H, A, §, we
infer that the set of solutions of (4.7) satisfying (4.14) has linear scattering at most 7".
By Lemma 12, the solutions x of (4.7) for which (4.14) does not hold satisfy in fact

(4.15) %(QH’A’)(SSSDQ)_M < H(x) < ~(2H'A))

DN | —

By Lemma 8, the set of solutions of (4.7) with (4.15) has linear scattering at most

J

150nt x 100
994

ns+1 4\ ns+1
, 152
) - (1 + log{e™ (8s°D?)*"*}) < (21" — 1)( n ) :

Hence the linear scattering of the set of all solutions of (4.7) is at most 27" (152n*/§)"s+1.
By Lemma 11, every solution x satisfying (4.6) of the inequality (1.3) we started with
satisfies one of at most 23% systems (4.7). Hence the set of solutions of (1.3) satisfying (4.6)
has linear scattering at most 23*+177(152n%/§)"5*1. In view of n > 2, ns + 1 < 3ns/2,
D' < d?D? < 4s2D?, log 4D’ loglog 4D’ < 100 x 2° - log4D loglog 4D this is at most

3s+1 1524\ " 40n 5\ ' /
2 —5 (2*°™(50,/494) log 4D’ log log 4D

< 200 (221523/2(50/49)5716"240"5_7) -log 4D log log 4D

< (254”25_7”)slog 4DloglogdD =: B .

From an earlier observation we know that the linear scattering of the set of solutions of
(1.3) not satisfying (4.6) is at most A where A is given by (4.5). Hence the linear scattering
of the set of all solutions of (1.3) is at most

150n*

ns+1
A+B= ( > - (1 4 log(200nD™s?/6))

+ (254”25_7”)3 log4D loglog 4D
< (260”25_7")3 log4D loglog4D .
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This completes the proof of part (i) of the Theorem. O

We derive Theorem A from two other Theorems B and C. In the statements of these
theorems we need some notation which is introduced below. As before, K is a number
field and S a finite set of places on K of cardinality s containing all infinite places. Define
the ring of S-integers

Os={reK: |z|, <1 forv¢gS}.

In what follows, by a tuple (N, 7, ﬁ; @) we always mean a tuple consisting of

(4.16)  -an integer N > 2;
-a tuple of reals v = (75, : v €S, i=1,...,N);

-a system of linear forms L= {lAw cveS, i=1,...,N}in N variables such
that each [, has algebraic coefficients and such that for v € S, {Zlv, ceey [ Nov} is
linearly independent;

-areal Q > 1.

Further, a tuple (N, 7, ﬁ) without @ will always consist of NV, ~, L as in (4.16). For a tuple
(N,n, L; Q) as above we define the set

H(N,z,/j;Q) ={ye0f: \l}v(y)\ng%” forvesS, i=1,...,N}

and
V(N,7, ﬁ; Q) := the K-vector space generated by II(1V,, ﬁ; Q) .

Obviously, V(N,,£; Q) C KV.

The idea to prove Theorem A is as follows. We first show that for every solution x
of (4.2) there is a proper linear subspace W of K™ and a tuple (V,, L Q) with N = (Z)
where k = dimg W such that

X € W7 fkn(W) :V(N,l,ﬁ,Q), dlmKV(N717£A7Q> :N_17

where fr, is the injective mapping defined in Lemma 1 from the k-dimensional linear
subspaces of K™ to the (N — 1)-dimensional linear subspaces of KV; moreover, the tuple

~

(N,7, L) can be chosen from a finite set independent of x. This is stated in a quantitative

form in Theorem B. Second we show that for a fixed tuple (XV,7, £) and for varying Q
with dimg V(N, 7, L; Q) = N — 1 there are only finitely many possibilities for the space

V(N,~, L Q); this is stated in a quantitative form in Theorem C. Now the injectivity of
the map fi, implies that there are only finitely many possibilities for W. Thus, it follows
that the set of solutions of (4.2) is contained in the union of finitely many proper linear
subspaces of K.

THEOREM B. Let K, S,n,s,d, the system of linear forms {l;, : v € S, i =1,...,n},
D, H,A and T have the same meaning and satisfy the same conditions as in Theorem A, so
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that in particular 0 < 0§ < 1 and the linear forms l;, satisfy (4.3). Then for every solution
x of

(4.2) [T 1Gol < IT 1det(o - tuo)lo - H(x) ™

veS =1 veS
in primitive x € K"

with

(4.4) H(x) > = (2HA)"

l\DI»—l

there are a proper linear subspace W of K™ and a tuple (N, , L; Q) with N = (Z) where
k = dimg W, such that the four conditions (4.17)-(4.20) below are satisfied:

(417) x €W, fin(W)=V(N,7,L;Q), dimg V(N,7,£;Q) = N — 1;
(418) v=(viw: veES, i=1,...,N) with

N
Yiv < s(v) forve S, i=1,...,N and ZZ%” < —6/6n ;
veS i=1

(419) L={ljy: veS, i=1,...,N} with
H(Z- )< H™, [K(lip): K] < D", |liyly=1forves, i=1,...,N;

(4.20) Q> { (2HA) )"
and such that (N,~, L) € C where C is a fixed set independent of x of cardinality at most

Cy = (30-nt2m . 5~ 1)" ",

THEOREM C. Let K, S be as in Theorem B, let 0 < € < 1 and let (N,vy ,L) be a tuple
for which N > 2 and for which

(4.21)  y=(Vw: veSi=1,...,N) with

Yiv < s(v) forve S, i=1,...,N, ZZ%US—G;

~ ~

(422) L={lip: veS i=1,...,N} with

H(l;,) < H, [K(l;p): K] < D, |liwlo=1forves, i=1,...,N .
Then there is a collection of (N — 1)-dimensional linear subspaces of K~ of cardinality at
most

Cy := 2%0N8s%2e*log 4D - loglog 4D
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such that for every () with

(4.23) dimg V(N,7,£;Q) = N — 1,
(4.24) Q> (2H)*” |

the vector space V (N, 7, L Q) belongs to this collection.

Qualitative forms of Theorems B, C were proved implicitly by Schmidt and Schlick-
ewei. In the proof of Theorem B, which is in §§5,6, we use geometry of numbers over
number fields; here we make explicit the arguments from [5], §3.3. In the proof of The-

orem C which is in §§7-9 we use the “Roth-machinery;” here we closely follow Schmidt,
18], [19).

Derivation of Theorem A from Theorems B and C.

Let x be a solution of (4.2) satisfying (4.4) and W the proper linear subspace of K"
and (N, 7,/:’; Q) the tuple from Theorem B. We show that W belongs to a collection
independent of x of cardinality < T. Since by (4.17) we have x € W this implies Theorem
A.

By Theorem B we have at most

(4.25) Cy = (30n*276~1)" T < (21177 52y

possibilities for the tuple (N,7,L£). We apply Theorem C to each possible tuple. By
N = (}) for some k <n — 1, (4.18) and (4.19) we must apply Theorem C with

(“) H™, D", §/6n°
k
replacing NV, H,D,e, respectively. Let C% be the quantity obtained from Cs by replacing
N, D, e by (Z), D", §/6n3, respectively. Since (Z) < 2™ we have
(4.26) Ch < 2399872640125 4 1og(4D™) log log(4D™)
< (229”26’3”)S log4D loglog4D .
Together with (4.20) this implies that

/
eT

Q> {5 HNY" > H") > (2Hm)

Hence @ satisfies (4.24) with C replacing Cy and H™ replacing H. Therefore, by Theorem
C, the number of possibilities for the vector space V(N 77,2; Q) with fixed N ,7,2 and
varying @ is at most C}. On combining this with (4.25), (4.26), we obtain that the
number of possibilities for the space V/(IV,~, ﬁ; Q) with varying N, ~, ﬁ, Q is at most

C1C% < (240”25_5")8 log4DloglogdD =T .

Because of the injectivity of the maps fi,, the vector space W is uniquely determined by
V(N,7,L;Q). Hence for W we have at most T" possibilities. This implies Theorem A. [
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§5. Parallelepipeds.

Let K be an algebraic number field and Vi its ring of adeles. We shall derive upper and
lower bounds for the volume of a parallelepiped in Vj} and then derive estimates for the
product of the successive minima of this parallelepiped. This will be an important tool in
the proof of Theorem B.

We use the following notation: Gal(F’/F) is the Galois group of a Galois field ex-
tension F'/F’; for a linear form {(X) = oy X3 + -+ + a, X,, with a1,...,a, € F" and for
o € Gal(F'/F) we put o(I)(X) := o(a1)X1 + -+ + o(ap)X,; and a set of linear forms
{l1,...,l;n} with coefficients in F’ is called self-conjugate over F if for every i € {1,...,m}
and o € Gal(F'/F) there is a A € F’* such that Ao (l;) € {l1,...,ln}.

Fix a place v € M. As before, K, denotes the completion of K at v. Let

x € K'\{0}
and let
£v = {llfm v 7ln’u}
be a linearly independent set of linear forms in n variables such that for i =1,...,n,

l;» has its coefficients in K, if v is infinite,
liv has its coefficients in K, if v is finite,
L.

w(x) # 0.

Define the v-adic parallelepiped depending on x,
(5.1) I, (x) := {y € K |liw(¥)|o < lin(x)]y for i =1,... ,n}.

We need estimates for the volume g7 (IL,(x)) of II,(x) where (' is the measure on K
defined in §2.
Let

Lo="{l1p,. . lmy 0}

be a minimal set of linear forms containing £, that is self-conjugate over K,. Such a set
exists since by assumption the coefficients of l,,...,l,, are algebraic over K,. If v is
infinite then ﬁv = L,, m, = n and if v is finite then ﬁv D L,, my > n.

Take j € {1,...,m,}. There are i € {1,...,n}, A € K}, o0 € Gal(K,/K) such that

v

ljy = Ao(l;y). Then for y € I1,(x) we have, noting that |o(z)|, = |z|, for z € K,,

|ljv(Y)|v = Aol (liv(¥)|o = [Alolliv(¥) |0
< Alolliv(®)]o = [Ao(liv (%)) |6 = [Ljv(%)]o-

Hence
(5.2) I, (x) = {y € K |liv(¥)|o < Jlin(x)]y for i =1,... ,mv}.
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Put
Bu(x) == {8 (I, (x))}/¢  where d := [K : Q],

dtlivv"'7liv v
RU(X) p— max ‘ 'e ( 1 : n )| .
{i1,in }C{L,.ccome } ‘lzlfu(x) o llnv(x)|v

As before, for a linear form I(X) = a; X1 + - - - + a,X,, with coefficients in K, we define
the field K, (l) := K,(a1/a;,...,an/a;) where a; # 0. We use the following notation if v
is finite:

(5.3) 9, is the local different of K at v;
O, ={z € K, : |z|, <1} is the local ring of K,;
Ky = Ky(lip) for i =1,...,my;
Oiv = {x € K;y : |z|, <1} is the local ring of K, for i =1,...,my;

0;, is the discriminant of the ring extension O, /O, for i = 1,...,m,;
0y := min [0
v 1<i<m,, | 7,11|v7

where |a|, := max{|z|, : © € a} for any O,-ideal a. Since O, is a principle ideal domain,
O,y is a free O,-module of rank [K;, : K,]. We recall that d;, is the O,-ideal generated
by the discriminant of any O,-basis {w1,...,ws} of Oy, that is Dg, sk, (w1,...,w) =
{det(o;(w;))}?* where o71,...,0; are the K,-isomorphisms of Kj,,.

Lemma 13. We have

Bo(x) = on/dR, (x)~! if v is real infinite,
(5.4) Bu(x) = (2m)" Ry (x

)~1 if v is complex infinite,
53}/2|©v|ﬁ/2R (%) < Bu(x) < |@U|Z/2RU(X)_1 if v is finite.

Proof. II,(x), R(x) and &, do not change when we replace l;, by li,(x)"1l;, for i =
1,...,n. Therefore, we may assume that l;,(x) = 1 for ¢ = 1,...,n and shall do so in
the sequel. Then [;, has its coefficients in Kj,; namely we know that for some \; € K .
Ailiy has its coefficients in K, but then A\, = \;jlj,(x) € Kj,,. Similarly, if 15, = Ao (l;,,) for
some A € K, 0 € Gal(K,/K,) then this holds with A =1 i.e. l;, = o(l;,). Hence we can
extend {l1y,...,lny} to a minimal set of linear forms {l1,,...,ln, »} such that for each
i €{l,...,m,} and o € Gal(K,/K,), the linear form o(l;,) belongs also to this set. Put
I1, :=II,(x), Ry := Ry(x). Then

(5.5) HU:{yEKﬁzﬂw(y)]vgl for izl,...,mv},

5.6 RU = max det l’il'uv ey linv v-
( ) {il,..‘,in}g{l,...,mv}| ( )|
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First we assume that for i = 1,...,n, [;, has its coefficients in K,. Then m, = n and
(5.7) R, = |det(l1yy - -y lnw)|o-

Let ay,...,a, be the vectors given by l;,(a;) = J;; for 4,5 = 1,...,n and define the linear
transformation Ay = y1a; + -+ + ypa, fory = (y1,...,yn) € K. Thus,

(5.8) I, =A0))={Ay :y € O} }

where we use O, to denote the unit ball {x € K, : |z|, < 1} also if v is infinite.

First, let v be a real infinite place. Then |- |, = | - |'/¢ where |- | is the usual absolute
value on R and 3] the Lebesgue measure on R". Further, 3,(0,) = 2. Now from (5.8), a
well-known property of the Lebesgue measure and (5.7) it follows that

B(I1,) = |detA|By (0,)™ = |det(l1y, - - - lnw) |~ Bu(Oy)™
— 2nR;d

which is (5.4).

Second, let v be a complex infinite place. Then |- |, = |- |*/¢, B, is two times the
Lebesgue measure on the complex plane, and 3,(0,) = 2w. For y € C™ we define vectors
w,z € R" by y = w + v/—1z and we identify C" with R?" by y + (w,z). Further, we
define real linear mappings M, N by A = M + +/—1N. Thus,

‘2/d

Ay = (Mw — Nz, Nw + Mz).
Together with (5.8), (5.7) this implies that

517(1_['0) = Aﬁv(0v>n = A<27T)n

where

B M -NY|_ M +/=IN ~N

A = |det (N M) | = et (—\/—1(M +V=IN) M) |
B M+ =IN _N B S
= |det ( 0 M TlN) ‘ = ‘detA . detA‘
2

= detA’ = R

This implies (5.4).
Now assume that v is finite. Clearly, the vectors ay,...,a, are linearly independent

and belong to II,. Further, every y € II, can be expressed as > ., li, (y)ay; since i, (y) €
O, for i =1,...,n, it follows that II, is a free O,-module with basis {a;,...,a,}. Choose

a non-zero a € O, such that a0} = {ax : x € O}} CII,. Then by (5.8) aO;' has index (as
an abelian group) |a~"detA|? in II,. All cosets of aO? in II, have the same (3"-measure
since ;' is translation invariant. Hence

By () = la~"det A7 - 7 (aOy).

39



Further, aO™ has index |a|;™¢ in O, hence B7(O") = |a|; "7 (aO™). Therefore,

(5.9) Br(IL,) = [det A8 (07) = |det(lio, -, lnw) |5 Do 3/
= R;d‘gv‘gdﬂ

where we used again (5.7). Since J,, = 1 this implies (5.4).

We now assume that at least one of the linear forms [;, does not have its coefficients in
K. Then v is finite. We shall reduce this case to the previous one, by using an argument
from [2].

Partition {1,...,m,} into sets C1, ..., such that i, j belong to the same set if and
only if 1, = o(l;,) for some o € Gal(K,/K,). Then for i € Cy (k = 1,...,t) we have
(K : K] = |Cyl.

Fix k € {1,...,t}, p € Cx. Let {wp, : h € Ci} be an O,-basis of O,,. Let &, € K,
for h € C),. Then

(5.10) | Z Wpnénly <1 = Z Wph&h € Opy <= h € O, for h € C},
helCy heCy
<= |hl, <1 for h € Cj.

For i € Cy let 7; be the K,-isomorphism from K, to K;, with 7;(l,,) = l;», and put
wip = Ti(wpn) for h € Cy; then {w;, : h € C} is an O,-basis of O;,. Hence (5.10) can be
extended to

(5.11) | Y winbaly < 1fori € Cy <= ||y < 1 for h € Cy.
heCly

We can express [, as

lpv == Z wphfh

heCly

where f5, (h € C}) is a linear form in n variables with coefficients in K,. By applying 7;
we obtain

(5.12) liv=Y_ winfn forieCy.
heCly

Now (5.11) implies that for y € K!,
|lw(y)|v <1 forie () <— |fh(y)|v <1 for heC}.

By combining the linear forms f;, (h € C%) for k = 1,...,t we obtain altogether m,, linear
forms fi,..., fm, with coefficients in K, such that for y € K,

(5.13) liv(¥)|o <1 fori=1,... my <= |fa(y)]y <1 forh=1,...,m,.
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Together with (5.5) this implies that

(5.14) HU:{yEK3:|fh(y)|U§1 forhzl,...,mv}.
We assume that

det(fi,..., fu)lo = max det(fi,--y fi,)lv
et(fuoe fillo = max(det(finee )]

which is clearly no restriction. By (5.13) we have rank { fi,..., f;, } =rank {l14,...,lm, o}

= n. Hence fi,..., f, are linearly independent. Therefore, there are o;; € K, such that
n

(5.15) fi:Zozijfj fori=n-+1,...,m,.
j=1

By Cramer’s rule we have

|O£“’ — ’det(flv"'vfiw-';fn”v
s det(fi,- -y fo)lo

Therefore, |fr(y)|s < 1 for h = 1,...,n implies that |fr(y)|, < 1 for h = 1,...,m,.
Together with (5.14) this implies that

<lfori=n+4+1,....my, j=1,...,n.

HU:{yEKﬁz|fh(y)|U§1 forhzl,...,n}.

Hence we have, similarly as in (5.9),

(5.16) By (L) = [det(fr, o fu) [ Dol
We have to compare |det(f1,..., fn)|, with R,. From (5.12), (5.15) and the inequali-
ties |wijlo <1, |oyjly <1 for 1 < 4,5 < m, it follows that
Ly = Zﬁjhfh with |0p|, <1lforj=1,...,m,, h=1,...,n.
h=1
This implies that for each subset {i,...,i,} of {1,...,m,} of cardinality n we have

|det(l7;1v, “eey linv)|v S |det(f1, «ea, fn)|v

which implies, together with (5.6),

(5.17) Ry < |det(f1, .- fo)lo-
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Fix again k € {1,...,t}. Let (w"); jec, be the inverse of the matrix (w;;)i jec,. To
obtain an inequality reverse to (5.17) we need upper bounds for the numbers |w*|,. Put
dy, := det(w;j)i jec,. For h,l € C} we have

’dkwhl‘v <1

since drw™ is a determinant in some of the numbers w;j. Further, for each ¢ € CY, the i-th
row of the matrix (wj;)i jec, consists of an O,-basis of O;, while the other rows are the
conjugates over K, of the i-th row. Hence for each i € Cy, d generates the discriminant
ideal 0;, of O;, over O,. This implies that

\di|y = [0i0|/% for i € Cy.

Hence
W |y < |dilst < 05|53 Y2 for h,l,i € Cp.

Putting w™ := 0 if h,1 do not belong to the same set C}, we obtain

(5.18) WMy < ( min [ogly) P <Y for bl =1, m,.

1=1,...,my,

By (5.12) we have

f; = Zwijzjv forh=1,....t, i,j € C.
JECK

This implies that

det(fla"'7fn> = Z eil,...,indet(lilvv---7linv)a

{ilw":in}g{la'“amv}

is some n x n determinant with entries from the numbers w™ (h,l €
"/2 Tt follows that

where 91‘17_”77;”
{1,...,my}). So by (5.18), we have [0;, i |» < v

et (f1,- ..y fr)lo < 052R,,.
Together with (5.16), (5.17) this implies that
Oy PR D[ < B (L) < Ry D[

which is equivalent to (5.4). This completes the proof of Lemma 13. O

Now let S be a finite set of places on K, containing all infinite places. For each v € S,
let {l14,...,ln} be alinearly independent set of linear forms in n variables with algebraic
coefficients such that if v is an infinite place then for ¢ = 1,...,n the coefficients of [;,
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belong to QN K,,. As before, let L be the composite of the fields K (1;,) (v € S,i =1, ...

and put A :=|Apr|. Let
xe K"

and define the parallelepiped in V7,
(x) == [[ (x) x [] Oz,
veES vgS
where II, (x) is defined by (5.1). According to the definition in §2 we have

AMI(x) = [[ MIu(x) x [] Mu(x) x [ O for Ae R, A > 0;

v|oco vES vegS

vfoo

note that AII(x) is precisely the set of adelic vectors (y,) € V2 satisfying

i (¥0) o < X1y (x)], forves, i=1,...,n,
|yulo <1 forwv¢S.

The set TI(x) is convex symmetric. Denote the successive minima of TI(x) by

A1(X), ..y Ap(x).

Further, put

(5.20) R(x):= [ Ro(x)

veS

H |det(li1va--~alinv)’11
= max
ves {1, i} C{1,...,my } |li1v(x)|v T |linv(x)|v

where for each v € S, {l1y,...,lm, »} is @ minimal set of linear forms containing
{livy .-, lny } which is self-conjugate over K,,.

Lemma 14. 1 R(x) < A1(x) - Ay (x) < A"/29R(x) where d = [K : Q).

Proof. Put §(x) := {#"(II(x))}"/¢. Denote by r; the number of real and by 75 the
number of complex infinite places of K. For finite v € S, let d,, be the number defined by

(5.3). By Lemma 13 and the identity

[T 12l = 18k~
vfoo
we have, for some constant F' with

(5.21) ([[s.)"* <F<t,

veES
vfoo
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(5.22) ) = [[ o0 [] 121"

veS vgS
= o/ myn U TT 0,00/ [ Rl
vfoo veES
— 2”(7T/2)r2n/dF’AK‘_n/2dR(X)_1.
Let v € S, v finite. For each j € {1,...,m,} thereis an i € {1,...,n} such that up to
a constant the linear forms l;,,[;, are conjugate over K,. Hence the local discriminants
iy, 05y of O4,,/O, and O, /O,, respectively, are equal. Together with (5.3) this implies
that

dy = min  [Diyly.
i=1,..., n

Further, the local discriminant 9;,, divides the global discriminant 9 (;,, ),k and by Lemma
4 (i), 0k (1,,)/ Kk divides 07 k. Hence

..........

Therefore,

H 9y > H /Ko > H 0150 = Nicjo(@r0c) "4

veES veES UfOO
vfoo vfoo
Together with (5.21) this implies that
Ni(dp k) ™ <F<1.
By inserting this into (5.22), using that by Lemma 4 (i) we have
A =|AL| > Nr/o@L/x)|AK],
we obtain

(5.23) 2" (m/2)" 2 AAT/2AR(x) 7L < B(x) < 27(m/2)"2 M | AR | T2 R(x) L

Together with Lemma 6 this implies that

n n ra2/d
)\1(X) .. )\n(x) > 2 <7T n') |AK|7n/2dﬁ<X)71

nl \ 2
1 o g\
> Z . >
- n!R(X)<7T” 2 ) - n!R(X)
and
9 ron/d
A(X) - An(x) <276(x)7L < (-) AV R(x) < AM?1R(x).
T
This completes the proof of Lemma 14. [l
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§6. Proof of Theorem B.
We use the following lemma instead of Davenport’s lemma used by Schmidt and Schlick-
ewel.

Lemma 15. Let K be an algebraic number field of degree d and let by, ..., b, be linearly
independent vectors in K™. Further, for each infinite place v on K, let liy,...,l,, be
linearly independent linear forms in n variables with coefficients in K, and let i1y, . . ., fbny
be real numbers with

0<,U111§,U2v§---§,unv~

Suppose
(6.1) \Liv(bj)]y < pjp  for 1 <i,j <mn, v|oo.
Then there are permutations k, of (1,...,n) for each infinite place v on K, and vectors
i—1
vy =Dby, v ZZ&jb]‘—Fbi with &j €0k forl<j<i<n
j=1
such that

leoi),0 (Vi) o < 2| A [V2} O D min (g, ) for 1<, j <, vloo.

Proof. We proceed by induction on n. For n = 1 the assertion is trivial. Let n >
2 and suppose that Lemma 15 holds for n — 1. Let V be the vector space with basis
{b1,...,b,_1}. We identify V with K71,

Take an infinite place v. There are aqy,...,ay, € K,, not all zero, such that

Zakvlkv(bj) =0 forj=1,...,n—1.
k=1

Choose k,(n) € {1,...,n} such that

|ariv(n),v|v = maX{|a1U|v7 ) |anv|v}

and put C, := {1,...,n}\{xy(n)}. Then ay, (n), # 0. Put

Biv := _aiv/am(n),v for i € C,.

Thus,

(6.2) Lev(myo(05) = Y Brolro(by) for j=1,...,n—1, v|oo
keC,

with |Bky|e <1 for k € C,.
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The restrictions of l;, (i =1,...,n) to V form a system of linear forms of rank n — 1 and
the restriction of [, () to V is linearly dependent on the restrictions of I, (k € Cy) to
V. Hence the restrictions of Iy, (k € C,) to V are linearly independent. By applying the

induction hypothesis to by, ..., b,_1 and the linear forms Iy, (k € C,,v|oo) we infer that
there are a function s, from {1,...,n — 1} to C, for each v|oo, and vectors
i—1
(63) vi=by, v; = Z&]b] + b; with fij El0kgforl<j<i<n-—1, ’U|OO
j=1
such that

ey iy 0 (V) o < L2d| A g V230D min (g, 1) for 1< j <i<n—1, voc.

Recalling that |- |11,/ (") is the usual absolute value, whence satisfies the triangle inequality,
this implies together with (6.2) that

n—1

\ 5(0)
ey ()0 (Vi) < <Z{2d’AK|1/2}k+J) Wio

k=1
< {Qd\AK\l/Z}S(”)(”“)MU

for v|oo, j =1,...,n — 1. Therefore,
(6.4) [l 0 (Vi)lo <{2d| A V23D min (o, p1j0)
fori=1,....,n, j=1,...,n—1, v|oc.

Because of (6.3), the proof of Lemma 15 is complete once we have shown that there is a
vector

Vn:bn+§1V1+"'+€n_1vn_1 with 51,...,571_1 EOK
such that

(6.5) o (i) 0 (Vi) o < {2d| Ak |V FDs@) s for i =1,...,n, v|oo.

Write [}, for I, (;),o- Then l3,,...,1;,_;, are linearly independent on V' hence

det(l},(b;)ij=1,....n—1) # 0. Therefore, there are v;, € K, such that
n—1

(6.6) ly(bn) =Y vjuliy(b;) fori=1,...,n—1, v|oo.
j=1

Further, by (6.2), (6.6) we have

i
_
3
|

_

n—1
(6.7) > Vol (b)) = 5m(k),v{z Vjv ;cv(bj)}
: - =



By (6.3), by,...,b,_1 can be expressed as linear combinations of vy,...,v,_1. Hence
there are v}, € K, with Z;le Yibj = 35 fijv] Together with (6.6), (6.7) this
implies

(6.8) ZVJU )+, fori=1,...,n, vlco,
where
(6.9) g, =0 fori=1,...,n—1,

n—1
Ay = 1, (b)) — Z B (k),0liw (Pn)-
k=1

By Lemma 7 (ii), there are &1,...,£,—1 € K with

d s(v)
€, +7§v|v§{§|AK|l/2} for vjoco, j=1,...,mn —1,
1€l <1 forvfoo,j=1,...,n—1.
Hence §; € Ok for j =1,...,n—1. Put
Vi =b, +&vVi+ -+ 1 Vin—1, G ::£j+’y;v forj=1,...,n—1, v|co.

Then, by (6.8),

n—1 s(v)
d
(6.10) I ( Sivliy, (Vi) + @iy with |j,]y < {§]AK]1/2}
j=1
forj=1,...,n—1, v|co.

Take v|oco. Using again that | - |, S

(6.2),

satisfies the triangle inequality we have by (6.9),

nol s(v)
|a”U|U S {|l;u;(bn)|11)/8(v) + Z |ﬁf@v(k)7v|11;/5(v)|l;~w(bn)|11/8(v)} S ns(v):unv

and clearly also |ay,|y < 55 , for j = 1,...,n — 1. Together with (6.9), (6.4) this
implies for i = 1,...,n,

s(v)
o < {3 Bl O ) + 0}

7j=1

it+j
{Z_lAK|1/2<2d|A |1/2) mln(,u’lva,ujv)l/s(v)+ZH11{S(U)}

s(v)

(n+i)s(v)
§(2d!AK\1/2> i
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which is precisely (6.5). This proves Lemma 15. O

Let K be an algebraic number field of degree d, S a finite set of places on K containing
all infinite places, n > 2 an integer, 0 < § < 1 a real and for v € S, let {l1,,...,l} be a
linearly independent set of linear forms in n variables with algebraic coefficients. Suppose
that for each infinite place v and each i € {1,...,n}, the coefficients of /;, belong to K,NQ,
and that
[K(liy) : K] <D,H(l;y) <H forvesS, i=1,...,n.

By Lemma 4 (i), we have |Ag,|"/50:@ < |Ag|Y/? for each subfield Ky of K. This
implies that if x € K" is primitive, i.e. satisfies (4.1), then

(6.11) x €0k, |xly < (|Ak[V2H))™™  for v]oo,
T 1xlo > [Ax] 172
vfoo

Hence every primitive solution x of (4.2) with (4.4) is also a solution of

(6.12) ITIT 5ol < T 1det(ian, s lno)lo - H(x)™°

veES i=1 vES

in x € K" with (6.11) and with H(x) > (ZHA)eT,

DO | =

where

T= (2757 A=Ay,

with L being the composite of the fields K(l;,) (v € S, i =1,...,n). We will show that
for every solution x of (6.12) there is a tuple (N,~, £; Q) as in Theorem B.

Since (6.12) does not change when the I;, are multiplied with constants we may
assume that |l;,], = 1 for v € S;i = 1,...,n and we shall do so in the sequel. For
ve S, let {liy,...,lm, »} be a minimal set of linear forms containing ly,, ..., l,, which is
self-conjugate over K,. Thus, m, = n if v|co. We assume also w.l.o.g. that |l;,], = 1 for
i =n+1,...,m,. Further, if [;,,;, are (up to a constant) conjugate over K, then they are
also conjugate over K, hence [K(l;,) : K] = [K(ljy) : K|, H(l;y) = H(lj,). Summarising,

(6.13) [K(liv) : K] <D, H(l;y) < H, |liy]y =1 forve s, i=1,...,m,.
By inserting this into Lemma 2 we get
(6.14) 1> |lijo Ao Aol > HPP'

for each v € S and each linearly independent subset {l; .,...,liv} of {l1v,. . lm, 0}
Further, by Schwartz’ inequality we have

(6.15) Lo < |liv]o|y|o <|yle forye K", velS, i=1,...,m,.
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We shall frequently use (6.14), (6.15).
Let x be a solution of (6.12). To x we associate the adelic parallelepiped

TI(x) = (¥o) € VR |lin(yo)lo < |liw(x)|y forvesS, i=1,...,n
|Volo < 1forv¢sS.

Recall that by (5.2) we may extend the set of indices 7 from {1,...,n} to {1,...,m,}:

Cye) € VR liw(Yo)lo < |liw(x)|y forve S, i=1,...,m,
(6.16) M(x) = { lyolo < 1lforvégsS.

As before, A1(x),...,A,(x) denote the successive minima of II(x) and

]det(liw,...,li v)|v
R(x) = max n .
=11,  mex T

In what follows we write Aq,..., An, R for A\1(x),..., A\n(x), R(x), remembering that
these quantities depend on x. From (6.12) it follows that

|det Z]_fy,---7ln’())|1) )
(6.17) R> = H(x)"
H |l1v ey (%) ]o
Hence
é
(6.18) R> {%(MA)@T} :

(6.11) and (6.17) imply that

s(v)
(6.19) x|, < {]AK|1/2dR1/5} for v e M.

Let ¢ be the diagonal embedding of K™ into V2. By (6.16) we have for y € K™, A > 0
that

(6.20) y € ¢ (X)) <= liv(y)]o < XN¥O)ly(X)|y forve s, i=1,...,m,,
lylo <1 forov¢S.

Lemma 16. (i) Let A > 0. Then for every y € ¢~ 1(\I(x)) we have
ylo < [det(lios - - -y o) [y H{n| A [Y2IRYOA}™) for v € S.

(11) A > n—lH—nsD" AK|_1/2dR_1/6.
(iii) There is an o € K* such that for all A > 0 and all y € ¢~1(\I(x)) we have

ay € OL, ay € ¢! ({|AK|1/“H“5D2"A}H<><>)
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Proof. Let y € ¢~ '(MlI(x)). Fix v € S and put A, := det(l1y,...,lmw). Let a; be the
coefficient vector of (l1y A+ Alj—14 Aljg10 A+ ANlpy)* (cf. §2). Then

(6.21) y =Y A u(y)ay.
j=1

By (6.20) and (6.15) we have for j =1,...,n,
|ljv(Y)|v < |lju(X)|U)\S(U) < |X|U)\s(v).

Together with (6.19) this implies

s(v)
(6.22) 5l < (1Al 2R )

By (6.14) we have
lajlo = lip Ao o A1 Aljrro A e ANyl < 10
Together with (6.21), (6.22) this implies that
o < o8 ([ Ak VAR

which is (i).
(ii). Choose y € ¢~ 1(A\II(x)) with y # 0. Then |y|, <1 for v ¢ S. Hence by (i) and
(6.14),

1< H(y) < [ Iyl < (H |Av|;1).n|AKrl/2dR1/5A1

vES veS
S ansD"|AK|1/2dR1/§)\1

which implies (ii).

(iii). Fix v € S, v finite. Let M be the composite of the fields K (l1y),..., K(lny)-
The value group of | - |, on K, which is Gk, := {|z], : * € K*} has finite index, e,, say,
in the value group G, = {|z|y, : x € M*} of |- |, on M . Note that

(6.23) 1<e, <[M:K]<D"

Forv=1,...,n, thereis a v; € Q* such that I;,, = 7iliy has its coefficients in M. Hence,
putting again A, :=det(l1y, ..., lnw),

|det (-5 000)]

’Z&v’v = 7 3 pes € (;Aﬂv-
‘llv‘v "'llnvlv
Put
Cy = |Ay]57;
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then C, € Gk,. By Lemma 7 (i) there is an o € K* with

(|al, < C, forve S vfoo,
laf, <1 forov ¢S,

—s(v)
la],y < |AK|1/2d(H CU) for v|co.

weS
\ wioo

(6.24) 4

Now let y € ¢~ H(AIl(x)), where A > 0 and y # 0. By (i) and s(v) = 0 for finite v we have
ly|o < Cy M/ for finite v € S. Further, by (6.14) we have C, < 1. Hence

(6.25) layl, < Cl~YVer <1 forv e S,v1oo.

Since also |ay|, < 1 for v ¢ S we have ay € O%. Further, by (6.23) we have |a|, < 1 for
all finite places v while by (6.21), (6.14) and (6.23) we have for each infinite place v,

s(v)
alo = {1802 T letaus.. tun) o

weS
wioo

s(v) s(v)
< {|AK|1/2d H (HnD )@w} < (|AK|1/2dHnSD2 ) )

weS
wtoo

Hence
i (@) ] < (|Ag|V2AH D™ X)*@)|1,(x)], forve S, i=1,... ,m,.
Together with (6.25) and (6.20) this implies (iii). O

Lemma 17. There are linearly independent vectors vi,...,v, € Of% and permutations
Ky of (1,...,n) for each v|oo, all depending on x, with the following properties:
(i) for j = 1,...,n, the vectors vi,...,v; belong to the K-vector space generated by

o~ (NII(x));

(ii) we have

i, 60 (Vi) o < Ty (6,0 () [o{ GAmingi gy
(6.26) for vjoo, i=1,...,n, j=1,...,n,
lliv(Vj)|o < |liw(x)|y forve S,vfoo, i=1,...,my, j=1,...,n,

where

G = ’AK‘1/2dHnsD2” (2d|AK|1/2)2n.

Proof. Choose linearly independent vectors bi,..., b}, with b € ¢~ (A\;1I(x)) for j =

1,...,n and put b; := ab}, where « is the number from Lemma 16 (iii). Then for j =
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1,...,n, the vectors by,...,b; belong to the K-vector space generated by ¢~—!(\;II(x)).
Moreover,

b; € O%, b; ¢ " ({]AK\I/MH”SD%)\J-}H(X)) forj=1,...,n.

Together with (6.20) this implies that

Lo (D)0 < (AR [V2EH™ PN Ol (%),

for vjoo, i1=1,...,n, j=1,...,n,
\Liv(bj) o < [lin(x)]y forve S,vfoo, i=1,...,my, j=1,...,n,
b; € O forj=1,...,n.

(6.27)

We apply Lemma 15 with the vectors by, ..., b, the linear forms l;,(x) 1l;, (v|oco, i =
1,...,n) and the numbers pu;, = (]AK\l/QdH”SDQn)\j)S(“) (vjoo, j =1,...,n). It follows
that there are vectors vy, ..., v, with

j—1

(628) V1 = bl, V; = ijkbk —+ bj with fj]g c OK for 1 < k <j < n,
k=1

and permutations k., of (1,...,n) for v|oo such that

(6.29) i ) )5 M e )0 (Vi) o < (| Ak [Y) D) min (g, pa0)
< {G)\min(ivj)}s(”) for v|oo, 4,5 =1,...,n.

From (6.27) and the fact that the numbers £ in (6.28) belong to Ok it follows that
v; € Ok, |liv(Vj)lo < |liv(x)]y forveSvtoo, i=1,...,m,, j=1,...,n.

Together with (6.29) this implies (6.26). Further, (6.28) implies that for j = 1,...,n, the
vectors vi,...,Vv; are linear combinations of by,...,b;, whence belong to the K-vector
space generated by ¢~!(\;II(x)). This completes the proof of Lemma 17. O

Lemma 18. There is a set I' of cardinality
IT| < (n!)~%(30nt2ns—1)nstn
consisting of tuples of real numbers

(c;d)=(cip:veESi=1,...,my; d;:i=1,...,n)

with
(6.30) Civ < oss(v) forve S, i=1,...,m,
(6.31) di <0, —105 <di1 <...<d,
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such that for every solution x of (6.12) there is a tuple (c;d) € I" with

(6.32) Rew—{/emst 1, (x)], < R forvesS, i=1,...,m,,
(6.33) R < \j < RUHYMY forpe S j=1,...,n,
where
c(n) := 4n32".
Proof. Put

Uiy = |Lip(X) [ (RTH/109)) for v e S, i =1,...,m,.
By (6.15),(6.19), (6.18) we have for v € S, i =1,...,m,,
(6.34) Uiy < |X|v(R711/106)s(v) < (lAK|1/2dR71/106)s(u) <1.
We call two indices i,k € {1,...,m,} v-conjugate if there are \ € Q*, o€
Gal(K,/K,) such that lg, = Ao(l;); then ||, = 1 since |l;y|y = |lky|o = 1. This implies
that |l (%)|y = Ik (x)], whence
(6.35) Uiy = Upy for v € S and for v-conjugate i,k € {1,...,m,}.
Further, by the definition of R (cf. (5.20)) and by (6.14) and (6.18) we have

(6.36) [11Tw - (H 1 rlw<x>\v)R—Hn/1°6

> R—l(H |det(lh,,...,lm)|v)R_11”/105

veS
> H—nsD”R—l—lln/105 > R—2n/§.

(Note that the product is taken over ¢ = 1,...,n, not over ¢ = 1,...,m,). By Lemma 9
(ii), (6.34), (6.36) there is a set I'y of ns-tuples of non-negative reals v = (v;p : v € S,i =
1,...,n) independent of x of cardinality

Ty < (2+2e-c(n)s—1)ns

such that for some tuple v € I'y, we have

FY’L"U"_{(S/QC(TL)TLS} Yiv
(6.37) (R_Q”/5> < Uy < (R‘Q"/‘S) forvesS, i=1,...,n.
For i = 1,...,m,, let t;, be the smallest index from {1,...,n} that is v-conjugate to i.
Put

Vi = Vtsyw fOrv €S, i=1,...,m, .
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Clearly, t;, = t;, and hence v;, = 7}, whenever i, j are v-conjugate. Together with (6.35)
and (6.37) this implies that (R=27/9)Yiut{6/2c(n)ns} 4, < (R=20/0)Yiv for v € S, i =
1,...,m,. Putting

Civ 1= %s(v) — 27”%{” forve S,i=1,...,m,,
we can rewrite this as
Rew=1/emsh <1, (x)], < RS forve S, i=1,...,m,,
which is (6.32). Since 7;, > 0 we have ¢;,, < (11/109)s(v) for v € S,i =1,...,m, which is
(6.30). Finally, ¢ = (¢jp : v € S,i = 1,...,m,) depends only on v € I';. Hence for ¢ we
have at most |T';| possibilities.
Define the numbers
v = R_ll/lo‘s)\j_l forj=1,...,n.
By Lemma 16 (ii) and (6.18) we have A\; > R~11/199 Hence
(6.38) 1>0v>0>-- >0,

Further, by Lemma 14 and (6.18),

R—lln/106

(6.39) R W > R11n/105 A—n/2d p=1 5 p-2n/s
W

By Lemma 9 (ii), (6.38) and (6.39) there is a set I's of n-tuples of non-negative reals
4 = (01,...,0,) independent of x, of cardinality

Ty < (2+2e-c(n)s—H
such that for some tuple § € I's we have
(6.40)  (R2n/0)0atiof2elnnd < gy = REMIONZL < (RT2/0Y05 for j=1,...,n.
By (6.38), inequalities (6.40) remain valid after replacing d1,...,d, by
81 := min(d1,...,0,), 0p :=min(da,...,0,), ..., 0, = 0p,

respectively. Putting

we infer from (6.40) that
R% < Aj < REL+Yem)  for 5 =1,...,n,
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which is (6.33). From the definitions of dy, ..., d, it follows at once that —11/100 < d; <
... <d,. Further, since x € ¢~1(II(x)) we have A\; < 1. Hence d; < 0. This implies
(6.31). Finally, the tuple d = (dy,...,d,) depends only on ¢ € I's. Hence for d we have
at most |I'y| possibilities. It follows that the number of possibilities for (c,d) is at most

IT1] -T2 < (24 2e- c(n)d—t)"stn
< ()7 {n(2 + 8en®2"6 1)} < (n) 73 (30n12" )t

This completes the proof of Lemma 18. 0

Let x be a solution of (6.12) and (c;d) the corresponding tuple from Lemma 18. Let
Ky (v|00) be the permutations from Lemma 17. Further, for each finite place v € S, choose
Ky(1),. .., Ky(n) from {1,...,m,} such that

(6.41) liy(1)s+ - > Ly (n) are linearly independent,

Croy(1)w T "+ Cry(n),0 18 Minimal.
Define the linear forms
liy(X) = liyi),w(X) forvesS, i=1,...,n

and the numbers
€iv = Cr, (i) fOTVES, i=1,...,n.

Thus, for every solution x of (6.12) we have constructed a tuple

(6.42) T:=(,:veSi=1,....n; ep:veSi=1,....,n; di:i=1,...,n).
By (6.32) we have

(6.43) Rew— /sy 1" (x)|, < R®* for ves, i=1,...,n.

We recall that

(6.33) R < \j < RUHMY forpe S j=1,...,n.

We derive some other properties of 7.

Lemma 19. (i) 7 belongs to a set independent of x of cardinality at most

Cy = (30n*276 )"

(ii) Forv e S, li,,- ..,

no are linearly independent linear forms with

w) < H, [K(I,) : K| <D, |lj,|ly=1 fori=1,...,n.
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(iii) e;p < foss(v) forve S;i=1,...,n
(iv) D peg €iv < =1+ (4n?27)~!

(V)dlgo 105<d1_ Sdn

(vi) 1 —(3n*2")"t <dy + - +dp <1+ (3n227)" 1.

Proof. (i). By (6.41), for finite places v € S the indices k,(7), and hence the linear forms
l;, and the numbers e;,, are uniquely determined by the tuple ¢ from Lemma 18. For
infinite places v, the linear forms [, are uniquely determined by the permutations k, of
(1,...,n) from Lemma 17, while the numbers e;, depend only on &, and c. Therefore, 7
is uniquely determined by k, (v|oc) and (c;d). It follows that for 7 we have at most

(nh)"(n))~%(30n*2ms st < Oy

possibilities where r is the number of infinite places of K.

(ii). Let v € S, ¢ = 1,...,n. From the definition of {},,...,l,, it follows at once
that these linear forms are hnearly independent. Further, we have I, = [;, for some
je{l,...,my,}. Now (ii) follows at once from (6.13).

(iii). This follows at once from (6.30) and the fact that e;, = c;, for some j €
{1,...,my}.

(iv). We recall that R =[] g Ry, where

det(liy, -y lnw)|o
_ [det(l ) for v|oo
e (®) - L (X)L
d t‘ 11Vy VIV )|V
v_|e(1 bino)| for v € S,v 1 o0,
iyo (X)L (%) o
where {i1,...,i,} is a subset of {1,...,m,} for which the right-hand side is maximal.

Fix v € S. First let v be finite. By (6.41) and the definition of ey, ..., €, we have
Ciyw+ F Ciw > €1y + - + eny. Together with (6.32) and (6.14) this gives

Ryt 2 Nino(R) Loy (9l > R $esuo=n/etn)s
> Revt - teny —{n/c(n)s} )

If v is infinite then ey, ..., €, is a permutation of ¢4, ..., ¢y, whence by (6.32) we have

also
Ry > ly(X) - - Lo (%) |y > Rewvttenn—{n/c(n)s}
— R€1v+'~~+en«u—{n/c(n)s}.

Hence
-1 _ H R;l > Rzm eip—{n/c(n)}
veES

which implies that ), e, < —1+ 1/4n?2™.
(v). This is (6.31).
(vi). By (6.33), Lemma 14 and (6.18) we have
Rd1+...+dn <AL A, < An/QdR< R1—|—{1/3n22n}
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and
Rd1+...+dn > )\1 . ‘)\nR_n/C(n) > l'Rl—n/c(n) > Rl—{1/3n22n}.
n.

This implies (vi). O
Lemma 20. There are linearly independent vectors vy, ...,v, € O% such that

(6.44) 15, (Vi) | < GEW Retvts@dmingip s/} for 4y € 8, 4,5 =1,...,n,

where

G = |AK|1/2dHnsD2"(2d|AK|1/2>2n

and such that x lies in the K-vector space generated by vi,...,v, where r is the largest
integer with d, < 0.

Proof. We take the vectors vi,...,v, from Lemma 17. These belong to O% and are

linearly independent. By (6.26), (6.43), (6.31), (6.33) we have, recalling that I}, = l,; ().
for infinite places v and I}, = [;,, for some j € {1,...,m,} for finite places v,

1 (Vi) < 1l ()]s - {GAmingi ) 1
< G3(0) Reivts(dming,pnHs()/c(n)} for 4y € S, i,7=1,...,n

)

which is (6.44).

Let t be the largest integer with \; < 1 (which exists since x € ¢~!(II(x)), whence
A1 < 1) and let V be the K-vector space generated by ¢~1(\II(x)). We have x € V since
otherwise A\;y1; < 1. By Lemma 17 we have vy,...,vy € V. Since A\;11 > 1 > A\, we have
dim V' = ¢; hence {vy,...,v;} is a basis of V' and therefore x is in the space generated by
Vi,...,Vs. By (6.33) we have R% < )\; < 1, whence d; < 0 and therefore » > t. This
proves Lemma 20. O

Let again x be a solution of (6.12) and let 7 be a tuple as in (6.42) for which (6.43),
(6.33), Lemma 19 and Lemma 20 hold. Below we construct a tuple (N,7, £; Q) satisfying

A

(4.17)-(4.20) of Theorem B such that (N,, £) depends only on 7. This implies Theorem
B since by Lemma 19 (i) the number of possibilities for 7 is at most the number C; from
Theorem B.

Put

(6.45) Q = R*"/°,
Note that by (6.18) we have (4.20), i.e. @ > {%(QHA)‘?T}?’".
There is an integer k with

1
(646) 1§k:§n—1, dk.|_1>0, dk+1_dk>ﬁ'

Namely, by Lemma 19 (v) we have d; < 0 and by Lemma 19 (vi) we have

1 1
n  3n32n

1
dn > —(dy+ -+ dp) > > 0.
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Therefore, there is an r € {1,...,n — 1} with d,, <0,d,11 > 0. Let k be the integer from
{r,r+1,...,n — 1} for which dj11 — dj is maximal. Then clearly di4; > 0 and

dk—|—1 - dk: Z n— r{(dn - dn—l) +-+ (dr—|—1 - dT)}
1 1 1 1
= dn - dr > - =
n—r( ) n—l(n 3n32n)
1
> ﬁ
Put
n
6.47 N = )
(6.47) (7)
As before, let 01,...,0n be the sequence of subsets of {1,...,n} of cardinality n — k,

ordered lexicographically. Thus, o7 = {1,...,n —k},...,on_1 ={k,k+2,...,n},on =
{k+1,k+2,...,N}. Define the set of linear forms

(6.48) L={ly:veS, i=1,...,N}

with

A~

o /
liv = awlil’v

AN, forveS i=1,...,N

k,U

where {i; < ... < i, x} = 0; and ay, € Q* is chosen such that
(6.49) lin]lo =1 forves, i=1,...,N.

By Lemma 19 (ii), the fact that K ([;,) is the composite of the fields K(l;,),- - K, )
and by (6.14) we have

(6.50) [K(l;,) : K] < D", H(l;,) <H" forvesS, i=1,...,N.
Furtherl Zlv, - ,Z Nov are linearly independent since l},,...,1,, are linearly independent.

Hence L satisfies condition (4.19) of Theorem B. Note that by Lemma 19 (ii), Lemma 2
we have

(6.51) 1< |aiolo =, o Ao AL L<H"P" forvesS,i=1,...,N.

n—knv’v

Fori=1,...,N,v € S define the numbers

A

(652) éiv = eilv —|— s —|— ein,kvu dz = dil + . + dinfk:’
where again {i; < ... < i,_r} = 0;. Define the tuple

(6.53) vy="iw:v€ES,i=1,...,N)
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with

0 1 - n
v+ — T AZ'fU dz - f ,':1,...,N—1,
o 3n{c(n)s+e + s(v)( —i—c(n))} or v|oo, i
_of 1 + ény + 5(v) (dn-1 + L) for v|oo

1
c(n)s

Yiv * = i{min (O,

an —l—éw)} forve S, vtoo,i=1,...,N,

where ¢(n) = 1/4n2". The special choices for 7y, (v]oo) will turn out to be crucial. It is

easily verified that indeed (V,, £) depends only on the tuple 7 in (6.42).
We show that y satisfies (4.18):

Lemma 21. (i) v;, < s(v) forve S;i=1,...,N.
(i) Xyes Xity v < —8/6n°,

Proof. (i). Obviously, 7,y < 0 = s(v) if v is finite. Let v be an infinite place and
i€ {l,...,N}. First we have 1/s < 2s(v). Second, by Lemma 19 (iii) (with o; = {i1 <

< in—k}); . "
v = Ciyy o+ i < (0= k) 15(0) < ng(v).

Third, by Lemma 19 (v),(vi),

R 1 11n
d; = d; <t d; <d oot d, —kdi <1+ ———— + —.
Tt +d;, , <di+ + 1 + 3n20n + 103

By inserting this and 1/c(n)s < 2s(v)/c(n) = 1/2n32"s(v) into (6.53) we obtain

SRR G SRS U B 1) (0) < 5(0)
i < — —— + —— ——— + —— ¢s(v) < s(v).
T =30 232 T 106 30227 ' 106

(ii). By (6.53) we have, taking into consideration the special choices for vy, (v|c0),
dy —dn-1 =dkgt1 —dy by (6.52), and >_,  s(v) =3, cg5(v) =1,

N
(6.54) > > o

ves i=1
< %{Uesi(‘*”l’)s + i+ s(0)(ds + cln))) ~(dy — cZN_l)(UZws(v))}
— %{% + (Ziew) +(di+ - +dy) + % — (di+1 —dk)}



Note that by (6.52),

Ziéw: (";1) (Zie) did o tdy = <”;1)(d1+...+dn).

veS i=1 vesS i=1

Together with Lemma 19 (iv), (vi) this implies that

SN e < O
— = k 4n22n )’

. A n—1 1
d et dy < 1+—.
1+ + N_( I )( +3n22”>

By inserting these inequalities and also (6.46), i.e. dpi1 — dp > 1/n?, and c(n) =
1/4n%2n, N < 271 (" 1) <2772 into (6.54) we obtain

Z XN:%'U

vES 1=1
< 1{7(n+1)1\7+ (n_l)(—1+L+1+#) —i}
3n c(n) k 4n22n 3n22n n?
§ ((n+1)2nt o 7 1
= 3_n{ mian TE lamran ﬁ}
s 1 3
S T3 w2 ond

O
We have shown that (N, 7, L; Q) satisfies (4.20), (4.19), (4.18). We complete the proof
of Theorem B by showing that there is a vector space W for which (4.17) holds.

Lemma 22. Let vy,...,v, be the linearly independent vectors from Lemma 20 and let
W be the K-vector space generated by v1,...,vi. Then

Proof. It is obvious that dim W = k. Further, by (6.46) we have k > r where r is the
largest integer with d,, < 0 and this implies together with Lemma 20 that x € W.

It remains to prove that W = V, where W := fen(W), V = V(N,%ﬁ;Q). For
i =1,...,N define the vector B

A

Vi = Vg, /\"'/\Vinfm

where {iy < ... < i,_r} = 0;. Then W has basis {V1,...,Vy_1}. Further, V is the
K-vector space generated by

I:=TI(N,7, £; Q)
—{yeO¥ iy <Q" forvesS, i=1,...,N}.
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We show that vq,...,vy_1 € II and that every vector vy € 1l is linearly dependent on
Vi,...,Vn_1. This clearly implies that W=V.

Take v € S and 4,j € {1,..., N}. Suppose that o; = {i1,...,ip—k}, 0; =
{j1,---,Jn—r}- By Laplace’s rule (2.3) and by (6.48) we have

(6'55) |lAiv(‘A’j)|v = |O‘iv|v

det ((l;w (Vq))pEai,qGij)

v

By (6.51) we have |a,|, < H™P" and by (6.44), taking the maximum over all permutations
k of o,

det ((l;v<vq))p60iaqe‘7j)
n—k
< (n!)s(”) max H ivo (Vi) o
t=1

v

n—=k
< (n!)s(v) m,?x H (Gs(v)Reitu—&-s(v)dmin(it’,@(jt))—&—s(v)/c(n)) .
t=1

Together with (6.55) this implies

~

(656) |lw(‘73)|v < (n!Gm—k>S(U)I_InD"Réiv—|—(d0~¢—7”L/c(n))s(v)7

where
n—k

d() = Imax Z dmin(it,f{(jt))-
——
Since d; < ... <d,, we have d} <...< d}v, whence

(6.57) do < max{min (dil +-+di, ., dn(jl) + -+ d,{(jn_k)) }

~

= min(a?i, Cij) = dmin(i,j)-
Further, by (6.18) and s(v) <1

n—=k
(658) (n!Gn—k>s(v)HnD" < n!{’AK‘l/%lHnsDQ" (Qd‘AK’1/2)2n} HnD”

< Rl/c(n)s'
By inserting (6.57) and (6.58) into (6.56) we obtain
(6.59) 10 (7)o < REwHdmmaptn/emls@)t1/em)s g0 § 4 j=1,... N,

We are interested only in vq,...,vy_1. (6.59) implies that for infinite places v and
fore=1,...,N, 5=1,...,N —1,

(6.60) |Ziv(‘7j)|y < Rém—i-{fzmin(z‘,N—l)+"/C(”)}S(U)+1/C(”)S = Qiv.
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Further, since vi,...,v, € O% we have v; € OF i.e. |v;|, <1 for every finite place v and
for j = 1,..., N — 1. Together with Schwarz’ inequality and (6.49) this implies that for
finiteve Sand fori=1,...,N, j=1,...,N — 1,

|lAiv(‘A’j)|v < |lAiv|v|‘A’j|v <1,
which implies, together with (6.59),
|lAM)(‘A7])|v < Rmin(O,ém—‘rl/c(n)s) — Q'yw'

It follows that indeed vq,...,vny_1 € II.

Take vg € II. We show that vg is linearly dependent on vy,...,Vvy_1 or, which is the
same, det(vo,Vvy,...,Vn_1) =0.

Fix v € S. Then

(6.61) det(Vo, ..., Vn_1) = det(l1y, ..., Ino) " B0
with g, := det((iw({/j)) 1<i< ) .
0<j<N-1
By (6.49), (6.50) and Lemma 2 we have

7 7 N n2™
|det(llv7"'alN’U)|;1 < (Hn)N(D ) SH(2D) ’ .

Further, since vq,...,vy_1 € II we have
(6.63) |Bolv < (N!)S(v) max ’ZIU({’R(O)) e lANv(\A/'n(N)”u

< on2"s()griv et

where the maximum is taken over all permutations x of 0, ..., N — 1. By combining (6.61),
(6.62), (6.63) we obtain

)n2n

[det(Vo,. .., Vn_1)|s < (ZH)@D Qret TNy

By taking the product over v € S and using Lemma 21 (ii) and (4.20) we obtain

n N
T ldet (o, . ¥n1)lo < (2H) P Qduves 2oy 7

veS
< (2H)5(2D)”2nQ75/6n3 <1.

But since vq,...,Vn_1 € Il we have v; € Oév for j =0,...,N — 1, whence
det(Vo,...,Vn_1) is an S-integer. Recalling that by the Product formula, [],.gal, > 1
for every non-zero S-integer a, we infer that

det(\Af(), ce ,\A’N_l) = 0.

This completes the proof of Lemma 22 and hence of Theorem B. [l
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§7. Non-vanishing results.
We derive a non-vanishing result for polynomials which is crucial in the proof of Theorem
C.

Let m, N be integers > 2. For h = 1,...,m denote by X, the block of N vari-
ables (Xp1,...,Xnn). Q[Xi,...,X,,] is the ring of polynomials in the mN variables
X1,...,X,, with coefficients from Q. We use i to denote a tuple of non-negative integers
(th; :h=1,...,m, j=1,...,N). For such a tuple i we define the partial derivative of

FeQ[Xy,...,X,], N |
Fi — H H(L 0Zhj )F

in;! 9x i
het je1 \hi* 0X

Let d = (dy,...,dy) be a tuple of positive integers and for a tuple i as above, put

(i/d) := i dih{z'hl +~--+ihN}.

h=1

Definition. Let x = (x1,...,%X;) € Q™Y where x, = (Zp1,...,zan) € QY and let
F € QX4,...,X,,]. If F¥ # 0 then the index of F' at x with respect to d, notation
Indx a(F), is defined as the largest number o such that

Fi(x) =0 for all i with (i/d) < o;
if " = 0 then we define Indx q4(F') = oc.
It is easy to verify that for F,G € Q[X1,...,X,,], x € Q™" we have
(7.1) Indx a(FG) = Indg a(F) + Indx a(G).

We say that F € Q[Xy,...,X,,] is homogeneous of degree dy, in X, for h=1,...,m
if F'is a linear combination of monomials
m N

TTTI X0 within + - +ipn =dy for h=1,....m.
h=1j=1

For a tuple of positive integers d = (di,...,dy), let T'n(d) be the set of polynomials
F e Q[Xqy,.. . X,n] homogeneous of degree dj, in Xy, for h =1,...,m.
For F € Q[X4,...,X,,], define the height

H(F):= H(ap),

where ap is the vector of coefficients of F'. Further, for a number field K and a place v on
K, put
|Flo == |aF|v;

thus, if F' has its coefficients in K, then H(F) = [[, ¢, [Flo- We have
(7.2)  H(R) <284t tdmfg(F), |F, < 2dt+dm)s@)| | for F e Ty(d),

since Fj is obtained by multiplying the coefficients of F' by certain products (ji) e (?’").
We recall Theorem 3 of [6] (e = 2.7182...):
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Lemma 23. (Roth’s lemma). Let m be an integer > 2, d = (di,...,d,) a tuple of
positive integers and © a real with 0 < © < 1. Suppose that

dh 2m2
7.3 >—— forh=1,....m—1.
(7.3) A=
Further, let F' € @[Xll,X12, ooy Xm1, Xima| be a non-zero polynomial in 2m variables
which is homogeneous of degree dy, in (Xp1, Xp2) for h=1,...,m and let X, = (Tp1, Th2)
(h=1,...,m) be non-zero elements of Q? with

(3m?*/©)™

(7.4) H(xp,)% > {ed1+"'+de(F)} for h=1,...,m.

Then F has index < m© at x = (x1,...,Zy,) w.r.t. d.

We need a generalisation of this for polynomials in I'y(d) where N > 2. The next
non-vanishing result is a sharpening of a result of Schmidt, cf. [18], p. 191, Theorem 10B.
The height of an (INV — 1)-dimensional linear subspace of Q¥

V={xecQ": ayz1+ - +ayry =0} witha=(a1,...,an) € QV\{0}
is defined by
(7.5) H(V):= H(a).
Lemma 24. Let m, N be integers > 2,d = (dy,...,d,,) a tuple of positive integers and

© a real with 0 < © < 1. Suppose again that

d 2m?
h 2% forh=1,....m—1.

7.6
(7.6) s

Further, let F' be a non-zero polynomial from I'y(d) and let Vi,...,V,, be (N — 1)-
dimensional linear subspaces of Q with

(N-1)(3m?/©)™
(7.7) H(V},)% > {edl+"'+de(F)} for h=1,...,m.
Then there is a xp, € Vj, for h =1,...,m such that for x = (x1,...,X,,) we have
(7.8) Indx q(F) < m®O.

Proof. For N = 2 this is precisely Lemma 23 (note that the space V}, = {\x;, : A € Q}
has height H(V},) = H(xy)) so we assume that N > 3. We use Schmidt’s argument [18],
pp. 192-194 to reduce this to N = 2.
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Suppose that
Vi ={x¢€ QN : bz + -+ by = 0} where by, = (bp1,...,bnn) € QN\{O}
After permuting the variables if need be, we may assume that
(7.9) b1 #0 for h=1,...,m.
Let K be a number field containing by; for A =1,...,m, j=1,...,N. Put

ch = (1,bn2/bni, ..., bun/br1), cnj = (1,bn;5/bn1)

forh=1,....m,7=1,...,N. Then

H(Wy) =H(en) = [] lenlw < ] (en2lo--leanl)

vEMK vEMEK
= H(Ch2> s H(ChN).

Hence, again after a permutation of the variables if necessary we may assume that
(7.10) H(bp1,bpa) = H(cpe) > HV)YN-Y for h=1,...,m.

Now suppose that there are no x, € Vi, (h = 1,...,m) with (7.8). The idea is to
arrive at a contradiction by applying Lemma 23 to F* := F (X171, X12,0,...,0;...;
X1, Xm2,0,...,0) but this fails if F* = 0. Therefore we proceed completely similarly to
Schmidt [18], pp. 192-194. Since our terminology is different, we give the argument for
convenience of the reader.

Let I be the set of tuples

(711) i= (7511,1'12,0,. .. ,0; .. .;iml,img,o, ce ,0) with (i/d) S mo.

We write x € Q™Y as (x1,...,X,,) where x; = (Zp1,...,2an) for h=1,...,m. For each
i € I, F; vanishes identically on the vector space

Vi=Vix-xVyu={xecQ™ :l(x)=0for h=1,...,m},

where
I =bp1 Xn1 + -+ v Xnn.

We use that the linear forms
(7.12) Xpnj (h=1,...,m,j=3,...,N) are linearly independent on V.
Namely, otherwise we have an identity
m N m m
Z Zoéthhj = Z Buly = Zﬁh <bh1Xh1 +- 4+ bthhm)
h=1j=3 h=1 h=1

65



for certain ay,; € Q, not all zero, and certain £, € Q, not all zero, but this is impossible
by (7.9).

Rename the variables Xj; (h =1,...,m,j = 1,2) as Y1,...,Ys,, and the variables
Yy (h=1,....m,5=3,---,N) as Yop41,...,Ymn. We can express F as

F=Y?, (F<1>(Y1, o Yn—1) + Yun G (v, ,YmN)>

where so > 0, F() € Q[Y1,...,Yn—1] is non-zero and GV € Q[Y1,...,Y;,n]. The
coefficients of F1) are among the coefficients of F, hence H(F") < H(F). By (7.11),
for each i € I Fj is obtained by partially differentiating F' to variables from Y7,..., Yo,,.
Therefore,

F =Y, (Fi(l) + YmNGi(”) forieI.

Each F; (i € I) vanishes identically on V whereas by (7.12) Y;,ny does not vanish

identically on V'; hence Fi(l) +Yn NGgl) vanishes identically on V. But then Fi(l) vanishes
identically on V4 :=V N (Y;,ny =0) forie I.
Similarly, F(!) can be expressed as

FO =ys (F<2><Y1, o Yn_e) + Vv 1 GP (1, ,YmN_1>),

with F(?) £ 0, H(F®) < H(FMV) < H(F), and we have

1

FY=vsy, (FF) + YmN_10§2>) forieI.

Each F, i(l) (i € I) vanishes identically on V; and by (7.12) Y;,,y—1 does not vanish identically

on V;. Hence we may conclude as above that for each i € I, Fi(2) vanishes identically on
Vo =VinN (YmN—l = 0) =Vn (YmN—l =Y,.N = 0).

Continuing like this we arrive at a non-zero polynomial F("(N—=2)) (Y1,...,Ys,) with
H(FM(N=2)) < H(F) such that for each i € I, Fi(m(N_Q)) vanishes identically on

Vinn—2) =V N (Yorprq1 = = Youn = 0)

:{xe@mnibmaim-l—bhgwhzzo, zpj =0for h=1,...,m, j:3,...,N}.

This means that
(7.13) Indy q(FMN=2)) > m@ for every x € Vin(N=2)-
Define

VE= {(%1,3712; Tl Tn2) € QP 1 bpi@py + bpowag = 0 for h = 1,---;771};

m

F*(X117X12’ Tt 7Xm17Xm2) = (H X}?T)F(W(N—Q))’
h=1
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where aj, € Z>¢ is chosen such that F* is homogeneous of degree dj in (X1, Xp2) for
h =1,...,m. By (7.1), (7.13) F* has index > mO w.r.t d at each point of V*, so in
particular at the point

x" = (x],...,X,,) with x; = (bpa, —bp1) for h=1,...,m.
We have H(F*) = H(F(™WN=2)) < H(F). Together with (7.10), (7.7) this implies that
H(x})™ = H(bpy, bpa)™ > H(Vy)™/(N=0 > fedt b fr ()} (5m2/0)"
> {ed1+~~-—|—dmH<F*)}(3m2/6)m

which is condition (7.4) of Lemma 23. Further, condition (7.3) of Lemma 23 follows from
(7.6). This implies that F™* has index < m© at x*, contrary to what we showed above.
Thus, the assumption that Lemma 24 is false leads to a contradiction. This completes our
proof. O

We need another simple non-vanishing result which is a special case of [18], p. 184,
Lemma 8A. For convenience of the reader we give a short proof.

Lemma 25. Let K be a field of characteristic 0 and F € K[Xy,...,X,] a non-zero
polynomial with degy F' < s; for i = 1,...,r. Further, let By,..., B, be positive reals.

Then there are rational integers xi,...,Ty, t1,...,% Wwith
(714) |xj|§Bj7 OSijSSj/Bj fOI‘jzl,...7T‘,
(7.15) F (z1,...,z,) #0.

oXT - OXF

Proof. We proceed by induction on r. First let » =1 and put a := [B1], b:=[s1/B1]. F
cannot be divisible by []j__, (X —7)""" which is a polynomial of degree (2a+1)(20+1) >
s1 = degF. Therefore there are integers 1,4, with |z1| < a < By, 0 <i3 <b < s1/B
such that (d/dX;)" F(xy1) # 0.

Now suppose that » > 2 and that Lemma 25 holds for polynomials in fewer than r
variables. By applying Lemma 25 with » = 1 and the field K(Xs,..., X,.) replacing K it

follows that there are integers x1,4, with |z1| < B1,0 <y < s1/Bj such that
oh

6X{1 F) (CIZ‘l,Xg, e 7X'r) §é 0.

Now the induction hypothesis applied to G implies that there are rational integers xo, ...,

Tpy Aoy, 0y With |z;| < Bj, 0 <i; < (degx,G)/B;j < s;/B; for j =2,...,r, such that

ozt tir
<WG> (1'2, ceey :L‘r) 7& 0.
This implies (7.15). O

Let V be an (N — 1)-dimensional linear subspace of Q. A grid of size A in V is a set

G(Xa,..., X)) ::(

'={xa1+---+xny_1any-1: ®1,...,aN-1 € Z, |z;| < Afori=1,...,N — 1},

where {aj,...,ay_1} is any basis of V. We call {a;,...,ay_1} also a basis of T". The
next lemma is our final non-vanishing result:
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Lemma 26. Let m,N,dy,...,dm, F,V1,...,V,,0 have the meaning of Lemma 24 and
satisfy the conditions of Lemma 24, i.e. m, N > 2,0 < O <1, (7.6), and (7.7). Further, for
h=1,...,m, let Iy, be any grid in V}, of size N/O. Then there are x; € I'1,...,x,, € 'y,
such that for x = (x1,...,X,,) we have

Indx a(F) < 2m®.

Proof. For h =1,...,m let {ap1,...,an, nv_1} be a basis of I',. By Lemma 24 there is a
tuple i = (i11,...,4mnN) of non-negative integers with (i/d) < m®, such that F; does not
vanish identically on Vj x --- x V,,,. But then, the polynomial

N-1

G(Yih NN aYm,N—l) = Fl( Z Yljalj, ey Z ijamj)
Jj=1 =

is not identically zero. Since G is of degree < dj, in the variable Y},; and by Lemma 25,
there are integers yp,;, kp; with

(7.16) lynjl < NJ/©, 0<kp; <dp®/N for h=1,....,m, j=1,....N—1,

m N-—1 akhg
= (H H ) (y117~~:ym,N—1> # 0.

knj
h=1 j=1 aYh]

such that

Put
N—1

Xy 1= Z ynjan; forh=1,...,m.
j=1
Then x; € T'y, for h = 1,...,m. Further, g is a linear combination with algebraic co-
efficients of numbers Fjie(x), where x = (x1,...,X,,) and e is a tuple of non-negative
integers (eq,...,em, ) with

N N-1
Zehj < Zkhj forh=1,....,m
j=1 j=1

Hence there is such a tuple e with Fj;e(x) # 0. Together with (7.16) this implies that
Indcq(F) < ((i+e)/d) = (i/d) (e/d)

<m@—|—z Zehjgm@+zdh2khj

=1
<m0 + Z( —1) dh@/N) < 2m®.

This completes the proof of Lemma 26. ([l
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§8. Auxiliary results for the proof of Theorem C.

We use the notation from Theorem C. Thus, K is a number field of degree d, S a finite
set of places on K of cardinality s containing all infinite places, € a real with 0 <e <1, N
an integer > 2, v = (vip : v € S,i =1,...,N) a tuple of reals with

N
(4.21) Yiv < s(v) forve S, i=1,...,N, ZZ%@S—G,
veS i=1
and £ = {fzv :v€S8,i=1,...,N} a system of linear forms in N variables with algebraic
coefficients, such that for each v € S, {l1,,...,Iny} is linearly independent and such that
(4.22) H(ly,) < H, [K(y): K] <D, |liyo=1 forvesS, i=1,...,N.

We shall frequently use that by Lemma 2,

(8.1) H VP < det(lro,...,Ino)|w <1 forve S.

A

As the tuple (N, v, £) will be kept fixed, we write II(Q), V(Q) for II(V,, L; Q),
V(N,7, L; Q) respectively. Thus,

Q) ={y € OF : |lu(y)]s < Q¥ forveS, i=1,...,N}
and V(Q) is the K-vector space generated by II(Q). We assume that @) satisfies

(4.23) dimgV(Q) = N — 1,
. > (24 602, with Cy = 230N8s2¢ 1 1og 4D - loglog 4D.
4.24 Q> (2H

Our first auxiliary result is an inequality between @) and the height H(V(Q)) of V(Q).
Our proof is similar to Schmidt [19], Lemma 7.3 except that we do not use reciprocal
parallelepipeds.

Lemma 27. There is an (N — 1)-dimensional linear subspace V of K~ with the following

property:
for every ) with (4.23), (4.24) we have

V(Q) =V
(8:2) H(V(Q)) > Q/3P",

Proof. Fix @ with (4.23), (4.24). By (4.23), there are linearly independent vectors

g1,...,8n-1 in II(Q). Put
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(cf. §2). Then by (2.1),
(8.3) V(Q)={xe K" :g" x=0}.

Define the linear forms

(8.4) I, = <l}v Ao A1 ANg1o Ao A ZNU>
and put
(8.5) Dy, =1}, (g") forveS k=1,...,N.

By Laplace’s rule (2.3) we have

Dy, = det ((lw(gj)) 1<i<N,i7£k) forvesS, k=1,...,N.

1<j<N-—-1

Since g1,...,8nv—1 € II(Q) we have |l;,(g;)ly < QY forv € S, ¢ =1,...,N, j =

1,...,N — 1. Hence
(8.6) [ Diolo < (N)*® max [ ] 1o (i)l
itk
< (NN Qv +MWe=v  forpe S, k=1,...,N,
where the maximum is taken over all bijective mappings  from {1,..., N}\{k} to {1,...,
N —1}.
Suppose for the moment that there is a tuple (i, : v € S) with
(8.7) iv €{1,...,N}, D;, ,#0 forveS
€
. > —o
(8.8) D View = 3
veES
By (8.6), (4.21) and (8.8) we have
(8.9) [T 1Dl < N1QRues Dty 7= Rcs o) < N1Q=/2,

veSs

We estimate the left-hand side of (8.9) from below. Fix v € S and put k := i,. Choose
A € QF such that the linear form A}, has its coefficients in the field K (I},) =: L. There
is a place w on L such that |z|, = |z|9, for x € L, where by (4.22) we have

1<g<|L:K]<DN"%
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Note that by (8.7) we have ADy, € L*. Now the Product formula applied to ADjy, and
Schwarz’ inequality applied to (8.5) give

g g
- ( 1 |wm|q) _ |>\Dlw|i(H |ADkv|q)

qEM, qFw

g
< rwmm( TT Mo rg*rq)

qFw

IADgy | w g g
= _— )\l>I< * *
<|>\l]>gv|w . |g*|’w | | | k:v|q |g |q

qEM],

|)\Dk1}’1} ) ( * * )9
= — H(\;,) - H

< (H'L’) (5. H(g*>)DN_1,

olv - 18"
and this implies that
(8.10) [Diolo = il HOZ) ™7 - 1871 H (") ™"
By (8.4), Lemma 2 and (4.22) we have
oo = HTOPT
while by (8.4), (2.13) and (4.22) we have

(8.11) H(ly,) < [[H@w) < HY.
i#k

By inserting this into (8.10) we get, recalling that k = i,,

A~ "N AN
|Diy wlo > H 2P |g*,H(g*)™ P forves.

Further, since g1, ...,gn_1 € I(Q) we have gi1,...,gny_1 € OY. Hence g* € OF | i.e.
lg*|, <1 forv¢S.

Together with (8.3), i.e. H(g") = H(V(Q)), these inequalities imply that

H |Div,v

veS

fr—2NsDN * x\—sDY
L > H2ND (H|g |U)H<g> D

veES
> BN H (g H(V(Q) ™" > BN PN H(V(Q) P
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By combining this with (8.9) and (4.24) we obtain
H(V(Q)*P" < NIANPTQ=e/2 < =%,

which is equivalent to (8.2).

We now assume that there is no tuple (i, : v € S) satisfying both (8.7) and (8.8).
We show that there is a fixed (N — 1)-dimensional linear subspace V of K%, independent
of @, such that V(Q) =V. Forv € 5, let

I,={ie{l,...,N}: D,;, #0}.

In view of (8.5) we have
(8.12) L,(g")=0 forve S, ie{l,...,N}\I,.
By (8.4), (4.22) and (2.13) we have

H(:) <HN! forvesS i=1,...,N.

Together with Lemma 3 (ii) this implies that there is a non-zero vector h € KV with

(8.13) 5(h) =0 forvesS, ie{l,.... NN\,
N-1

* A(N—1)2

(8.14) H(h)s(__rggchHaw)) < N1,

(If I, ={1,..., N} for each v € S then (8.13) is an empty condition and (8.14) is satisfied
by for instance h = (1,0,...,0)). Fix a non-zero h € K with (8.13), (8.14) and put

Vi={xcK": x-h=0}

Our aim is to show that V(Q) = V. Since V(Q) is the vector space generated by II(Q)
and both V(@) and V have dimension N — 1, it suffices to show that II(Q)) C V or which
is the same x - h = 0 for every x € II(Q).

Fix x € TI(Q). For v € S, let A, be the N x N-matrix whose i-th row consists of the
coeflicients of iiv and let A} the N x N-matrix whose i-th row consists of the coefficients

of I},. Then by (2.1), (8.4) we have
PAY A, = AL

where tA* is the transpose of A%, A, = det(ly,,...,In,) and I is the unit matrix. This
implies that

N
x-h = A7, ()15, (h)
=1
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so in view of (8.13),

(8.15) x-h=A">"1;,(x)l;,(h) forvesS.
’LGI'U

By (8.1) we have

(8.16) 1A, < HNPY for v e 8.

Further, by (2.12) and (4.24) we have

|Z:U|U§H|Zjvyv:1 forveS i=1,...,N

JjFi
and together with Schwarz’ inequality this implies
(8.17) |12, (h)], < |I%,] /b, < |hl|, forvesS, i€ l,.

For v € S, choose j, € I, such that v;, , = max;er, Viv. Since x € II(Q) we have
(%) < Q" < QVivw forve S, icl,.
Together with (8.15), (8.16), (8.17) this implies that
(8.18) [x - hly = A1 D L ()15, ()],
icl,

< NUOEN |1, ()]l (09

< NS(U)ﬁN[)N|h|vQ%'mv forve S.

Further, since x € II(Q) we have x € OY, whence |x|, < 1 for v ¢ S. Together with
Schwarz’ inequality this implies that

(8.19) |x - h|, < x|, - |h|, < |h|, forv¢S.

Since j, € I, for v € S, the tuple (j, : v € S) satisfies (8.7), so by our assumption it does
not satisfy (8.8). This means that

(8.20) > Viow < —€/2.

veS
Now assume that x-h # 0. Then, by the Product formula and (8.18), (8.19), (8.20), (8.14)

we have
1= ][] x-hlo=]] x-hl [] x-hl
vEME vES vgS
< N- NP ] Ibl,@2=ees - T Inl.
veS V€S

<N-. ﬁNSDNH(h)Q_E/z
<N. ﬁNsﬁN+(N—1)2Q—e/2
but this contradicts (4.24). Hence x-h = 0. This completes the proof of Lemma 27. O

We need another, easier, gap principle, which is similar to [19], Lemma 7.6.
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Lemma 28. Let A, B be reals with
~ . Co
B>A>(2H)® ",

where Cy is the constant in (4.24). There is a collection of (N — 1)-dimensional linear
subspaces of KN of cardinality at most

T(A,B) := 1+ 4¢ log(log B/log A)
such that for every Q with (4.23) and with
A<Q@Q<B
the vector space V (Q) belongs to this collection.
Proof. Let E > (2ﬁ)602. Suppose there are Q with (4.23) and with
(8.21) E<Q< EY/2,

Let Qg be the smallest such @ and put Vg := V(Qg). Then Qg satisfies (4.24). We first
show that for all @ with (4.23) and (8.21) we have

(8.22) V(Q) = Vg.

Take linearly independent x,...,xy-1 € II(Qg). (8.22) follows once we have shown that
for every Q € [Qp, E'¢/?) and every xy € II(Q) we have xy € Vg or, which is the same,
det(x1,...,xn5) = 0.
Take xy € II(Q). Fix v € S. By (8.1) we have
(8.23) det(x1, .-, xN)|o = |det(lp, - -, Ino)ly tdet(liv (X))
< HNP7 | det (i (%) -

Further, we have |Z¢U(xj)|v <Qpvfori=1,...,N, j=1,...,N —1 and also, by (4.21)

we have
liw(xn)|e < Q" = Q%" (Q/Qr)™ < QR (Q/Qr)*™
< Qp (B ?/Qp) ™) < @yt

for i = 1,...,N. Therefore (taking again the maximum over all permutations x of
(1,...,N)),

N

det (oo ()0 < (VD) T i ()| < (V)T Qe (2,
i=1

By inserting this into (8.23) we get
|det(x1, o ;XN)lv < (N!)s(v)lﬁINﬁNQ’Ev-i--“-i-’YNu-l-s(v)e/Z for v € S.

74



By taking the product over v € S and using (4.21) and that Qg satisfies (4.24) we obtain

2 D N iv | € 2
H |det(x1, e 7XN)|’U S N!HNSDNQEEUGS Zz=17 ) /

veS
< NIHNsDY Q% < 1,
Further, we know that xq,...,Xy € Os , whence det(x1,...,xy) € Og and that [, . g |al»
> 1 for non-zero a € Og. Hence det(xy,...,xy) = 0 which is what we wanted to show.

Now let k& be the smallest integer with (1 + €/2)* > log B/ log A. Put E; := A(+¢/2)
fori=0,...,k—1. Then E; > A > (2]—?)602, Let I be the set of indices i € {0,...,k—1}
for which there is a @ with (4.23) and with E; < Q < Ei1+6/2. Then I has cardinality at

most
log(log B/ log A)

log(1+¢€/2)
For every @ € [A, B) with (4.23) there is an ¢ € I such that Q €
[AQ+e/2)" A(Q+e/2)™y = [Ei,EiH_E/Q). Above we proved that V(Q) = Vg,. Hence the
spaces V(Q) with @ satisfying (4.23) and A < @ < B belong to the collection {Vg, :i € I}
which has cardinality at most T'(A, B). This proves Lemma 28. O

4
k<14 + —log(log B/log A) = T'(A, B).
€

In the proof of Theorem C we need an auxiliary polynomial with certain properties,
to which Lemma 26 in §7 will be applied. Let m > 2. For h = 1,...,m, denote as before
by X}, the block of variables (Xp1,..., Xnn). For v € S| we introduce new variables

Univ = li(Xp) (h=1,...,m, i=1,...,N).

Let d = (dy,...,dn) be a tuple of positive integers. Denote by R(d) the set of non-zero
polynomials in Z[X;, ..., X,,] which are of degree dj, in the block X}, for h =1,...,m and
whose coefficients have ged 1. In what follows, i, j denote tuples of non-negative integers
(the :h=1,....m, k=1,....N), o : h=1,...,m, k= 1,...,N), respectively. For
F € R(d) we put as usual

m N 1 oink
A= (I fg )
h=1k=1 hk
For each v € S, {flv, - ,f No} is linearly independent, whence F;j can be expressed as
F=Ycli,jo)Ulty - Ul
J
where the sum is taken over tuples j with

(8.24) Z]hk—dh—Zzhk forh=1,....,m

k=1
As before, we put

m1 N
= —_—- Thk-
};dh ;hk
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Lemma 29. (Polynomial theorem). Let © be a real with 0 < © < 1/N, m an integer
with

(8.25) m > 4072 log(2NsdD™*)

and d = (dy,...,d,) any m-tuple of positive integers. Then there is a polynomial F €
R(d) with the following properties:

(1-) H(F) < (sz3N1/2lﬁI)d1+...+dm;

(ii) for all v € S and all tuples i, j with (8.24) and with

(i/d) < 2m®,

. Jhk m
2 — - — N
(8.26) kznll,é.l.}.(,N ’ — dy, N’ > 3mN®,

we have c(i, j,v) = 0;
(iii) for all tuples i we have

H max ‘c(i’j, v)|v < (24mN EA[2NSDN)d1+~~+dm'
J
vES

Proof. Let K7 be the composite of the fields K(Z}v) (ve S, i=1,...,N). Then each Liw
is proportional to a linear form with coefficients in K;. By [K : Q] = d and (4.22) we have
[K1:Q] < dDVs. Let t be the maximal number of pairwise non-proportional linear forms
among I, (ve S, i=1,...,N). Then t < Ns. By (8.25) we have

(8.27) m > 40~ % log(2t[K; : Q)).

This is precisely the condition on m in the Index theorem and the Polynomial theorem of
[19], §9, and from these theorems we infer that there is a polynomial F' € R(d) with (i)
and (ii). This is proved by using Siegel’s lemma from [2]: the equations c(i, j,v) = 0 can be
translated into a system of linear equations in the unknown integer coefficients of F', (8.27),
(8.26) guarantee that the number of unknowns is larger than the number of equations, and
then Siegel’s lemma implies that this system of linear equations has a non-zero integral
solution whose coordinates have absolute values bounded above by the right-hand side of
(i).

We prove (iii). Fix v € S. Since the coefficients of F' have ged 1 and by (i) we have
|F”U _ H(F)s(v) < (sz . 3N1/21{1)(d1+---+dm)s(v)'
Together with (7.2) this implies that for each tuple i,

A\ (ditetdin)s(v)
(8.28) |F, < <2mN+1 : 3N1/2H)

(drF+--+dm)s(v)
S <2mN+3N1/2_H)
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We have

N
(8.29) Xpi = MirUpk  (h=1,...,m, i=1,...,N),
k=1
where (7;;) is the inverse matrix of the coefficient matrix A, of Zlv, .. ,i Nv- We have

Nik = £Aii - A 1 where A;j, is the determinant of the matrix obtained by removing the

i-th row and the k-th column from A,, and A, = detA, = det(flv, e ,fNU). By (4.22)
and Hadamard’s inequality we have |A;j|, < 1fori=1,...,N, j=1,...,N. Together
with (8.1) this implies that

(8.30) niklo < |det(fro, ... Ino) |3t < NPV fori=1,...,N, j=1,...,N.

Write . .
Fi(Xy,.. ., X)) = > p(L, ) X1 - X2y,
Jj

where the summation is over tuples j with (8.24). By inserting (8.29) we get

(8.31) b = ijp(ivj) ﬁ lf[l(XN; nkthlv)jhk-

h=1 l=

Put
A= max ’p(iaj)|v7 B := max(ly%azx|77kl|v)~
J

I

We have F; =} c(i, p,v) e, Hl]il Urrt where the summation is over tuples p = (pp).

11}/3(1;)

If v is an infinite place then we have, recalling that || satisfies the triangle inequality,

m N N
|C(i>P7U)|11,/S(U) < ZAl/S(”) H H (ZBl/s(v))Jhk
J 1=1

h=1k=1 =
< N2t dm) (g gt ) 1/50)

since j runs through tuples with (8.24). If v is a finite place then

e, Py )]y < A max Bk M < ABhtrto,
J

So for both cases v infinite, v finite we have
(i, p, 0)]y < N2 dittdm) g gdittdm.

By estimating A from above using A < |Fj|, and (8.28), and B from above using (8.30)
we obtain

. . AN d1++dm
|c(i,p,v)|v < (NQS(U) . {2mN+3N1/2H}s(v) -HND )
< (24mNs(v)ﬁ2N15N)d1+--~+dm for v € S.
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By taking the product over v € S we get

H IIlSLX |C(i,p,v)|v < (24mN[:_[2N815N)d1+-~~+dm
veES

which is (iii). This completes the proof of Lemma 29. O

89. Proof of Theorem C.

~

Let (IV,v, L) be a tuple as in Theorem C satisfying N > 2, (4.21), (4.22). Put

€

and let m be the smallest integer satisfying the condition of Lemma 29, i.e.
(8.25) m > 402 log(2NsdDN®).

Then by (9.1) we have

(9.2) m < 4000N"se 2 log4D.

We assume that the collection of subspaces V(Q) with @ satisfying (4.23), (4.24) has
cardinality > (5 and shall derive a contradiction from that. Then this collection consists

of more than
1+ (m—1)t, witht=2+ [4e log(4m?0~1)]

subspaces, since
1+ (m— 1)t < 5me tlog(4m?0~1) < 5me tlog(120N*m?e 1)

< 5% 4000 - N7se 3 log4D - log(120 x 4000°N'7s%¢~®(log 4D)?)
< 29N8s2¢ 4 log 4D - loglog 4D = Cs.

Let V' be the subspace from Lemma 27. Then there are reals Q},Q5, ..., Qll—i—(m—l)t with
(4.23), (4.24) and Q) < Q3 < ... < Q1 such that the spaces V(Q1),.. .,
V(Q 4 (m—1);) are different and different from V. Put

Q1 =Q1, Q2:=Qi11,...,Qu = Q/(M*l)l“rl

and
Vi =V (Qpn) forh=1,...,m.

There are t > 1 + 4e~log{4m?/0} different spaces V(Q) with Q, < V(Q) < Qpna1;
together with Lemma 28 this implies that

(9.3) Q;H_lZQimQ/@ for h=1,....m—1.
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Define positive integers dy, ..., d,, by

log Qm
9.4 d =1 _—
(54) ' " {@108;621}
(9.5) dilog Q1 < dplogQp <dilog@Qq +1logQp for h=1,...,m.
Thus,
(9.6) dylog Q1 < dplogQp < dylog@i-(14+0©) forh=1,...,m.

Let d = (d1,...,dy,) and let F' € R(d) be the polynomial from Lemma 29 which exists
since m satisfies (8.25). We want to apply Lemma 26. We have N > 2 and m > 2,0 <
© <1 by (9.1), (8.25), respectively. We verify that dy,...,d,,, F, Vi,...,V,, satisfy the
other conditions of Lemma 26, i.e. (7.6), (7.7).

By (9.6), (9.3), (9.1) we have

dp, _ dp log Qpn ' log Qn+1
dht1 dpy1logQryr  logQp
>2m?/0 forh=1,...,m—1,

> (1+0)""-4m*/0

which is (7.6).
By Lemma 27, V}, = V(Qn) # V, (9.5) and the fact that Q); satisfies (4.24) we have
H(V)t > Qi/™P" > QEre/®P™ > (afryhee/3sD”
> (21:_7)‘11'602/2 forh=1,...,m

On the other hand, by Lemma 29 (i), d; + - -+ + d;,, < mdy, (9.1) and (9.2) we have

_ m2 m
{ed1+...+de(F)}(N 1)(3m=~/0)

< {6 LomiV 3N1/2I_A[}(N*1)(3m /O) ™ (dy+++4dum)

< (2ﬁ>2mN2-(3m2/6)m-md1 < (2ﬁ>d1~(3m2/®)2m

2H dy-exp{2m log(90m3>N?2/e)}

IA

(2H)
(2H>d1 -exp{8000N"se "2 log 4D-log(10° N3 (log4D)?)}
(2H)

dy- 602/2

2H

A

Therefore,

(N—=1)(3m?/@)™
)}

H(V)™ > {€d1+'"+de(F for h=1,...,m,

which is (7.7). Hence indeed, m, N, O, dy,...,dy,, F, Vi,...,V,, satisfy the conditions of
Lemma 26.
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For h = 1,...,m, choose a linearly independent set of vectors {gn1,...,8n n—1} from
II(Qn) (which exists by (4.23)) and let I'y, be the grid of size N/©,

Iy, = {ﬂflgm + - INABR N1 X1, TN, €Ly |21, JEnoa] < N/@}-
Now Lemma 26 implies that there are x; € I'y,...,x,, € I';, and a tuple of non-negative
integers i with (i/d) < 2m®, such that
(9.7) fi=Fi(x1,...,xm) #0.

From gp; € II(Q)) it follows that gy; € Ofgv for 7 = 1,...,N, hence x5, € O]SV for
h = 1,...,N. Further, F; has its coefficients in Z. Hence f € Og\{0} which implies
[I,es|flo > 1. Below, we show that

[T, <1
veS

Thus, the assumption that there are more than Cs different subspaces among V(Q) with
@ running through the reals with (4.23), (4.24) does indeed lead to a contradiction.
Fixve S. Put

Uhip 1= iiv(xh) forh=1,....,m, i=1,...,N.

Since gn; € II(Qp), i.e. |Z¢U(ghj)|v <Q@)vifori=1,...,Nand j=1,...,N —1, and since
xp, is in the grid I'y, of size N/©, we have, using (2.8),

(9.8) [Uhiv]o < (N2/@)S(”)QZ“’ for h=1,....m,i=1,...,N.

By Lemma 29 (ii) we have

*

(9.9) F=>cli,jv)ulll, -ulny,,
Jj

where the summation is over all tuples of non-negative integers j = (ji1,- .., jmn) With

‘ ‘M—k—ﬂ‘gi’)m]\f@ for k=1,...,N,
— d, N

(9.10) N

N
Zjhk :dh—Zihk for h=1,...,N.

Now by (9.8), (9.9), by the trivial fact that there are at most N9+ +dm tuples j with
(9.10) and by Zh,k gk < di + -+ d,, < mdy, we have

(9.11) 1flo < N (it tdm)s(v) 'mBX‘C(LLU)’v‘ullv‘%n O P
J
md1
<oy a g

80



where

1/mdy
A’U = (HlaX|C<i,j,U)|U) 5

J

1 Jnk dnlog Qp
Cp 1= — rnax v Lo wh
hzl ; g dh “dy log Q1

and the maximum is taken over all tuples j with (9.10).
We estimate ¢, from above. For each tuple j with (9.10) we have, recalling that
Vv < $(v) by (4.21) and 1 < dj log Qp/dilog @1 < 14 O by (9.6),

ii% Jnk  dnlog Qp
“dp dylogQ

h=1 k=1
O  jnk dnlog Qn
- ;{(m —ow) hz::l dy,  dilogQ }
O e di log Qn,
*S(”){;,;_h dllong}
N m . .
< v — 8(v) Ik Ly s(v)(1+0) Jhk
2 {on g i} eonrof{g ]
N m m
< {;; (Vhw — S(U))}(N —3mN®O) + s(v)(1+ @)N(N +3mNO)
N
< m(nykv> (% — 3N@> (v) TmN?O
k=1

here we used that by (9.1) and 0 < € < 1 we have © < 1/30N3. Hence

N
1
Cy < (;’ka) (N - 3N@) +5(v) - TN?© forv € S.

Together with (4.21), (9.1) this implies that

(9.12) e < <Z iw) (% - 3N®> +7N%0

veS veS k=1
< 1 € n 7 € < €
="\~ 10n2) T30N T oN
Further, by Lemma 29 (iii) and dy + - - - + d,,, < md; we have

(9.13) [T Ao < 20N 2N,
veS
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Now (9.11), (9.13), (9.12), (9.1), (9.2) and the fact that Q; satisfies (4.24) imply that

[T 171 < {(N3/@) (T 4 levescv}mdl

veS veS

md;
m FAZ S HN —€/2N

. ) A 2N /e mdye/2N
< {(30N .216000N8s5210g4Dﬁ2N8DN) 'Qfl}

€
< 1.
This completes the proof of Theorem C.
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