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THE NUMBER OF FAMILIES OF SOLUTIONS
OF DECOMPOSABLE FORM EQUATIONS

J.-H. EVerrsE (LEIDEN) AND K. GYORY (DEBRECEN) *)

1. INTRODUCTION

In [16], Schmidt introduced the notion of family of solutions of norm form equa-
tions and showed that there are only finitely many such families. In [18], Voutier
gave an explicit upper bound for the number of families. Independently, in [5],
Gyory extended the notion of family of solutions of norm form equations to de-
composable form equations and gave an explicit upper bound for the number of
families. In this paper, we obtain a significant improvement of the upper bounds
of Voutier and Gyory, by applying the results from Evertse [4].

Let 8 be a non-zero rational integer. Further, let M denote an algebraic number
field of degree r and I(X) = a1 X1 + - - - + @ X, a linear form with coefficients in
M. There is a non-zero ¢ € Q such that the norm form

(1.1) F(X) = Ny (l(X)) = CH(agi)Xl +-+aVX,,)

has its coefficients in Z. Here, we denote by oV, ..., a(") the conjugates of o € M.
We deal among other things with norm form equations of the shape

F(x)=4pinxeZ™.

It is more convenient for us to consider the equivalent equation which is also called

a norm form equation,
(1.2) cNyjq(z) =£finze M,

where M is the Z-module {z = l(x) : x € Z™} which is contained in M.
In 1971, Schmidt [15] proved his fundamental result, that (1.2) has only finitely
many solutions if M satisfies some natural non-degeneracy condition. Later, Schmidt
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[16] dealt also with the case that M is degenerate and showed that in that case,
the set of solutions of (1.2) can be divided in a natural way into families, and is
the union of finitely many such families. Below, we give a precise definition of a
family of solutions of (1.2); here we mention that it is a coset xilrq,; contained in
M, where z is a solution of (1.2) and £, is a particular subgroup of finite index
in the unit group of the ring of integers of some subfield J of M. Schmidt’s results
have been generalised to equations of the type

(1.3) Nk () € BO5 inz e M,

where K is an algebraic number field, Og is the ring of S-integers in K for some
finite set of places S, OF is the unit group of Og, ¢, § are elements of K* = K\ {0},
M is a finite extension of K, and M is a finitely generated Og-module contained
in M. In fact, Schlickewei [13] proved the analogue of Schmidt’s result on families
of solutions in case that Og is contained in Q, and Laurent [9] generalised this to
arbitrary algebraic number fields K. The main tools in the proofs of these results
were Schmidt’s Subspace theorem and Schlickewei’s generalisation to the p-adic
case and to number fields.

In [5], Gyéry generalised the concept of family of solutions to decomposable form
equations over Og, i.e. to equations of the form

(1.4) F(x) € pOs in x = (21, ..., Tm) € OF ,

where K, S are as above, § is a non-zero element of Og and F(X) = F(X, ..., X;»)
is a decomposable form with coefficients in Og, that is, F' can be expressed as
a product of linear forms in m variables with coefficients in some extension of
K. We can reformulate (1.4) in a shape similar to (1.3) as follows. According
to [1], pp. 77-81, there are finite extension fields M, ..., M; of K, linear forms
LX) = ;X1 + -+ + @ Xy, with coefficients in M for j = 1,...,t and c € K*
such that

(15) PX) = ¢ [ Nagyac(15X))

Now let
A=M; & --- & M;

be the direct K-algebra sum of My, ..., M, that is, the cartesian product My X - - - X
M; endowed with coordinatewise addition and multiplication. If we express an
element of A as («, ..., &), then we implicitly assume that a; € M; for j =1, ..., ¢t.
We define the norm N,k (a) of a = (a1, ...,a;) € A to be the determinant of the
K-linear map z +— ax from A to itself. This norm is known to be multiplicative.
Further, we have

(1.6) Na/k(a) = Nagy e (oa) - Nag, i ()
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where Ny, /x is the usual field norm. Note that the Og-module

M= {z=(L(x),..:(x): x€ O}
is contained in A. Now (1.5) and (1.6) imply that eq. (1.4) is equivalent to
(1.7) cNy/k(z) € BOg inx € M ;

(1.7) will also be referred to as a decomposable form equation. In [5], Gy6ry showed
that the set of solutions of (1.7) is the union of finitely many families. Further, in
[5] he extended some of his results to decomposable form equations over arbitrary
finitely generated integral domains over Z.

In [17], Schmidt made a further significant advancement by deriving, as a con-
sequence of his quantitative Subspace theorem, an explicit upper bound for the
number of solutions of norm form equation (1.2) over Z for every non-degenerate
module M. Schlickewei proved a p-adic generalisation of Schmidt’s quantitative
Subspace theorem and used this to derive an explicit upper bound for the number
of solutions of S-unit equations [14]. Among others, this was used by Gy6ry [5] to
obtain an explicit upper bound for the number of families of solutions of decom-
posable form equation (1.7). Independently, Voutier [18] obtained upper bounds
similar to Gyéry’s for the number of families of solutions of norm form equation
(1.3), in the special case that K = Q, § = 1. Recently, Evertse [4] improved the
results of Schmidt and Schlickewei just mentioned. In this paper, we apply the
results from [4] to obtain an upper bound for the number of families of solutions of
(1.7) which is much sharper than Gydry’s and Voutier’s (cf. Theorem 1 in Section
1.2).

In Section 1.1 we introduce the necessary terminology. In Section 1.2 we state our
main results (Theorems 1 and 2) and some corollaries. In particular, in Corollary
2 we give an upper bound for the number of O%-cosets of solutions of (1.7) in case
that that number is finite; here, an O%-coset is a set 20§ = {ex : ¢ € O} where
x is a fixed solution of (1.7). Further, in Section 2 we derive from Theorem 1 an
asymptotic formula (cf. Corollary 4) for the number of O%-cosets of solutions of
(1.7), in case that this number is infinite. The other sections are devoted to the
proofs of Theorems 1 and 2.
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1.1. Terminology.

Here and in the sequel we use the following notation: the unit group of a ring R
with 1 is denoted by R* and for x € R and a subset H of R we define zH := {zh :
h € H}. Let K be an algebraic number field. Denote by Ok the ring of integers and
by M the collection of places (equivalence classes of absolute values) on K. Recall
that My consists of finitely many infinite (i.e. archimedean) places (the number
of these being r1 + ro where r1,ry denote the number of isomorphic embeddings of
K into R and the number of complex conjugate pairs of isomorphic embeddings
of K into C, respectively) and of infinitely many finite (non-archimedean) places
which may be identified with the prime ideals of Ok . For every v € Mg we choose
an absolute value | - |, from v. Now let S be a finite subset of My containing all
infinite places. The ring of S-integers and its unit group, the group of S-units, are
defined by

Os={zeK: |zg|,<lforv¢ S}, Ot={zeK: |z|[,=1forv ¢S},

respectively, where ‘v ¢ S’ means ‘v € M \S.” For a finite extension J of K, we
denote by O s the integral closure of Og in J.
We first introduce families of solutions for norm form equations

(1.3) cNyg(x) € BOs inx e M,

where, as before, M is a finite extension of K, M is a finitely generated Og-module
contained in M and ¢, 8 are elements of K*. Let V := KM be the K-vector space
generated by M. For a subfield J of M containing K, define the sets

(1.8) VIi={zeV:aJCV}, M/ =V nM.

As is easily seen, we have Az € V7 for x € V7, X € J. Further, define the subgroup
of the unit group of O; s,

(1.9) Uy ={e€Ohg: eM’ = M’}

For instance from Lemma 9 of [5] it follows that {x ; has finite index in O g.
Note that Ny x(e) € OF for e € U, s. Hence if © € M7 is a solution of (1.3)
then so is every element of the coset xilnrg,s. Such a coset is called a family of
solutions (or rather an (M, J)-family of solutions) of (1.3). Laurent [9] proved the
generalisation of Schmidt’s result that the set of solutions of eq. (1.3) is the union
of at most finitely many families.

Now let A = My @ --- @& M; be the direct K-algebra sum of finite extension
fields My, ..., M; of K. Note that A has unit element 14 = (1,...,1) (¢ times) where
1 is the unit element of K and that the unit group of A is A* = {(&1,...,&) €
A: & ---& # 0}. For each K-subalgebra B of A, denote by Op g the integral
closure of Og in B. Thus,

Oas=0m.sP - ®Ownm,,s
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is the direct sum of the integral closures of Og in M7y, ..., M;, respectively, and
OB,S = OA7S NnB

for each K-subalgebra B of A. From these facts and (1.6) it follows easily, that for
b € Oas we have Ny i (b) € Os and that for b in the unit group O3 ¢ we have
Ny i (b) € OF.

Let ¢,8 € K*, let M be a finitely generated Og-module contained in A, and
consider the equation

(1.7) cNyx(x) €Oy inze M.

Families of solutions of (1.7) are defined in precisely the same way as for (1.3), but
now the role of the subfields J of M in (1.3) is played by the K-subalgebras B of A
that contain the unit element 14 of A. Thus, let V := KM be the K-vector space,
contained in A, generated by M and for each K-subalgebra B of A with 14 € B
define the sets

(1.10) VB.={zxecV:aBCV}, MBE =VEnM
and the subgroup of the unit group of Op g,
(1.11) Unp,p ={c € O g: eMP = MP}

which is known to have finite index [Of ¢ : Ha,p] in Of ¢ (cf. [5], Lemma 9).
Clearly, VB is closed under multiplication by elements of B (and in fact the largest
subspace of V' with this property). A(n (M, B)-) family of solutions of (1.7) is a
coset xaq, p, where B is a K-subalgebra of A containing 14 and z € MPB ig a
solution of (1.7); since Ny x(e) € Of for € € Upq,p, every element of zihp g is
a solution of (1.7). If A = M is a finite extension field of K this notion of family
of solutions coincides with that for norm form equation (1.3) since then, the K-
subalgebras of A containing 14 are precisely the subfields of M containing K. In
[5], Gyéry proved among other things that the set of solutions of (1.7) is the union
of finitely many families.
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1.2 Results.

Below, we first recall Gyéry’s result on the number of families of solutions of (1.7)
and then state our improvement. As before, let K be an algebraic number field, S
a finite set of places on K containing all infinite places, A = My & - - - & M; where
M, ..., M are finite extensions of K, and M a finitely generated (not necessarily
free) Og-submodule of A. Let a; = (a1, ...,at) (i = 1,...,m) be a set of generators
of M. Thus,

M={z = (l1(x),....;(x)) : x€ O}

where [;(x) = a1jo1+- - -+ amjry, for j =1,...,t, and by (1.6) we have Ny /x(z) =
H;Zl N,k (Lj(x)). We call d a denominator of M if d € K* and if the polynomial
d H;zl N, /i (1 (X)) has its coefficients in Og. This notion of denominator is easily
shown to be independent of the choice of the generators ay, ..., ap,.

We consider eq. (1.7), and impose the following conditions on S, A, M,  and

S has cardinality s,

(1.12) A has dimension as a K-vector space Zle[Mi K)l=r>2,
' the K-vector space V := KM has dimension n > 2,

8 € Os\{0}, cis a denominator of M.

For every finite place v on K, let ord,(-) denote the discrete valuation corresponding
to v with value group Z; recall that |- |, = Oy for some C, > 1. For 8 € K*,
let wg(B) denote the number of v ¢ S with ord,(8) # 0 and put

1(6) = ( " )ws(ﬁ).vl;g <T~0rdq;fﬂ)+n>.

n—1

Further, let D be the degree over Q of the normal closure of the composite M;...M;
over Q; thus, [K : Q] < D < (r[K : Q])!. Gyéry [5] proved that the set of solutions
of (1.7) is contained in some finite union of cosets of unit groups

237nD56

(1.13) 1105, g U---Uz,Op, g with w < (4sD) 1 (6),
where for i = 1,...,w, B; is a K-subalgebra of A with 14 € B;, x; € A* with
r;B; C'V, and where the set of solutions of (1.7) contained in ;0% g is the union
of at most [Op, 5 : U 5;] (M, B;)-families of solutions. This implies an upper
bound for the number of families of solutions of (1.7) which depends on n,r, 3, s
and the indices [OF. ¢ : Um B (cf. [5], Theorem 3), so ultimately on the module
M. We mention that Voutier [18], Chap. V independently obtained a result similar
to (1.13) but only for norm form equation (1.3) and with K = Q, = 1.

GyoOry’s result can be improved as follows. A K-subalgebra B of A is said to be
S-minimal if 14 € B, and if for each proper K-subalgebra B’ of B with 14 € B/,
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the quotient group Of ¢/O% g is infinite. A family of solutions of (1.7) is said to
be reducible if it is the union of finitely many strictly smaller families of solutions,
and irreducible otherwise. Put

ba(B) = < r )ws(ﬁ) UI;IS <ordv(ﬂ)+n_1> 7

(1.14) n—1 n—1

e(n) = %n(n +1)(2n+1)—2.

Theorem 1. Assume (1.12). The set of solutions of
(1.7) cNy/k(x) € BOg inx € M

can be expressed as a finite union of irreducible families of solutions. More precisely,
the set of solutions of (1.7) is contained in some finite union of cosets

(1.15) 210, g U+ UzyOf, ¢ withw < (2332)°"° ()

such that for i = 1,...,w, B; is an S-minimal K-subalgebra of A, x; € A* with
x;B; CV, and the set of solutions of (1.7) contained in z;O0Fp, g 1s the union of al
most [Op. s Um,B;| (M, B;)-families of solutions which are all irreducible.

Remark 1. The right-hand side of Gy&ry’s bound (1.13) depends doubly expo-
nentially on n and in the worst case that D = (r[K : Q])! triply exponentially on r,
whereas our bound (1.15) depends only polynomially on r and exponentially on n3.
(1.13) can be better than (1.15) in terms of r only if D is very small compared with
r, e.g. if A = Q" for some large r. It is likely that, in (1.15), 233 can be improved
upon, and that e(n) can be replaced by a linear expression of n.

For some very special type of norm form equation, Voutier succeeded in deriving
an upper bound for the number of families of solutions independent of the module
M (see the remark after Corollary 1). It is an open problem whether an explicit
bound independent of M exists in full generality, for equations (1.3) or (1.7).
Remark 2. We can express the set of solutions of (1.7) as a minimal finite union of
irreducible families, that is, as a union 7, U---UF, where Fq, ..., F, are irreducible
families of solutions, none of which is contained in the union of the others. We
claim that every other irreducible family of solutions of (1.7) is contained in one
of Fi,...,Fy. In other words Fi,...,Fy are the maximal irreducible families of
solutions of (1.7). Hence Theorem 1 above gives automatically an upper bound
for the number of maximal irreducible families. To prove our claim, let G be an
arbitrary irreducible family of solutions of (1.7). Then G is the union of the sets
GNF;fori=1,...,9 and by Lemma 3 in Section 2, each of these sets is a union of
finitely many families. Then one of these families, contained in F7, say, is equal to
G. Hence G C F;.
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Remark 3. There is only one way to express the set of solutions of (1.7) as a
minimal union of irreducible families, since the families appearing in such a union
are the maximal irreducible families of solutions of (1.7).

We also investigate the problem to give an upper bound for the number of K-
subalgebras B of A for which (1.7) has (M, B)-families of solutions. Let again
V = KM. Suppose again that dimg A = r and dimg V = n. If x is a solution in
MPE  then x € VB N A*, where A* is the unit group of A. Hence (1.7) can have
(M, B)-families of solutions only for those K-subalgebras B of A for which

(1.16) la€B, VBnA*#0.

In [5], Gy6ry proved that the number of algebras B with (1.16) is at most n". We

can improve this as follows:

Theorem 2. The number of K -subalgebras B of A with (1.16) is at most
(nmax(r — n, 2))n

We do not know whether the dependence on r is necessary.

We derive some corollaries from Theorem 1. First we specialise Theorem 1
to norm form equation (1.3). Let K,S be as above so that in particular S has
cardinality s. Further, let M be a finite extension of K of degree r > 2, M
a finitely generated Og-submodule of M such that the K-vector space KM has
dimension n > 2, and ¢, § constants such that § € Og\{0} and c is a denominator
of M. Then, by applying Theorem 1 with A = M, we get at once the following
result which improves upon the corresponding results in [5] and [18]:

Corollary 1. The set of solutions of
(1.3) cNy/k(x) € fOg inx € M

can be expressed as a finite union of irreducible families of solutions. More precisely,
the set of solutions of (1.8) is contained in some finite union of cosets

2105, s U+ Ur, 05 ¢ withw < (2%2)°0% . y,(3)

such that for i = 1,...,w, J; is a subfield of M containing K, x; € M* is such
that x;J; CV, and the set of solutions of (1.8) in z;0}, g is the union of at most
(07, 5+ Ya.0,] (M, J;)-families of solutions which are all irreducible.

As mentioned before, for a very special type of norm form equation Voutier ([18],
Theorem V.3) obtained an upper bound for the number of families independent of
M: namely, he proved that if M is a Z-module of rank 3 contained in the ring of
integers of an algebraic number field M of degree r >rank M = 3, then the set of
solutions of the equation

Nuyjqz) =1inz e M
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is the union of at most 72> families.

We return to eq. (1.7). In what follows, we consider K as a K-subalgebra of
A by indentifying a € K with « - 14. The set of solutions of (1.7) can be divided
into O%-cosets zO%. Gydry [5], Corollary 2, gave an explicit upper bound for the
number of O%-cosets of solutions of (1.7) in case that this number is finite. We can
improve this as follows:

Corollary 2. Assume (1.12). Suppose that (1.7) has only finitely many O%-cosets
of solutions. Then this number is at most

(2%3r2)°()* 4y (B) .

For B = 1, this gives the Corollary to Theorem 1 of [4].

Proof. Let B be one of the S-minimal K-subalgebras of A occurring in (1.15).
We may assume that (1.7) has an (M, B)-family of solutions, x4 5, say. By
identifying € € OF with €-14, we may view O% as a subgroup of U, p. Let w < oo
be the index of O% in Upq,p. Then xilrq p is the union of precisely w OF-cosets.
So our assumption implies that w is finite. Therefore, [OF g : O%] is finite. Now
since B is S-minimal, it follows that B = K. So each algebra B; occurring in (1.15)
is equal to K, i.e. Op ¢ = Of, and Corollary 2 follows. [

In general, it is as yet not effectively decidable whether (1.7) has only finitely
many OF-cosets of solutions. Schmidt [17] Theorem 3, derived an explicit upper
bound for the number of solutions of norm form equations over Z satisfying an
effectively decidable non-degeneracy condition. It is possible to give a similar ef-
fective non-degeneracy condition for eq. (1.7) as well, which implies that for every
B € Og\ {0}, the number of O%-cosets of solutions is finite. Moreover, under that
condition we can derive an upper bound for the number of O%-cosets of solutions
with a better dependence on § in that unlike the bound in Corollary 2, it does not
depend on the quantities ord,(8) (v € Mk \S) appearing in 3 (3).

The vector space V = K M is said to be non-degenerate if VENA* = () for every
K-subalgebra B of A with 14 € B, B # K, where A* is the unit group of A. (1.16)
implies that in that case, each algebra B; occurring in (1.15) is equal to K. Hence
the set of solutions of (1.7) is the union of finitely many O%-cosets.

Corollary 3. Assume (1.12) and in addition that V = KM is non-degenerate.
Then the set of solutions of (1.7) is the union of at most

(233T2)e(n)(s+ws (8))
O%-cosets.

Proof. We apply Theorem 1 with S’ := SU{v ¢ S : ord,(3) > 0} replacing S.
Thus, 8 € OF% . We have to replace s by the cardinality of S” which is s’ := s+wg(3).
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Moreover, in the definition of ¥2(3), S has to be replaced by S’ which means that
12(8) has to be replaced by 1. Let M’ be the Og,-module generated by M. Thus,
every solution of (1.7) satisfies

(1.7) cNajg(r) € Oy inze M .

Clearly, c is a denominator of M’. Moreover, since V is non-degenerate, the set of
solutions of (1.77) is the union of finitely many OF%,-cosets. So by Corollary 2, the
set of solutions of (1.7’), and hence also the set of solutions of (1.7), is contained
in the union of at most (23372)e(m)s’ O%-cosets. Now if any two solutions z1, x2 of
(1.7) belong to the same OF,-coset then they belong to the same O¥-coset: for if
Ty = exy with ¢ € OF,, then €" = cNy /i (22)/cNa/x(21) € OF, hence ¢ € OF.
This proves Corollary 3. 0O

2. AN ASYMPTOTIC FORMULA

In this section, we state and prove an asymptotic density result for the collection
of Of-cosets of solutions of equation (1.7), in case that the number of these is
infinite. This asymptotic density result is a consequence of (the qualitative part of)
Theorem 1.

We recall the definition of absolute (multiplicative) Weil height. Let Q denote the
algebraic closure of Q. Let x = (21, ...,2,) € Q \{0}. Take any algebraic number
field L containing x4, ...,x,, and let o1, ..., 04 be the isomorphic embeddings of L
into Q, where d = [L : Q]. Further, let (x1,...,7,) denote the fractional ideal
with respect to the ring of integers of L generated by z1,...,x,, and denote by
Nz q((#1,...,2y)) its norm. Then the absolute Weil height of x is defined by

H('i max(|o; (21)] |oi(xn)]) 1/d
H(X) — H(xh...,xn) = { =1 NL/Q((Il’ ,l‘n)) | } .

It is clear that H(x) does not depend on the choice of L. Further,
(2.1) H(x)=H(x) for x e Q"\{0}, A\ e Q.

Now let K be an algebraic number field and A = M7 & ... & M;, where M, ..., M,
are finite extension fields of K. We define the height H(z) of = = (&1,...,&) € A
to be the absolute Weil height of the vector with coordinates consisting of &1, ..., &
and their conjugates over K, that is, if 7;1,...,7,, with r; = [M; : K] are the
K-isomorphic embeddings of M; into Q then we put

H(z) = H(11,1(60), s T (61), s T2 (€)oo T (€))-
Note that by (2.1) we have

(2.2) H(x) = H(\x) for x € A\{0}, A€ K*,
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i.e. H may be viewed as a height on the collection (A\{0})/K* of K*-cosets
xK* (x € A\{0}). This height satisfies

(2.3) #{r € (A\{0})/K*: H(z) < X} <ocofor X >0.

Namely, by Northcott’s theorem [10], [11] we have that for every d > 0, X > 0, there
are, up to multiplication by elements from 6*7 only finitely many x = (&1, ...,&,) €
Q"\{0} with H(x) < X and [Q(&) : Q] < d for i = 1,...,n. This implies that
the set of non-zero elements x of A with H(x) < X can be divided into finitely
many classes, where z = (£1,...,&), y = (m1,...,7m:) € A are said to belong to the
same class if (71,1(1), ., Tty (€)) = @(T1.1(0), oy T, (1)) for sOme o € Q. But
clearly, if for instance & # 0, then a = 7 1(m /&) = -+ = 71,0, (M /&) which
implies that a € K. So if 2,y € A\{0} belong to the same class then they belong
to the same K*-coset.

For a finitely generated abelian group A, denote by Ao the torsion subgroup
of A and by rank A the rank of the free abelian group A/A¢ors. Let as usual S be
a finite set of places on K which contains all infinite places. For a K-subalgebra B
of A containing the unit element 14 of A we put

pB,s = rank Op /0% ,

where we view Of as a subgroup of Of ¢ by identifying ¢ € Of with ¢ - 14.
By a straightforward generalisation of Dirichlet’s unit theorem, OFp g is finitely
generated, hence pp g is finite.

Let again 8,c € K*, and let M be a finitely generated Og-submodule of A such
that condition (1.12) holds. For every X > 0 we consider the set of solutions of

(2.4) cNa/k(z) € BOS in z € M with H(z) < X .

(From (2.2) and Of C K* it follows that the set of solutions of (2.4) can be
divided into O%-cosets O¥%. Denote by N(X) the maximal number of distinct
O%-cosets contained in the set of solutions of (2.4). From (2.3) it follows that
N(X) is finite: namely if z,y are solutions of (2.4) with y = ex for some ¢ € K*,
then e” = Na,k(y)/Na/k (z) € O%, so z,y belong to the same Og-coset. In case of
norm form equations over Q, asymptotic formulas for N(X) were derived by Gyéry
and Pethé [6] (in the archimedean case) and Pethd [12] (for an arbitrary finite set
of places S); Gy6ry and Pethd [7] and Everest [2] obtained more precise results
in certain special cases. From (the qualitative part of) Theorem 1 we derive the
following generalisation of Peth&’s result [12]:

Corollary 4. We have

N(X) =7 (logX)” +O((log X)" 1) as X — oo,
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where 7y is a positive number independent of X and where p is the maximum of
the numbers pp. g, taken over all K-subalgebras B of A with 14 € B for which the
equation cNy i (z) € BOg in v € M has (M, B)-families of solutions.

We mention that in the case Og = Z, Everest and Gy6ry [3] recently obtained some
refinements for equations of the form (1.4).
Remark 4. v, p and the constant in the error term are all ineffective. By (1.16),
we can estimate p from above by the effectively computable number pg, which is the
maximum of the numbers pp g, taken over all K-subalgebras B of A with 14 € B,
VB N A* # (). Further, using the explicit bound in Theorem 1, one can effectively
compute an upper bound for -; we shall not work this out.

To derive Corollary 4 we need some lemmas. The first lemma is undoubtedly
well-known but we could not find a proof of it in the literature.

Lemma 1. Let A be a finitely generated additive abelian group of rank p, and let
f be a function from A to R with the following properties:

(2.5) f(x) >0 for x € A;

(2.6) [l +y) < fx) + fly) for z,y € A;

(2.7) fAx) =Af(z) forx € A, X\ € Z>y;

(2.8) for every Y > 0, the set {x € A: f(z) <Y} is finite.
Then

(2.9) #areh: f@)<Y}=~-YP+OY" ) asY — o0

where v = y(A, f) is a positive constant.

Proof. We first assume that A = Z”. For z = (&,...,§,) € R” we define the
maximum norm ||z|| := max(|&1],...,|¢,|). Letting e; = (0,...,1,...,0) (i = 1,...,p)
denote the vector in Z” with a single 1 on the i-th place, we infer from (2.5)-(2.7)
that for « = (&1,...,€,), y = (M, ...,mp) € Z” we have

[f(2) = f(y)| < max(f(z —y), — ni| max(f(e:), f(—ei))

|\'M~o

whence
(2.10) |f(x) = f(y)| < C-lz =yl

where C :=Y"7_ max(f(e;), f(—e;)).

We extend f to a function on Q” by putting f(z) := A\~ f(\z) for z € Q” where
A is the smallest positive integer such that Az € Z”. This extended [ satisfies again
(2.5)-(2.7) and (2.10), but now for all z,y € Q” and A € Q>¢. Using (2.10) and
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taking limits we can extend f to a continuous function f: R” +— R which satisfies
(2.5)-(2.7) and (2.10) for all z,y € R” and A € Rx.

For Y > 0 we define the set Cy := {z € R’ : f(x) <Y}. Since f is continuous,
this set is Lebesgue measurable. By (2.7) we have Cy = {Yz : = € C;}. Hence
Cy has Lebesgue measure v - Y”, where v is the Lebesgue measure of C;. We can
cover R” by the unit cubes U, := {z € R’ : ||z — 2|| < 4} (2 € Z”). These cubes
have Lebesgue measure 1, and any two different cubes have at most part of their
boundary in common. (2.7) and (2.10) imply that

Cy_1cC |J U:CCyyicfory>1C.

ZEZP
f(x)<Y

Now let n(Y) be the number of z € Z” with f(z) < Y. By comparing Lebesgue
measures, we get

(2.11) Y (Y =10 <n(Y) <y (Y +10)7 for Y >

1
2 = = 2

C.

(From (2.8) it follows that n(Y') is finite; hence «y is finite. Moreover, for Y suffi-
ciently large, n(Y) > 0, hence v > 0. Now (2.9) follows at once from (2.11). This
settles the case A = Z°.

Now let A be an arbitrary additive abelian group. There are uy,...,u, € A such
that every x € A can be expressed uniquely as

T=t+ Clul + -+ Cpup with ¢ € AtorS7 Z = (Cla -~-a<p) €z .

Put f'(z) := f(Gui + -+ + (pup). (2.6) implies that f'(z) — f(—t) < f(z) <
f'(z) + f(t). Further, (2.7) with A = 0 implies that f(0) = 0. More generally, (2.7)
implies that f(¢) = 0 for t € Ators since for such ¢ there is a positive integer A with
At = 0. Hence f(z) = f/'(2) for x € A. Clearly, f’ and Z” satisfies (2.5)-(2.8). So
by what we proved above we have

#{2€Z: fl(2)<Y}=9Y +0OY" HasY —
with some positive 7/. From this, one deduces easily that (2.9) holds with v =

~"« #Ators. This completes the proof of Lemma 1. [

For a subset F of A with the property that for each x € F the coset zO% is
contained in F, we denote by Nz(X) the maximal number of distinct O%-cosets
zO% with € F and H(z) < X.

Lemma 2. Let F = zlpm.p be a family of solutions of (1.7), where B is a K-
subalgebra of A containing 14 and x € MP. Then for some positive real vy depend-
ing only on M and B we have

(2.12) Nz(X) = 7v(log X)*25 4+ O((log X)*?-571) as X — oo .
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Proof. We use the following properties of the absolute Weil height which are straight-
forward consequences of its definition:

H(x) > 1 for x € Q"\{0},

H(z1y1y ooy TnYn) < H(x1, ooy Tn) H(Y1, oy Yn)

for z1,...,%n, Y1, Yn € Q,

H(z},...,x)) = H(x1,...,x,) for 21, ...,2, € Q, X € Z>y.

(2.13)

Let 4 := 5 and po := pp,s. Since U has finite index in OF g, the factor group
/0% has rank py. We apply Lemma 1 to A = /0% and f =log H. By (2.2), f is
well-defined on A. Further, (2.13) implies (2.5)-(2.7), and (2.8) follows from (2.3)
and the fact that 4/O% = 4/(K* N4) may be viewed as a subgroup of A*/K*. It
follows that

(2.14) Ny(X) = v(log X)?° + O((log X)) as X — oo

for some positive constant 7. By (2.13) we have ¢; H(zu) < H(u) < coH(zu) for
u € Y, where ¢; = H(x)™" and ¢y = H(z~'), and this implies that Ny(c;'X) <
Noy(X) < Ny(e;'X). Now Lemma 2 follows from (2.14) and the fact that both
(log(cle))pO and (log(cng))pO differ from (log X)*° by at most O((log X)ro~1).
(]

Lemma 3. For any two K -subalgebras B, By of A containing 14, the intersection
of an (M, By)-family and an (M, Bs)-family is the union of at most finitely many
(M, B1 n Bg)—families.

Proof. Let G; = x4 am. B, with x; € MBi for i = 1,2 be the two families of solutions
and put B := By N By. Let 29 € G; N Go. Then 2o € MB' N MPB2. From
definition (1.10) it follows easily that MB: C M?® for i = 1,2. Therefore, 2o € ME.
Further, we have G; = 2o, g, for ¢ = 1,2, hence G NGy = x (ilM’Bl ﬂilM,BQ).
We claim that Yy, p is a subgroup of finite index in Y,z N YU, p,; then it
follows at once that G; N Gy is the union of finitely many families yiprp with
y € MB. To prove the claim, let € € Upq g and take i € {1,2}. Then e € B C B;,
whence by (1.10), eMBi C VBi where V.= KM. Further, by (1.11) we have
eMBi C eMB = MB C M. Therefore, by (1.10) eMPB: C MPB:. Similarly, we
find e IMPBi C MPBi. Hence eMPi = MPBi ie. e € Upmp, for i = 1,2. So
Um,B € Up,B, Nihay, B, Now our claim follows from the fact that both groups
have finite index in Op ¢ = O, ¢ N0, s U

Proof of Corollary 4. By Theorem 1, the set of solutions of (1.7) can be expressed
as

(2.15) FiU..UF,
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where for each ¢, F; is an (M, B;)-family of solutions of (1.7) for some K-subalgebra
B, of A containing 14. For a tuple I = {i; < ... <i;} of integers from {1, ..., p}, let
By :=B;, N..N By, Fr :==F;;, N...NF;, and N;(X) the number of cosets O
with x € Fr and H(z) < X. Put p; := max{pp, s :i=1,...,p}. Thus, pp, s < p1
for each tuple I as above. Lemma 3 implies that for each I, F; is the union of
finitely many (M, By)-families. So by Lemma 2 we have

Nr(X) =~7(log X)P* + O((log X)** 1) as X — oo

where vy = 0 if pg, s < p1. Note that ; > 0 for at least one i € {1, ...,p}. Now by
(2.15) and the rule of inclusion and exclusion we have

NX) =Y Ni(X)= Y Ni(X)+ Y Np(X)—---,
i=1 #I=2 #1=3
hence
N(X) =~v(log X)”* + O((log X)* 1) as X — o0
where

p
YEY Nim D Y

i=1 #I=2 #1=3

Since N(X) > N;(X) for i = 1,...,p we have v > ~; for i = 1,...,p, hence v > 0.
Lemma 2 implies that (1.7) does not have any family of solutions axtiy p with
pB,s > p1; therefore, p; = p. This completes the proof of Corollary 4. O

3. REDUCTION TO O} 4-COSETS

Let K be an algebraic number field, and let S, My, ... , My, A = M1 ®-- - &My, M
be as in Section 1.2. Further, let s = #S5,7r = dimgA > 2 n =dimg KM > 2,¢, 6
be as in (1.12). For x € A, we define the coset 2O} 5 = {ex : ¢ € O} 5}. In this
section we prove Lemma 4 below which is in fact an improvement of Lemma 5 of

[5].

Lemma 4. The set of solutions of
(1.7) cNy/k(z) € BOg in x € M

1s contained in some union xloz’s U... Uxtl(’)z)s where t; < o(B) and where for
j=1,...t1,z; € M is a solution of (1.7).

We prove this by slightly refining some arguments of Schmidt [17]. In the proof
of Lemma 4 we need some further lemmas. We first recall some lemmas from
[17]. Let E be a field endowed with a non-archimedian additive valuation V' (i.e.
Vizy) = V(z) + V(y),V(z +y) > min(V(z),V(y)) for z,y € E,V(0) = oo, and
there is an x € E with V(z) # 0,V (z) # o). For z = (z1,...,2,) € E™, put
V(z) = min(V(z1),...,V(z)). Further, let Ly,..., L, be r > n linear forms in n
variables with coefficients in F.
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Lemma 5. Letz € E™ with z # 0. There is a subset S of {1,... ,r} of cardinality
n — 1 such that every z’ € E™ with

V(z’) > V(z), V(Li(z’)) > V(Li(z)) forieS

satisfies

V(Li(2") > V(Li(z)) fori=1,...,r
Proof. This is precisely Lemma 13 of [17], except that that Lemma has the ad-
ditional condition V(z) = 0. Suppose that V(z) # 0. Let A € E be such that
V()\) = V(z) and put z; := A~ 'z. Then V(z;) = 0. Now Lemma 5 follows at once
from Lemma 13 of [17] applied to z1, on observing that V(L;(z1)) = V(Li(z))—V ()
fori=1,...,r. O

We call the subset S related to z as in Lemma 5 an anchor for z.

Lemma 6. Let dy,...,d, be positive rational numbers, v a real and S a subset of
{1,...,r} of cardinality n — 1. Put

T(S):={zeE": ZdiV(Li(z)) =7,8 is an anchor for z}.
i=1

Then for any z1,2e € T(S) with V(Li(z1)) = V(Li(2z2)) fori € S we have that
V(Li(z1)) = V(Li(z2)) fori=1,...,r.

Proof. Let z1,z2 € T(S) with V(L;(z1)) = V(Li(z2)) for i € S. We may as-
sume without loss of generality that V(z2) > V(z1). Then by Lemma 5 we have
V(Li(z2)) > V(Li(z1)) for i = 1,...,r. Together with Y., d;V(L;(z;)) = ~ for
j = 1,2 this implies that V(L;(z2)) = V(Li(z1)) fori=1,...,r. O

As before, if we express an element of A as a t-tuple (&1,...,&), say, then it is
implicitly assumed that & € M; fori=1,... ,t. Fixve Mg\ S. Fori=1,... ,t,
let w;1,... ,w; 4, denote the places on M; which lie above v, and denote by e;;, fi;
the ramification index and residue class degree, respectively, of w;; over v. Let K
denote the algebraic closure of K. Choose a continuation of ord, to K and denote
this also by ord,; then ord, assumes its values in Q. For i =1,... |t let &; denote
the collection of K-isomorphic embeddings of M; into K; then &; can be expressed

as a disjoint union,
E=E1U... Ugigi with #gij = eijfij forj=1,...,9;
such that for j =1,...,g;

(3.1) ordy,; () = ejjord,(o(a)) for a € M;, 0 € &;.
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Lemma 7. There are integers c;; (1 = 1,...,t,j =1,...,9;) and u, with u, <
ord, (83) such that for every solution x = (&1,...,&) € M of (1.7) we have

(32) ordwij(fi)—cij ZO fori:l,... ,t,jz 1, s iy

(3.3) Z Z fij{ordw,; (&) — cij} = uo.

i=1 j=1

Proof. Let {a = (ag1,... ) : k=1,...,m} be a set of generators of M as an
Og-module. Define the integers

(3.4) cij = min{ordy,; (aps) :k=1,... ,m}fori=1,..., t,j=1,..., 9.

Let # = (&1,...,&) € M be a solution of (1.7). Then z = >_}" | Bray for certain
Bi,. .. Bm € Os. Since the place w;; lies above v € Mg\ S, we have ord,,,, (Bx) > 0
fori=1,...,¢,j=1,...,g;. Together with & = Y;" | Bray; for i =1,... ¢ and
(3.4), this implies ord,,,; (§ij) > ¢ fori =1,... ,t,j =1,...,g;. This proves (3.2).

We now prove (3.3) for some u,. By assumption, ¢ is a denominator for M, i.e.

t
CHNMi/K(alin +...+ OémiXm) S Os[Xl, R ,Xm}.
i=1

Since z = (&1, .. ,&) is a solution of (1.7) we have chZl Nk (&) € BOG, so

(3.5) F(X) = 8] Ny (Z O;—ka> € Os[X1, ..., Xml.

i=1 k=1

For a polynomial P(X) € K[X1,...,X,,] denote by ord,(P) the minimum of the
numbers ord,(c) for all coefficients o of P. By Gauss’ lemma (cf. [8], p.55,
Prop.2.1) we have ord,(PQ)=ord,(P)+ord,(Q) for P,Q € K[X1,...,X]. By
applying this to (3.5) we obtain

0 < ord,(F) = ord,(8) + Z Z 1211111 ord, (o(ak;i /&))
i=1o0€&;

= ord,( +ZZ Z mln ord, (o (axi /&)

i=1 j= 106511 -

= Ord + Z Z fz] mlél Ordw” (akl/gl) by (3 1)

7,1]1

= Ordv(ﬁ) + Z Z fij{cij — ordwij (fz)} by (34)

i=1j=1

This implies (3.3) with u, = ord,(8) — ord,(F). O
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Lemma 8. If ¢ = (&1,...,&) runs through the set of solutions of (1.7), then

the tuple v, (z) := (ordw,; (&) =i = 1,...,t,5 = 1,...,9;) runs through a set of
ordv(ﬁ)+n71).

cardinality at most (") (****\73

Proof. Let
O, :={y € K :ord,(y) > 0}, M, := MO,

be the local ring at v, and the localisation of M at v, respectively. We note that
Os ¢ O, and M C M,. Since O, is a principal ideal domain, the O,-module
M, is free of rank n = dimxg KM. Let {ay = (ag1,... ,art) : k=1,... ,n} be an
O,-basis of M,,. Further, let x = (&1,...,&) € M be a solution of (1.7). Then z =
z1a1+. . .+zpa, for some vector z = (z1, ... , z,) € OF which is uniquely determined
by x. For each i € {1,...,t} and each o € &; (the collection of K-isomorphic
embeddings of M; into K) define the linear form L;,(z) := o(a1)z1+- . .40 (i) 2n-
Thus

(36) 0’(51) = Lw(z) for i = 1,..,t, o € Ei .

Recall that Zle[Mi : K] = r. Let Ly,..., L. be the linear forms L;, (i =
1,...,t, 0 € &) in some order. For i =1,...,t, j=1,...,g;, let

fij = {k S {1, ...,T} : Ly = L;, for some o € Eij},
where the set &;; is defined by (3.1). Then by (3.1), (3.6),

ordu,; (&) = eijordy(a(&;)) = eijord, (Li(z))

(3.7)
fore=1,..,t, j=1,....,9;, k€ Fij -

We apply Lemma 6 with £ = K and V = ord,. Let S, C {1,...,7} be an anchor
for z in the sense of Lemma 5. Then S, has cardinality n — 1, and the tuple
(ordy(Li(z)) : k = 1,...,7) is uniquely determined by S, and the (n — 1)-tuple
(ordy(Lk(z)) : k € Sz). Let

SL={(i,j):1<i<t, 1<j<g; FiyNS; #0}.

Now (3.7) implies that once S, is given, the tuple (ord.,, (&) : (4,7) € S;) deter-
mines uniquely (ord,(Lg(2z)) : k € S;), the latter determines uniquely (ord, (Lx(z)) :
k =1,...,r) and this last tuple determines uniquely (ord.,, () : i =1,...,t, j =
1,...,9i) = ¥y(x), again by (3.7). We conclude that ¢, (x) is determined uniquely
by S, and the tuple (ord,; (&) : (4,7) € S,).

By Lemma 7 there are integers ¢;; (i =1,...,t, j =1,...,¢;) such that
ordy,; (&) — ¢ij > 0 for (4,7) € S,, and

(3.8) > A{ordw, (&) =i} <Y Z fiz{orduw,, (&) — i} < ordy(B).

(i.§)€SL i=1j=1
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The set S, has cardinality < n — 1, since S, has cardinality n — 1 and the sets F;;
are pairwise disjoint. Given the set S, (3.8) implies that for the tuple (ord,, (&) :

j
(i,7) € S.) we have at most (Ord“ (75‘)5:#81) < (Ord”(f_)‘f"_l

as S, is a subset of {1, ..., 7} of cardinilaty n— 1, we have at most (nil) possibilities

) possibilities. Moreover,
for S,. This proves Lemma 8. [

Proof of Lemma 4. For x = (&1,...,&) € A define the tuple of integers ¢(x) =
(ordy, (&) =i = 1,..,t, w; 1 S) where ‘w; 1 S indicates that w; runs through
all places on M; not lying above a place in S. 1 is an additive homomorphism
on A* with kernel O} g, since z = (&1,..,&) € OLhs < & € Oy, g for
i=1,..,t <= ordy, (&) =0fori=1,..,t, w; +S. In particular, for z1,2, € A*
we have ¢(z1) = (zg) < 110} ¢ = 220} 5.

Now #(z) can be obtained by combining all tuples ¥, (z) (v € Mk \ S) from
Lemma 8. Hence if « runs through all solutions of (1.7), then ¢(x) runs through a
set of cardinality at most

()0 ) = me.

vEMK\S

This completes the proof of Lemma 4. [

4. PROOF OF THEOREM 1

Let K, S, s=#S, My,.. My, A=M; ®..5 M, r=dimgA>2, M, n=
dimg KM, ¢, B be as in (1.12). Further, put V := KM. By Lemma 4, the set of
solutions of (1.7) is contained in some finite union of O} g-cosets. For the moment,
we consider only the solutions of (1.7) in a fixed O} g-coset 2007 5. More generally,
we deal with elements of the set

(4.1) VNzoO0y 5
where z¢ is a fixed element of A*. As before, we view K as a K-subalgebra of A
by identifying o € K with als = (, ..., @) (r times).

Lemma 9. Let B ={a € A:aV C V} be the algebra of scalars of V. Suppose
that n > 2 and that the quotient group (9*375/(9?; is finite. Then there are proper
K-linear subspaces Y1, ..., Y, of V such that

2
VNzo0h g CY1U...UY,, with to < (2560%)" %

Proof. We assume that xg = 1; this is no loss of generality since if zo # 1, we may
prove Lemma 9 with vn O’ s replacing V NzoO} . We want to apply Lemma
16 of [4] and for this purpose we must introduce some notation.
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Fori=1,...,t, 1let 7,1,...., 7, (r; = [M;: K]) be the K-isomorphic embeddings
of M; into K and define the map f: A — K by

f(z) = (T1,1(60), oo T (€0)s ooy T2 (&), oo e (&) for @ = (€150, &) € A

Thus, f(z) = (1,...,x,) € K . Let G denote the Galois group of K /K. Clearly, for
ocelG,i=1,..,t, 00T;1,...,0 0T; r, is a permutation of 7; 1, ..., 7; r,. This implies
that there is an action by G on {1,...,r} attaching to each o € G a permutation
(o(1),...,0(r)) of (1,...,r) such that for z € A we have

o(x;) = o) fori=1,...r, 0 € G,
where (21, ..., 2,) = f(z). Define the K-algebra
A={x=(z1,...,x,) €K :o(x;) = To fori=1,..,r, 0 € G}.

Then § is an injective K-homomorphism from A to A. For instance from Lemma
2 of [4] it follows that K-linearly independent vectors of A are also K-linearly
independent; so dimgA < r = dimgA. It follows that { is also surjective, i.e. a
K-algebra isomorphism from A to A. Let Og denote the integral closure of Og
in K, O the unit group of Og, and Og the r-fold cartesian product of this unit
group. It is easy to verify that

(4.2) (O4.5) =AN(O%).

A symmetric partition of {1,...,r} is a collection of sets P = {P4, ..., P;} such that
PU..UP, ={1,..,r}, NP, =0for1<i< j<qand such that for each
P e P, o €@, the set o(P) = {o(k) : k € P} belongs also to P. To a symmetric
partition P we attach the K-subalgebra of A,

Ap ={x=(21,...,2,) € A : x; = z; for each pair of indices i, j

belonging to the same set of P}.

Let W := (V) and let P be a symmetric partition of {1,...,7} such that
(4.3) aW CW for x € Ap.

Let B := ' (Ap). Then B is a K-subalgebra of B. Hence 0% /05 (with € € Og
identified with (e, ...,€) (¢ times)) is finite. Now (4.2) implies that f maps OF  to
Op g = ApN(Og)". Further, f maps O% to §(O%) := {(c, ...,e) (r times) : £ € O%}.
Hence

(4.4) Op s/1(O%) is finite.

Now let P be the symmetric partition specified in the statement of Lemma 16 of
[4]. This P satisfies (4.3), hence (4.4) and so the condition of Lemma 16 of [4] is
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satisfied. Therefore, according to Lemma 16 of [4], the set W N (Og)" is contained
2

in some union Wy U ... UW,, of proper linear subspaces of W with 5 < (26674)™ *.

By (4.2) we have VN O% ¢ = {1 (W N (Og)"). Hence VNO% ¢ C YiN...NY;, with

Y; = § 1 (W;) for i = 1,...,t5. This proves Lemma 9. O

We want to relax the condition of Lemma 9 that OF ¢/O% be finite and for this,
we need some preparations.

We recall that a K-subalgebra B of A is said to be S-minimal if 14 € B, and if B
has no proper K-subalgebra B’ with 14 € B’ for which Op ¢/O%, g is finite. Every
K-subalgebra B of A with 14 € B has an S-minimal K-subalgebra B’ for which
Op.5/O% g is finite. Namely, let B’ be the intersection of all K-subalgebras B;
of B with 14 € By for which Of ¢/O%, s is finite. Then OF, ¢ is the intersection
of all groups OF, . Furthermore, B has only finitely many K-subalgebras. Hence
Op.s/O% g is finite. If B” is a K-subalgebra of B’ with 14 € B” such that
O%/ 5/Opn 5 is finite, then Of ¢/OFu g is finite, and therefore B” O B’. Hence
B’ is S-minimal.

In what follows, let

B={reA: 2V CV}

be the algebra of scalars of A, and let B’ be an S-minimal K-subalgebra of B for
which OFp ¢ / OF g is finite. Every K-subalgebra of A is semi-simple, i.e. isomorphic
to a direct sum of finite extension fields of K. So in particular we have

B'=Li®.. oL,

for certain finite extension fields Lj,..., L of K. Then B’ has K-subalgebras
LY, ..., Ly such that

(4.5) B’ = LY 4 ... + Ly as vector space, L; - L] = (0) for 1 <i < j <gq,
L!~[L fori=1,..,q.

For i = 1,...,q, denote by 1; the unit element of L. (4.5) and 14 € B’ imply that

(4.6) o=l 4. +1y Li-1=0for1<i<j<q

Let LL' = (&'1, "'7€it) with gij S Mj fOI‘j = 1, ...,t. Since 1? = 1,’, we have 57,2g = fija
whence &;; € {0,1} for j =1,...,t. Together with (4.6) this implies that there are
subsets P, ..., P, of {1,...,t} such that

(47) 11' = (gila -~-a§it) with gij =1 for j & Pi, gij =0 for ] ¢ H,

(4.8) P U.UP={1,.,t}, PNPj=0for1<i<j<gq.

Define the K-algebras

Ai = & Mj for i = 1,...,q,
JEP;
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the projections
I A Ay (&,.006) — (& jeP) fori=1,..,q,

and
I=(I,...II;) : A— A1 & .. & A, : 2 — (II1(2), ..., Hg(x)).

IT is merely a permutation of coordinates, so II is a K-algebra isomorphism from
Ato A1 @ ... ® A,. Further define

Bi = HZ(B), L,L' = Hl(B/), ‘/z = Hl(V) for i = 1, . q,

where B;, L; are K-subalgebras, and Vj; is a subspace of A;. Then we have:

Lemma 10. (i). I(B) = B, ®...6 By, I(B') = L1 ®...® Ly, I[(V) = V, &...® V.
(ii). Fori=1,...,q, L; is isomorphic to a finite extension field of K.
(iti). Bi={x € A;:a2V; CV;} fori=1,..,q.

Proof. (i). We prove only that II(V) = Vi & ... @ V,; the proofs that II(B) =
By & ..® By and II(B’) = L1 & ... ® L, are entirely similar. It is obvious that
I(V) CWVi&...8V, Conversely, let x = (z1,...,24) with z; € V; for j =1,...,q.
Choose y; € V such that TI;(y;) = z; for j = 1,...,q and put y := >27_, 1; - y;.
Since 1; € LY € B' C B we have 1,V C V for j = 1,...,q; hence y € V. Now
(4.7) and (4.8) imply that for j = 1,...,¢, the coordinates of y with indices in P;
are equal to the corresponding coordinates of y;. Hence II;(y) = II;(y;) = x; for
j=1,...,q. Therefore, II(y) = . We infer that indeed II(V) =V1 & ... 8 V,.

(ii). Let ¢ € {1,...,q}. We first show that II;(L)) = II;(B’). L} is a K-subalgebra
of B, hence II;(L}) C II;(B’). Conversely, let z € B’. Then « = z1 + ... + 24 with
xj € LY for j = 1,...,q. Now II;(1;) = (1,...,1) and by (4.5) we have 1;z; = 0 for
j # 1. Hence

0, (x) = I;(1L;x) = I (12;) = I (x;) € TL;(LY).

This shows that indeed II;(L}) = II;(B’). Now II; is non-trivial as its image
contains (1,...,1) and L7 is a field, hence L; = II;(L}) is a field.

(iii). Let i € {1,...,q}. Put B; := {x € A; : 2V; C V;}. For z € B; we have z =
IL;(y) for some y € B, whence zV; = II;(yV) C II;,(V) = V;. Therefore, B; C El
To prove the opposite inclusion, consider B = H*1(§1 D ... D Eq). Then B is a
K-subalgebra of A and for z € B we have by (i) zV = I~ (I(z)- (V1 &...6V,)) C
' (Vi@...®V,) = V; therefore, B C B. It follows that B; C II;(B) C II;(B) = B;,
which completes the proof. [J

Fix again i € {1,...,q}. We have L; C B; C A;, so that A; may be viewed as

an L;-algebra and B; as an L;-subalgebra of A;. Further, the unit element 14,
of A; is just the unit element of L;, and so 14, € B;. Lastly, by (iii) of Lemma
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10, V; is an L;-vector space. Note that O4, s = @© Owu,.s, O, s = Oa, s N B,
JEP;
Or,,s = Oa, sNL; are the integral closures of Og in A;, B;, L;, respectively. Clearly,

O3, 5/01, s is a homomorphic image of Of ¢/O%, g, s0

We are now ready to prove the following generalisation of Lemma 9:

Lemma 11. We have that either V. = yB’ for some y € A, or there are proper

K-linear subspaces Y1, ...,Y:, of V such that

3

2
VNzoOh s CY1U...UY,, with t3 < (2667“4)n s

Proof. As mentioned before, for i = 1,...,q, V; may be viewed as an L;-vector
space. First assume that dimy,V; =1 for ¢ =1,...,¢. Then for ¢ =1, ..., ¢ there is
an y; € A;, such that V; = y;L;. Together with part (i) of Lemma 10 this implies
that V. =T"Y(y1 L1 & ... ® y,Ly) = yB’ with y =TT ((y1, ..., yq))-

Now assume that dimy, V4 > 2, say. Put ny := dimp, Vi, r1 := dimg, 44, let Sy
be the set of places lying above those in S, and s; the cardinality of S;. Then since
V1 is a K-linear subspace of II(V) = V, and A; of II(A) = A, we have

ni[Ly : K] =dimgVh <n, r[L1: K] =dimg4; <,

S1 S S[Ll : K]

Further, putting z(, := I3 (o), we have
Hl(V n Z'OOZ,S) Q V1 N x{)OZ’S.

In view of part (iii) of Lemma 10 and of (4.9), we may apply Lemma 9 with
Lq,Aq,By,V1,57 replacing K, A, B,V,S. Thus, there are proper Li-linear sub-
spaces Z1, ..., Zt, of Vi, with

2 2
ty < (266T411)7L151 < (2667,4)" s

such that V; ﬂxg(’)zhs C Z1U...UZ;,. But each of these subspaces Z; is a K-linear
subspace of V7. Hence it follows that meoogys C Y1U...UY,, where Y; = H;l(Zj)
is a proper K-linear subspace of V. This proves Lemma 11. O

We recall that e(n) is defined by e(n) = gn(n+1)(2n + 1) — 2.

Lemma 12. There are yi,...,yr, € A* and S-minimal K -subalgebras By, ..., By, of
A, such that
yiBi CV fori=1,.. 14,

VNzg04 s Cy0p, gU... Uy, Op, g with ty < (2337,2)6(71)5.
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Proof. We first deal with the special case that V = yB; for some y € A and
some S-minimal K-subalgebra By of A. Assume that V N 20} ¢ # ¢ and let
y1 € VN0 g. Then 200} ¢ = 110} g By assumption we have zo € A*,
hence it follows that y; € A*. Further, y; = yz for some z € By, and so z € By.
Therefore, V = yB; = y1 By. It follows that

VNzgOy s =y1B1Ny104 s = 105, 5

which implies Lemma 12 for V = yB;.

We prove Lemma 12 in full generality by induction on n = dimgV. If n = 1,
then V = yK for some y € A and we are done since K is an S-minimal subalgebra of
A. Suppose that n > 2, and that V is not equal to yB for some y € A and some S-
minimal K-subalgebra B of A. Then by Lemma 11 we have Vﬂxo(’)zﬁs CYU..UYs,
with t3 < (2667‘4)n28, where Y7, ..., Y;, are proper K-linear subspaces of V. Now by
the induction hypothesis we have for i = 1, ..., t3,

. —1
Y, N 1‘002’3 - yiJO*Bi .S U...u yi’tSOEMyS with t5 < (2337”2)6(” )s

where y; ; € A*, and B; ; is an S-minimal K-subalgebra of A with y; ;B; ; C Y; for
j=1,...,t5. It follows that

ts s .
VN xOOZ S - _le _Ulyiij*B‘j S with yi,jBij - V.
s i=1j= i,4s )

2 5 R e(n)s .
Since tyty < (233r2) eIl (933,2)600% i proves Lemma 12, O
Before finishing the proof of Theorem 1, we prove the following Lemma:
Lemma 13. Let B be an S-minimal K -subalgebra of A, and xolp,p an (M, B)-
family of solutions of (1.7), with xg € MPB. Then ol p is irreducible.

Proof. Suppose that o, g is reducible. Then there are proper subfamilies 14,5, ,
ey T, B, Of Tl p such that

(4.10) 2o, = 218, B, U oo Uzl By, -
Further, there is no loss of generality to assume that
(4.11) z; € MBi, B; SBfori=1,..,w.

Namely, if for instance B; is not a K-subalgebra of B then by Lemma 3, z14,, B, =
xha, B Nx18as, B, is the union of finitely many (M, BN By )-families and, in (4.10),
we may replace z14xq, g, by this union. Further, if By = B then x4 p, is not a
proper subfamily of o, 5.

Put pp := rank(’)*Bys/Og, p = maxizl,,,,7w{rank0§i73/0§}. From (4.11) and
the fact that B is S-minimal, it follows that p < pp. On the other hand, letting
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Nz (X) be the quantity in the statement of Lemma 2, it follows from Lemma 2 and
(4.10) that

N, X):’y(logX)quLO((logX)pB*l) as X — oo with v > 0,

oﬂM,B(

N, (X) =O((log X)”) as X — oo.

UUM,B(

X) = NU;U

"z, B,

Thus, the assumption that xzoia,p is reducible leads to a contradiction. This
proves Lemma 13. [

Proof of Theorem 1. By Lemma 14 , the set of solutions of (1.7) is contained in
some union UE;I{V Nz;0% gt with z; € A* for j = 1,...,t1 and t1 < ().
By Lemma 12, for j = 1,...¢1, V N z;0} ¢ is a subset of some finite union
UZ‘*'_ilyjhO*th’S with t4; < (233r2)e(n)s, where y;, € A" and Bjj, is an S-minimal
K-subalgebra of A with y;,B;, CV, h = 1,...,t4;. It follows that the set of so-
lutions of (1.7) is contained in Uy_,y,Op, ¢ with w < (233r2)° "y (3), where
yn € A* and By, is an S-minimal K-subalgebra of A with y, B, CV, h=1,...,w.

We recall that if B is an S-minimal K-subalgebra of A, then, by Lemma 13, any
(M, B)-family of solutions is automatically irreducible. Hence the proof of Theorem
1 is complete once we have shown that the set of solutions of (1.7) belonging to
some coset yOp ¢ with y € A*, yB C V is the union of at most [ := [Op g : Um,B]
(M, B)-families of solutions. Clearly, yOp g is the union of I cosets 24y, 5 With
z € A*. Suppose that z8{r p contains a solution, say zo, of (1.7). Then 28y p =
208, 5. We have zgp € M and also 2B = 2B =yB CV,s0 z € VENM = M5,
which implies that z € MPB. This proves that 24y p is an (M, B)-family of
solutions of (1.7). This completes the proof of Theorem 1. [

5. PROOF OF THEOREM 2

We will prove Theorem 2 more generally, for arbitrary fields K of characteristic
0. Thus, let K be any field of characteristic 0, A = M1 ® ... ® My where My, ..., M,
are finite extension fields of K with dimx A = Zzzl[Mi : K] =r,and V is an
n-dimensional K-linear subspace of A. It is our purpose to prove that there are at
most {nmax(r —n,2)}" K-subalgebras of A with

(1.16) la€B, VENnA* £0.

We make some reductions. Let K be the algebraic closure of K and A = K" with
coordinatewise addition and multiplication. For x = (&1, ...,&) € A, put f(z) :=
(r1,1(61)s ooy T, (&1), o oes 1 (&2, oo T, (&4)), Where for 4 =1, ...t Ty 1,0, Ty, (10 =
[M; : K]) are the K-isomorphic embeddings of M; into K. Then f is an injective
K-algebra homomorphism from A into A. It is easy to check that f maps K-linearly
independent elements of A to K-linearly independent elements of A. Hence, if for
a K-linear subspace W of A we define W to be the K-vector space generated by
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f(W), we have that dimzW = dimgW and that W is uniquely determined by
W. Finally, if B is a K-subalgebra of A then B is a K-subalgebra of A: namely,
if 2,y € B, then = > &f(w;), vy = Y n;f(y;) with &,n; € K, z;,y; € B and
therefore, zy = > &n;f(xiy;) € B. Note that 1 = (1,...,1) (r times) is the element
of A and that 4" = {(&,...,&) € K 6.8 # 0}. For K-subalgebras B of A
with (1.16) we have

(5.1) 1eB, Vona £0.

Namely, it is clear that 1 € B. Further, if T e VBN A* we have f(r) € A" and also
rB CV, whence f(z)B CV, ie. f(z) € VPN A", Since B is uniquely determined

by B, it follows that the number of K-subalgebras B of A with (1.16) is at most
the number of K-subalgebras B of A with (5.1). Hence it suffices to prove the

following:

Lemma 14. A has at most {nmax(r —n,2)}" K-subalgebras B with (5.1).

Proof. Let B be a K-subalgebra of A with (5.1). Then, for some ¢ < r, B is
isomorphic to K with coordinatewise operations. This implies that B has K-
subalgebras L7, ..., Ly such that L} = K fori=1,...q, L +..+ Ly = B, and
Li- Ly = (0) for 1 <i < j <g. Letting 1; be the unit element of L} fori =1, ...,q,
we find, completely similarly to (4.7) and (4.8), that there are non-empty subsets
Py, ..., P, of {1,...,r} such that

(52) 1; = (fﬂ, -~-7§ir) with gij =1 for jE PR, gij =0 fOI‘j % P,

(5.3) PLU..UP,={l,..,r}, ANPj=0for1<i<j<r

First suppose that r > n. On noting that dimiV = n, after a permutation of
coordinates if necessary, we may assume that V is the set of solutions (1, ..., &) of
a system of linear equations

(5.4) &k :ch]{j fork=n+1,..,r,
j=1

with ¢; € K. Let (&,...,&) € V? A A", Then Lz € Viori=1,..q (52)
implies that the coordinates of 1;x with indices in P; are the same as those of z,
while the coordinates of 1;z with indices outside P; are 0. Together with (5.4) this
implies
&= > ek forkeR;, i1=1,..,q,
JEQ:

0= > ckj§ for k € R; := {n+1,.,r}\ Ry, i=1,...,q,
JEQ;

(5.5)
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where Q; := P,N{l,..,n}, R, :=P,Nn{n+1,..,r},i=1,..,q. Note that

Qi U..UQs={1,...,n}, @;NQ; =0 for1<i<j<g,
(5.6) RiU..UR;={n+1,.,r}, RNAR; =0 forl1<i<j<g,
QiﬂRj#[Z)for i,j=1,...,q.

Further, by (5.2) and the fact that B = LY +...+ L = 1 K+...+1,K, we have that
B is determined uniquely by P, ..., P;, whence by Q1, ..., Qq, R, ..., R;. Recalling
that x € A* we infer that it suffices to prove

there are at most {nmax(r —n,2)}" collections {Q1, ..., Qq, R1, ..., Ry}

5.7
(5:7) with (5.6) such that (5.5) has a solution with &;...&. # 0.

For the moment, we fix @1, ...,Q, and determine an upper bound for the number
of collections {Ri,...,R,} for which (5.5) has a solution with &...§, # 0. Let
n; := #Q; fori = 1,....q. Take ¢ € {1,...,q}. We have Q; # ) since otherwise
R; # 0 and each solution of (5.5) has & = 0 for k € R;. Define the vectors
cp = (crj 1 j € Qi) (k =n+1,...,r). We have rank{c; : k € R} < n;—1,
since otherwise each solution of (5.5) has §; = 0 for j € Q;. Further, for each
I € R; the vector ¢, is linearly independent of {cy : k € El}, since otherwise the
equations ZjeQi cp;&; = 0 for k € R; imply ZjeQi c;;€; = 0 for some [ € R;
and so each solution of (5.5) has & = 0. It follows that {cj : k € R;} consists of
all vectors in {cx : Kk = n+ 1,...,r} that are linear combinations of some linearly
independent subset of {c : k € ﬁz} But then, this linearly independent subset
uniquely determines R;. Recalling that rank{cy : k € R;} < n; — 1, we infer that
the number of possibilities for R; is at most the number of linearly independent
subsets of {cx : k =n+1,...,r} of cardinality < n; — 1, and the latter is at most

(r 6 n) + (7“ I n) + .t (T;__TD < {max(r — n,2)}".

Therefore, for given Q1, ..., Q4, the number of possibilities for { Ry, ..., R4} is at most
{max(r —n,2)}" " = fmax(r — n,2)}".

The number of possibilities for {Q1, ..., Q,} is at most the number of partitions of
{1,...,n} into disjoint sets which is < n™. This implies (5.7), hence Lemma 14 for
for » > n. If r = n, then the sets R, ..., R; do not occur and we have only to
estimate the number of possibilities for {Q1,...,Q4}. So in that case, Lemma 14
follows also. [
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