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Lower bounds for resultants 11.

Jan-Hendrik Evertse

Abstract. Let F(X,Y), G(X,Y) be binary forms in Z[X,Y] of degrees r > 3,s >
3, respectively, such that FG has no multiple factors. For each matrix U = (¢ Z) €
GLy(Z), define Fiy(X,Y) = F(aX 4 bY,cX + dY), and define Gy similarly. We will
show that there is a matrix U € GL2(Z) such that for the resultant R(F,G) of F,G we
have |R(F,G)| > C - (H(Fy)*H(Gy)")Y ™8, where H(Fy;), H(Gy) denote the heights
(maxima of absolute values of the coefficients) of Fyy, Gy, respectively, and where C
is some ineffective constant, depending on r,s and the splitting field of FG. A slightly
weaker result was announced without proof in [3] (Theorem 3). We will also prove a
p-adic generalisation of the result mentioned above. As a consequence, we will obtain
under certain technical restrictions a symmetric improvement of Liouville’s inequality for
the difference of two algebraic numbers. In our proofs we use some results from [4], [5],
and the latter were proved by means of Schlickewei’s p-adic generalisation of Schmidt’s
Subspace theorem.

1991 Mathematics Subject Classification: 11J68, 11CO08.

1. Introduction.

Let F(X,Y) = aoX" + a1 X" 'Y + - +a,Y", G(X,Y) = bgX° + by X571V +
-++ 4+ bsY® be two binary forms with coefficients in some field K of characteristic
0. The resultant R(F,G) of F and G is defined by the determinant of order r + s,

CLO a/l DY DRI a//,"
aO al e e a/’,
a/o a/l e e a’,‘
R(F,G) = |bo b1 -+ bs , (1.1)
by by --- b,
by by --- b,

of which the first s rows consist of coefficients of F' and the last r rows of coefficients
of G. Both F, G can be factored into linear forms with coefficients in the algebraic
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closure of K, i.e.

T

P(X,Y)=][(u:X +8Y), G(X H v; X +6;Y),

i=1

and we have

HH (065 — Bivy;) - (1.2)

i=1j=1

Hence R(F,G) = 0 if and only if F,G have a common linear factor. Further,
if for a matrix U = (¢ %) with determinant detU # 0 we define Fy/(X,Y) :=
F(aX +bY,¢X + dY) and similarly Gy, it follows that

R(Fy,Gy) = (detU)™R(F, G). (1.3)

Now assume that F, G have their coefficients in Z. For a polynomial P with
coefficients in Z, we define its height H(P) to be the maximum of the absolute
values of the coefficients of P. From (1.1) and Hadamard’s inequality it follows
that

IR(F,G)| < (r+1)*2(s+1)"?H(F)°*H(GQ)" .

On the other hand, there are some results in the literature on lower bounds for
|R(F, G)| which have been obtained by applying Diophantine approximation tech-
niques. To state these results, we need some terminology. A binary form is called
square-free if it is not divisible by the square of any non-constant binary form.
The splitting field over a field K of a binary form with coefficients in K is the
smallest extension of K over which this binary form factors into linear forms. By
Ccireft( ), Cineff () .. we denote ineffective positive constants depending only on
the parameters between the parentheses.

Improving on a result of Wirsing [14], Schmidt [12] proved that if r, s are
integers with r > 2s > 0 and if F' is a square-free binary form of degree r in
Z[X,Y] without irreducible factors of degree < s, then for every binary form
G € Z[X,Y] of degree s which is coprime with F' one has

|R(F,G)| > Cinef (1 s, F,e)H(G) 257 for & > 0, (1.4)

where the dependence of C on F' is unspecified. From Theorem 4.1 of Ru and Wong
[9] it follows that (1.4) holds true without the constraint that F' have no irreducible
factors of degree < s. Gydry and the author ([5], Theorem 1) proved that for
each pair of binary forms F,G with coefficients in Z such that deg F" = r > 3,
deg G = s > 3, F'G has splitting field L over K and F'G is square-free one has

)%75 fore >0, (1.5)

|R(F,G)| > C*%(r, s, L&) (|D(F)|77 |D(G)|7T

where D(F), D(G) denote the discriminants of F, G. We recall that if F(X,Y) =
[[izi (X + BiY) then D(F) = [[,<;j<, (i3 — a;f3;)?. Gyéry and the author
showed also in [5] that if » < 2 or s < 2 or if we allow the splitting field of FG
to vary, then |D(F)|, |D(G)| may grow arbitrarily large while |R(F, G)| remains
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bounded. For more information on lower bounds for resultants and on applications
we refer to [4], [5].

Our aim is to derive instead of (1.5) a lower bound for |R(F,G)| which is a
function increasing in both H(F) and H(G). In general such a lower bound does
not exist. Namely, (1.3) implies that

\R(Fy,Gp)| = |R(F,G)| for U € GLy(Z) (1.6)

(where GLy(Z) = {(¢ Z) : a,b,c,d € Z,ad — be = +1}) while H(Fy), H(Gy)
may be arbitrarily large for varying U. However, assuming that r > 3,s > 3, we
can show that there is an U € GLy(Z) such that |R(F, G)| is bounded from below
by a function increasing in both H(Fy ), H(Gy). The next result, with exponent
1/760 instead of 1/718, was stated without proof in [3], Theorem 3.

Theorem 1. Let r > 3,5 > 3, and let (F,G) be a pair of binary forms with
coefficients in Z such that deg F' = r, deg G = s, FG is square-free and FG has
splitting field L over Q. Then there is an U € GLs(Z) such that

1/718

|R(F,G)| > CP(r,s, L) (H(Fy)*H(Gy)") (1.7)

Remark. Similarly as for (1.5), the conditions r > 3, s > 3, as well as the
dependence of C3 on L, are necessary. Namely, the discriminant of a binary form
F of degree r is a homogeneous polynomial of degree 2r — 2 in the coefficients of
F, and for U € GLy(Z) one has |D(Fy)| = |D(F)|. Therefore, there is a constant
¢(r) such that |D(F)| < c(r){infyecr,z) H(Fy)}?*" 2. Now, by the result from
[5] mentioned above, if r < 2 or s < 2 or if we allow the splitting field of FF'G
to vary, then |D(F)|, |D(G)|, and hence infycgr,z) H(Fv), infycar,z) H(Guv)
may grow arbitrarily large while |R(F, G)| remains bounded.

The proof of Theorem 1 ultimately depends on Schmidt’s Subspace theorem,
which explains the ineffectivity of the constant Cs. It would be a remarkable
breakthrough to obtain an effective lower bound for |R(F, G)| which is a function
increasing in both H(Fy) and H(Gy) for some U € GLy(Z).

We also prove a p-adic generalisation of Theorem 1. To state this, we have to
introduce some further terminology. Let K be an algebraic number field. Denote
by Ok the ring of integers of K. The set of places My of K consists of the
isomorphic embeddings o : K — R which are called real infinite places; the pairs
of complex conjugate isomorphic embeddings {0, : K < C} which are called
complex infinite places; and the prime ideals of Ok which are called finite places.
We define absolute values | x|, (v € Mg ) normalised with respect to K as follows:

| % |, = |o(%)|"/KQ if v = ¢ is a real infinite place;
| % |y = o ()| EQl = |5(%) |5 if v = {0,5} is a complex infinite place;
| % |y = (Ngp)~0rde)/IKQ] if ¢ = 5 is a finite place, i.e. prime ideal of O,
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where Np = #(Ok/p) denotes the norm of p and ord,(x) is the exponent of p
in the prime ideal decomposition of (z), with ord,,(0) = co. These absolute values
satisfy the Product formula

H |z|, =1 for z € K*.
vEMEK
For any finite extension L of K, we define absolute values | * |, (w € Mp) nor-
malised with respect to L in an analogous manner. Thus, if w € My, lies above
v € My, then the restriction of |  |,, to K is equal to |  [{F=FV/ I where K,
L,, denote the completions of K at v, L at w, respectively. We will frequently use
the Extension formula

H |z]w = |NL/K($)|11,/[L:K] forxe L, ve Mg
wlv

so in particular
H|$\w = |z|, forz € K, v € Mk,

wlv

where the product is taken over all places w € M, lying above v.

Now let S be a finite set of places on K, containing all (real and complex)
infinite places. The ring of S-integers and its unit group, the group of S-units, are
defined by

Os={zeK:|z|, <1 forv¢g S}, Oi={zxeK:|z|,=1 forv¢S},
respectively, where ‘v ¢ S’ means ‘v € Mg\S.” We put
|z|s == H ||, forxe K .

veES
Thus,
|z|s >1 forx € Og, v #0, 2 ¢ Og, |z|s=1 forz e OF . (1.8)
We define the truncated height Hg by
Hg(x) = Hg(xz1,...,2,) = H max(|z1]y, .., |[Tn|y) for x = (z1,...,2,) € K™ .
veS

For a polynomial P with coefficients in K we put Hg(P) := Hs(p1,...,pt), where
P1,. .., Dt are the coefficients of P. By (1.8) we have
Hg(x) > 1 for x € O5\{0}, (1.9)
Hg(ux) = Hg(x) for x € O%\{0}, u e O%. (1.10)
Further, one can show that for every A > 0 the set of vectors x € O% with
Hg(x) < A is the union of finitely many “O%-cosets” {uy : v € Of} withy € O%
fixed.
(1.3) and (1.8) imply that for binary forms F, G with coefficients in Og we have

|R(Fu,Gu)ls = |R(F,G)|s for U € GL2(Os) , (1.11)
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where GLy(Os) = {(¢ Z) ta,b,c,d € Og,ad — be € O%}. We prove the following
generalisation of Theorem 1:

Theorem 2. Let r > 3,s > 3, and let (F,G) be a pair of binary forms with
coefficients in Og such that deg F = r, deg G = s, F'G is square-free and F'G has
splitting field L over K. Then there is an U € GL2(Qg) such that

1/718

|R(F,G)|s > CPM(r,s, S, L) (Hs(Fy)*Hs(Gu)") (1.12)

In the proof of Theorem 2 we use a lower bound for resultants in terms of
discriminants from [5] which has been proved by means of Schlickewei’s p-adic
generalisation [10] of Schmidt’s Subspace theorem [11], a lower bound for discrim-
inants in terms of heights from [4] which follows from Lang’s p-adic generalisation
[6] (Chap. 7, Thm. 1.1) of Roth’s theorem [8], and also a ‘semi-effective’ result on
Thue-Mahler equations, stated below, which follows also from the p-adic general-
isation of Roth’s theorem.

Theorem 3. Let F(X,Y) € Og[X,Y] be a square-free binary form of degree r > 3
with splitting field M over K and let A > 1. Then every solution (z,y) € O% of

[F(z,y)[s = A (1.13)
satisfies

Hg(z,y) < CT(r S M) - (Hg(F)- A"+ for every e >0 . (1.14)

Using the techniques from the paper of Bombieri and van der Poorten [1] it is
probably possible to derive instead of (1.14) an upper bound

1

Hs(x,y) < Cf(r 8, M,e) - Hg(F)"9) A== for every ¢ > 0,

where c(r, ¢) is a function increasing in r,e 1.

We derive from Theorem 2 a symmetric improvement of Liouville’s inequality.
The (absolute) height of an algebraic number ¢ is defined by

h(f)z H max(17|§|v),

vEME

where K is any number field containing £. By the Extension formula, this height
is independent of the choice of K.

Let K be an algebraic number field and £, n numbers algebraic over K with
& #n. Put L = K(&,n). Further, let T be a finite set of places on L (not necessarily
containing all infinite places). By the Product formula we have

1€ = 1w B max(1, |€]o,) max(1, 1)) IR
gmaxu,m)maxu,mm) - (};[T € 7l )H©)" hn)
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>

(h(©h(m) (1.15)

where as usual, the absolute values | |, are normalised with respect to L. The
latter is known as Liouville’s inequality. Under certain hypotheses we can improve
upon the exponent —1. Assume that

L=K(&n);
[K(§): K] >3, [K(n): K]

> 3; (1.16)
[L: K] =[K(¢): K][K(n): K],

ie. K(§), K(n) are linearly disjoint over K. Further, let T be a finite set of places
on L such that if S is the set of places on K lying below those in T" then
1 1
= =1 Lw : K'U 9 L1
W= max [L:K]Z[ <3 (L17)

weT
wlv

where for each place v € S, the sum is taken over those places w € T that lie
above v.

Theorem 4. Assuming that &,m, L, T satisfy (1.16), (1.17) we have

|€ - 77|'w ineff ) —1+6
1ET max(1, |€],) max(1, [9]w) > C7(L,T) (h(f)h(n)) (1.18)

1 1-3W
ith 6= —— .~
w 718 1+ 3W

For instance, suppose that L, &, n satisfy (1.16) with K = Q and that T is a
subset of the set of infinite places on L, satisfying (1.17) with K = Q and with S
consisting of the only infinite place of Q. Inequality (1.18) has been stated in terms
of absolute values normalised with respect to L and we will “renormalise” these to
Q. Each w € T is either an isomorphic embedding of L into R and then L,, = R; or
a pair of complex conjugate embeddings of L into C and then L,, = C. Therefore,
the union of all places w € T is a collection ¥ of isomorphic embeddings of L into
C such that with an isomorphic embedding also its complex conjugate belongs to
Y and moreover, the quantity W of (1.17) is precisely #X/[L : Q]. We recall that
if w = o is real then | * |, = |o(x)|/[*Q while if w = {7,7} is complex then
| % |w = (|lo(x)] - [7(¥)])*/Z*QL. This implies that the left-hand side of (1.18) equals
L ey (Io(€ =)/ max(1, |o(€)]) max(1, [o(n)]) /Y. For an algebraic number ¢,
we define H(€) to be the maximum of the absolute values of the coefficients of the
minimal polynomial of & over Z. Then h(£)d8¢ < cH (&) where ¢ depends only
on the degree of & (cf. [6], Chap. 3, §2, Prop. 2.5). Thus, Theorem 4 implies the
following:

Corollary. Let &, n be algebraic numbers of degrees r > 3, s > 3, respectively,
such that the field L = Q(&,n) has degree rs. Further, let X be a collection of
isomorphic embeddings of L into C such that if o € ¥ then also @ € X, and such
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that W := #%/[L: Q) < 1. Put § = %ﬁ;’% Then

vV

Hmax<1,|a<2§f>;z>)<|<1,|U<,,)|> CRT(L) - (HE™Hm)™)' " . (119

cEX

For instance, assume that L C R and take ¥ = {identity}. Then [L : Q] =
rs > 9 and hence W < %. So by (1.19) we have

|£ - 77|w > Cgi)neﬂ(L) . (H(E)fsg(n)fr)% ) (1.20)
max(l, ‘§|w) max(l, |77|w)
If L C C, L ¢ R then with ¥ = {identity, complex conjugation} we have W < %
and so (1.19) gives
1€ = 1w 2 ineff .~ .. 3389
> O (L) - (H SH T) 3590 1.91
(maX(l, |€]w) max(1, |m,,,)) > CY (L) (H(§)"H(n)™") (1.21)

Results similar to (1.20), (1.21) with better exponents were derived in [3] (Corollary
3, ().

For an inequality of type (1.18) with § > 0 to hold it is certainly necessary to
impose some conditions on &, 7, L, T but (1.16), (1.17) are probably far too strong.
Using for instance geometry of numbers over the adeles of a number field one may
prove a generalisation of Dirichlet’s theorem of the sort that for a number field M,
a number 7 of degree 2 over M and a finite set of places T on L := M (n) satisfying
some mild conditions, there is a constant ¢ = ¢(n, M, T') such that the inequality

H ‘5 B 77|w S Ch(§)71

e lel)

has infinitely many solutions in £ € M. Thus, for an inequality of type (1.18) to
hold it is probably necessary to assume that [L : K(£)] > 3, [L : K(n)] > 3.

The following example shows that the condition W < 1 is necessary. Assume
that W = 1. Then there is a place v on K such that T" contains all places on L lying
above v. Fix two elements &y, 19 of L such that L = K (&, m0), [K(&o) : K] > 3,
[K(no): K] >3and [L: K] =[K(&): K|[K(no) : K]. Let 71,72, . .. be a sequence
of elements from K such that lim; o |vi|ls = oco. By the strong approximation
theorem, there exists for every i an «; € K such that |a; — |, < 1 and |, <1
for every place v/ # v on K. Now put & := &+ a;, m; ;=19 +; fori =1,2,....
Then for all places w € My, lying outside a finite collection depending only on
o, o we have &l < 1, |nilw < 1, while for the remaining places on L not
lying above v we have ||, < 1, il < 1 for ¢ = 1,2..., where the constants
implied by <, > depend only on &g, 79. Further, for w € My, lying above v we
have |&lw > |ailw > |Yilw, [Milw > |7ilw for @ sufficiently large. Therefore, by
the Extension formula, h(&§) >< [, , max(L, [§|w) > [vile — oo for i — oo
and similarly, h(n;) >< [, max(L,[nilw) > [vilo — oo for i — oo, where
the products are taken over the places w € My lying above v. Moreover, since
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& —ni = &o — 1o we have

& — Nilw 1€0 — 70w
11 max(1, |§;]) max(1, 1) <1l max(1, | ) max(1, [1;|w)

weT wlv

< (h(Eh(m)) ™ fori=1,2,... .

2. Proof of Theorem 3.

As in Section 1, K is an algebraic number field and S a finite set of places on
K containing all infinite places. Further, F(X,Y") is a square-free binary form of
degree r > 3 with coefficients in Og and A a real > 1. We assume that
F(X,Y) = [[(iX + BY) with a;, 8 € Ogfori=1,....,r. (2.1
i=1

This is no loss of generality. Namely, suppose that F' has splitting field M over
K. Thus, F(X,Y) = [[i_, (¢4 X + B}Y) with o, 3, € M. Let L be the Hilbert
class field of M/K and T the set of places on L lying above those in S. Then for
i=1,...,r, the fractional ideal with respect to Or generated by «}, 8. is principal
and since F has its coefficients in Og this implies that F' can be factored as in (2.1)
but with a;, 8; € Or. From the Extension formula it follows that for (z,y) € O% we
have |F(x,y)|r = |F(z,y)|s, Hr(z,y) = Hs(x,y) and that also Hp(F) = Hg(F),
where | * |7 = [[,er | * lws Hr(*, ..., %) = [[,ermax(| # [w,...,| * o). So, if
we have proved that for all (z,y) € O% with |F(z,y)|r = A and all € > 0 we
have Hrp(z,y) < CHf(r, T, L75)(HT(F)A)%+E, then Theorem 3 readily follows,
on observing that T, L are uniquely determined by .S, M.

In the proof of Theorem 3 we need some lemmas. The first lemma is funda-
mental for everything in this paper:

Lemma 1. Let xq,...,x, be non-zero elements of Og such that

T+ + 2, =0,

in # 0 for each proper nonempty subset I of {0,...,n}.
iel
Then for all e > 0 we have

1+e¢

HS(x07"'7$n) < Cilgeg(Ka SaE) : ’H)xl g

Proof. Lemma 1 in this form appeared in Laurent’s paper [7]. It is a reformulation
of Theorem 2 of [2]. For n = 2, Lemma 1 follows from the p-adic generalisation
of Roth’s theorem [6] (Chap. 7, Thm. 1.1) and for n > 2 from Schlickewei’s p-
adic generalisation [10] of Schmidt’s Subspace theorem [11]. The constant Cj;
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(and also each other constant in this paper) is ineffective because the Subspace
theorem is ineffective. In fact, we need Lemma 1 only for n = 2 in which case the
non-vanishing subsum condition is void. However, Lemma 1 with n > 2 has been
used in the proof of a result from [5] which we will need in the present paper. O

For a polynomial P with coefficients in K and for v € Mg we define |P|, :=
max(|p1]v, - - -, |Pt|v) Where py,...,ps are the coefficients of P.

Lemma 2. Let F(X,Y) = [[_; (X + 3Y) with a;,8; € Og fori=1,...,r.
There is a constant ¢ depending only on r and K such that

¢ [ Hs(i, 8) < Hs(F) < e[ Hs(u, 8:) - (2.2)
i=1

i=1

Proof. According to, for instance [6], Chap. 3, §2, we have for any polynomials
Py,...,P. € K[X1,...,X,], v € Mg that

C;1|P1"'Pr|v < |P1|U"'|Pr|v <CU|P1"'PT|U if vis inﬁnitea

|Py-- Py = |Pily - | Py if v is finite,

where each ¢, is a constant > 1 depending only on r,n, K. Now Lemma 2 follows
by applying this with P;(X,Y) = ;X 4+ ;Y for i = 1,...,r and any v € S, and
then taking the product over v € S. a

We complete the proof of Theorem 3. Let F/(X,Y) be a square-free binary form
of degree r > 3 satisfying (2.1) and let € > 0. Put ¢’ := ¢/10. In what follows,
the constants implied by <« will be ineffective and depending only on K, S, ¢.
Define

A i=oyf; —ajf fori,j=1,...,r.
We will use that
|Aijlo < max(|aily, [Bilo) max(lalv, |6s) for ve Mg (2.2)
whence, on taking the product over v € 5,
|Aijls < Hs(ou, Bi)Hs(ay, 85) - (2.3)
Pick three distinct indices 4, j, k from {1,...,r} and define the linear forms
Ay = DAjp(0 X + 3Y), Ag = Api(o; X + 5;Y), Az = Ayj(a X + GrY).

Thus,
A+ Ay + A3 =0. (2.4)

Further,
A A A - X = ApiBj A1 — AjpBiAs,

2.5
ADijAjpApi - Y = —=Apjoj Ay + Ajrag Ao, (2:5)
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Let (z,y) € O% be a pair satisfying (1.13). Put aj, := Ap(x,y) for h = 1,2, 3. From
(2.5) and (2.2) it follows that for v € S,

18558l max((alus o) < (T max(laple, 18,].) ) max((aalo, azl).
pe{i,j,k}

By taking the product over v € S we get
|8 A ArilsHs(z,y) < ( H HS(apvﬁp)) -Hg(ai,a2) .
p€e{i.jk}

By Lemma 1 and (2.4) we have

1+¢’
Hgs(ai,a2) < Hg(ay,az,a3) < <|AijAjkAki|S H |y +ﬂpy|5> .
pefi.j.k}

By combining these inequalities we obtain

Hs(ﬂf,y)<<|AijAjkAki\%,( 1T HS(%vﬁp)) II |0<pﬂf+ﬂpy|s>pr€

p€e{ij,k} pe{ij,k}

143’ . .
< ( H (Hs(ap,ﬁp) <oy + pr\s)) in view of (2.3).
pE{i,j.k}
By taking the product over all subsets {7, j, k} of {1,...,r} we get, using Lemma
2 and [[;_, |z + Biyls = A which is a consequence of (2.1), (1.13), that

it < ([Tt i)

< (HS(F) .A)(g)'(%Jr&) )

This proves Theorem 3. ad

3. Proof of Theorem 2.

Let again K be an algebraic number field and S a finite set of places on K
containing all infinite places. We recall that the discriminant of a binary form
F(X,Y) = [[i- (i X + 3;Y) is given by D(F) = [[,,;<,(@if8; — ;f3;)*. This
implies that |D(Fy)|s = |D(F)|s for U € GL2(Og). We need some results from
other papers.

Lemma 3. Let F be a square-free binary form of degree r > 3 with coefficients in
Og and with splitting field M over K. Then there is an U € GLy(Og) such that

r—1

[D(F)|s = Oy (r, M, S)Hs(Fy) =T .
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Proof. This follows from Theorem 2 of [4]. The proof of that theorem uses Lemma
1 mentioned above with n = 2 and a reduction theory for binary forms.

I would like to mention here that the reduction theory for binary forms devel-
oped in [4] is essentially a special case of a reduction theory for norm forms which
was developed some years earlier by Schmidt [13] (for a totally different purpose).
I apologize for having overlooked this in [4]. O

Lemma 4. Let F,G be binary forms of degrees r > 3, s > 3, respectively, with
coefficients in Og such that FG is square-free and FG has splitting field L over
K. Then

5 D(@)

|R(F,G)|s > C5%(r,s, L, S, 5)(\D(F) jﬁ)ﬁ_s for e > 0.

Proof. This is Theorem 1A of [5]. The proof of that theorem uses Lemma 1 with
n > 2. O

We now prove Theorem 2. We assume that

T

ID(F)|5 T < D(@)|Z (3.1)

which is clearly no loss of generality. Let U € GLy(Og) be the matrix from Lemma
3. We will show that (1.12) holds with this U. Let M be the Hilbert class field of
L/K, and T the set of places on M lying above those in S. Thus, we have

T S

Fy(X,Y) =[[(:X +8Y), Gu(X,V)=][](nX+4Y)
i=1 j=1
with a5, 8;,75,0; € Op fori=1,...,r, j=1,...,s. (3.2)

The height Hr and the quantity | x |7 are defined similarly to Hg, | * | but with
respect to the absolute values |*|,, (w € T). In what follows, the constants implied
by <, > will be ineffective and depending only on r, s, L, S and €, where € is a
positive number depending only on 7, s which will later be chosen sufficiently small.

Note that by Lemma 4, (3.1), our choice of U, and Lemma 3 we have

s

e NTE s (2 _
IR(F,Gls > (D)5 ID@)IF )" > (p(F)5 T

25)

> Hg(Fy)* (57—

We estimate Hg(Gyp) from above. By (1.2), (3.2) we have

R(Fy,Gu) = [ [[(id; = Bivi) = [[ Fo (65, =)
j=1

i=1j=1
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and together with (1.11) and the Extension formula this implies that

|R(F,G)|s = |R(Fy,Gu)lr = [ [ [Fu (5, —v)lr - (3.4)

j=1
Further, using that Hs(Fy) = Hr(Fy), Hs(Gy) = Hp(Gy) by the Extension
formula, we have
S
Hs(Gu) < [[ Hr(v;,65) by (3.2), Lemma 2, (3.5)
j=1

3te
Hr(v;,0;) < (HS(FU) - |Fu (65, —’yj)|T) for j=1,...,s by Theorem 3, (3.6)

where both Lemma 2, Theorem 3 have been applied with M, T replacing K, S.
Now (3.4), (3.5), (3.6) together imply

i
Hs(Gu) < (Hs(Fu)*|R(F,G)s )
In combination with (3.3) this gives

Hs(Fy)*Hs(Gu)" < Hs(Fy)* )| R(F,G)|%e
P ey—1
< |R(F,G) (S4+re)(g27—§—1) +3+re
< |R(F,G)|5® for e sufficiently small.

This implies (1.12), whence completes the proof of Theorem 2. a

4. Proof of Theorem 4.

As before, let K be an algebraic number field and S a finite set of places on K

containing all infinite places. For a matrix U = ( Z) with entries in K we define

|Uly := max(|aly, |bly, |c|v, |d|») forve Mg, Hg(U)= H |U|y.
veS
We need the following elementary lemma:
Lemma 5. Let F(X,Y) be a square-free binary form of degree r > 3 with coeffi-

cients in Og and U € GL2(Og). Then for some constant ¢ depending only on r
and the splitting field of F' over K we have

Hs(U) < ¢ (Hs(F)Hs(Fy))*" . (4.1)
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Proof. We prove (4.1) only for binary forms F' such that
F(X,Y) = [[(:X + 8Y) with oy, 8; € Og fori=1,...,r. (4.2)
i=1
This is no restriction. Namely, in general F' has a factorisation as in (4.2) with

«;, B; € Op where T is the set of places lying above those in S on the Hilbert
class field of the splitting field of F' over K. Now if we have shown that Hr(U) <

c- (HT(F)HT(FU))B/T then (4.1) follows from the Extension formula.
From (4.2) it follows that

Fy(X,Y) = [J(e; X + B8Y) with (], 8]) = (s, B)U for i =1,...,r. (4.3)

i=1

Let U = (% Z) Pick three indices 4, j, k from {1,...,r}. Then (a,c,b,d,—1,—1,—1)
is a solution to the system of six linear equations

Z1

o B 0 0 af 0 0 . 0
0 0 a B B 0 0 x; 0
aj B 0 0 0 o 0 o
0 0 o B 0 B 0 §4 1o (4.4)
ar B 0 0 0 0 af Jf 0
0 0 an Bk 0 0 B xi’ 0

(4.4) can be reformulated as —z5(aj, 3) = (i, 8) X, —we(aj, B]) = (ay, B;) X,
—x7(ag, B) = (o, Bi) X, with X = (7! 7%). It is well-known that up to a con-
stant factor, there is at most one 2 x 2-matrix mapping three given, pairwise non-
proportional vectors to scalar multiples of three given other vectors. Therefore, the
solution space of system (4.4) is one-dimensional. One solution to (4.4) is given
by (A1, —As,..., A7) where A, is the determinant of the matrix obtained by re-
moving the p-th column of the matrix at the left-hand side of (4.4). Therefore,
there is a non-zero A € K such that U = A( _2; _22). Note that Aq,..., Ay
contain the fifth, sixth, and seventh column of the matrix at the left-hand side of
(4.4). Therefore, each of Aq,..., A4 is a sum of terms each of which is up to sign
a product of six numbers, containing one of ay, 3, for p =, j, k and one of oy, (3,
for p = 7, j, k. Consequently,

‘U|v = ‘)‘|v maX(|A1"u> Sy |A4|v)
<c¢y- |>\|v H (max(‘aphja |ﬂp‘v) max(|a;|v, |ﬂ;|v)) for v € Mk, (45)
p=i,j,k

where for infinite places v, ¢, is an absolute constant and for finite places v, ¢, = 1.
Let v ¢ S. Then since U € GLy(Og) we have |detU|, = 1, whence |U|, = 1.
Further, oy, By, o, B, € Os for p =i, j, k, therefore, these numbers have v-adic
absolute value < 1. It follows that ||, > 1 for v ¢ S, and together with the
Product formula this implies [A|[s = [[,cg |Ao < 1. Now (4.5) implies, on taking
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the product over v € S,

Hs(U)<alMs [[ (Hs(ap, By)Hs(ap, B;))

p=1i,J,k
<a H (HS(apa/Bp)HS(a;aﬁ;)),
p=i,j,k

where ¢; depends only on K. By taking the product over all subsets {i,7,k} of
{1,...,7}, on using (4.2), (4.3), Lemma 2, we obtain

r r—1
Hs(U)<3) < CQ(Hs(F)Hs(FU))( 2 ),
where ¢y depends only on K, r. This implies (4.1). O

Lemma 6. Let M be an extension of K of degree v and T the set of places on M
lying above those in S. Denote by x +— (¥ (i =1,...,r) the K-isomorphisms of

(i) Let F(X,Y) =[[_,(@DX + DY), where a,3 € Or. Then F € Os[X,Y]
and Hs(F)l/r > HT(a, ﬂ)

(ii) Let &€ € M with & # 0. Then there are o, € Or such that £ = «o/f
and such that for the binary form F(X,Y) = [[;_, (@D X + DY) we have
Hg(F)Y" >< h(€).

Here the constants implied by <, > depend only on M.

Proof. (i) F has its coefficients in Og since Or is the integral closure of Og in M.
Let M’ be the normal closure of M/K and T’ the set of places on M’ lying above
those in T'. By the Extension formula, we have Hy(a, 3) = Hp/(«, 3). Further, by
the Extension formula and Lemma 2 we have

Hs(F) = Hy/(F) >< [[ Hr (e, 39).
i=1
Now M'/K is normal, hence if ws, ..., w, are the places on M’ lying above some
v € Mg then for i = 1,...,r, the tuple of absolute values (| *(*) lw, : 7=1,...,9)
is a permutation of (|*[u, : j =1,...,g). Therefore, Hy/ (a9, %)) = Hy/(a, B) =
Hp(a,fB) for i =1,...,r. This implies (i).

(ii) The ideal class of (1,£) (the fractional ideal with respect to O generated
by 1,€) contains an ideal, contained in Op;, with norm < 1. This implies that
there are «, 8 € Oy with £ = a/f such that the ideal («, 3) has norm < 1.
It follows that ][, ¢r max(|alw,|Blw) >< 1. Now by the Product formula we

have h(§) = HwEMM max(1,|¢]y) = HwEMM max(|aly, |8lw) and so h(€) ><
[Lyer max(|afw, |Blw) = Hr(a, 3). Together with (i) this implies (ii). O

We now complete the proof of Theorem 4. Let L = K(&,n), r = [K(§) : K],
s =[K(n) : K]. Then (1.16) implies that r > 3, s > 3, [L : K] = rs. Further, let T
be a finite set of places on L such that (1.17) holds and S the set of places on K
lying below those in 7. We add to S all infinite places on K that do not belong
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to S. Thus, S contains all infinite places and the places lying below those in T'.
There might be places in S above which there is no place in T but then (1.17) still
holds. Denote by T3 the set of places on L lying above the places in S. Note that
T is a proper subset of T7. In what follows, the constants implied by <, > depend
only on L, S. We mention that constants depending on some subfield of L may be
replaced by constants depending on L since L has only finitely many subfields.

Denote by z +— z() (i =1,...,7) the K-isomorphisms of K (¢) and by y +— y)
(j =1,...,s) the K-isomorphisms of K(n). From part (ii) of Lemma 6 (applied
with M = K (&), M = K(n), respectively) it follows that there are «, 3,7, d such
that & = %, n = %, where a, 8 belong to the integral closure of Og in K (&) and
v, 6 to the integral closure of Og in K(n) and such that for the binary forms

T S

FX,Y) =[x +59Y), GX,v)=][("X+s9Y) (4.6)
i=1 j=1
we have
Hs(F)Y" >< h(€), Hg(G)Y* >< h(n). (4.7)

The forms F, G have their coefficients in Og, and deg FF =r > 3, deg G = s > 3.
Further, since K (&), K(n) are linearly disjoint over K, the numbers £ and 7 are
not conjugate over K and so F'G is square-free. Hence all hypotheses of Theorem
2 are satisfied. The splitting field of F'G is the normal closure of L over K. By
Theorem 2 there is a matrix U € GL2(Og) such that

R(EG)]s > (Hs(Fo) Hs(Go)) ™ (4.8)

By (4.6) we have

T

Fu(X,Y) =) X + (89)9Y), Gu(X,Y) H DX +(59)VY),

i=1 =1
with (o, 8%) = (o, B)U, (v*,6%) = (v,0)U .
We define the following quantities:

|§_77|w |O‘5_/6’Y‘w
Ay = = for w € T1,
max (1, [€]e) max(L, n|w)  max(|alwl, |Blw) max(y]w, [0]w)
06" — 37"

Ay = for w € T,

max(|a* |, |3*[w) max(|7*|w, [0*|w)
H:= Hg(F)Y"Hg()Y*, H*:= Hg(Fy)"/"Hg(Gy)"".

Thus, (4.7) and (4.8) translate into

H>< h(©h(), [REGS™ > (H")Ts. (4.9)
Note that we have to estimate from below [],, o Aw.
For matrices A = (, Z) and places w on L we put |A|, = max(|a|y, ..., |d|w)-

Let v € S and w € T a place lying above v. Using that the restriction of ||, to K
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is |>|<|LL“’:K”]/[L:K] and also that ad— 3y = det U~ (a*§* — 3*7*), max(|alw, | Blw) <

|U71|w max(|a*|w, [8*|w), max(|y|w, [0]w) < |U71|w max(|y*[w, |0%[w), we obtain

|det U1, A= (|detU 1, ) S A
T2 et

Ay >

Note that by Lemma 5 we have Hg(U 1) < (HS(F)HS(FU))S/T and Hg(U™1) <

(HS(G)HS(GU))3/S. Hence Hs(U™') < (H - H*)3/2. We take the product over
w € T. Using (1.17), |[det U™, /|[UTY2 < 1 for v € S and det U € O we get

(55 ™ = IO - )

vES wET veES
> (H-H*)3W
Hence
[T Aw> (H-H) I] A (4.10)
weT weT

We need also lower bounds for [[,cp Aw, [Tyer, AY- Note that since [L : K] =
[K(§) : K|[K(n) : K] = rs we have

=TI ]](@W6Y) = BD79)) = Ny xc(ad - B).
i=1j=1

Together with the Extension formula this implies

|R(F, G|}/ = H |ad — By for v e Mg,

wlv

and by applying part (i) of Lemma 6 and (4.9) we obtain

IR(F, Q)| IR(F,G)ls \Y |R(F,G)¥"™
A L B S A V> S
ng = a0 > i aor) H
> (H*)7s H L (4.11)

Completely similarly we get, in view of (1.11),

. o IR(F0, GOl |R(E,G)S" 1
IT A e e > (H*) . (4.12)

weTh
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1 .
FIs(iraw) - Lhen we obtain

[]Aw> @B ] (A;—f’A;‘)) by (4.10)
weT weT

> (H - H*)73W* H (A}U_OAZJH) since A, < 1, A}, <1 for w e TH\T
weTy

> (H - H) =3O Fs =00 ()7 117 by (411), (4.12)

= H—1+(1—3W)0(H*)ﬁ—(1+3w)9 _ gi+s

> (h(&)h(n))

0 by (4.9).

This completes the proof of Theorem 4. a

References

E. Bombieri, A.J. van der Poorten, Some quantitative results related to Roth’s the-
orem, J. Austral. Math. Soc. (Series A) 45 (1988), 233-248, Corrigenda, ibid. 48
(1990), 154-155.

J.-H. Evertse, On sums of S-units and linear recurrences, Compos. Math. 53 (1984),
225-244.

— Estimates for discriminants and resultants of binary forms. In: Advances in Num-
ber Theory, Proc. 3rd conf. CNTA, Kingston, 1991 (ed. by F.Q. Gouvéa, N. Yui),
367-380. Clarendon Press, Oxford 1993.

— Estimates for reduced binary forms, J. reine angew. Math. 434 (1993), 159-190.

J.-H. Evertse, K. Gy6ry, Lower bounds for resultants I, Compos. Math. 88 (1993),
1-23.

S. Lang, Fundamentals of Diophantine Geometry. Springer Verlag, New York, Berlin,
Heidelberg, Tokyo 1983.

M. Laurent, Equations diophantiennes exponentielles, Invent. math. 78 (1984),
299-327.

K.F. Roth, Rational approximation to algebraic numbers, Mathematika 2 (1955),
1-20.

M. Ru, P.M. Wong, Integral points of P"\{2n 4 1 hyperplanes in general position},
Invent. math. 106 (1991), 195-216.

H.P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt theorem, Archiv der Math.
29 (1977), 267-270.

W.M. Schmidt, Norm form equations, Ann. Math. 96 (1972), 526-551.

— Inequalities for resultants and for decomposable forms. In: Diophantine approxi-
mation and its applications, Proc. conf. Washington D.C. 1972 (ed. by C.F. Osgood),
235-253. Academic Press, New York 1973.



18 Jan-Hendrik Evertse

[13] — The number of solutions of norm form equations, Trans. Am. Math. Soc. 317
(1990), 197-227.

[14] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bound-
ed degree. In: Proc. Symp. Pure Math., 1969 Number Theory Inst. (ed. by D.J.
Lewis), 213-247. Am. Math. Soc., Providence 1971.



