Lower bounds for resultants II.

Jan-Hendrik Evertse

Abstract. Let F(X,Y), G(X,Y) be binary forms in $\mathbf{Z}[X,Y]$ of degrees $r\geq 3, s\geq 3$, respectively, such that FG has no multiple factors. For each matrix $U=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in GL_2(\mathbf{Z})$, define $F_U(X,Y)=F(aX+bY,cX+dY)$, and define G_U similarly. We will show that there is a matrix $U\in GL_2(\mathbf{Z})$ such that for the resultant R(F,G) of F,G we have $|R(F,G)|\geq C\cdot (H(F_U)^sH(G_U)^r)^{1/718}$, where $H(F_U)$, $H(G_U)$ denote the heights (maxima of absolute values of the coefficients) of F_U , G_U , respectively, and where G_U is some ineffective constant, depending on F_U , F_U , F_U , F_U , F_U , F_U , F_U , we will also prove a p-adic generalisation of the result mentioned above. As a consequence, we will obtain under certain technical restrictions a symmetric improvement of Liouville's inequality for the difference of two algebraic numbers. In our proofs we use some results from [4], [5], and the latter were proved by means of Schlickewei's p-adic generalisation of Schmidt's Subspace theorem.

1991 Mathematics Subject Classification: 11J68, 11C08.

1. Introduction.

Let $F(X,Y) = a_0X^r + a_1X^{r-1}Y + \cdots + a_rY^r$, $G(X,Y) = b_0X^s + b_1X^{s-1}Y + \cdots + b_sY^s$ be two binary forms with coefficients in some field K of characteristic 0. The resultant R(F,G) of F and G is defined by the determinant of order r+s,

of which the first s rows consist of coefficients of F and the last r rows of coefficients of G. Both F, G can be factored into linear forms with coefficients in the algebraic

closure of K, i.e.

$$F(X,Y) = \prod_{i=1}^{r} (\alpha_i X + \beta_i Y), \quad G(X,Y) = \prod_{j=1}^{s} (\gamma_j X + \delta_j Y),$$

and we have

$$R(F,G) = \prod_{i=1}^{r} \prod_{j=1}^{s} (\alpha_i \delta_j - \beta_i \gamma_j) . \qquad (1.2)$$

Hence R(F,G)=0 if and only if F,G have a common linear factor. Further, if for a matrix $U=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with determinant $\det U\neq 0$ we define $F_U(X,Y):=F(aX+bY,cX+dY)$ and similarly G_U , it follows that

$$R(F_U, G_U) = (\det U)^{rs} R(F, G). \tag{1.3}$$

Now assume that F, G have their coefficients in **Z**. For a polynomial P with coefficients in **Z**, we define its height H(P) to be the maximum of the absolute values of the coefficients of P. From (1.1) and Hadamard's inequality it follows that

$$|R(F,G)| \le (r+1)^{s/2} (s+1)^{r/2} H(F)^s H(G)^r$$
.

On the other hand, there are some results in the literature on lower bounds for |R(F,G)| which have been obtained by applying Diophantine approximation techniques. To state these results, we need some terminology. A binary form is called square-free if it is not divisible by the square of any non-constant binary form. The splitting field over a field K of a binary form with coefficients in K is the smallest extension of K over which this binary form factors into linear forms. By $C_1^{\text{ineff}}(\)$, $C_2^{\text{ineff}}(\)$, ... we denote ineffective positive constants depending only on the parameters between the parentheses.

Improving on a result of Wirsing [14], Schmidt [12] proved that if r, s are integers with r > 2s > 0 and if F is a square-free binary form of degree r in $\mathbf{Z}[X,Y]$ without irreducible factors of degree $\leq s$, then for every binary form $G \in \mathbf{Z}[X,Y]$ of degree s which is coprime with F one has

$$|R(F,G)| \ge C_1^{\text{ineff}}(r,s,F,\varepsilon)H(G)^{r-2s-\varepsilon} \text{ for } \varepsilon > 0,$$
 (1.4)

where the dependence of C_1 on F is unspecified. From Theorem 4.1 of Ru and Wong [9] it follows that (1.4) holds true without the constraint that F have no irreducible factors of degree $\leq s$. Győry and the author ([5], Theorem 1) proved that for each pair of binary forms F, G with coefficients in \mathbb{Z} such that deg $F = r \geq 3$, deg $G = s \geq 3$, FG has splitting field L over K and FG is square-free one has

$$|R(F,G)| \ge C_2^{\text{ineff}}(r,s,L,\varepsilon) \left(|D(F)|^{\frac{s}{r-1}} |D(G)|^{\frac{r}{s-1}} \right)^{\frac{1}{17}-\varepsilon} \text{ for } \varepsilon > 0 , \qquad (1.5)$$

where D(F), D(G) denote the discriminants of F,G. We recall that if $F(X,Y)=\prod_{i=1}^r(\alpha_iX+\beta_iY)$ then $D(F)=\prod_{1\leq i< j\leq r}(\alpha_i\beta_j-\alpha_j\beta_i)^2$. Győry and the author showed also in [5] that if $r\leq 2$ or $s\leq 2$ or if we allow the splitting field of FG to vary, then |D(F)|, |D(G)| may grow arbitrarily large while |R(F,G)| remains

bounded. For more information on lower bounds for resultants and on applications we refer to [4], [5].

Our aim is to derive instead of (1.5) a lower bound for |R(F,G)| which is a function increasing in both H(F) and H(G). In general such a lower bound does not exist. Namely, (1.3) implies that

$$|R(F_U, G_U)| = |R(F, G)| \text{ for } U \in GL_2(\mathbf{Z}),$$
 (1.6)

(where $GL_2(\mathbf{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{Z}, ad - bc = \pm 1 \}$) while $H(F_U), H(G_U)$ may be arbitrarily large for varying U. However, assuming that $r \geq 3, s \geq 3$, we can show that there is an $U \in GL_2(\mathbf{Z})$ such that |R(F,G)| is bounded from below by a function increasing in both $H(F_U), H(G_U)$. The next result, with exponent 1/760 instead of 1/718, was stated without proof in [3], Theorem 3.

Theorem 1. Let $r \geq 3$, $s \geq 3$, and let (F,G) be a pair of binary forms with coefficients in \mathbb{Z} such that $\deg F = r$, $\deg G = s$, FG is square-free and FG has splitting field L over \mathbb{Q} . Then there is an $U \in GL_2(\mathbb{Z})$ such that

$$|R(F,G)| \ge C_3^{\text{ineff}}(r,s,L) (H(F_U)^s H(G_U)^r)^{1/718}$$
 (1.7)

Remark. Similarly as for (1.5), the conditions $r \geq 3$, $s \geq 3$, as well as the dependence of C_3 on L, are necessary. Namely, the discriminant of a binary form F of degree r is a homogeneous polynomial of degree 2r-2 in the coefficients of F, and for $U \in GL_2(\mathbf{Z})$ one has $|D(F_U)| = |D(F)|$. Therefore, there is a constant c(r) such that $|D(F)| \leq c(r)\{\inf_{U \in GL_2(\mathbf{Z})} H(F_U)\}^{2r-2}$. Now, by the result from [5] mentioned above, if $r \leq 2$ or $s \leq 2$ or if we allow the splitting field of FG to vary, then |D(F)|, |D(G)|, and hence $\inf_{U \in GL_2(\mathbf{Z})} H(F_U)$, $\inf_{U \in GL_2(\mathbf{Z})} H(G_U)$ may grow arbitrarily large while |R(F,G)| remains bounded.

The proof of Theorem 1 ultimately depends on Schmidt's Subspace theorem, which explains the ineffectivity of the constant C_3 . It would be a remarkable breakthrough to obtain an effective lower bound for |R(F,G)| which is a function increasing in both $H(F_U)$ and $H(G_U)$ for some $U \in GL_2(\mathbf{Z})$.

We also prove a p-adic generalisation of Theorem 1. To state this, we have to introduce some further terminology. Let K be an algebraic number field. Denote by \mathcal{O}_K the ring of integers of K. The set of places M_K of K consists of the isomorphic embeddings $\sigma: K \hookrightarrow \mathbf{R}$ which are called real infinite places; the pairs of complex conjugate isomorphic embeddings $\{\sigma, \overline{\sigma}: K \hookrightarrow \mathbf{C}\}$ which are called complex infinite places; and the prime ideals of \mathcal{O}_K which are called finite places. We define absolute values $|*|_v (v \in M_K)$ normalised with respect to K as follows:

```
\begin{array}{l} |*|_v = |\sigma(*)|^{1/[K:\mathbf{Q}]} \text{ if } v = \sigma \text{ is a real infinite place;} \\ |*|_v = |\sigma(*)|^{2/[K:\mathbf{Q}]} = |\overline{\sigma}(*)|^{2/[K:\mathbf{Q}]} \text{ if } v = \{\sigma, \overline{\sigma}\} \text{ is a complex infinite place;} \\ |*|_v = (N\wp)^{-\operatorname{ord}_\wp(*)/[K:\mathbf{Q}]} \text{ if } v = \wp \text{ is a finite place, i.e. prime ideal of } \mathcal{O}_K, \end{array}
```

where $N\wp = \#(\mathcal{O}_K/\wp)$ denotes the norm of \wp and $\operatorname{ord}_{\wp}(x)$ is the exponent of \wp in the prime ideal decomposition of (x), with $\operatorname{ord}_{\wp}(0) = \infty$. These absolute values satisfy the *Product formula*

$$\prod_{v \in M_K} |x|_v = 1 \text{ for } x \in K^*.$$

For any finite extension L of K, we define absolute values $|*|_w (w \in M_L)$ normalised with respect to L in an analogous manner. Thus, if $w \in M_L$ lies above $v \in M_K$, then the restriction of $|*|_w$ to K is equal to $|*|_v^{[L_w:K_v]/[L:K]}$, where K_v , L_w denote the completions of K at v, L at w, respectively. We will frequently use the $Extension\ formula$

$$\prod_{w|v} |x|_w = |N_{L/K}(x)|_v^{1/[L:K]} \text{ for } x \in L, \ v \in M_K$$

so in particular

$$\prod_{w|v} |x|_w = |x|_v \text{ for } x \in K, \ v \in M_K,$$

where the product is taken over all places $w \in M_L$ lying above v.

Now let S be a finite set of places on K, containing all (real and complex) infinite places. The ring of S-integers and its unit group, the group of S-units, are defined by

$$\mathcal{O}_S = \{ x \in K : |x|_v \le 1 \text{ for } v \notin S \}, \quad \mathcal{O}_S^* = \{ x \in K : |x|_v = 1 \text{ for } v \notin S \},$$

respectively, where ' $v \notin S$ ' means ' $v \in M_K \backslash S$.' We put

$$|x|_S := \prod_{v \in S} |x|_v \text{ for } x \in K$$
.

Thus,

$$|x|_S > 1$$
 for $x \in \mathcal{O}_S$, $x \neq 0$, $x \notin \mathcal{O}_S^*$, $|x|_S = 1$ for $x \in \mathcal{O}_S^*$. (1.8)

We define the truncated height H_S by

$$H_S(\mathbf{x}) = H_S(x_1, \dots, x_n) = \prod_{v \in S} \max(|x_1|_v, \dots, |x_n|_v) \text{ for } \mathbf{x} = (x_1, \dots, x_n) \in K^n.$$

For a polynomial P with coefficients in K we put $H_S(P) := H_S(p_1, \ldots, p_t)$, where p_1, \ldots, p_t are the coefficients of P. By (1.8) we have

$$H_S(\mathbf{x}) \ge 1 \text{ for } \mathbf{x} \in \mathcal{O}_S^n \setminus \{\mathbf{0}\},$$
 (1.9)

$$H_S(u\mathbf{x}) = H_S(\mathbf{x}) \text{ for } \mathbf{x} \in \mathcal{O}_S^n \setminus \{\mathbf{0}\}, \ u \in \mathcal{O}_S^*.$$
 (1.10)

Further, one can show that for every A > 0 the set of vectors $\mathbf{x} \in \mathcal{O}_S^n$ with $H_S(\mathbf{x}) \leq A$ is the union of finitely many " \mathcal{O}_S^* -cosets" $\{u\mathbf{y}: u \in \mathcal{O}_S^*\}$ with $\mathbf{y} \in \mathcal{O}_S^n$ fixed.

(1.3) and (1.8) imply that for binary forms F, G with coefficients in \mathcal{O}_S we have

$$|R(F_U, G_U)|_S = |R(F, G)|_S \text{ for } U \in GL_2(\mathcal{O}_S) ,$$
 (1.11)

where $GL_2(\mathcal{O}_S) = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathcal{O}_S, ad - bc \in \mathcal{O}_S^* \}$. We prove the following generalisation of Theorem 1:

Theorem 2. Let $r \geq 3$, $s \geq 3$, and let (F,G) be a pair of binary forms with coefficients in \mathcal{O}_S such that $\deg F = r$, $\deg G = s$, FG is square-free and FG has splitting field L over K. Then there is an $U \in GL_2(\mathcal{O}_S)$ such that

$$|R(F,G)|_S \ge C_4^{\text{ineff}}(r,s,S,L) (H_S(F_U)^s H_S(G_U)^r)^{1/718}$$
 (1.12)

In the proof of Theorem 2 we use a lower bound for resultants in terms of discriminants from [5] which has been proved by means of Schlickewei's p-adic generalisation [10] of Schmidt's Subspace theorem [11], a lower bound for discriminants in terms of heights from [4] which follows from Lang's p-adic generalisation [6] (Chap. 7, Thm. 1.1) of Roth's theorem [8], and also a 'semi-effective' result on Thue-Mahler equations, stated below, which follows also from the p-adic generalisation of Roth's theorem.

Theorem 3. Let $F(X,Y) \in \mathcal{O}_S[X,Y]$ be a square-free binary form of degree $r \geq 3$ with splitting field M over K and let $A \geq 1$. Then every solution $(x,y) \in \mathcal{O}_S^2$ of

$$|F(x,y)|_S = A \tag{1.13}$$

satisfies

$$H_S(x,y) \le C_5^{\text{ineff}}(r,S,M,\varepsilon) \cdot (H_S(F)\cdot A)^{\frac{3}{r}+\varepsilon} \text{ for every } \varepsilon > 0 \ .$$
 (1.14)

Using the techniques from the paper of Bombieri and van der Poorten [1] it is probably possible to derive instead of (1.14) an upper bound

$$H_S(x,y) \leq C_6^{\text{ineff}}(r,S,M,\varepsilon) \cdot H_S(F)^{c(r,\varepsilon)} A^{\frac{1}{r-2}+\varepsilon}$$
 for every $\varepsilon > 0$,

where $c(r,\varepsilon)$ is a function increasing in r,ε^{-1} .

We derive from Theorem 2 a symmetric improvement of Liouville's inequality. The (absolute) height of an algebraic number ξ is defined by

$$h(\xi) = \prod_{v \in M_K} \max(1, |\xi|_v),$$

where K is any number field containing ξ . By the Extension formula, this height is independent of the choice of K.

Let K be an algebraic number field and ξ , η numbers algebraic over K with $\xi \neq \eta$. Put $L = K(\xi, \eta)$. Further, let T be a finite set of places on L (not necessarily containing all infinite places). By the Product formula we have

$$\prod_{w \in T} \frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)} = \Big(\prod_{w \not\in T} \frac{\max(1, |\xi|_w) \max(1, |\eta|_w)}{|\xi - \eta|_w}\Big) h(\xi)^{-1} h(\eta)^{-1}$$

$$\geq \frac{1}{2} \left(h(\xi)h(\eta) \right)^{-1} \,, \tag{1.15}$$

where as usual, the absolute values $|*|_w$ are normalised with respect to L. The latter is known as Liouville's inequality. Under certain hypotheses we can improve upon the exponent -1. Assume that

$$L = K(\xi, \eta); [K(\xi) : K] \ge 3, [K(\eta) : K] \ge 3; [L : K] = [K(\xi) : K][K(\eta) : K],$$

$$(1.16)$$

i.e. $K(\xi)$, $K(\eta)$ are linearly disjoint over K. Further, let T be a finite set of places on L such that if S is the set of places on K lying below those in T then

$$W := \max_{v \in S} \frac{1}{[L:K]} \sum_{w \in T \atop w|v} [L_w : K_v] < \frac{1}{3} , \qquad (1.17)$$

where for each place $v \in S$, the sum is taken over those places $w \in T$ that lie above v.

Theorem 4. Assuming that ξ, η, L, T satisfy (1.16), (1.17) we have

$$\prod_{w \in T} \frac{|\xi - \eta|_{w}}{\max(1, |\xi|_{w}) \max(1, |\eta|_{w})} \ge C_{7}^{\text{ineff}}(L, T) \cdot \left(h(\xi)h(\eta)\right)^{-1+\delta} \qquad (1.18)$$

$$with \quad \delta = \frac{1}{718} \cdot \frac{1 - 3W}{1 + 3W} .$$

For instance, suppose that L, ξ, η satisfy (1.16) with $K = \mathbf{Q}$ and that T is a subset of the set of infinite places on L, satisfying (1.17) with $K = \mathbf{Q}$ and with S consisting of the only infinite place of \mathbf{Q} . Inequality (1.18) has been stated in terms of absolute values normalised with respect to L and we will "renormalise" these to \mathbf{Q} . Each $w \in T$ is either an isomorphic embedding of L into \mathbf{R} and then $L_w = \mathbf{R}$; or a pair of complex conjugate embeddings of L into \mathbf{C} and then $L_w = \mathbf{C}$. Therefore, the union of all places $w \in T$ is a collection Σ of isomorphic embeddings of L into \mathbf{C} such that with an isomorphic embedding also its complex conjugate belongs to Σ and moreover, the quantity W of (1.17) is precisely $\#\Sigma/[L:\mathbf{Q}]$. We recall that if $w = \sigma$ is real then $|*|_w = |\sigma(*)|^{1/[L:\mathbf{Q}]}$ while if $w = \{\sigma, \overline{\sigma}\}$ is complex then $|*|_w = (|\sigma(*)| \cdot |\overline{\sigma}(*)|)^{1/[L:\mathbf{Q}]}$. This implies that the left-hand side of (1.18) equals $\prod_{\sigma \in \Sigma} \left(|\sigma(\xi-\eta)|/\max(1,|\sigma(\xi)|)\max(1,|\sigma(\eta)|)\right)^{1/[L:\mathbf{Q}]}$. For an algebraic number ξ , we define $\tilde{H}(\xi)$ to be the maximum of the absolute values of the coefficients of the minimal polynomial of ξ over \mathbf{Z} . Then $h(\xi)^{\deg \xi} \leq c\tilde{H}(\xi)$ where c depends only on the degree of ξ (cf. [6], Chap. 3, §2, Prop. 2.5). Thus, Theorem 4 implies the following:

Corollary. Let ξ , η be algebraic numbers of degrees $r \geq 3$, $s \geq 3$, respectively, such that the field $L = \mathbf{Q}(\xi, \eta)$ has degree rs. Further, let Σ be a collection of isomorphic embeddings of L into \mathbf{C} such that if $\sigma \in \Sigma$ then also $\overline{\sigma} \in \Sigma$, and such

that $W := \#\Sigma/[L:\mathbf{Q}] < \frac{1}{3}$. Put $\delta = \frac{1}{718} \frac{1-3W}{1+3W}$. Then

$$\prod_{\sigma \in \Sigma} \frac{|\sigma(\xi - \eta)|}{\max(1, |\sigma(\xi)|) \max(1, |\sigma(\eta)|)} \ge C_8^{\text{ineff}}(L) \cdot \left(\tilde{H}(\xi)^{-s} \tilde{H}(\eta)^{-r}\right)^{1-\delta} . \tag{1.19}$$

For instance, assume that $L \subset \mathbf{R}$ and take $\Sigma = \{\text{identity}\}$. Then $[L: \mathbf{Q}] = rs \geq 9$ and hence $W \leq \frac{1}{9}$. So by (1.19) we have

$$\frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)} \ge C_9^{\text{ineff}}(L) \cdot \left(\tilde{H}(\xi)^{-s} \tilde{H}(\eta)^{-r}\right)^{\frac{1435}{1436}}.$$
 (1.20)

If $L \subset \mathbf{C}$, $L \not\subset \mathbf{R}$ then with $\Sigma = \{\text{identity, complex conjugation}\}$ we have $W \leq \frac{2}{9}$ and so (1.19) gives

$$\left(\frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)}\right)^2 \ge C_{10}^{\text{ineff}}(L) \cdot \left(\tilde{H}(\xi)^{-s} \tilde{H}(\eta)^{-r}\right)^{\frac{3589}{3590}}.$$
(1.21)

Results similar to (1.20), (1.21) with better exponents were derived in [3] (Corollary 3, (i)).

For an inequality of type (1.18) with $\delta > 0$ to hold it is certainly necessary to impose some conditions on ξ, η, L, T but (1.16), (1.17) are probably far too strong. Using for instance geometry of numbers over the adeles of a number field one may prove a generalisation of Dirichlet's theorem of the sort that for a number field M, a number η of degree 2 over M and a finite set of places T on $L := M(\eta)$ satisfying some mild conditions, there is a constant $c = c(\eta, M, T)$ such that the inequality

$$\prod_{w \in T} \frac{|\xi - \eta|_w}{\max(1, |\xi|_w)} \le ch(\xi)^{-1}$$

has infinitely many solutions in $\xi \in M$. Thus, for an inequality of type (1.18) to hold it is probably necessary to assume that $[L:K(\xi)] \geq 3$, $[L:K(\eta)] \geq 3$.

The following example shows that the condition W < 1 is necessary. Assume that W = 1. Then there is a place v on K such that T contains all places on L lying above v. Fix two elements ξ_0 , η_0 of L such that $L = K(\xi_0, \eta_0)$, $[K(\xi_0) : K] \geq 3$, $[K(\eta_0) : K] \geq 3$ and $[L : K] = [K(\xi_0) : K][K(\eta_0) : K]$. Let $\gamma_1, \gamma_2, \ldots$ be a sequence of elements from K such that $\lim_{i \to \infty} |\gamma_i|_v = \infty$. By the strong approximation theorem, there exists for every i an $\alpha_i \in K$ such that $|\alpha_i - \gamma_i|_v < 1$ and $|\alpha_i|_{v'} \leq 1$ for every place $v' \neq v$ on K. Now put $\xi_i := \xi_0 + \alpha_i$, $\eta_i := \eta_0 + \alpha_i$ for $i = 1, 2, \ldots$ Then for all places $w \in M_L$ lying outside a finite collection depending only on ξ_0 , η_0 we have $|\xi_i|_w \leq 1$, $|\eta_i|_w \leq 1$, while for the remaining places on L not lying above v we have $|\xi_i|_w \leq 1$, $|\eta_i|_w \ll 1$ for $i = 1, 2, \ldots$, where the constants implied by \ll , \gg depend only on ξ_0 , η_0 . Further, for $w \in M_L$ lying above v we have $|\xi_i|_w \gg |\gamma_i|_w$, $|\eta_i|_w \gg |\gamma_i|_w$ for i sufficiently large. Therefore, by the Extension formula, $h(\xi_i) \gg \ll \prod_{w|v} \max(1, |\xi_i|_w) \gg |\gamma_i|_v \to \infty$ for $i \to \infty$, where the products are taken over the places $w \in M_L$ lying above v. Moreover, since

$$\xi_i - \eta_i = \xi_0 - \eta_0$$
 we have

$$\prod_{w \in T} \frac{|\xi_i - \eta_i|_w}{\max(1, |\xi_i|_w) \max(1, |\eta_i|_w)} \ll \prod_{w|v} \frac{|\xi_0 - \eta_0|_w}{\max(1, |\xi_i|_w) \max(1, |\eta_i|_w)}
\ll (h(\xi_i)h(\eta_i))^{-1} \text{ for } i = 1, 2, ...$$

2. Proof of Theorem 3.

As in Section 1, K is an algebraic number field and S a finite set of places on K containing all infinite places. Further, F(X,Y) is a square-free binary form of degree $r \geq 3$ with coefficients in \mathcal{O}_S and A a real ≥ 1 . We assume that

$$F(X,Y) = \prod_{i=1}^{r} (\alpha_i X + \beta_i Y) \text{ with } \alpha_i, \beta_i \in \mathcal{O}_S \text{ for } i = 1, \dots, r.$$
 (2.1)

This is no loss of generality. Namely, suppose that F has splitting field M over K. Thus, $F(X,Y) = \prod_{i=1}^r (\alpha_i'X + \beta_i'Y)$ with $\alpha_i', \beta_i' \in M$. Let L be the Hilbert class field of M/K and T the set of places on L lying above those in S. Then for $i=1,\ldots,r$, the fractional ideal with respect to \mathcal{O}_T generated by α_i', β_i' is principal and since F has its coefficients in \mathcal{O}_S this implies that F can be factored as in (2.1) but with $\alpha_i, \beta_i \in \mathcal{O}_T$. From the Extension formula it follows that for $(x,y) \in \mathcal{O}_S^2$ we have $|F(x,y)|_T = |F(x,y)|_S$, $H_T(x,y) = H_S(x,y)$ and that also $H_T(F) = H_S(F)$, where $|*|_T = \prod_{w \in T} |*|_w$, $H_T(*,\ldots,*) = \prod_{w \in T} \max(|*|_w,\ldots,|*|_w)$. So, if we have proved that for all $(x,y) \in \mathcal{O}_T^2$ with $|F(x,y)|_T = A$ and all $\varepsilon > 0$ we have $H_T(x,y) \leq C_{11}^{\mathrm{ineff}}(r,T,L,\varepsilon) (H_T(F)A)^{\frac{3}{r}+\varepsilon}$, then Theorem 3 readily follows, on observing that T,L are uniquely determined by S,M.

In the proof of Theorem 3 we need some lemmas. The first lemma is fundamental for everything in this paper:

Lemma 1. Let x_0, \ldots, x_n be non-zero elements of \mathcal{O}_S such that

$$x_0 + \dots + x_n = 0,$$

$$\sum_{i \in I} x_i \neq 0 \text{ for each proper nonempty subset } I \text{ of } \{0, \dots, n\}.$$

Then for all $\varepsilon > 0$ we have

$$H_S(x_0,\ldots,x_n) \le C_{12}^{\text{ineff}}(K,S,\varepsilon) \cdot \Big| \prod_{i=0}^n x_i \Big|_S^{1+\varepsilon}.$$

Proof. Lemma 1 in this form appeared in Laurent's paper [7]. It is a reformulation of Theorem 2 of [2]. For n=2, Lemma 1 follows from the p-adic generalisation of Roth's theorem [6] (Chap. 7, Thm. 1.1) and for n>2 from Schlickewei's p-adic generalisation [10] of Schmidt's Subspace theorem [11]. The constant C_{11}

(and also each other constant in this paper) is ineffective because the Subspace theorem is ineffective. In fact, we need Lemma 1 only for n=2 in which case the non-vanishing subsum condition is void. However, Lemma 1 with n>2 has been used in the proof of a result from [5] which we will need in the present paper. \square

For a polynomial P with coefficients in K and for $v \in M_K$ we define $|P|_v := \max(|p_1|_v, \ldots, |p_t|_v)$ where p_1, \ldots, p_t are the coefficients of P.

Lemma 2. Let $F(X,Y) = \prod_{i=1}^r (\alpha_i X + \beta_i Y)$ with $\alpha_i, \beta_i \in \mathcal{O}_S$ for i = 1, ..., r. There is a constant c depending only on r and K such that

$$c^{-1} \prod_{i=1}^{r} H_S(\alpha_i, \beta_i) \le H_S(F) \le c \prod_{i=1}^{r} H_S(\alpha_i, \beta_i) .$$
 (2.2)

Proof. According to, for instance [6], Chap. 3, §2, we have for any polynomials $P_1, \ldots, P_r \in K[X_1, \ldots, X_n], v \in M_K$ that

$$c_v^{-1}|P_1\cdots P_r|_v \leq |P_1|_v\cdots |P_r|_v \leq c_v|P_1\cdots P_r|_v$$
 if v is infinite,
 $|P_1\cdots P_r|_v = |P_1|_v\cdots |P_r|_v$ if v is finite,

where each c_v is a constant > 1 depending only on r, n, K. Now Lemma 2 follows by applying this with $P_i(X,Y) = \alpha_i X + \beta_i Y$ for i = 1, ..., r and any $v \in S$, and then taking the product over $v \in S$.

We complete the proof of Theorem 3. Let F(X,Y) be a square-free binary form of degree $r\geq 3$ satisfying (2.1) and let $\varepsilon>0$. Put $\varepsilon':=\varepsilon/10$. In what follows, the constants implied by \ll will be ineffective and depending only on K,S,r,ε . Define

$$\Delta_{ij} := \alpha_i \beta_j - \alpha_j \beta_i \text{ for } i, j = 1, \dots, r.$$

We will use that

$$|\Delta_{ij}|_v \ll \max(|\alpha_i|_v, |\beta_i|_v) \max(|\alpha_j|_v, |\beta_i|_v) \text{ for } v \in M_K$$
(2.2)

whence, on taking the product over $v \in S$,

$$|\Delta_{ij}|_S \ll H_S(\alpha_i, \beta_i) H_S(\alpha_j, \beta_j)$$
 (2.3)

Pick three distinct indices i, j, k from $\{1, \dots, r\}$ and define the linear forms

$$A_1 = \Delta_{ik}(\alpha_i X + \beta_i Y), \ A_2 = \Delta_{ki}(\alpha_i X + \beta_i Y), \ A_3 = \Delta_{ij}(\alpha_k X + \beta_k Y).$$

Thus,

$$A_1 + A_2 + A_3 = 0. (2.4)$$

Further,

$$\Delta_{ij}\Delta_{jk}\Delta_{ki} \cdot X = \Delta_{ki}\beta_j A_1 - \Delta_{jk}\beta_i A_2,
\Delta_{ij}\Delta_{jk}\Delta_{ki} \cdot Y = -\Delta_{ki}\alpha_j A_1 + \Delta_{jk}\alpha_i A_2.$$
(2.5)

Let $(x,y) \in \mathcal{O}_S^2$ be a pair satisfying (1.13). Put $a_h := A_h(x,y)$ for h = 1,2,3. From (2.5) and (2.2) it follows that for $v \in S$,

$$|\Delta_{ij}\Delta_{jk}\Delta_{ki}|_v \max(|x|_v,|y|_v) \ll \left(\prod_{p\in\{i,j,k\}} \max(|\alpha_p|_v,|\beta_p|_v)\right) \max(|a_1|_v,|a_2|_v).$$

By taking the product over $v \in S$ we get

$$|\Delta_{ij}\Delta_{jk}\Delta_{ki}|_S H_S(x,y) \ll \left(\prod_{p\in\{i,j,k\}} H_S(\alpha_p,\beta_p)\right) \cdot H_S(a_1,a_2).$$

By Lemma 1 and (2.4) we have

$$H_S(a_1, a_2) \le H_S(a_1, a_2, a_3) \ll \left(|\Delta_{ij} \Delta_{jk} \Delta_{ki}|_S \prod_{p \in \{i, j, k\}} |\alpha_p x + \beta_p y|_S \right)^{1+\varepsilon'}.$$

By combining these inequalities we obtain

$$H_S(x,y) \ll |\Delta_{ij}\Delta_{jk}\Delta_{ki}|_S^{\varepsilon'} \Big(\prod_{p\in\{i,j,k\}} H_S(\alpha_p,\beta_p)\Big) \prod_{p\in\{i,j,k\}} |\alpha_p x + \beta_p y|_S \Big)^{1+\varepsilon'}$$

$$\ll \Big(\prod_{p\in\{i,j,k\}} \Big(H_S(\alpha_p,\beta_p) \cdot |\alpha_p x + \beta_p y|_S\Big)\Big)^{1+3\varepsilon'} \text{ in view of } (2.3).$$

By taking the product over all subsets $\{i, j, k\}$ of $\{1, \ldots, r\}$ we get, using Lemma 2 and $\prod_{i=1}^{r} |\alpha_i x + \beta_i y|_S = A$ which is a consequence of (2.1), (1.13), that

$$H_S(x,y)^{\binom{r}{3}} \ll \left(\prod_{i=1}^r \left(H_S(\alpha_i,\beta_i) \cdot |\alpha_i x + \beta_i y|_S\right)\right)^{\binom{r-1}{2}(1+3\varepsilon')}$$
$$\ll \left(H_S(F) \cdot A\right)^{\binom{r}{3} \cdot (\frac{3}{r} + \varepsilon)}.$$

This proves Theorem 3.

3. Proof of Theorem 2.

Let again K be an algebraic number field and S a finite set of places on K containing all infinite places. We recall that the discriminant of a binary form $F(X,Y) = \prod_{i=1}^r (\alpha_i X + \beta_i Y)$ is given by $D(F) = \prod_{1 \leq i < j \leq r} (\alpha_i \beta_j - \alpha_j \beta_i)^2$. This implies that $|D(F_U)|_S = |D(F)|_S$ for $U \in GL_2(\mathcal{O}_S)$. We need some results from other papers.

Lemma 3. Let F be a square-free binary form of degree $r \geq 3$ with coefficients in \mathcal{O}_S and with splitting field M over K. Then there is an $U \in GL_2(\mathcal{O}_S)$ such that

$$|D(F)|_S \ge C_{13}^{\text{ineff}}(r, M, S)H_S(F_U)^{\frac{r-1}{21}}.$$

Proof. This follows from Theorem 2 of [4]. The proof of that theorem uses Lemma 1 mentioned above with n=2 and a reduction theory for binary forms.

I would like to mention here that the reduction theory for binary forms developed in [4] is essentially a special case of a reduction theory for norm forms which was developed some years earlier by Schmidt [13] (for a totally different purpose). I apologize for having overlooked this in [4].

Lemma 4. Let F,G be binary forms of degrees $r \geq 3$, $s \geq 3$, respectively, with coefficients in \mathcal{O}_S such that FG is square-free and FG has splitting field L over K. Then

$$|R(F,G)|_S \ge C_{14}^{\text{ineff}}(r,s,L,S,\varepsilon) \left(|D(F)|_S^{\frac{s}{r-1}} |D(G)|_S^{\frac{r}{s-1}} \right)^{\frac{1}{17}-\varepsilon} \quad \text{for } \varepsilon > 0.$$

Proof. This is Theorem 1A of [5]. The proof of that theorem uses Lemma 1 with n > 2.

We now prove Theorem 2. We assume that

$$|D(F)|_S^{\frac{s}{r-1}} \le |D(G)|_S^{\frac{r}{s-1}}$$
 (3.1)

which is clearly no loss of generality. Let $U \in GL_2(\mathcal{O}_S)$ be the matrix from Lemma 3. We will show that (1.12) holds with this U. Let M be the Hilbert class field of L/K, and T the set of places on M lying above those in S. Thus, we have

$$F_U(X,Y) = \prod_{i=1}^r (\alpha_i X + \beta_i Y), \quad G_U(X,Y) = \prod_{j=1}^s (\gamma_j X + \delta_j Y)$$

with $\alpha_i, \beta_i, \gamma_j, \delta_j \in \mathcal{O}_T$ for $i = 1, \dots, r, \ j = 1, \dots, s.$ (3.2)

The height H_T and the quantity $|*|_T$ are defined similarly to H_S , $|*|_S$ but with respect to the absolute values $|*|_w$ ($w \in T$). In what follows, the constants implied by \ll , \gg will be ineffective and depending only on r, s, L, S and ε , where ε is a positive number depending only on r, s which will later be chosen sufficiently small.

Note that by Lemma 4, (3.1), our choice of U, and Lemma 3 we have

$$|R(F,G|_S) \gg \left(|D(F)|_S^{\frac{s}{r-1}}|D(G)|_S^{\frac{s}{r-1}}\right)^{\frac{1}{17}-\varepsilon} \gg |D(F)|_S^{\frac{s}{r-1}(\frac{2}{17}-2\varepsilon)}$$

$$\gg H_S(F_U)^{s(\frac{2}{357}-\frac{2\varepsilon}{21})}.$$
(3.3)

We estimate $H_S(G_U)$ from above. By (1.2), (3.2) we have

$$R(F_U, G_U) = \prod_{i=1}^r \prod_{j=1}^s (\alpha_i \delta_j - \beta_i \gamma_j) = \prod_{j=1}^s F_U(\delta_j, -\gamma_j) ,$$

and together with (1.11) and the Extension formula this implies that

$$|R(F,G)|_S = |R(F_U,G_U)|_T = \prod_{j=1}^s |F_U(\delta_j,-\gamma_j)|_T$$
 (3.4)

Further, using that $H_S(F_U) = H_T(F_U)$, $H_S(G_U) = H_T(G_U)$ by the Extension formula, we have

$$H_S(G_U) \ll \prod_{j=1}^s H_T(\gamma_j, \delta_j)$$
 by (3.2), Lemma 2, (3.5)

$$H_T(\gamma_j, \delta_j) \ll \left(H_S(F_U) \cdot |F_U(\delta_j, -\gamma_j)|_T\right)^{\frac{3}{r} + \varepsilon}$$
 for $j = 1, \dots, s$ by Theorem 3, (3.6)

where both Lemma 2, Theorem 3 have been applied with M, T replacing K, S. Now (3.4), (3.5), (3.6) together imply

$$H_S(G_U) \ll \left(H_S(F_U)^s |R(F,G)|_S\right)^{\frac{3}{r}+\varepsilon}.$$

In combination with (3.3) this gives

$$\begin{split} H_S(F_U)^s H_S(G_U)^r &\ll H_S(F_U)^{s(4+r\varepsilon)} |R(F,G)|_S^{3+r\varepsilon} \\ &\ll |R(F,G)|_S^{(4+r\varepsilon)(\frac{2}{357} - \frac{2\varepsilon}{21})^{-1} + 3 + r\varepsilon} \\ &\ll |R(F,G)|_S^{718} \quad \text{for } \varepsilon \text{ sufficiently small.} \end{split}$$

This implies (1.12), whence completes the proof of Theorem 2.

4. Proof of Theorem 4.

As before, let K be an algebraic number field and S a finite set of places on K containing all infinite places. For a matrix $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with entries in K we define

$$|U|_v := \max(|a|_v, |b|_v, |c|_v, |d|_v) \text{ for } v \in M_K, \quad H_S(U) = \prod_{v \in S} |U|_v.$$

We need the following elementary lemma:

Lemma 5. Let F(X,Y) be a square-free binary form of degree $r \geq 3$ with coefficients in \mathcal{O}_S and $U \in GL_2(\mathcal{O}_S)$. Then for some constant c depending only on r and the splitting field of F over K we have

$$H_S(U) \le c \cdot \left(H_S(F)H_S(F_U)\right)^{3/r} . \tag{4.1}$$

Proof. We prove (4.1) only for binary forms F such that

$$F(X,Y) = \prod_{i=1}^{r} (\alpha_i X + \beta_i Y) \text{ with } \alpha_i, \beta_i \in \mathcal{O}_S \text{ for } i = 1, \dots, r.$$
 (4.2)

This is no restriction. Namely, in general F has a factorisation as in (4.2) with $\alpha_i, \beta_i \in \mathcal{O}_T$ where T is the set of places lying above those in S on the Hilbert class field of the splitting field of F over K. Now if we have shown that $H_T(U) \leq$ $c \cdot (H_T(F)H_T(F_U))^{3/r}$ then (4.1) follows from the Extension formula. From (4.2) it follows that

 $F_U(X,Y) = \prod_{i=1}^r (\alpha_i^* X + \beta_i^* Y) \text{ with } (\alpha_i^*, \beta_i^*) = (\alpha_i, \beta_i) U \text{ for } i = 1, \dots, r.$ (4.3)

Let
$$U=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)$$
. Pick three indices i,j,k from $\{1,\ldots,r\}$. Then $(a,c,b,d,-1,-1,-1)$

is a solution to the system of six linear equations

$$\begin{pmatrix}
\alpha_{i} & \beta_{i} & 0 & 0 & \alpha_{i}^{*} & 0 & 0 \\
0 & 0 & \alpha_{i} & \beta_{i} & \beta_{i}^{*} & 0 & 0 \\
\alpha_{j} & \beta_{j} & 0 & 0 & 0 & \alpha_{j}^{*} & 0 \\
0 & 0 & \alpha_{j} & \beta_{j} & 0 & \beta_{j}^{*} & 0 \\
\alpha_{k} & \beta_{k} & 0 & 0 & 0 & 0 & \alpha_{k}^{*} \\
0 & 0 & \alpha_{k} & \beta_{k} & 0 & 0 & 0 & \beta_{k}^{*}
\end{pmatrix}
\begin{pmatrix}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}.$$
(4.4)

(4.4) can be reformulated as $-x_5(\alpha_i^*,\beta_i^*)=(\alpha_i,\beta_i)X, -x_6(\alpha_j^*,\beta_j^*)=(\alpha_j,\beta_j)X, -x_7(\alpha_k^*,\beta_k^*)=(\alpha_k,\beta_k)X$, with $X=\begin{pmatrix}x_1&x_3\\x_2&x_4\end{pmatrix}$. It is well-known that up to a constant factor, there is at most one 2×2 -matrix mapping three given, pairwise nonproportional vectors to scalar multiples of three given other vectors. Therefore, the solution space of system (4.4) is one-dimensional. One solution to (4.4) is given by $(\Delta_1, -\Delta_2, \ldots, \Delta_7)$ where Δ_p is the determinant of the matrix obtained by removing the p-th column of the matrix at the left-hand side of (4.4). Therefore, there is a non-zero $\lambda \in K$ such that $U = \lambda(\begin{smallmatrix} \Delta_1 & \Delta_3 \\ -\Delta_2 & -\Delta_4 \end{smallmatrix})$. Note that $\Delta_1, \ldots, \Delta_4$ contain the fifth, sixth, and seventh column of the matrix at the left-hand side of (4.4). Therefore, each of $\Delta_1, \ldots, \Delta_4$ is a sum of terms each of which is up to sign a product of six numbers, containing one of α_p , β_p for p=i,j,k and one of α_p^* , β_p^* for p = i, j, k. Consequently,

$$|U|_{v} = |\lambda|_{v} \max(|\Delta_{1}|_{v}, \dots, |\Delta_{4}|_{v})$$

$$\leq c_{v} \cdot |\lambda|_{v} \prod_{p=i,j,k} \left(\max(|\alpha_{p}|_{v}, |\beta_{p}|_{v}) \max(|\alpha_{p}^{*}|_{v}, |\beta_{p}^{*}|_{v}) \right) \text{ for } v \in M_{K}, (4.5)$$

where for infinite places v, c_v is an absolute constant and for finite places $v, c_v = 1$. Let $v \notin S$. Then since $U \in GL_2(\mathcal{O}_S)$ we have $|\det U|_v = 1$, whence $|U|_v = 1$. Further, $\alpha_p, \beta_p, \alpha_p^*, \beta_p^* \in \mathcal{O}_S$ for p = i, j, k, therefore, these numbers have v-adic absolute value ≤ 1 . It follows that $|\lambda|_v \geq 1$ for $v \notin S$, and together with the Product formula this implies $|\lambda|_S = \prod_{v \in S} |\lambda|_v \leq 1$. Now (4.5) implies, on taking the product over $v \in S$,

$$H_S(U) \leq c_1 |\lambda|_S \prod_{p=i,j,k} \left(H_S(\alpha_p, \beta_p) H_S(\alpha_p^*, \beta_p^*) \right)$$

$$\leq c_1 \prod_{p=i,j,k} \left(H_S(\alpha_p, \beta_p) H_S(\alpha_p^*, \beta_p^*) \right),$$

where c_1 depends only on K. By taking the product over all subsets $\{i, j, k\}$ of $\{1, \ldots, r\}$, on using (4.2), (4.3), Lemma 2, we obtain

$$H_S(U)^{\binom{r}{3}} \le c_2 (H_S(F)H_S(F_U))^{\binom{r-1}{2}},$$

where c_2 depends only on K, r. This implies (4.1).

Lemma 6. Let M be an extension of K of degree r and T the set of places on M lying above those in S. Denote by $x \mapsto x^{(i)}$ (i = 1, ..., r) the K-isomorphisms of M

- (i) Let $F(X,Y) = \prod_{i=1}^r (\alpha^{(i)}X + \beta^{(i)}Y)$, where $\alpha, \beta \in \mathcal{O}_T$. Then $F \in \mathcal{O}_S[X,Y]$ and $H_S(F)^{1/r} \gg \ll H_T(\alpha,\beta)$.
- (ii) Let $\xi \in M$ with $\xi \neq 0$. Then there are $\alpha, \beta \in \mathcal{O}_T$ such that $\xi = \alpha/\beta$ and such that for the binary form $F(X,Y) = \prod_{i=1}^r (\alpha^{(i)}X + \beta^{(i)}Y)$ we have $H_S(F)^{1/r} \gg \ll h(\xi)$.

Here the constants implied by \ll , \gg depend only on M.

Proof. (i) F has its coefficients in \mathcal{O}_S since \mathcal{O}_T is the integral closure of \mathcal{O}_S in M. Let M' be the normal closure of M/K and T' the set of places on M' lying above those in T. By the Extension formula, we have $H_T(\alpha, \beta) = H_{T'}(\alpha, \beta)$. Further, by the Extension formula and Lemma 2 we have

$$H_S(F) = H_{T'}(F) \gg \ll \prod_{i=1}^r H_{T'}(\alpha^{(i)}, \beta^{(i)}).$$

Now M'/K is normal, hence if w_1,\ldots,w_g are the places on M' lying above some $v\in M_K$ then for $i=1,\ldots,r$, the tuple of absolute values $(|*^{(i)}|_{w_j}:\ j=1,\ldots,g)$ is a permutation of $(|*|_{w_j}:\ j=1,\ldots,g)$. Therefore, $H_{T'}(\alpha^{(i)},\beta^{(i)})=H_{T'}(\alpha,\beta)=H_{T}(\alpha,\beta)$ for $i=1,\ldots,r$. This implies (i).

(ii) The ideal class of $(1,\xi)$ (the fractional ideal with respect to \mathcal{O}_M generated by $1,\xi$) contains an ideal, contained in \mathcal{O}_M , with norm $\ll 1$. This implies that there are $\alpha,\beta\in\mathcal{O}_M$ with $\xi=\alpha/\beta$ such that the ideal (α,β) has norm $\ll 1$. It follows that $\prod_{w\notin T}\max(|\alpha|_w,|\beta|_w)\gg\ll 1$. Now by the Product formula we have $h(\xi)=\prod_{w\in M_M}\max(1,|\xi|_w)=\prod_{w\in M_M}\max(|\alpha|_w,|\beta|_w)$ and so $h(\xi)\gg\ll\prod_{w\in T}\max(|\alpha|_w,|\beta|_w)=H_T(\alpha,\beta)$. Together with (i) this implies (ii).

We now complete the proof of Theorem 4. Let $L = K(\xi, \eta)$, $r = [K(\xi) : K]$, $s = [K(\eta) : K]$. Then (1.16) implies that $r \geq 3$, $s \geq 3$, [L : K] = rs. Further, let T be a finite set of places on L such that (1.17) holds and S the set of places on K lying below those in T. We add to S all infinite places on K that do not belong

to S. Thus, S contains all infinite places and the places lying below those in T. There might be places in S above which there is no place in T but then (1.17) still holds. Denote by T_1 the set of places on L lying above the places in S. Note that T is a proper subset of T_1 . In what follows, the constants implied by \ll , \gg depend only on L, S. We mention that constants depending on some subfield of L may be replaced by constants depending on L since L has only finitely many subfields.

Denote by $x \mapsto x^{(i)}$ (i = 1, ..., r) the K-isomorphisms of $K(\xi)$ and by $y \mapsto y^{(j)}$ (j = 1, ..., s) the K-isomorphisms of $K(\eta)$. From part (ii) of Lemma 6 (applied with $M = K(\xi)$, $M = K(\eta)$, respectively) it follows that there are $\alpha, \beta, \gamma, \delta$ such that $\xi = \frac{\alpha}{\beta}$, $\eta = \frac{\gamma}{\delta}$, where α, β belong to the integral closure of \mathcal{O}_S in $K(\xi)$ and γ, δ to the integral closure of \mathcal{O}_S in $K(\eta)$ and such that for the binary forms

$$F(X,Y) = \prod_{i=1}^{r} (\alpha^{(i)}X + \beta^{(i)}Y), \quad G(X,Y) = \prod_{j=1}^{s} (\gamma^{(j)}X + \delta^{(j)}Y)$$
(4.6)

we have

$$H_S(F)^{1/r} \gg \ll h(\xi), \quad H_S(G)^{1/s} \gg \ll h(\eta).$$
 (4.7)

The forms F, G have their coefficients in \mathcal{O}_S , and $\deg F = r \geq 3$, $\deg G = s \geq 3$. Further, since $K(\xi)$, $K(\eta)$ are linearly disjoint over K, the numbers ξ and η are not conjugate over K and so FG is square-free. Hence all hypotheses of Theorem 2 are satisfied. The splitting field of FG is the normal closure of L over K. By Theorem 2 there is a matrix $U \in GL_2(\mathcal{O}_S)$ such that

$$|R(F,G)|_S \gg \left(H_S(F_U)^s H_S(G_U)^r\right)^{\frac{1}{718}}.$$
 (4.8)

By (4.6) we have

$$F_{U}(X,Y) = \prod_{i=1}^{r} ((\alpha^{*})^{(i)}X + (\beta^{*})^{(i)}Y), \quad G_{U}(X,Y) = \prod_{j=1}^{s} ((\gamma^{*})^{(j)}X + (\delta^{*})^{(j)}Y),$$

with $(\alpha^{*}, \beta^{*}) = (\alpha, \beta)U, \quad (\gamma^{*}, \delta^{*}) = (\gamma, \delta)U$.

We define the following quantities:

$$\Lambda_w := \frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)} = \frac{|\alpha \delta - \beta \gamma|_w}{\max(|\alpha|_w|, |\beta|_w) \max(|\gamma|_w, |\delta|_w)} \quad \text{for } w \in T_1,
\Lambda_w^* := \frac{|\alpha^* \delta^* - \beta^* \gamma^*|_w}{\max(|\alpha^*|_w|, |\beta^*|_w) \max(|\gamma^*|_w, |\delta^*|_w)} \quad \text{for } w \in T_1,
H := H_S(F)^{1/r} H_S(G)^{1/s}, \quad H^* := H_S(F_U)^{1/r} H_S(G_U)^{1/s}.$$

Thus, (4.7) and (4.8) translate into

$$H \gg \ll h(\xi)h(\eta), \quad |R(F,G)|_S^{1/rs} \gg (H^*)^{\frac{1}{718}}.$$
 (4.9)

Note that we have to estimate from below $\prod_{w \in T} \Lambda_w$.

For matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and places w on L we put $|A|_w = \max(|a|_w, \ldots, |d|_w)$. Let $v \in S$ and $w \in T_1$ a place lying above v. Using that the restriction of $|*|_w$ to K

is $|*|_v^{[L_w:K_v]/[L:K]}$ and also that $\alpha\delta-\beta\gamma=\det U^{-1}(\alpha^*\delta^*-\beta^*\gamma^*)$, $\max(|\alpha|_w,|\beta|_w)\ll |U^{-1}|_w\max(|\alpha^*|_w,|\beta^*|_w)$, $\max(|\gamma|_w,|\delta|_w)\ll |U^{-1}|_w\max(|\gamma^*|_w,|\delta^*|_w)$, we obtain

$$\Lambda_w \gg \frac{|\det U^{-1}|_w}{|U^{-1}|_w^2} \cdot \Lambda_w^* = \left(\frac{|\det U^{-1}|_v}{|U^{-1}|_w^2}\right)^{\frac{[L_w:K_v]}{[L:K]}} \cdot \Lambda_w^* \ .$$

Note that by Lemma 5 we have $H_S(U^{-1}) \ll (H_S(F)H_S(F_U))^{3/r}$ and $H_S(U^{-1}) \ll (H_S(G)H_S(G_U))^{3/s}$. Hence $H_S(U^{-1}) \ll (H \cdot H^*)^{3/2}$. We take the product over $w \in T$. Using (1.17), $|\det U^{-1}|_v/|U^{-1}|_v^2 \ll 1$ for $v \in S$ and $\det U \in \mathcal{O}_S^*$ we get

$$\begin{split} \prod_{v \in S} \prod_{w \in T \atop w \mid v} \left(\frac{|\det U^{-1}|_v}{|U^{-1}|_v^2} \right)^{\frac{[L_w:K_v]}{|L:K|}} \gg \prod_{v \in S} \left(\frac{|\det U^{-1}|_v}{|U^{-1}|_v^2} \right)^W = \left(\frac{|\det U^{-1}|_S}{H_S(U^{-1})^2} \right)^W \\ \gg (H \cdot H^*)^{-3W}. \end{split}$$

Hence

$$\prod_{w \in T} \Lambda_w \gg (H \cdot H^*)^{-3W} \prod_{w \in T} \Lambda_w^* . \tag{4.10}$$

We need also lower bounds for $\prod_{w \in T_1} \Lambda_w$, $\prod_{w \in T_1} \Lambda_w^*$. Note that since $[L:K] = [K(\xi):K][K(\eta):K] = rs$ we have

$$R(F,G) = \prod_{i=1}^{r} \prod_{j=1}^{s} (\alpha^{(i)} \delta^{(j)} - \beta^{(i)} \gamma^{(j)}) = N_{L/K} (\alpha \delta - \beta \gamma).$$

Together with the Extension formula this implies

$$|R(F,G)|_v^{1/rs} = \prod_{w|v} |\alpha \delta - \beta \gamma|_w \ \text{ for } v \in M_K,$$

and by applying part (i) of Lemma 6 and (4.9) we obtain

$$\prod_{w \in T_1} \Lambda_w = \frac{|R(F,G)|_S^{1/rs}}{H_{T_1}(\alpha,\beta)H_{T_1}(\gamma,\delta)} \gg \left(\frac{|R(F,G)|_S}{H_S(F)^s H_S(G)^r}\right)^{1/rs} = \frac{|R(F,G)|_S^{1/rs}}{H}$$

$$\gg (H^*)^{\frac{1}{718}} H^{-1}.$$
(4.11)

Completely similarly we get, in view of (1.11),

$$\prod_{w \in T_1} \Lambda_w^* \gg \frac{|R(F_U, G_U)|_S^{1/rs}}{H^*} = \frac{|R(F, G)|_S^{1/rs}}{H^*} \gg (H^*)^{\frac{1}{718} - 1}.$$
 (4.12)

Take $\theta = \frac{1}{718(1+3W)}$. Then we obtain

$$\prod_{w \in T} \Lambda_w \gg (H \cdot H^*)^{-3W\theta} \prod_{w \in T} \left(\Lambda_w^{1-\theta} \Lambda_w^{*\,\theta} \right) \text{ by (4.10)}$$

$$\gg (H \cdot H^*)^{-3W\theta} \prod_{w \in T_1} \left(\Lambda_w^{1-\theta} \Lambda_w^{*\,\theta} \right) \text{ since } \Lambda_w \ll 1, \ \Lambda_w^* \ll 1 \text{ for } w \in T_1 \backslash T$$

$$\gg (H \cdot H^*)^{-3W\theta} (H^*)^{(\frac{1}{718} - 1)\theta} \left((H^*)^{\frac{1}{718}} H^{-1} \right)^{(1-\theta)} \text{ by (4.11), (4.12)}$$

$$= H^{-1+(1-3W)\theta} (H^*)^{\frac{1}{718} - (1+3W)\theta} = H^{-1+\delta}$$

$$\gg (h(\xi)h(\eta))^{-1+\delta} \text{ by (4.9).}$$

This completes the proof of Theorem 4.

References

- E. Bombieri, A.J. van der Poorten, Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (Series A) 45 (1988), 233–248, Corrigenda, ibid. 48 (1990), 154–155.
- [2] J.-H. Evertse, On sums of S-units and linear recurrences, Compos. Math. 53 (1984), 225–244.
- [3] Estimates for discriminants and resultants of binary forms. In: Advances in Number Theory, Proc. 3rd conf. CNTA, Kingston, 1991 (ed. by F.Q. Gouvêa, N. Yui), 367–380. Clarendon Press, Oxford 1993.
- [4] Estimates for reduced binary forms, J. reine angew. Math. 434 (1993), 159–190.
- [5] J.-H. Evertse, K. Győry, Lower bounds for resultants I, Compos. Math. 88 (1993), 1–23.
- [6] S. Lang, Fundamentals of Diophantine Geometry. Springer Verlag, New York, Berlin, Heidelberg, Tokyo 1983.
- [7] M. Laurent, Equations diophantiennes exponentielles, Invent. math. 78 (1984), 299–327.
- [8] K.F. Roth, Rational approximation to algebraic numbers, Mathematika 2 (1955), 1–20.
- [9] M. Ru, P.M. Wong, Integral points of $\mathbf{P}^n \setminus \{2n+1 \text{ hyperplanes in general position}\}$, Invent. math. 106 (1991), 195–216.
- [10] H.P. Schlickewei, The \wp -adic Thue-Siegel-Roth-Schmidt theorem, Archiv der Math. 29 (1977), 267–270.
- [11] W.M. Schmidt, Norm form equations, Ann. Math. 96 (1972), 526–551.
- [12] Inequalities for resultants and for decomposable forms. In: Diophantine approximation and its applications, Proc. conf. Washington D.C. 1972 (ed. by C.F. Osgood), 235–253. Academic Press, New York 1973.

- [13] The number of solutions of norm form equations, Trans. Am. Math. Soc. 317 (1990), 197–227.
- [14] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree. In: Proc. Symp. Pure Math., 1969 Number Theory Inst. (ed. by D.J. Lewis), 213–247. Am. Math. Soc., Providence 1971.