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Lower bounds for resultants II.

Jan-Hendrik Evertse

Abstract. Let F (X,Y ), G(X,Y ) be binary forms in Z[X,Y ] of degrees r ≥ 3, s ≥
3, respectively, such that FG has no multiple factors. For each matrix U = (ac

b
d ) ∈

GL2(Z), define FU (X,Y ) = F (aX + bY, cX + dY ), and define GU similarly. We will
show that there is a matrix U ∈ GL2(Z) such that for the resultant R(F,G) of F,G we

have |R(F,G)| ≥ C · (H(FU )sH(GU )r)1/718, where H(FU ), H(GU ) denote the heights
(maxima of absolute values of the coefficients) of FU , GU , respectively, and where C
is some ineffective constant, depending on r, s and the splitting field of FG. A slightly
weaker result was announced without proof in [3] (Theorem 3). We will also prove a
p-adic generalisation of the result mentioned above. As a consequence, we will obtain
under certain technical restrictions a symmetric improvement of Liouville’s inequality for
the difference of two algebraic numbers. In our proofs we use some results from [4], [5],
and the latter were proved by means of Schlickewei’s p-adic generalisation of Schmidt’s
Subspace theorem.

1991 Mathematics Subject Classification: 11J68, 11C08.

1. Introduction.

Let F (X,Y ) = a0X
r + a1X

r−1Y + · · · + arY
r, G(X,Y ) = b0X

s + b1X
s−1Y +

· · ·+ bsY
s be two binary forms with coefficients in some field K of characteristic

0. The resultant R(F,G) of F and G is defined by the determinant of order r+ s,

R(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · · · · ar
a0 a1 · · · · · · ar

. . . . . .
a0 a1 · · · · · · ar

b0 b1 · · · bs
b0 b1 · · · bs

. . . . . .
. . . . . .

b0 b1 · · · bs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (1.1)

of which the first s rows consist of coefficients of F and the last r rows of coefficients
of G. Both F,G can be factored into linear forms with coefficients in the algebraic
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closure of K, i.e.

F (X,Y ) =
r∏
i=1

(αiX + βiY ), G(X,Y ) =
s∏
j=1

(γjX + δjY ),

and we have

R(F,G) =
r∏
i=1

s∏
j=1

(αiδj − βiγj) . (1.2)

Hence R(F,G) = 0 if and only if F,G have a common linear factor. Further,
if for a matrix U = (ac

b
d ) with determinant detU 6= 0 we define FU (X,Y ) :=

F (aX + bY, cX + dY ) and similarly GU , it follows that

R(FU , GU ) = (detU)rsR(F,G). (1.3)

Now assume that F,G have their coefficients in Z. For a polynomial P with
coefficients in Z, we define its height H(P ) to be the maximum of the absolute
values of the coefficients of P . From (1.1) and Hadamard’s inequality it follows
that

|R(F,G)| ≤ (r + 1)s/2(s+ 1)r/2H(F )sH(G)r .

On the other hand, there are some results in the literature on lower bounds for
|R(F,G)| which have been obtained by applying Diophantine approximation tech-
niques. To state these results, we need some terminology. A binary form is called
square-free if it is not divisible by the square of any non-constant binary form.
The splitting field over a field K of a binary form with coefficients in K is the
smallest extension of K over which this binary form factors into linear forms. By
C ineff

1 ( ), C ineff
2 ( ), . . . we denote ineffective positive constants depending only on

the parameters between the parentheses.
Improving on a result of Wirsing [14], Schmidt [12] proved that if r, s are

integers with r > 2s > 0 and if F is a square-free binary form of degree r in
Z[X,Y ] without irreducible factors of degree ≤ s, then for every binary form
G ∈ Z[X,Y ] of degree s which is coprime with F one has

|R(F,G)| ≥ C ineff
1 (r, s, F, ε)H(G)r−2s−ε for ε > 0, (1.4)

where the dependence of C1 on F is unspecified. From Theorem 4.1 of Ru and Wong
[9] it follows that (1.4) holds true without the constraint that F have no irreducible
factors of degree ≤ s. Győry and the author ([5], Theorem 1) proved that for
each pair of binary forms F,G with coefficients in Z such that degF = r ≥ 3,
degG = s ≥ 3, FG has splitting field L over K and FG is square-free one has

|R(F,G)| ≥ C ineff
2 (r, s, L, ε)

(
|D(F )|

s
r−1 |D(G)|

r
s−1
) 1

17−ε for ε > 0 , (1.5)

where D(F ), D(G) denote the discriminants of F,G. We recall that if F (X,Y ) =∏r
i=1(αiX + βiY ) then D(F ) =

∏
1≤i<j≤r(αiβj − αjβi)2. Győry and the author

showed also in [5] that if r ≤ 2 or s ≤ 2 or if we allow the splitting field of FG
to vary, then |D(F )|, |D(G)| may grow arbitrarily large while |R(F,G)| remains
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bounded. For more information on lower bounds for resultants and on applications
we refer to [4], [5].

Our aim is to derive instead of (1.5) a lower bound for |R(F,G)| which is a
function increasing in both H(F ) and H(G). In general such a lower bound does
not exist. Namely, (1.3) implies that

|R(FU , GU )| = |R(F,G)| for U ∈ GL2(Z) , (1.6)

(where GL2(Z) = {(ac
b
d ) : a, b, c, d ∈ Z, ad − bc = ±1}) while H(FU ), H(GU )

may be arbitrarily large for varying U . However, assuming that r ≥ 3, s ≥ 3, we
can show that there is an U ∈ GL2(Z) such that |R(F,G)| is bounded from below
by a function increasing in both H(FU ), H(GU ). The next result, with exponent
1/760 instead of 1/718, was stated without proof in [3], Theorem 3.

Theorem 1. Let r ≥ 3, s ≥ 3, and let (F,G) be a pair of binary forms with
coefficients in Z such that degF = r, degG = s, FG is square-free and FG has
splitting field L over Q. Then there is an U ∈ GL2(Z) such that

|R(F,G)| ≥ C ineff
3 (r, s, L)

(
H(FU )sH(GU )r

)1/718
. (1.7)

Remark. Similarly as for (1.5), the conditions r ≥ 3, s ≥ 3, as well as the
dependence of C3 on L, are necessary. Namely, the discriminant of a binary form
F of degree r is a homogeneous polynomial of degree 2r − 2 in the coefficients of
F , and for U ∈ GL2(Z) one has |D(FU )| = |D(F )|. Therefore, there is a constant
c(r) such that |D(F )| ≤ c(r){infU∈GL2(Z)H(FU )}2r−2. Now, by the result from
[5] mentioned above, if r ≤ 2 or s ≤ 2 or if we allow the splitting field of FG
to vary, then |D(F )|, |D(G)|, and hence infU∈GL2(Z)H(FU ), infU∈GL2(Z)H(GU )
may grow arbitrarily large while |R(F,G)| remains bounded.

The proof of Theorem 1 ultimately depends on Schmidt’s Subspace theorem,
which explains the ineffectivity of the constant C3. It would be a remarkable
breakthrough to obtain an effective lower bound for |R(F,G)| which is a function
increasing in both H(FU ) and H(GU ) for some U ∈ GL2(Z).

We also prove a p-adic generalisation of Theorem 1. To state this, we have to
introduce some further terminology. Let K be an algebraic number field. Denote
by OK the ring of integers of K. The set of places MK of K consists of the
isomorphic embeddings σ : K ↪→ R which are called real infinite places; the pairs
of complex conjugate isomorphic embeddings {σ, σ : K ↪→ C} which are called
complex infinite places; and the prime ideals of OK which are called finite places.
We define absolute values | ∗ |v (v ∈MK) normalised with respect to K as follows:

| ∗ |v = |σ(∗)|1/[K:Q] if v = σ is a real infinite place;
| ∗ |v = |σ(∗)|2/[K:Q] = |σ(∗)|2/[K:Q] if v = {σ, σ} is a complex infinite place;
| ∗ |v = (N℘)−ord℘(∗)/[K:Q] if v = ℘ is a finite place, i.e. prime ideal of OK ,
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where N℘ = #(OK/℘) denotes the norm of ℘ and ord℘(x) is the exponent of ℘
in the prime ideal decomposition of (x), with ord℘(0) =∞. These absolute values
satisfy the Product formula ∏

v∈MK

|x|v = 1 for x ∈ K∗.

For any finite extension L of K, we define absolute values | ∗ |w (w ∈ ML) nor-
malised with respect to L in an analogous manner. Thus, if w ∈ ML lies above
v ∈MK , then the restriction of | ∗ |w to K is equal to | ∗ |[Lw:Kv ]/[L:K]

v , where Kv,
Lw denote the completions of K at v, L at w, respectively. We will frequently use
the Extension formula∏

w|v

|x|w = |NL/K(x)|1/[L:K]
v for x ∈ L, v ∈MK

so in particular ∏
w|v

|x|w = |x|v for x ∈ K, v ∈MK ,

where the product is taken over all places w ∈ML lying above v.
Now let S be a finite set of places on K, containing all (real and complex)

infinite places. The ring of S-integers and its unit group, the group of S-units, are
defined by

OS = {x ∈ K : |x|v ≤ 1 for v /∈ S}, O∗S = {x ∈ K : |x|v = 1 for v /∈ S},

respectively, where ‘v /∈ S’ means ‘v ∈MK\S.’ We put

|x|S :=
∏
v∈S
|x|v for x ∈ K .

Thus,

|x|S > 1 for x ∈ OS , x 6= 0, x /∈ O∗S , |x|S = 1 for x ∈ O∗S . (1.8)

We define the truncated height HS by

HS(x) = HS(x1, . . . , xn) =
∏
v∈S

max(|x1|v, . . . , |xn|v) for x = (x1, . . . , xn) ∈ Kn .

For a polynomial P with coefficients in K we put HS(P ) := HS(p1, . . . , pt), where
p1, . . . , pt are the coefficients of P . By (1.8) we have

HS(x) ≥ 1 for x ∈ OnS\{0}, (1.9)
HS(ux) = HS(x) for x ∈ OnS\{0}, u ∈ O∗S . (1.10)

Further, one can show that for every A > 0 the set of vectors x ∈ OnS with
HS(x) ≤ A is the union of finitely many “O∗S-cosets” {uy : u ∈ O∗S} with y ∈ OnS
fixed.

(1.3) and (1.8) imply that for binary forms F,G with coefficients in OS we have

|R(FU , GU )|S = |R(F,G)|S for U ∈ GL2(OS) , (1.11)
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where GL2(OS) = {(ac
b
d ) : a, b, c, d ∈ OS , ad − bc ∈ O∗S}. We prove the following

generalisation of Theorem 1:

Theorem 2. Let r ≥ 3, s ≥ 3, and let (F,G) be a pair of binary forms with
coefficients in OS such that degF = r, degG = s, FG is square-free and FG has
splitting field L over K. Then there is an U ∈ GL2(OS) such that

|R(F,G)|S ≥ C ineff
4 (r, s, S, L)

(
HS(FU )sHS(GU )r

)1/718
. (1.12)

In the proof of Theorem 2 we use a lower bound for resultants in terms of
discriminants from [5] which has been proved by means of Schlickewei’s p-adic
generalisation [10] of Schmidt’s Subspace theorem [11], a lower bound for discrim-
inants in terms of heights from [4] which follows from Lang’s p-adic generalisation
[6] (Chap. 7, Thm. 1.1) of Roth’s theorem [8], and also a ‘semi-effective’ result on
Thue-Mahler equations, stated below, which follows also from the p-adic general-
isation of Roth’s theorem.

Theorem 3. Let F (X,Y ) ∈ OS [X,Y ] be a square-free binary form of degree r ≥ 3
with splitting field M over K and let A ≥ 1. Then every solution (x, y) ∈ O2

S of

|F (x, y)|S = A (1.13)

satisfies

HS(x, y) ≤ C ineff
5 (r, S,M, ε) · (HS(F ) ·A)

3
r+ε for every ε > 0 . (1.14)

Using the techniques from the paper of Bombieri and van der Poorten [1] it is
probably possible to derive instead of (1.14) an upper bound

HS(x, y) ≤ C ineff
6 (r, S,M, ε) ·HS(F )c(r,ε)A

1
r−2 +ε for every ε > 0 ,

where c(r, ε) is a function increasing in r, ε−1.

We derive from Theorem 2 a symmetric improvement of Liouville’s inequality.
The (absolute) height of an algebraic number ξ is defined by

h(ξ) =
∏

v∈MK

max(1, |ξ|v),

where K is any number field containing ξ. By the Extension formula, this height
is independent of the choice of K.

Let K be an algebraic number field and ξ, η numbers algebraic over K with
ξ 6= η. Put L = K(ξ, η). Further, let T be a finite set of places on L (not necessarily
containing all infinite places). By the Product formula we have∏
w∈T

|ξ − η|w
max(1, |ξ|w) max(1, |η|w)

=
( ∏
w/∈T

max(1, |ξ|w) max(1, |η|w)
|ξ − η|w

)
h(ξ)−1h(η)−1
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≥ 1
2
(
h(ξ)h(η)

)−1
, (1.15)

where as usual, the absolute values | ∗ |w are normalised with respect to L. The
latter is known as Liouville’s inequality. Under certain hypotheses we can improve
upon the exponent −1. Assume that

L = K(ξ, η);
[K(ξ) : K] ≥ 3, [K(η) : K] ≥ 3;
[L : K] = [K(ξ) : K][K(η) : K],

 (1.16)

i.e. K(ξ), K(η) are linearly disjoint over K. Further, let T be a finite set of places
on L such that if S is the set of places on K lying below those in T then

W := max
v∈S

1
[L : K]

∑
w∈T
w|v

[Lw : Kv] <
1
3
, (1.17)

where for each place v ∈ S, the sum is taken over those places w ∈ T that lie
above v.

Theorem 4. Assuming that ξ, η, L, T satisfy (1.16), (1.17) we have∏
w∈T

|ξ − η|w
max(1, |ξ|w) max(1, |η|w)

≥ C ineff
7 (L, T ) ·

(
h(ξ)h(η)

)−1+δ (1.18)

with δ =
1

718
· 1− 3W

1 + 3W
.

For instance, suppose that L, ξ, η satisfy (1.16) with K = Q and that T is a
subset of the set of infinite places on L, satisfying (1.17) with K = Q and with S
consisting of the only infinite place of Q. Inequality (1.18) has been stated in terms
of absolute values normalised with respect to L and we will “renormalise” these to
Q. Each w ∈ T is either an isomorphic embedding of L into R and then Lw = R; or
a pair of complex conjugate embeddings of L into C and then Lw = C. Therefore,
the union of all places w ∈ T is a collection Σ of isomorphic embeddings of L into
C such that with an isomorphic embedding also its complex conjugate belongs to
Σ and moreover, the quantity W of (1.17) is precisely #Σ/[L : Q]. We recall that
if w = σ is real then | ∗ |w = |σ(∗)|1/[L:Q] while if w = {σ, σ} is complex then
| ∗ |w = (|σ(∗)| · |σ(∗)|)1/[L:Q]. This implies that the left-hand side of (1.18) equals∏
σ∈Σ

(
|σ(ξ−η)|/max(1, |σ(ξ)|) max(1, |σ(η)|)

)1/[L:Q]. For an algebraic number ξ,
we define H̃(ξ) to be the maximum of the absolute values of the coefficients of the
minimal polynomial of ξ over Z. Then h(ξ)deg ξ ≤ cH̃(ξ) where c depends only
on the degree of ξ (cf. [6], Chap. 3, §2, Prop. 2.5). Thus, Theorem 4 implies the
following:

Corollary. Let ξ, η be algebraic numbers of degrees r ≥ 3, s ≥ 3, respectively,
such that the field L = Q(ξ, η) has degree rs. Further, let Σ be a collection of
isomorphic embeddings of L into C such that if σ ∈ Σ then also σ ∈ Σ, and such
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that W := #Σ/[L : Q] < 1
3 . Put δ = 1

718
1−3W
1+3W . Then∏

σ∈Σ

|σ(ξ − η)|
max(1, |σ(ξ)|) max(1, |σ(η)|)

≥ C ineff
8 (L) ·

(
H̃(ξ)−sH̃(η)−r

)1−δ
. (1.19)

For instance, assume that L ⊂ R and take Σ = {identity}. Then [L : Q] =
rs ≥ 9 and hence W ≤ 1

9 . So by (1.19) we have

|ξ − η|w
max(1, |ξ|w) max(1, |η|w)

≥ C ineff
9 (L) ·

(
H̃(ξ)−sH̃(η)−r

) 1435
1436 . (1.20)

If L ⊂ C, L 6⊂ R then with Σ = {identity, complex conjugation} we have W ≤ 2
9

and so (1.19) gives( |ξ − η|w
max(1, |ξ|w) max(1, |η|w)

)2

≥ C ineff
10 (L) ·

(
H̃(ξ)−sH̃(η)−r

) 3589
3590 . (1.21)

Results similar to (1.20), (1.21) with better exponents were derived in [3] (Corollary
3, (i)).

For an inequality of type (1.18) with δ > 0 to hold it is certainly necessary to
impose some conditions on ξ, η, L, T but (1.16), (1.17) are probably far too strong.
Using for instance geometry of numbers over the adeles of a number field one may
prove a generalisation of Dirichlet’s theorem of the sort that for a number field M ,
a number η of degree 2 over M and a finite set of places T on L := M(η) satisfying
some mild conditions, there is a constant c = c(η,M, T ) such that the inequality∏

w∈T

|ξ − η|w
max(1, |ξ|w)

≤ ch(ξ)−1

has infinitely many solutions in ξ ∈ M . Thus, for an inequality of type (1.18) to
hold it is probably necessary to assume that [L : K(ξ)] ≥ 3, [L : K(η)] ≥ 3.

The following example shows that the condition W < 1 is necessary. Assume
that W = 1. Then there is a place v on K such that T contains all places on L lying
above v. Fix two elements ξ0, η0 of L such that L = K(ξ0, η0), [K(ξ0) : K] ≥ 3,
[K(η0) : K] ≥ 3 and [L : K] = [K(ξ0) : K][K(η0) : K]. Let γ1, γ2, . . . be a sequence
of elements from K such that limi→∞ |γi|v = ∞. By the strong approximation
theorem, there exists for every i an αi ∈ K such that |αi− γi|v < 1 and |αi|v′ ≤ 1
for every place v′ 6= v on K. Now put ξi := ξ0 + αi, ηi := η0 + αi for i = 1, 2, . . ..
Then for all places w ∈ ML lying outside a finite collection depending only on
ξ0, η0 we have |ξi|w ≤ 1, |ηi|w ≤ 1, while for the remaining places on L not
lying above v we have |ξi|w � 1, |ηi|w � 1 for i = 1, 2 . . ., where the constants
implied by �, � depend only on ξ0, η0. Further, for w ∈ ML lying above v we
have |ξi|w � |αi|w � |γi|w, |ηi|w � |γi|w for i sufficiently large. Therefore, by
the Extension formula, h(ξi) ��

∏
w|v max(1, |ξi|w) � |γi|v → ∞ for i → ∞

and similarly, h(ηi) ��
∏
w|v max(1, |ηi|w) � |γi|v → ∞ for i → ∞, where

the products are taken over the places w ∈ ML lying above v. Moreover, since
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ξi − ηi = ξ0 − η0 we have∏
w∈T

|ξi − ηi|w
max(1, |ξi|w) max(1, |ηi|w)

�
∏
w|v

|ξ0 − η0|w
max(1, |ξi|w) max(1, |ηi|w)

�
(
h(ξi)h(ηi)

)−1 for i = 1, 2, . . . .

2. Proof of Theorem 3.

As in Section 1, K is an algebraic number field and S a finite set of places on
K containing all infinite places. Further, F (X,Y ) is a square-free binary form of
degree r ≥ 3 with coefficients in OS and A a real ≥ 1. We assume that

F (X,Y ) =
r∏
i=1

(αiX + βiY ) with αi, βi ∈ OS for i = 1, . . . , r . (2.1)

This is no loss of generality. Namely, suppose that F has splitting field M over
K. Thus, F (X,Y ) =

∏r
i=1(α′iX + β′iY ) with α′i, β

′
i ∈ M . Let L be the Hilbert

class field of M/K and T the set of places on L lying above those in S. Then for
i = 1, . . . , r, the fractional ideal with respect to OT generated by α′i, β

′
i is principal

and since F has its coefficients in OS this implies that F can be factored as in (2.1)
but with αi, βi ∈ OT . From the Extension formula it follows that for (x, y) ∈ O2

S we
have |F (x, y)|T = |F (x, y)|S , HT (x, y) = HS(x, y) and that also HT (F ) = HS(F ),
where | ∗ |T =

∏
w∈T | ∗ |w, HT (∗, . . . , ∗) =

∏
w∈T max(| ∗ |w, . . . , | ∗ |w). So, if

we have proved that for all (x, y) ∈ O2
T with |F (x, y)|T = A and all ε > 0 we

have HT (x, y) ≤ C ineff
11 (r, T, L, ε)

(
HT (F )A

) 3
r+ε, then Theorem 3 readily follows,

on observing that T,L are uniquely determined by S,M .
In the proof of Theorem 3 we need some lemmas. The first lemma is funda-

mental for everything in this paper:

Lemma 1. Let x0, . . . , xn be non-zero elements of OS such that

x0 + · · ·+ xn = 0,∑
i∈I

xi 6= 0 for each proper nonempty subset I of {0, . . . , n}.

Then for all ε > 0 we have

HS(x0, . . . , xn) ≤ C ineff
12 (K,S, ε) ·

∣∣∣ n∏
i=0

xi

∣∣∣1+ε

S
.

Proof. Lemma 1 in this form appeared in Laurent’s paper [7]. It is a reformulation
of Theorem 2 of [2]. For n = 2, Lemma 1 follows from the p-adic generalisation
of Roth’s theorem [6] (Chap. 7, Thm. 1.1) and for n > 2 from Schlickewei’s p-
adic generalisation [10] of Schmidt’s Subspace theorem [11]. The constant C11
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(and also each other constant in this paper) is ineffective because the Subspace
theorem is ineffective. In fact, we need Lemma 1 only for n = 2 in which case the
non-vanishing subsum condition is void. However, Lemma 1 with n > 2 has been
used in the proof of a result from [5] which we will need in the present paper. ut

For a polynomial P with coefficients in K and for v ∈ MK we define |P |v :=
max(|p1|v, . . . , |pt|v) where p1, . . . , pt are the coefficients of P .

Lemma 2. Let F (X,Y ) =
∏r
i=1(αiX + βiY ) with αi, βi ∈ OS for i = 1, . . . , r.

There is a constant c depending only on r and K such that

c−1
r∏
i=1

HS(αi, βi) ≤ HS(F ) ≤ c
r∏
i=1

HS(αi, βi) . (2.2)

Proof. According to, for instance [6], Chap. 3, §2, we have for any polynomials
P1, . . . , Pr ∈ K[X1, . . . , Xn], v ∈MK that

c−1
v |P1 · · ·Pr|v ≤ |P1|v · · · |Pr|v ≤ cv|P1 · · ·Pr|v if v is infinite,

|P1 · · ·Pr|v = |P1|v · · · |Pr|v if v is finite,

where each cv is a constant > 1 depending only on r, n,K. Now Lemma 2 follows
by applying this with Pi(X,Y ) = αiX + βiY for i = 1, . . . , r and any v ∈ S, and
then taking the product over v ∈ S. ut

We complete the proof of Theorem 3. Let F (X,Y ) be a square-free binary form
of degree r ≥ 3 satisfying (2.1) and let ε > 0. Put ε′ := ε/10. In what follows,
the constants implied by � will be ineffective and depending only on K,S, r, ε.
Define

∆ij := αiβj − αjβi for i, j = 1, . . . , r .

We will use that

|∆ij |v � max(|αi|v, |βi|v) max(|αj |v, |βj |v) for v ∈MK (2.2)

whence, on taking the product over v ∈ S,

|∆ij |S � HS(αi, βi)HS(αj , βj) . (2.3)

Pick three distinct indices i, j, k from {1, . . . , r} and define the linear forms

A1 = ∆jk(αiX + βiY ), A2 = ∆ki(αjX + βjY ), A3 = ∆ij(αkX + βkY ).

Thus,
A1 +A2 +A3 = 0. (2.4)

Further,
∆ij∆jk∆ki ·X = ∆kiβjA1 −∆jkβiA2,

∆ij∆jk∆ki · Y = −∆kiαjA1 + ∆jkαiA2.
(2.5)
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Let (x, y) ∈ O2
S be a pair satisfying (1.13). Put ah := Ah(x, y) for h = 1, 2, 3. From

(2.5) and (2.2) it follows that for v ∈ S,

|∆ij∆jk∆ki|v max(|x|v, |y|v)�
( ∏
p∈{i,j,k}

max(|αp|v, |βp|v)
)

max(|a1|v, |a2|v).

By taking the product over v ∈ S we get

|∆ij∆jk∆ki|SHS(x, y)�
( ∏
p∈{i,j,k}

HS(αp, βp)
)
·HS(a1, a2) .

By Lemma 1 and (2.4) we have

HS(a1, a2) ≤ HS(a1, a2, a3)�
(
|∆ij∆jk∆ki|S

∏
p∈{i,j,k}

|αpx+ βpy|S
)1+ε′

.

By combining these inequalities we obtain

HS(x, y)� |∆ij∆jk∆ki|ε
′

S

( ∏
p∈{i,j,k}

HS(αp, βp)
) ∏
p∈{i,j,k}

|αpx+ βpy|S
)1+ε′

�
( ∏
p∈{i,j,k}

(
HS(αp, βp) · |αpx+ βpy|S

))1+3ε′

in view of (2.3).

By taking the product over all subsets {i, j, k} of {1, . . . , r} we get, using Lemma
2 and

∏r
i=1 |αix+ βiy|S = A which is a consequence of (2.1), (1.13), that

HS(x, y)(
r
3) �

( r∏
i=1

(
HS(αi, βi) · |αix+ βiy|S

))(r−1
2 )(1+3ε′)

�
(
HS(F ) ·A

)(r3)·( 3
r+ε)

.

This proves Theorem 3. ut

3. Proof of Theorem 2.

Let again K be an algebraic number field and S a finite set of places on K
containing all infinite places. We recall that the discriminant of a binary form
F (X,Y ) =

∏r
i=1(αiX + βiY ) is given by D(F ) =

∏
1≤i<j≤r(αiβj − αjβi)2. This

implies that |D(FU )|S = |D(F )|S for U ∈ GL2(OS). We need some results from
other papers.

Lemma 3. Let F be a square-free binary form of degree r ≥ 3 with coefficients in
OS and with splitting field M over K. Then there is an U ∈ GL2(OS) such that

|D(F )|S ≥ C ineff
13 (r,M, S)HS(FU )

r−1
21 .
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Proof. This follows from Theorem 2 of [4]. The proof of that theorem uses Lemma
1 mentioned above with n = 2 and a reduction theory for binary forms.

I would like to mention here that the reduction theory for binary forms devel-
oped in [4] is essentially a special case of a reduction theory for norm forms which
was developed some years earlier by Schmidt [13] (for a totally different purpose).
I apologize for having overlooked this in [4]. ut

Lemma 4. Let F,G be binary forms of degrees r ≥ 3, s ≥ 3, respectively, with
coefficients in OS such that FG is square-free and FG has splitting field L over
K. Then

|R(F,G)|S ≥ C ineff
14 (r, s, L, S, ε)

(
|D(F )|

s
r−1
S |D(G)|

r
s−1
S

) 1
17−ε

for ε > 0.

Proof. This is Theorem 1A of [5]. The proof of that theorem uses Lemma 1 with
n > 2. ut

We now prove Theorem 2. We assume that

|D(F )|
s
r−1
S ≤ |D(G)|

r
s−1
S (3.1)

which is clearly no loss of generality. Let U ∈ GL2(OS) be the matrix from Lemma
3. We will show that (1.12) holds with this U . Let M be the Hilbert class field of
L/K, and T the set of places on M lying above those in S. Thus, we have

FU (X,Y ) =
r∏
i=1

(αiX + βiY ), GU (X,Y ) =
s∏
j=1

(γjX + δjY )

with αi, βi, γj , δj ∈ OT for i = 1, . . . , r, j = 1, . . . , s. (3.2)

The height HT and the quantity | ∗ |T are defined similarly to HS , | ∗ |S but with
respect to the absolute values |∗ |w (w ∈ T ). In what follows, the constants implied
by �, � will be ineffective and depending only on r, s, L, S and ε, where ε is a
positive number depending only on r, s which will later be chosen sufficiently small.

Note that by Lemma 4, (3.1), our choice of U , and Lemma 3 we have

|R(F,G|S �
(
|D(F )|

s
r−1
S |D(G)|

s
r−1
S

) 1
17−ε � |D(F )|

s
r−1 ( 2

17−2ε)

S

� HS(FU )s(
2

357−
2ε
21 ) . (3.3)

We estimate HS(GU ) from above. By (1.2), (3.2) we have

R(FU , GU ) =
r∏
i=1

s∏
j=1

(αiδj − βiγj) =
s∏
j=1

FU (δj ,−γj) ,
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and together with (1.11) and the Extension formula this implies that

|R(F,G)|S = |R(FU , GU )|T =
s∏
j=1

|FU (δj ,−γj)|T . (3.4)

Further, using that HS(FU ) = HT (FU ), HS(GU ) = HT (GU ) by the Extension
formula, we have

HS(GU )�
s∏
j=1

HT (γj , δj) by (3.2), Lemma 2, (3.5)

HT (γj , δj)�
(
HS(FU ) · |FU (δj ,−γj)|T

) 3
r+ε

for j = 1, . . . , s by Theorem 3, (3.6)

where both Lemma 2, Theorem 3 have been applied with M,T replacing K,S.
Now (3.4), (3.5), (3.6) together imply

HS(GU )�
(
HS(FU )s|R(F,G)|S

) 3
r+ε

.

In combination with (3.3) this gives

HS(FU )sHS(GU )r � HS(FU )s(4+rε)|R(F,G)|3+rε
S

� |R(F,G)|(4+rε)( 2
357−

2ε
21 )−1+3+rε

S

� |R(F,G)|718
S for ε sufficiently small.

This implies (1.12), whence completes the proof of Theorem 2. ut

4. Proof of Theorem 4.

As before, let K be an algebraic number field and S a finite set of places on K
containing all infinite places. For a matrix U = (ac

b
d ) with entries in K we define

|U |v := max(|a|v, |b|v, |c|v, |d|v) for v ∈MK , HS(U) =
∏
v∈S
|U |v.

We need the following elementary lemma:

Lemma 5. Let F (X,Y ) be a square-free binary form of degree r ≥ 3 with coeffi-
cients in OS and U ∈ GL2(OS). Then for some constant c depending only on r
and the splitting field of F over K we have

HS(U) ≤ c ·
(
HS(F )HS(FU )

)3/r
. (4.1)
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Proof. We prove (4.1) only for binary forms F such that

F (X,Y ) =
r∏
i=1

(αiX + βiY ) with αi, βi ∈ OS for i = 1, . . . , r. (4.2)

This is no restriction. Namely, in general F has a factorisation as in (4.2) with
αi, βi ∈ OT where T is the set of places lying above those in S on the Hilbert
class field of the splitting field of F over K. Now if we have shown that HT (U) ≤
c ·
(
HT (F )HT (FU )

)3/r then (4.1) follows from the Extension formula.
From (4.2) it follows that

FU (X,Y ) =
r∏
i=1

(α∗iX + β∗i Y ) with (α∗i , β
∗
i ) = (αi, βi)U for i = 1, . . . , r. (4.3)

Let U = (ac
b
d ). Pick three indices i, j, k from {1, . . . , r}. Then (a, c, b, d,−1,−1,−1)

is a solution to the system of six linear equations


αi βi 0 0 α∗i 0 0
0 0 αi βi β∗i 0 0
αj βj 0 0 0 α∗j 0
0 0 αj βj 0 β∗j 0
αk βk 0 0 0 0 α∗k
0 0 αk βk 0 0 β∗k





x1

x2

x3

x4

x5

x6

x7


=


0
0
0
0
0
0

 . (4.4)

(4.4) can be reformulated as −x5(α∗i , β
∗
i ) = (αi, βi)X, −x6(α∗j , β

∗
j ) = (αj , βj)X,

−x7(α∗k, β
∗
k) = (αk, βk)X, with X = (x1

x2

x3
x4

). It is well-known that up to a con-
stant factor, there is at most one 2×2-matrix mapping three given, pairwise non-
proportional vectors to scalar multiples of three given other vectors. Therefore, the
solution space of system (4.4) is one-dimensional. One solution to (4.4) is given
by (∆1,−∆2, . . . ,∆7) where ∆p is the determinant of the matrix obtained by re-
moving the p-th column of the matrix at the left-hand side of (4.4). Therefore,
there is a non-zero λ ∈ K such that U = λ( ∆1

−∆2

∆3
−∆4

). Note that ∆1, . . . ,∆4

contain the fifth, sixth, and seventh column of the matrix at the left-hand side of
(4.4). Therefore, each of ∆1, . . . ,∆4 is a sum of terms each of which is up to sign
a product of six numbers, containing one of αp, βp for p = i, j, k and one of α∗p, β

∗
p

for p = i, j, k. Consequently,

|U |v = |λ|v max(|∆1|v, . . . , |∆4|v)
≤ cv · |λ|v

∏
p=i,j,k

(
max(|αp|v, |βp|v) max(|α∗p|v, |β∗p |v)

)
for v ∈MK , (4.5)

where for infinite places v, cv is an absolute constant and for finite places v, cv = 1.
Let v /∈ S. Then since U ∈ GL2(OS) we have |detU |v = 1, whence |U |v = 1.
Further, αp, βp, α∗p, β

∗
p ∈ OS for p = i, j, k, therefore, these numbers have v-adic

absolute value ≤ 1. It follows that |λ|v ≥ 1 for v /∈ S, and together with the
Product formula this implies |λ|S =

∏
v∈S |λ|v ≤ 1. Now (4.5) implies, on taking
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the product over v ∈ S,

HS(U) ≤ c1|λ|S
∏

p=i,j,k

(
HS(αp, βp)HS(α∗p, β

∗
p)
)

≤ c1
∏

p=i,j,k

(
HS(αp, βp)HS(α∗p, β

∗
p)
)
,

where c1 depends only on K. By taking the product over all subsets {i, j, k} of
{1, . . . , r}, on using (4.2), (4.3), Lemma 2, we obtain

HS(U)(
r
3) ≤ c2

(
HS(F )HS(FU )

)(r−1
2 )
,

where c2 depends only on K, r. This implies (4.1). ut

Lemma 6. Let M be an extension of K of degree r and T the set of places on M
lying above those in S. Denote by x 7→ x(i) (i = 1, . . . , r) the K-isomorphisms of
M .
(i) Let F (X,Y ) =

∏r
i=1(α(i)X + β(i)Y ), where α, β ∈ OT . Then F ∈ OS [X,Y ]

and HS(F )1/r �� HT (α, β).
(ii) Let ξ ∈ M with ξ 6= 0. Then there are α, β ∈ OT such that ξ = α/β

and such that for the binary form F (X,Y ) =
∏r
i=1(α(i)X + β(i)Y ) we have

HS(F )1/r �� h(ξ).
Here the constants implied by �, � depend only on M .

Proof. (i) F has its coefficients in OS since OT is the integral closure of OS in M .
Let M ′ be the normal closure of M/K and T ′ the set of places on M ′ lying above
those in T . By the Extension formula, we have HT (α, β) = HT ′(α, β). Further, by
the Extension formula and Lemma 2 we have

HS(F ) = HT ′(F )��
r∏
i=1

HT ′(α(i), β(i)).

Now M ′/K is normal, hence if w1, . . . , wg are the places on M ′ lying above some
v ∈MK then for i = 1, . . . , r, the tuple of absolute values (| ∗(i) |wj : j = 1, . . . , g)
is a permutation of (|∗|wj : j = 1, . . . , g). Therefore, HT ′(α(i), β(i)) = HT ′(α, β) =
HT (α, β) for i = 1, . . . , r. This implies (i).

(ii) The ideal class of (1, ξ) (the fractional ideal with respect to OM generated
by 1, ξ) contains an ideal, contained in OM , with norm � 1. This implies that
there are α, β ∈ OM with ξ = α/β such that the ideal (α, β) has norm � 1.
It follows that

∏
w/∈T max(|α|w, |β|w) �� 1. Now by the Product formula we

have h(ξ) =
∏
w∈MM

max(1, |ξ|w) =
∏
w∈MM

max(|α|w, |β|w) and so h(ξ) ��∏
w∈T max(|α|w, |β|w) = HT (α, β). Together with (i) this implies (ii). ut

We now complete the proof of Theorem 4. Let L = K(ξ, η), r = [K(ξ) : K],
s = [K(η) : K]. Then (1.16) implies that r ≥ 3, s ≥ 3, [L : K] = rs. Further, let T
be a finite set of places on L such that (1.17) holds and S the set of places on K
lying below those in T . We add to S all infinite places on K that do not belong



Lower bounds for resultants II 15

to S. Thus, S contains all infinite places and the places lying below those in T .
There might be places in S above which there is no place in T but then (1.17) still
holds. Denote by T1 the set of places on L lying above the places in S. Note that
T is a proper subset of T1. In what follows, the constants implied by�,� depend
only on L, S. We mention that constants depending on some subfield of L may be
replaced by constants depending on L since L has only finitely many subfields.

Denote by x 7→ x(i) (i = 1, . . . , r) the K-isomorphisms of K(ξ) and by y 7→ y(j)

(j = 1, . . . , s) the K-isomorphisms of K(η). From part (ii) of Lemma 6 (applied
with M = K(ξ), M = K(η), respectively) it follows that there are α, β, γ, δ such
that ξ = α

β , η = γ
δ , where α, β belong to the integral closure of OS in K(ξ) and

γ, δ to the integral closure of OS in K(η) and such that for the binary forms

F (X,Y ) =
r∏
i=1

(α(i)X + β(i)Y ), G(X,Y ) =
s∏
j=1

(γ(j)X + δ(j)Y ) (4.6)

we have
HS(F )1/r �� h(ξ), HS(G)1/s �� h(η). (4.7)

The forms F,G have their coefficients in OS , and degF = r ≥ 3, degG = s ≥ 3.
Further, since K(ξ), K(η) are linearly disjoint over K, the numbers ξ and η are
not conjugate over K and so FG is square-free. Hence all hypotheses of Theorem
2 are satisfied. The splitting field of FG is the normal closure of L over K. By
Theorem 2 there is a matrix U ∈ GL2(OS) such that

|R(F,G)|S �
(
HS(FU )sHS(GU )r

) 1
718
. (4.8)

By (4.6) we have

FU (X,Y ) =
r∏
i=1

((α∗)(i)X + (β∗)(i)Y ), GU (X,Y ) =
s∏
j=1

((γ∗)(j)X + (δ∗)(j)Y ),

with (α∗, β∗) = (α, β)U, (γ∗, δ∗) = (γ, δ)U .

We define the following quantities:

Λw :=
|ξ − η|w

max(1, |ξ|w) max(1, |η|w)
=

|αδ − βγ|w
max(|α|w|, |β|w) max(|γ|w, |δ|w)

for w ∈ T1,

Λ∗w :=
|α∗δ∗ − β∗γ∗|w

max(|α∗|w|, |β∗|w) max(|γ∗|w, |δ∗|w)
for w ∈ T1,

H := HS(F )1/rHS(G)1/s, H∗ := HS(FU )1/rHS(GU )1/s.

Thus, (4.7) and (4.8) translate into

H �� h(ξ)h(η), |R(F,G)|1/rsS � (H∗)
1

718 . (4.9)

Note that we have to estimate from below
∏
w∈T Λw.

For matrices A = (ac
b
d ) and places w on L we put |A|w = max(|a|w, . . . , |d|w).

Let v ∈ S and w ∈ T1 a place lying above v. Using that the restriction of |∗|w to K
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is |∗|[Lw:Kv ]/[L:K]
v and also that αδ−βγ = detU−1(α∗δ∗−β∗γ∗), max(|α|w, |β|w)�

|U−1|w max(|α∗|w, |β∗|w), max(|γ|w, |δ|w)� |U−1|w max(|γ∗|w, |δ∗|w), we obtain

Λw �
|detU−1|w
|U−1|2w

· Λ∗w =
( |detU−1|v
|U−1|2v

) [Lw :Kv ]
[L:K] · Λ∗w .

Note that by Lemma 5 we have HS(U−1)�
(
HS(F )HS(FU )

)3/r and HS(U−1)�(
HS(G)HS(GU )

)3/s. Hence HS(U−1) � (H · H∗)3/2. We take the product over
w ∈ T . Using (1.17), |detU−1|v/|U−1|2v � 1 for v ∈ S and detU ∈ O∗S we get

∏
v∈S

∏
w∈T
w|v

( |detU−1|v
|U−1|2v

) [Lw :Kv ]
[L:K] �

∏
v∈S

( |detU−1|v
|U−1|2v

)W
=
( |detU−1|S
HS(U−1)2

)W
� (H ·H∗)−3W .

Hence ∏
w∈T

Λw � (H ·H∗)−3W
∏
w∈T

Λ∗w . (4.10)

We need also lower bounds for
∏
w∈T1

Λw,
∏
w∈T1

Λ∗w. Note that since [L : K] =
[K(ξ) : K][K(η) : K] = rs we have

R(F,G) =
r∏
i=1

s∏
j=1

(α(i)δ(j) − β(i)γ(j)) = NL/K(αδ − βγ).

Together with the Extension formula this implies

|R(F,G)|1/rsv =
∏
w|v

|αδ − βγ|w for v ∈MK ,

and by applying part (i) of Lemma 6 and (4.9) we obtain

∏
w∈T1

Λw =
|R(F,G)|1/rsS

HT1(α, β)HT1(γ, δ)
�
( |R(F,G)|S
HS(F )sHS(G)r

)1/rs

=
|R(F,G)|1/rsS

H

� (H∗)
1

718H−1. (4.11)

Completely similarly we get, in view of (1.11),

∏
w∈T1

Λ∗w �
|R(FU , GU )|1/rsS

H∗
=
|R(F,G)|1/rsS

H∗
� (H∗)

1
718−1. (4.12)
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Take θ = 1
718(1+3W ) . Then we obtain∏

w∈T
Λw � (H ·H∗)−3Wθ

∏
w∈T

(
Λ1−θ
w Λ∗w

θ
)

by (4.10)

� (H ·H∗)−3Wθ
∏
w∈T1

(
Λ1−θ
w Λ∗w

θ
)

since Λw � 1, Λ∗w � 1 for w ∈ T1\T

� (H ·H∗)−3Wθ(H∗)( 1
718−1)θ

(
(H∗)

1
718H−1

)(1−θ) by (4.11), (4.12)

= H−1+(1−3W )θ(H∗)
1

718−(1+3W )θ = H−1+δ

�
(
h(ξ)h(η)

)−1+δ by (4.9).

This completes the proof of Theorem 4. ut
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