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Abstract. Let F ∈ Z[X1, . . . , Xn] be a non-degenerate norm form of degree r.
In his paper [17] from 1990, Schmidt conjectured that for the number ZF (h) of

solutions of the inequality |F (x)| ≤ h in x ∈ Zn one has ZF (h) ≤ c(n, r)hn/r,
with c(n, r) depending on n and r only. In this paper, we show that

ZF (h) ≤ (16r)
1
3 (n+7)3

h
(n+
∑n−1

m=2
1
m )/r

(1 + log h)
1
2n(n−1).
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1. Introduction.

We start with recalling some results about inequalities as in the title in two variables,
i.e., Thue inequalities

|F (x, y)| ≤ h in x, y ∈ Z (1.1)

where F (X,Y ) = arX
r + ar−1X

r−1Y + · · ·+ a0Y
r ∈ Z[X,Y ] is a binary form which

is irreducible over Q. Assume that F has degree r ≥ 3. In 1933, Mahler [10] showed
that for the number ZF (h) of solutions of (1.1) one has

ZF (h) = CF · h2/r +O(h1/(r−1)) as h→∞ with CF =
∫ ∫

|F (x,y)|≤1

dxdy

where the constant implied by the O-symbol depends on F . Note that the main term
CF · h2/r is just the area of the region {(x, y) ∈ R2 : |F (x, y)| ≤ h}.

1) The author has done part of the research for this paper while visiting the Institute for
Advanced Study in Princeton during the fall of 1997. The author is very grateful to
the IAS for its hospitality.
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In 1987, Bombieri and Schmidt [3] showed that the Thue equation |F (x, y)| = 1
has only � r solutions in x, y ∈ Z (where here and below constants implied by �
are absolute) and that the dependence on r is best possible. Also in 1987, Schmidt
[15] proved more generally that ZF (h) � rh2/r(1 + 1

r log h) for every h ≥ 1 and
he conjectured that the log h-factor is unnecessary. Thunder [18], [19] showed that
ZF (h)� rh2/r if log logm > r9 and ZF (h)� (r10/ log r)h2/r otherwise.

In 1993, Bean [1] showed that for every binary form F ∈ Z[X,Y ] of degree r ≥ 3
one has CF < 16. In certain special cases, Mueller and Schmidt [11] and Thunder
[18], [19] obtained explicit estimates |ZF (h)−CFh2/r| ≤ c(r)hd(r) with c(r) and d(r)
depending only on r and d(r) < 2/r. Recently, Thunder [20] showed that for a binary
cubic form F ∈ Z[X,Y ] of discriminant D(F ) which is irreducible over Q, one has
|ZF (h)− CFh2/3| < 9 + 2008h1/2|D(F )|−1/12 + 3156h1/3.

Now let F be a norm form of degree r in n ≥ 3 variables, that is,

F = cNK/Q(α1X1 + · · ·+ αnXn) = c
r∏
i=1

(α(i)
1 X1 + · · ·+ α(i)

n Xn) , (1.2)

where K = Q(α1, . . . , αn) is a number field of degree r, α 7→ α(i) (i = 1, . . . , r) denote
the isomorphic embeddings of K into C, and c is a non-zero rational number such
that F has its coefficients in Z. To F we associate the Q-vector space

V := {α1x1 + · · ·+ αnxn : x1, . . . , xn ∈ Q}. (1.3)

For each subfield J of K we define the linear subspace of V ,

V J := {ξ ∈ V : ξλ ∈ V for every λ ∈ J} . (1.4)

It is easy to see that ξλ ∈ V J for ξ ∈ V J , λ ∈ J , so V J is the largest subspace
of V closed under multiplication by elements from J . The norm form F is said to
be non-degenerate if α1, . . . , αn are linearly independent over Q and if V J = (0) for
each subfield J of K which is not equal to Q or to an imaginary quadratic field. It
is easy to show that this notion of non-degeneracy does not depend on the choice of
c, α1, . . . , αn in (1.2).

Denote by ZF (h) the number of solutions of the norm form inequality

|F (x)| ≤ h in x ∈ Zn , (1.5)
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where h > 0. Schmidt’s famous result on norm form equations from 1971 ([14], Satz
2, p.5) can be rephrased as follows:

ZF (h) is finite for every h > 0⇐⇒ F is non-degenerate.

In view of Mahler’s result one expects that for arbitrary non-degenerate norm forms
F there is an asymptotic formula

ZF (h) = CF · hn/r +O(hd(n,r)) as h→∞ (1.6)

where CF is the volume of the region {x ∈ Rn : |F (x)| ≤ 1} and where d(n, r) < n/r.
By a result of Bean and Thunder [2] we have CF ≤ ncn for some absolute constant c.
Note that the main term is precisely the volume of the region {x ∈ Rn : |F (x)| ≤ h}.

As yet, only for norm forms from a restricted class such an asymptotic formula
has been derived. In 1969, Ramachandra [12] proved that for norm forms F of the
special shape F = cNK/Q(X1 + αX2 + α2X3 + · · · + αn−1Xn), where K = Q(α) is
a number field of degree r and r ≥ 8n6, one has an asymptotic formula (1.6) with
(n − 1)/(r − n + 2) < d(n, r) < n/r. This was generalised recently by de Jong [9],
who showed that there is an asymptotic formula (1.6) for norm forms F as in (1.2)
satisfying the following three conditions: a) each n-tuple among the linear factors of
F is linearly independent; b) the Galois group of the normal closure of K over Q
acts n − 1 times transitively on the set of conjugates {α(1), . . . , α(r)} of α ∈ K; c)
r ≥ 2n5/3. In the results of Ramachandra and de Jong, the constant in the error
term depends on F and is ineffective. Thunder [21] obtained a formula (1.6) for norm
forms F in n = 3 variables satisfying de Jong’s conditions a) and b) and no further
restriction on r with an effective error term depending on F . For arbitrary norm
forms F in n ≥ 4 variables, Thunder [21] could show only that the set of solutions of
(1.5) can be divided into two sets, S1 and S2, say, where for the cardinality of S1 we
have an effective asymptotic formula like the right-hand side of (1.6) and where the
set S2 lies in the union of not more than c(F )(1 + log h)n−1 proper linear subspaces
of Qn.

In this paper we do not consider the problem to derive an asymptotic formula such as
(1.6) but instead to derive an explicit upper bound for ZF (h). In 1989, Schmidt [17]
showed that for arbitrary non-degenerate norm forms F of degree r in n variables, the
number ZF (1) of solutions of |F (x)| = 1 in x ∈ Zn is at most min

(
r230nr2

, r(2n)n
n+4)

.

This was improved by the author [6] to
(
233r2

)n3

. Also in his paper [17], Schmidt
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conjectured that in general one has ZF (h) ≤ c(n, r)hn/r where c(n, r) depends only
on n and r. 1)

What we can prove is much less. Our main result is as follows:

Theorem 1. Let F ∈ Z[X1, . . . , Xn] be a non-degenerate norm form of degree r in
n ≥ 2 variables and let h ≥ 1. Then for the number of solutions ZF (h) of |F (x)| ≤ h
in x ∈ Zn one has

ZF (h) ≤ (16r)
1
3 (n+11)3

· h(n+
∑n−1

m=2
1
m )/r · (1 + log h)

1
2n(n−1) . (1.7)

Except for Ramachandra’s, all results on norm form equations mentioned above use
Schmidt’s Subspace theorem in a qualitative or quantitiative form; in particular, the
results giving explicit upper bounds for ZF (1) use Schmidt’s quantitative Subspace
Theorem from 1989 [16] or improvements of the latter. In our proof of Theorem 1 we
use a recent quantitative version of the Subspace Theorem due to Schlickewei and
the author [8]. In fact, using this we first compute an upper bound for the number
of proper linear subspaces of Qn containing the set of solutions of (1.5) (cf. Theorem
2 below) and then obtain Theorem 1 by induction on n.

We introduce some notation used in the statement of Theorem 2. For a linear form
L = α1X1 + · · ·+αnXn with complex coefficients, we write L := α1X1 + · · ·+αnXn

where α denotes the complex conjugate of α ∈ C. Let F be the norm form given
by (1.2). We assume henceforth that the isomorphic embeddings of K into C are
so ordered that α 7→ α(i) (i = 1, . . . , r1) map K into R and that α(i+r2) = α(i) for
i = r1 + 1, . . . , r1 + r2, where r1 + 2r2 = r. There are linear forms L1, . . . , Lr in n

variables such that

F = ±L1 · · ·Lr,
L1, . . . , Lr1 have real coefficients,

Li+r2 = Li for i = r1 + 1, . . . , r1 + r2

 (1.8)

(for instance, one may take Li = r
√
|c| · (α(i)

1 X1 + · · · + α
(i)
n Xn) for i = 1, . . . , r).

Linear forms L1, . . . , Lr are not uniquely determined by (1.8). For any set of linear
forms L1, . . . , Lr with (1.8) we define the quantity

∆(L1, . . . , Lr) := max
{i1,...,in}⊂{1,...,r}

|det(Li1 , . . . , Lin)| , (1.9)

1) Schmidt’s conjecture has been proved very recently by Thunder.
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where det(Li1 , . . . , Lin) is the coefficient determinant of Li1 , . . . , Lin , and where the
maximum is taken over all subsets {i1, . . . , in} of {1, . . . , r} of cardinality n. We define
the invariant height of F by

H∗(F ) := inf ∆(L1, . . . , Lr) , (1.10)

where the infimum is taken over all r-tuples of linear forms L1, . . . , Lr with (1.8). By
Lemma 1 in Section 2 of the present paper, we have H∗(F ) ≥ 1.

As usual, we write e for 2.7182 · · · . Let again F be the norm form given by (1.2)
and V the vector space given by (1.3). Theorem 2 below holds for norm forms F
satisfying instead of non-degeneracy the weaker condition

α1, . . . , αn are linearly independent over Q,

V J $ V for each subfield J of K

not equal to Q or an imaginary quadratic number field.

 (1.11)

Theorem 2. Let F ∈ Z[X1, . . . , Xn] be a norm form of degree r in n ≥ 2 variables
with (1.11) and let P be any real ≥ 1. Then the set of solutions of (1.5) is contained
in the union of not more than

(16r)(n+10)2
·max

(
1,
(hn/r · P
H∗(F )

) 1
n−1

)
·
(

1 +
log(eh ·H∗(F ))

log eP

)n−1

proper linear subspaces of Qn.

In the proof of Theorem 2 we make as usual a distinction between “small” and “large”
solutions. We estimate the number of subspaces containing the small solutions by
means of a gap principle which is derived in Section 5. In the proof of this gap
principle we partly use arguments from Schmidt [16]; the main new idea is probably
Lemma 5 in Section 5. We deal with the large solutions by reducing eq. (1.5) to a
number of inequalities of the type occurring in the Subspace Theorem (where we
more or less follow [6]) and then applying the quantitative result from [8].

We state another consequence of Theorem 2. For a homogeneous polynomial Q ∈
C[X1, . . . , Xn] and a non-singular complex n×n-matrix B we define the homogeneous
polynomial

QB(X) := Q(XB) ,
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where X = (X1, . . . , Xn) is the row vector consisting of the n variables. Now let
F ∈ Z[X1, . . . , Xn] be a norm form of degree r and L1, . . . , Lr linear forms with
(1.8). Further, let B be a non-singular n×n-matrix with entries in Z. From definition
(1.9) it follows at once that

∆(LB1 , . . . , L
B
r ) = |detB| ·∆(L1, . . . , Lr) .

Now clearly, if L1, . . . , Lr run through all factorisations of F with (1.8), then LB1 , . . . ,
LBr run through all factorisations of FB with (1.8). Hence the invariant height defined
by (1.10) satisfies

H∗(FB) = |detB| ·H∗(F ) . (1.12)

Two norm forms F,G ∈ Z[X1, . . . , Xn] are said to be equivalent if G = FB for some
matrix B ∈ GLn(Z), i.e., with detB = ±1. Thus, a special case of (1.12) is that

H∗(G) = H∗(F ) for equivalent norm forms F,G. (1.13)

For a norm form F ∈ Z[X1, . . . , Xn], let ||F || denote the maximum of the absolute
values of its coefficients. In [17], Schmidt developed a reduction theory for norm
forms, which implies that for every norm form F ∈ Z[X1, . . . , Xn] of degree r there
is a matrix B ∈ GLn(Z) such that ||FB || is bounded from above in terms of r, n and
H∗(F ). By combining this with Theorem 2, we show in an explicit form the following:
there is a finite union of equivalence classes depending on h, such that for all norm
forms F outside this union, the set of solutions of (1.5) is contained in the union of
at most a quantity independent of h proper linear subspaces of Qn.

Theorem 3. Let h ≥ 1 and let F ∈ Z[X1, . . . , Xn] be a norm form of degree r in
n ≥ 2 variables with (1.11) and with

min
B∈GLn(Z)

||FB || ≥ (32n)nr/2h2n . (1.14)

Then the set of solutions of (1.5) is contained in the union of not more than

(16r)(n+11)2

proper linear subspaces of Qn.

The case n = 2 of Theorem 3 was considered earlier by Győry and the author in
[7]. Note that each one-dimensional subspace of Q2 contains precisely two primitive
points, i.e., points with coordinates in Z whose gcd is equal to 1. Combining the
method of Bombieri and Schmidt [3] with linear forms in logarithms estimates, Győry
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and the author showed that the Thue inequality |F (x, y)| ≤ h has at most 12r
primitive solutions (x, y) ∈ Z2 provided that F ∈ Z[X,Y ] is an irreducible binary
form of degree r ≥ 400 with minB∈GL2(Z) ||FB || ≥ exp(c1(r)h10(r−1)2

) for some
effectively computable function c1(r) of r. Theorem 3 gives the much worse upper
bound 2×(16r)81 for the number of primitive solutions of |F (x, y)| ≤ h but subject
to the much weaker constraints that F have degree r ≥ 3 and minB∈GL2(Z) ||FB || ≥
26rh4. The polynomial dependence on h of this last condition is because in the proof
of Theorem 3 no linear forms in logarithms estimates were used. Under a similar
condition on F and for all r ≥ 3, Győry obtained the upper bound 28r (personal
communication).

One may wonder whether there is a sharpening of Theorem 3 which gives for all norm
forms F in n ≥ 3 variables lying outside some union of finitely many equivalence
classes, an upper bound independent of h for the number of primitive solutions of
equation (1.5) instead of just for the number of subspaces. It was already explained in
[5] that such a sharpening does not exist. To construct a counterexample, one takes
a number field K of degree r and fixes Q-linearly independent α1, . . . , αn−1 ∈ K and
c ∈ Q∗ such that the norm form cNK/Q(α1X1 + · · ·+ αn−1Xn−1) has its coefficients
in Z. Now if αn runs through all algebraic integers of K, then F := cNK/Q(α1X1 +
· · · + αn−1Xn−1 + αnXn) runs through infinitely many pairwise inequivalent norm
forms in Z[X1, . . . , Xn]. Clearly, one has |F (x)| ≤ h for every algebraic integer αn ∈
K and each primitive vector x = (x1, . . . , xn−1, 0) with xi ∈ Z, |xi| � h1/r for
i = 1, . . . , n − 1, the constant implied by � depending only on K, c, α1, . . . , αn−1.
Thus, there are infinitely many pairwise inequivalent norm forms F ∈ Z[X1, . . . , Xn]
of degree r such that for every such F and for every h� 1, the inequality |F (x)| ≤ h
has � h(n−1)/r primitive solutions x ∈ Zn lying in the subspace xn = 0.

2. Proof of Theorem 1.

In this section, we deduce Theorem 1 from Theorem 2. Let F ∈ Z[X1, . . . , Xn] be
the norm form of degree r given by (1.2) and let K, α1, . . . , αn and c be as in (1.2).
Assume that F is non-degenerate. The cardinality of a set I is denoted by |I|. We
need the following lemma:
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Lemma 1. H∗(F ) ≥ 1.

Proof. Choose linear forms L1, . . . , Lr with (1.8). Let I denote the collection of or-
dered n-tuples (i1, . . . , in) from {1, . . . , r} for which det (Li1 , . . . , Lin) 6= 0. According
to Schmidt ([17], p. 203), the semi-discriminant

D(F ) :=
∏

(i1,...,in)∈I

|det (Li1 , . . . , Lin)|

is a positive integer. This implies that

∆(L1, . . . , Lr) = max
(i1,...,in)∈I

|det (Li1 , . . . , Lin)| ≥ D(F )1/|I| ≥ 1 .

By taking the infimum over all L1, . . . , Lr with (1.8) we obtain Lemma 1. ut

Assume that F is non-degenerate. Denote by Z∗F (h) the number of primitive solutions
of (1.5), i.e., with gcd (x1, . . . , xn) = 1.

Lemma 2. Z∗F (h) ≤ 1
3 · (16r)

1
3 (n+11)3 · h(n+

∑n−1

m=2
1
m )/r · (1 + log h)

1
2n(n−1).

Proof. Denote by A(n, r, h) the right-hand side of the inequality in Lemma 2. We
proceed by induction on n. First, let n = 2. Since F is non-degenerate, condition
(1.11) is satisfied. On applying Theorem 2 with P = H∗(F ) (which is allowed by
Lemma 1), we infer that the set of solutions of (1.5) is contained in the union of not
more than

(16r)64h2/r
(

1 +
log(eh ·H∗(F ))

log eH∗(F )

)
≤ (16r)64h2/r(2 + log h) ≤ 1

2
A(2, r, h)

proper one-dimensional linear subspaces of Q2. Using that each one-dimensional sub-
space contains at most two primitive solutions, we get Z∗F (h) ≤ A(2, r, h).

Now let n ≥ 3. Again, (1.11) holds since F is non-degenerate, and again from Theorem
2 with P = H∗(F ) we infer that the set of solutions of (1.5) is contained in the union
of not more than

(16r)(n+10)2
h

n
(n−1)r

(
1 +

log(eh ·H∗(F ))
log eH∗(F )

)n−1

≤ (16r)(n+10)2
2n−1 · h

n
(n−1)r (1 + log h)n−1 =: B(n, r, h)
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proper linear subspaces of Qn.

There is no loss of generality to assume that these subspaces have dimension n− 1.
Let T be one of these subspaces and consider the solutions of (1.5) lying in T . Fix a
basis {ai = (ai1, . . . , ain) : i = 1, . . . , n− 1} of the Z-module T ∩ Zn and define the
norm form G ∈ Z[Y1, . . . , Yn−1] in n− 1 variables by

G := F (Y1a1 + · · ·+ Yn−1an−1) .

Clearly, there is a one-to-one correspondence between the primitive solutions of (1.5)
lying in T and the primitive solutions of

|G(y)| ≤ h in y ∈ Zn−1 . (2.1)

Note that since F = cNK/Q(α1X1 + · · ·+ αnXn) we have

G = cNK/Q(β1Y1 + · · ·+ βn−1Yn−1) with βi =
n∑
j=1

aijαj for i = 1, . . . , n− 1.

The vector space associated to G is W := {β1y1+· · ·+βn−1yn−1 : y1, . . . , yn−1 ∈ Q}.
As usual, for each subfield J of K we define W J := {ξ ∈ W : λξ ∈ W for every
λ ∈ J}. We verify that G is non-degenerate. First, the numbers β1, . . . , βn−1 are
linearly independent over Q since α1, . . . , αn are Q-linearly independent and since
the vectors a1, . . . ,an−1 are Q-linearly independent. Second, since W ⊂ V and F

is non-degenerate we have that W J ⊂ V J = (0) if J is not equal to Q or to an
imaginary quadratic field.

We infer from the induction hypothesis that the number of primitive solutions of
(2.1), and hence the number of primitive solutions of (1.5) lying in T , is at most
A(n − 1, r, h). Since we have at most B(n, r, h) possibilities for T , we conclude that
the total number of primitive solutions of (1.5) is at most

A(n− 1, r, h) ·B(n, r, h)

=
1
3
· 2n−1(16r)

1
3 (n+10)3+(n+10)2

· h(n−1+(
∑n−2

m=2
1
m )+ n

n−1 )/r · (1 + log h)
1
2 (n−1)(n−2)+n−1

≤ 1
3
· (16r)

1
3 (n+11)3

· h(n+
∑n−1

m=2
1
m )/r · (1 + log h)

1
2n(n−1) = A(n, r, h) . �

Proof of Theorem 1. We have to prove that ZF (h) ≤ ψ(h)hn/r, where

ψ(h) = (16r)
1
3 (n+11)3

h(
∑n−1

m=2
1
m )/r(1 + log h)

1
2n(n−1).
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For c = 0, . . . , h, denote by a(c) the number of primitive solutions x ∈ Zn of |F (x)| =
c and by b(c) the number of all solutions x ∈ Zn of |F (x)| = c. Thus,

a(0) = 0, b(0) = 1, b(c) =
∑

d: dr|c,d>0

a(c/dr) for c > 0,

ZF (h) =
h∑
c=0

b(c), Z∗F (h) =
h∑
c=0

a(c), for h ≥ 0.

This implies, on interchanging the summation and then using a(c) = Z∗F (c)−Z∗F (c−1)
for c ≥ 1,

ZF (h) = 1 +
h∑
c=1

∑
d: dr|c,d>0

a(c/dr)

≤ 1 +
h∑
c=1

a(c) r
√
h/c

= 1 + Z∗F (h) +
h−1∑
c=1

(
r
√
h/c− r

√
h/(c+ 1)

)
· Z∗F (c) .

By Lemma 2 we have Z∗F (c) ≤ 1
3ψ(h)cn/r for c ≤ h. Hence

ZF (h) ≤ 1 +
1
3
ψ(h)

(
hn/r +

h−1∑
c=1

(
r
√
h/c− r

√
h/(c+ 1)

)
· cn/r

)

= 1 +
1
3
ψ(h)

h∑
c=1

r
√
h/c ·

(
cn/r − (c− 1)n/r

)
≤ 1 +

1
3
ψ(h)

∫ h

0

r
√
h/x · n

r
x
n
r−1dx = 1 +

1
3
ψ(h)

n

n− 1
hn/r

≤ ψ(h)hn/r .

This proves Theorem 1. ut
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3. Proof of Theorem 3.

Let F ∈ Z[X1, . . . , Xn] be a norm form of degree r satisfying (1.2), (1.11). Define the
quantity

H∗2 (F ) := inf
( ∑
{i1,...,in}⊂{1,...,r}

|det (Li1 , . . . , Lin)|2
)1/2

,

where the sum is taken over all subsets of {1, . . . , r} of cardinality n and the infimum
over all r-tuples of linear forms L1, . . . , Lr with (1.8). By Schmidt’s reduction theory
for norm forms (cf. [17], Lemma 4) we have

min
B∈GLn(Z)

||FB || ≤
(
2nn3/2V (n)−1

)r ·H∗2 (F )r ,

where V (n) is the volume of the n-dimensional Euclidean ball with radius 1. Together
with V (n) ≥ (n!)1/2 and H∗2 (F ) ≤

(
r
n

)1/2
H∗(F ), this implies

min
B∈GLn(Z)

||FB || ≤ (32n)nr/2 ·H∗(F )r .

Now assume that F satisfies (1.14). Then it follows that

H∗(F ) ≥ h2n/r .

By applying Theorem 2 with P = H∗(F )1/2, we infer that the set of solutions of
(1.5) is contained in the union of at most

(16r)(n+10)2
·
(

1 +
log(eh ·H∗(F ))
log eH∗(F )1/2

)n
≤ (16r)(n+10)2

·
(

1 +
log eH∗(F )1+(r/2n)

log eH∗(F )1/2

)n−1

≤ (16r)(n+11)2

proper linear subspaces of Qn. This proves Theorem 3. ut
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4. Choice of the linear factors.

By Q we denote the algebraic closure of Q in C. We agree that algebraic number
fields occurring in this paper are contained in Q. Vectors from Q

n, Rn, etc., will
always be row vectors.

Let F ∈ Z[X1, . . . , Xn] be a norm form of degree r satisfying (1.2) for some number
field K, some α1, . . . , αn ∈ K, and some non-zero c ∈ Q. As before, we order the
isomorphic embeddings of K into C in such a way that α 7→ α(i) map K into R for
i = 1, . . . , r1 and α(i+r2) = α(i) for i = r1+1, . . . , r1+r2, where r1+2r2 = r = [K : Q].
In this section we choose appropriate linear factors L1, . . . , Lr of F satisfying (1.8).
The quantities ∆(L1, . . . , Lr) and H∗(F ) are defined by (1.9), (1.10), respectively.

Lemma 3. There are linear forms L1, . . . , Lr which satisfy (1.8) and which have the
following additional properties:

Li = k
√
β(i) · (α(i)

1 X1 + · · ·+ α(i)
n Xn) (i = 1, . . . , r) (4.1)

for some β ∈ K, k ∈ Z>0 and choices for the roots k
√
β(1), . . . , k

√
β(r);

L1, . . . , Lr have algebraic integer coefficients; (4.2)

H∗(F ) ≤ ∆(L1, . . . , Lr) ≤ 2H∗(F ) . (4.3)

Proof. We will frequently use that if L1, . . . , Lr satisfy (1.8) then c1L1, . . . , crLr
satisfy (1.8) if and only if ci ∈ R for i = 1, . . . , r1, ci+r2 = ci for i = r1 +1, . . . , r1 +r2

and c1 · · · cr = ±1.

Suppose that K has class number h. Let a denote the fractional ideal in K generated
by α1, . . . , αr. Then ah is a principal ideal with generator γ ∈ K, say. Choose roots
δi := 2h

√
(γ(i))2 such that δi ∈ R>0 for i = 1, . . . , r1 and such that δi+r2 = δi for

i = r1 + 1, . . . , r1 + r2 (note that for i = 1, . . . , r1, (γ(i))2 is positive so that it has a
positive real 2h-th root).

Define the linear forms

L̃i := r
√
|c| · δ1 · · · δr · δ−1

i (α(i)
1 X1 + · · ·+ α(i)

n Xn) for i = 1, . . . , r, (4.4)

where the r-th root is a positive real. From (1.2) it follows easily that L̃1, . . . , L̃r
satisfy (1.8). We claim that L̃i has algebraic integer coefficients for i = 1, . . . , r. Let M
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be a finite extension of K containing the numbers α(j)
i , δj (i = 1, . . . , n, j = 1, . . . , r)

and r
√
|c| · δ1 · · · δr. For β1, . . . , βm ∈ M , denote by [β1, . . . , βm] the fractional ideal

in M generated by β1, . . . , βm. For a polynomial Q ∈ M [X1, . . . , Xn], denote by [Q]
the fractional ideal in M generated by the coefficients in Q. By the choice of the
δi we have [δi]2h = [γ(i)]2 = [α(i)

1 , . . . , α
(i)
n ]2h, hence [δi] = [α(i)

1 , . . . , α
(i)
n ]. Therefore,

[L̃i ] = [ r
√
|c| · δ1 · · · δr ]. But according to Gauss’ lemma for Dedekind domains we

have [F ] = [L̃1] · · · [L̃r] = [ |c| · δ1 · · · δr]. By assumption, F has its coefficients in Z,
so |c| · δ1 · · · δr is an algebraic integer. This proves our claim.

Let θ > 0. From the definition of H∗(F ) it follows at once that there are complex
numbers c1, . . . , cr with c1, . . . , cr1 ∈ R, ci+r2 = ci for i = r1 + 1, . . . , r1 + r2 and
c1 · · · cr = ±1 such that

∆(c1L̃1, . . . , crL̃r) ≤ (1 + θ)H∗(F ) . (4.5)

We approximate c1, . . . , cr by algebraic units. Let UK denote the unit group of the
ring of integers of K. According to Dirichlet’s unit theorem, the set
{(log |ε(1)|, . . . , log |ε(r)|) : ε ∈ UK} is a lattice which spans the linear subspace H ⊂
R
r given by the equations x1 + · · · + xr = 0, xi+r2 = xi for i = r1 + 1, . . . , r1 + r2.

This implies that there is a constant CK > 0 such that for every positive integer m
there is an ε ∈ UK with∣∣ log |ε(i)| −m log |ci|

∣∣ ≤ CK for i = 1, . . . , r.

Choose m so large that CK < m log(1 + θ). Choose roots ηi := 2m
√

(ε(i))2 such
that ηi ∈ R for i = 1, . . . , r1 and ηi+r2 = ηi for i = r1 + 1, . . . , r1 + r2. Thus,
(log |η1|, . . . , log |ηr|) ∈ H and∣∣ log |ηi| − log |ci|

∣∣ ≤ log(1 + θ) for i = 1, . . . , r . (4.6)

Define the linear forms

Li := ηi · L̃i = ηi
r
√
|c|δ1 · · · δr · δ−1

i (α(i)
1 X1 + · · ·+ α(i)

n Xn) for i = 1, . . . , r.

Note that with k = 2hmr we have

(ηi r
√
|c|δ1 · · · δr · δ−1

i )k = (ε(i))2hr|c|2hm(γ(1) · · · γ(r))2m(γ(i))−2mr = β(i)

with β := ε2hr|c|2hmNK/Q(γ)2mγ−2mr ∈ K .

Hence L1, . . . , Lr satisfy (4.1) for some β, k. It is easy to check that L1, . . . , Lr satisfy
(1.8) and (4.2). To verify (4.3), we observe that by (4.6), (4.5) we have, on choosing
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i1, . . . , in ∈ {1, . . . , r} with ∆(L1, . . . , Lr) = |det (Li1 , . . . , Lin)|,

∆(L1, . . . , Lr) =
|ηi1 · · · ηin |
|ci1 · · · cin |

· |det (ci1L̃i1 , . . . , cinL̃in)|

≤ (1 + θ)n · |det (ci1L̃i1 , . . . , cinL̃in)| ≤ (1 + θ)n+1H∗(F ) ≤ 2H∗(F )

for sufficiently small θ. Lastly, since L1, . . . , Lr satisfy (1.8) we have ∆(L1, . . . , Lr) ≥
H∗(F ). This proves Lemma 3. ut

We recall that for a homogeneous polynomial Q ∈ C[X1, . . . , Xn] and a non-singular
complex n×n-matrix B we define QB(X) := Q(XB). Further, we denote by ||Q|| the
maximum of the absolute values of the coefficients of Q.

Lemma 4. Let L1, . . . , Lr be linear forms with (1.8), (4.1), (4.2), (4.3). Then there
is a matrix B ∈ GLn(Z) such that

||LBi || ≤ (2n)n+1H∗(F ) for i = 1, . . . , r. (4.7)

Proof. We modify an argument of Schmidt from [17]. We will apply Minkowski’s
theorem on successive minima to the symmetric convex body

C := {x ∈ Rn : |Li(x)| ≤ 1 for i = 1, . . . , r}.

We need a lower bound for the volume of C. Recall (1.8). Let M1, . . . ,Mr be the
linear forms with real coefficients given by

Mi := Li (i = 1, . . . , r1),

Mi := 1
2 (Li + Li) = 1

2 (Li + Li+r2) (i = r1 + 1, . . . , r1 + r2),

Mi+r2 := 1
2
√
−1

(Li − Li) = 1
2
√
−1

(Li − Li+r2) (i = r1 + 1, . . . , r1 + r2).

 (4.8)

Let {j1, . . . , jn} be a subset of {1, . . . , r} for which |det (Mj1 , . . . ,Mjn)| is maximal.
Suppose that 1 ≤ j1 < · · · js ≤ r1 < js+1 < · · · < jn. By (4.8) we have

det (Mj1 , . . . ,Mjn) =
∑
I

εIdet (Lj1 , . . . , Ljs , Lis+1 , . . . , Lin)

where the sum is taken over tuples I = (is+1, . . . , in) with precisely two possibilities
for each index ij and where |εI | = 2s−n for each tuple I. Together with (4.3) this
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implies

|det (Mj1 , . . . ,Mjn)| ≤ ∆(L1, . . . , Lr) ≤ 2H∗(F ) . (4.9)

From (4.8) it follows that rank{M1, . . . ,Mr} = n. Hence |det (Mj1 , . . . ,Mjn)| 6= 0.
So there are cik ∈ C with

Li =
n∑
k=1

cikMjk for i = 1, . . . , r. (4.10)

We estimate |cik| from above. First suppose i ≤ r1. Then Li = Mi by (4.8), so

|cik| =
|det (Mj1 , . . . ,Mi, . . . ,Mjn)|
|det (Mj1 , . . . ,Mjk , . . . ,Mjn)|

≤ 1 .

Now suppose r1 + 1 ≤ i ≤ r1 + r2. Then by (4.8) we have Li = Mi +
√
−1Mi+r2 , so

|cik| =
|det (Mj1 , . . . , Li, . . . ,Mjn)|
|det (Mj1 , . . . ,Mjk , . . . ,Mjn)|

≤ |det (Mj1 , . . . ,Mi, . . . ,Mjn)|
|det (Mj1 , . . . ,Mjk , . . . ,Mjn)|

+
|det (Mj1 , . . . ,Mi+r2 , . . . ,Mjn)|
|det (Mj1 , . . . ,Mjk , . . . ,Mjn)|

≤ 2 .

We have a similar estimate for |cik| for r1 + r2 + 1 ≤ i ≤ r. Hence |cik| ≤ 2 for
i = 1, . . . , r, k = 1, . . . , n. Together with (4.10) this implies

C ⊇ D := {x ∈ Rn : |Mjk(x)| ≤ (2n)−1 for k = 1, . . . , n} .

So by (4.9),

vol (C) ≥ vol (D) = 2n(2n)−n|det (Mj1 , . . . ,Mjn)|−1

≥ 1
2
n−nH∗(F )−1 . (4.11)

Denote by λ1, . . . , λn the successive minima of C with respect to Zn. Thus, there are
linearly independent vectors b1, . . . ,bn ∈ Zn with bj ∈ λjC, i.e., with |Li(bj)| ≤ λj
for i = 1, . . . , r, j = 1, . . . , n. By Minkowski’s theorem and (4.11) we have

λ1 · · ·λn ≤ 2nvol (C)−1 ≤ 2n+1nnH∗(F ) .

Further, by (1.8) we have 1 ≤ |F (b1)| =
∏n
i=1 |Li(b1)| ≤ λn1 . Hence

λn ≤ 2n+1nnH∗(F ) . (4.12)
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By a result of Mahler (cf. Cassels [4], Lemma 8, p. 135), Zn has a basis {b1, . . . ,bn}
with bj ∈ jλjC for j = 1, . . . , n. Together with (4.12) this implies

|Li(bj)| ≤ nλn ≤ (2n)n+1H∗(F ) for i = 1, . . . , r, j = 1, . . . , n.

Now Lemma 4 holds for the matrix B with rows bj (j = 1, . . . , n). ut

Let L1, . . . , Lr be linear forms with (1.8), (4.1)–(4.3) and let B be the matrix from
Lemma 4. We now write F for FB , Li for LBi and replace everywhere the old
forms F,Li by the new ones just chosen. This affects neither the minimal number
of subspaces of Qn containing the set of solutions of (1.5) nor the invariant height
H∗(F ). Further, the conditions (1.8) and (4.1)–(4.3) remain valid (but with different
α1, . . . , αn in (4.1)). Lastly, condition (4.7) holds but with B being replaced by the
identity matrix.

So it suffices to prove Theorem 2 for these newly chosen forms F,L1, . . . , Lr and we
will proceed further with these forms. This means that in the remainder of this paper,
F is a norm form in Z[X1, . . . , Xn] of degree r of the shape (1.2) satisfying (1.11), K
is the number field and α1, . . . , αn are the elements of K from (1.2), and L1, . . . , Lr
are linear forms with the following properties:

F = ±L1 · · ·Lr; (4.13)

L1, . . . , Lr1 have real coefficients; (4.14)

Li+r2 = Li for i = r1 + 1, . . . , r1 + r2; (4.15)

Li = k
√
β(i) · (α(i)

1 X1 + · · ·+ α(i)
n Xn) (i = 1, . . . , r) (4.16)

for some β ∈ K, k ∈ Z>0 and choices for the roots k
√
β(1), . . . , k

√
β(r);

H∗(F ) ≤ ∆(L1, . . . , Lr) ≤ 2H∗(F ) ; (4.17)

||Li|| ≤ (2n)n+1H∗(F ) for i = 1, . . . , r; (4.18)

L1, . . . , Lr have algebraic integer coefficients. (4.19)

We fix once and for all a finite, normal extension N ⊂ C of Q such that N contains
K, the images of the isomorphic embeddings α 7→ α(i) (i = 1, . . . , r) of K into C,
the coefficients of L1, . . . , Lr and the k-th roots of unity, where k is the integer from
(4.16). Let

d := [N : Q] (4.20)
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and denote by Gal(N/Q) the Galois group of N/Q. Clearly, for each σ ∈ Gal(N/Q)
there is a permutation σ∗(1), . . . , σ∗(r) of 1, . . . , r such that

σ(α(i)) = α(σ∗(i)) for α ∈ K, i = 1, . . . , r. (4.21)

For each pair i, j ∈ {1, . . . , r}, we have

σ∗(i) = j for precisely d/r elements σ ∈ Gal(N/Q), (4.22)

since the Q-isomorphism α(i) 7→ α(j) (α ∈ K) can be extended in exactly d/r ways
to an automorphism of N . For a linear form L = α1X1 + · · ·+αnXn with coefficients
in N and for σ ∈ Gal(N/Q) define σ(L) := σ(α1)X1 + · · · + σ(αn)Xn. From (4.21)
and (4.16) it follows that there are k-th roots of unity ρσ,i such that

σ(Li) = ρσ,iLσ∗(i) for i = 1, . . . , r, σ ∈ Gal(N/Q). (4.23)

Denote by ι the restriction to N of the complex conjugation. Note that ι ∈ Gal(N/Q).
Recall that the conjugates of α ∈ K were so ordered that α(i) ∈ R for i = 1, . . . , r1

and α(i+r2) = α(i) for i = r1 + 1, . . . , r1 + r2. By (4.21) we have that ι∗(i) = i for
i = 1, . . . , r1 and that ι∗ interchanges i and i+ r2 for i = r1 + 1, . . . , r1 + r2. Together
with (4.14) (i.e., Li = Li for i = 1, . . . , r1) and (4.15) this implies

Lι∗(i) = Li for i = 1, . . . , r. (4.24)

5. The small solutions.

In this section, we develop a gap principle to deal with the small solutions of (1.5).
We need a preparatory lemma.

Lemma 5. Let D ≥ 1 and let S be a subset of Zn with the property that

|det (x1, . . . ,xn)| ≤ D for each n-tuple x1, . . . ,xn ∈ S. (5.1)

Then S is contained in the union of not more than

100n ·D
1

n−1

proper linear subspaces of Qn.
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Proof. We assume without loss of generality that S is not contained in a single
proper linear subspace of Qn, i.e., that S contains n linearly independent vectors,
x1, . . . ,xn, say. Then every x ∈ S can be expressed as x =

∑n
i=1 zixi for certain

zi ∈ Q. By (5.1) we have for such an x,

|zi| =
|det (x1, . . . ,x, . . . ,xn)|
|det (x1, . . . ,xi, . . . ,xn)|

≤ D for i = 1, . . . , n.

This implies that S is finite.

Let S = {x1, . . . ,xm}. Denote by C the smallest convex body which contains S and
which is symmetric about 0, i.e.,

C = {
m∑
i=1

zixi : zi ∈ R,
m∑
i=1

|zi| ≤ 1}.

Let λ1, . . . , λn denote the successive minima of C with respect to Zn. The body C
contains n linearly independent points from Zn since S does. Therefore,

0 < λ1 ≤ · · · ≤ λn ≤ 1. (5.2)

Further, we have
λ1 · · ·λn ≥ D−1. (5.3)

To show this, take linearly independent vectors y1, . . . ,yn ∈ Zn with yi ∈ λiC for
i = 1, . . . , n. Then λ−1

i yi ∈ C, i.e., λ−1
i yi =

∑m
j=1 zijxj for certain zij ∈ R with∑m

j=1 |zij | ≤ 1. In view of (5.1) this implies

(λ1 · · ·λn)−1 ≤ |det (λ−1
1 y1, . . . , λ

−1
n yn)|

≤
m∑
j1=1

· · ·
m∑

jn=1

|z1,j1 | · · · |zn,jn | · |det (xj1 , . . . ,xjn)| ≤ D ,

which is (5.3).

To C we associate the vector norm on Rn given by

||x|| := min{λ : x ∈ λC}.

According to a result of Schlickewei [13] (p. 176, Prop. 4.2), the lattice Zn has a basis
{e1, . . . , en} such that

||x|| ≥ 4−n max(|z1| · ||e1||, . . . , |zn| · ||en||) for x ∈ Zn, (5.4)
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where z1, . . . , zn are the integers determined by x =
∑n
i=1 ziei. Assuming ||e1|| ≤

· · · ≤ ||en|| as we may, we have

||ei|| ≥ λi for i = 1, . . . , n. (5.5)

Since S ⊆ C we have ||x|| ≤ 1 for x ∈ S. So by (5.4), (5.5) we have for all x ∈ S,

|zi| ≤ 4nλ−1
i for i = 1, . . . , n. (5.6)

Now since the mapping x 7→ (z1, . . . , zn) is a linear isomorphism from Zn to itself, it
suffices to prove that the set of vectors z = (z1, . . . , zn) ∈ Zn with (5.6) is contained
in the union of not more than 100n ·D

1
n−1 proper linear subspaces of Qn.

We construct a collection of (n− 1)-dimensional linear subspaces of Qn whose union
contains the set of vectors with (5.6), or rather a set of linear forms with integer
coefficients such that each vector z ∈ Zn with (5.6) is a zero of at least one of these
forms. We first determine an index s such that λt is not too small for t > s. Let
s ∈ {0, . . . , n− 2} be the index for which (λs+1 · · ·λn)

1
n−s−1 is maximal. From (5.3)

it follows that
(λs+1 · · ·λn)

1
n−s−1 ≥ (λ1 · · ·λn)

1
n−1 ≥ D−

1
n−1 . (5.7)

Moreover, we have

λt ≥ (λs+1 · · ·λn)
1

n−s−1 for t = s+ 1, . . . , n. (5.8)

Indeed, for s = n− 2 this follows at once from (5.2). Suppose s < n− 2. Then from
the definition of s it follows that

(λs+1 · · ·λn)
1

n−s−1 ≥ (λs+2 · · ·λn)
1

n−s−2 .

This implies λ
1

n−s−2
s+1 ≥ (λs+1 · · ·λn)

1
n−s−2−

1
n−s−1 , whence λs+1 ≥ (λs+1 · · ·λn)

1
n−s−1 ,

and this certainly implies (5.8).

Using an argument similar to the proof of Siegel’s lemma, we show that for each
vector z with (5.6), there is a non-zero vector c = (cs+1, . . . , cn) ∈ Zn−s with

cs+1zs+1 + · · ·+ cnzn = 0, (5.9)

|ci| ≤ λi ·
( n · 4n + 1
λs+1 · · ·λn

) 1
n−s−1

for i = s+ 1, . . . , n. (5.10)

Put

B :=
( n · 4n + 1
λs+1 · · ·λn

) 1
n−s−1

.
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Consider all vectors c = (cs+1, . . . , cn) ∈ Zn−s with

0 ≤ ci ≤ λiB for i = s+ 1, . . . , n. (5.11)

Let z = (z1, . . . , zn) ∈ Zn be a vector with (5.6), and suppose that zi > 0 for exactly
r indices i ∈ {s + 1, . . . , n}, where r ≥ 0. Then for vectors c ∈ Zn−s with (5.11) we
have

−(n− s− r)4nB ≤ cs+1zs+1 + · · ·+ cnzn ≤ r · 4nB .

So the number of possible values for cs+1zs+1 + · · ·+ cnzn is at most

[r · 4nB] + [(n− s− r) · 4nB] + 1 ≤ [(n− s) · 4nB] + 1 .

Further, the number of vectors c ∈ Zn−s with (5.11) is equal to

n∏
i=s+1

([λiB] + 1) .

By the choice of B, this number is larger than

λs+1 · · ·λnBn−s = λs+1 · · ·λnBn−s−1 ·B = (n · 4n + 1)B ≥ [(n− s)4nB] + 1 ,

noting that by (5.2) we have B ≥ 1. Therefore, there are two different vectors c′ =
(c′s+1, . . . , c

′
n), c′′ = (c′′s+1, . . . , c

′′
n) ∈ Zn−s with 0 ≤ c′i, c′′i ≤ λiB for i = s+ 1, . . . , n

and c′s+1zs+1 + · · ·+c′nzn = c′′s+1zs+1 + · · ·+c′′nzn. Now clearly, the vector c := c′−c′′

is non-zero and satisfies (5.9), (5.10).

For each non-zero c ∈ Zn−s, (5.9) defines a proper linear subspace of Qn. By esti-
mating from above the number of vectors c ∈ Zn−s with (5.10), we conclude that the
set of vectors z ∈ Zn with (5.6) is contained in the union of at most

n∏
i=s+1

{
2λi
( n · 4n + 1
λs+1 · · ·λn

) 1
n−s−1

+ 1
}

≤
n∏

i=s+1

{
3λi
( n · 4n + 1
λs+1 · · ·λn

) 1
n−s−1

}
(by (5.8))

= 3n−s(n · 4n + 1)
n−s
n−s−1 (λs+1 · · ·λn)1− n−s

n−s−1 ≤ 100n · (λs+1 · · ·λn)−
1

n−s−1

≤ 100n ·D
1

n−1 (by (5.7))

proper linear subspaces of Qn. This proves Lemma 5. ut
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The next gap principle is a generalisation of Lemma 3.1 of Schmidt [16]. For x =
(x1, . . . , xn) ∈ Cn we put ||x|| := max(|x1|, . . . , |xn|).

Lemma 6. Let P,Q,B be reals with

P ≥ 1, Q ≥ 1, B ≥ 1 (5.12)

and let M1, . . . ,Mn be linearly independent linear forms in X1, . . . , Xn with complex
coefficients. Then the set of x ∈ Zn with

|M1(x) · · ·Mn(x)| ≤ |det (M1, . . . ,Mn)| · Q
P
, (5.13)

||x|| ≤ B (5.14)

is contained in the union of not more than

(100n2)n ·Q
1

n−1 ·
(

1 +
log eB
log eP

)n−1

proper linear subspaces of Qn.

Proof. Put
T := (n− 1)

(
1 +

[ log eB
log eP

])
. (5.15)

We assume that
||Mi || = 1 for i = 1, . . . , n (5.16)

(recall that ||Mi || is the maximum of the absolute values of the coefficients of Mi).
This is no loss of generality, since (5.13) does not change if M1, . . . ,Mn are replaced
by constant multiples. As a consequence, the solutions x of (5.13), (5.14) satisfy

|Mi(x)| ≤ nB for i = 1, . . . , n.

This implies that for every solution x ∈ Zn of (5.13), (5.14) either there is an index
j ∈ {1, . . . , n− 1} such that

|Mj(x)| < (nB)1−n , (5.17)

or there are integers c1, . . . , cn−1 with

(nB)ci/T ≤ |Mi(x)| ≤ (nB)(ci+1)/T for i = 1, . . . , n− 1, (5.18)

−(n− 1)T ≤ ci ≤ T − 1 for i = 1, . . . , n− 1. (5.19)
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(The linear form Mn(x) does not have to be taken into consideration).

We consider first the solutions x ∈ Zn of (5.13), (5.14) which satisfy (5.17) for some
fixed j ∈ {1, . . . , n − 1}. Let x1 = (x11, . . . , x1n), . . . ,xn be any such solutions. Let
Mi = α1X1 + · · ·+ αnXn with ||Mi || = |αt|, say. Then |αt| = 1 by (5.16) and so the
absolute value of the determinant det (x1, . . . ,xn) does not change if we replace its
t-th column by Mi(x1), . . . ,Mi(xn). Hence

|det (x1, . . . ,xn)| =

∣∣∣∣∣det

 x11 · · · Mi(x1) · · · x1n

...
...

...
xn1 · · · Mi(xn) · · · xnn

∣∣∣∣∣
≤ n! ·

n∏
k=1
k 6=t

max
j=1,...,n

|xjk| · max
j=1,...,n

|Mi(xj)|

< n! ·Bn−1(nB)1−n ≤ 1 .

Now since det (x1, . . . ,xn) ∈ Z, this implies det (x1, . . . ,xn) = 0. Hence x1, . . . ,xn
lie in a single subspace of Qn. We infer that for each i ∈ {1, . . . , n − 1}, the set
of solutions of (5.13), (5.14) satisfying (5.17) is contained in a single proper linear
subspace of Qn.

We now deal with the solutions x of (5.13), (5.14) which satisfy (5.18) for some fixed
tuple c1, . . . , cn−1 with (5.19). Let x1, . . . ,xn be any such solutions. Then

|det (x1, . . . ,xn)| = |det (M1, . . . ,Mn)|−1 · |det (Mi(xj))1≤i,j≤n| . (5.20)

The last determinant is a sum of n! terms

±M1(xσ(1)) · · ·Mn(xσ(n))

where σ is a permutation of 1, . . . , n. Consider such a term with σ(n) = j. Using that
by (5.18) we have

|Mk(xl)| ≤ (nB)1/T |Mk(xj)| for k = 1, . . . , n− 1, l 6= j

we get
|M1(xσ(1)) · · ·Mn(xσ(n))| ≤ (nB)(n−1)/T |M1(xj) · · ·Mn(xj)|

≤ (nB)(n−1)/T |det (M1, . . . ,Mn)| · Q
P

using (5.13)

≤ e · (n/e)(n−1)/T |det (M1, . . . ,Mn)| ·Q using (5.15).
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By inserting this into (5.20) and using T ≥ n− 1 we obtain

|det (x1, . . . ,xn)| ≤ n · n! ·Q .

Now Lemma 5 implies that the set of solutions of (5.13), (5.14) satisfying (5.18) for
some fixed c1, . . . , cn−1 is contained in the union of at most

100n · (n · n! ·Q)
1

n−1

proper linear subspaces of Qn.

We have n−1 inequalities (5.17), each giving rise to a single subspace of Qn. Further,
in view of (5.19) we have (nT )n−1 systems of inequalities (5.18). Together with (5.15),
this implies that the set of solutions x ∈ Zn of (5.13), (5.14) is contained in the union
of at most

n− 1 + 100n(n · n!)
1

n−1Q
1

n−1 · (n(n− 1))n−1
(

1 +
log eB
log eP

)n−1

≤ (100n2)n ·Q
1

n−1 ·
(

1 +
log eB
log eP

)n−1

proper linear subspaces of Qn. This proves Lemma 6. ut

Now let F ∈ Z[X1, . . . , Xn] be the norm form of degree r with (1.2), (1.11), and
L1, . . . , Lr the linear forms with (4.13)–(4.19) which we have fixed in Section 4.

Lemma 7. For every solution x of (1.5) there are i1, . . . , in ∈ {1, . . . , r} such that
Li1 , . . . , Lin are linearly independent and such that

|Li1(x) · · ·Lin(x)| ≤ |det (Li1 , . . . , Lin)| · hn/r

H∗(F )
. (5.21)

Proof. We closely follow the proof of Lemma 3 of Schmidt [17]. For x = 0 we have
Li(x) = 0 for i = 1, . . . , r and (5.21) is trivial. Let x be a non-zero solution of (1.5).
Define linear forms

L′i =
|F (x)|1/r

|Li(x)|
· Li (i = 1, . . . , r).

From (4.13)–(4.15) it follows that L′1, . . . , L
′
r satisfy (1.8). Pick i1, . . . , in such that

|det (L′i1 , . . . , L
′
in

)| is maximal. Then from (1.5) and the definition of H∗(F ) it follows
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that

|Li1(x) · · ·Lin(x)| = |det (Li1 , . . . , Lin)|
|det (L′i1 , . . . , L

′
in

)|
· |F (x)|n/r =

|det (Li1 , . . . , Lin)|
∆(L′1, . . . , L′r)

· |F (x)|n/r

≤ |det (Li1 , . . . , Lin)| · hn/r

H∗(F )
. �

By combining Lemmata 7 and 6 we arrive at the following result for the small solu-
tions of norm form inequality (1.5):

Proposition 1. Let P ≥ 1, B ≥ 1. Then the set of solutions x of (1.5) with

||x|| ≤ B (5.22)

is contained in the union of at most

(300rn)n ·max

(
1,
( hn/rP
H∗(F )

) 1
n−1

)
·
(

1 +
log eB
log eP

)n−1

proper linear subspaces of Qn.

Proof. From Lemma 6 with

Q = max
(

1,
hn/rP

H∗(F )

)

and from Lemma 7 we infer that for each tuple {i1, . . . , in}, the set of solutions of
(1.5) satisfying (5.21) and (5.22) is contained in the union of not more than

(100n2)n ·max

(
1,
( hn/rP
H∗(F )

) 1
n−1

)
·
(

1 +
log eB
log eP

)n−1

proper linear subspaces of Qn. Now Proposition 1 follows, on noting that we have at
most

(
r
n

)
possibilities for {i1, . . . , in} and that (100n2)n ·

(
r
n

)
≤ (300rn)n. ut
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6. The quantitative Subspace Theorem.

We recall a special case of the quantitative Subspace Theorem from [8] and then
specialise it to a situation relevant for eq. (1.5). We must first introduce the Euclidean
height which has been used in the statement of the quantitative Subspace theorem
of [8].

Let x = (x1, . . . , xn) ∈ Qn with x 6= 0. To define the height of x, we choose a number
field K containing x1, . . . , xn. Let d = [K : Q] and let σ1, . . . , σd denote the iso-
morphic embeddings of K into C. Further, denote by NK/Q(x1, . . . , xn) the absolute
norm of the fractional ideal in K generated by x1, . . . , xn. Then the Euclidean height
of x is defined by

H2(x) :=

(∏d
i=1

(∑n
j=1 |σi(xj)|2

)1/2
NK/Q(x1, . . . , xn)

)1/d

.

It is easy to see that this is independent of the choice of K. Moreover, we have
H2(λx) = H2(x) for every non-zero λ ∈ Q. This implies H2(x) ≥ 1. Note that

H2(x) =

(
|x1|2 + · · ·+ |xn|2

)1/2
gcd(x1, . . . , xn)

for x = (x1, . . . , xn) ∈ Zn\{0}.

For a non-zero linear form L = α1X1 + · · · + αnXn with a = (α1, . . . , αn) ∈ Qn we
put H2(L) := H2(a).

The following result is a special case of Theorem 3.1 of [8]. Except for the better
quantitative bound, this result is of the same nature as the first quantitative version
of the Subspace Theorem, obtained by Schmidt [16].

Quantitative Subspace Theorem. Let 0 < δ ≤ 1 and let M1, . . . ,Mn be linearly
independent linear forms in X1, . . . , Xn such that

the coefficients of M1, . . . ,Mn generate an algebraic number field of degree D.
(6.1)

Then the set of x ∈ Zn with

|M1(x) · · ·Mn(x)| ≤ |det (M1, . . . ,Mn)| ·H2(x)−δ , (6.2)

H2(x) ≥ max
(
n4n/δ,H2(M1), . . . ,H2(Mn)

)
(6.3)
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is contained in the union of at most

16(n+9)2
· δ−2n−4 log(4D) · log log(4D) (6.4)

proper linear subspaces of Qn.

Let F be the norm form with (1.2), (1.11) and L1, . . . , Lr the linear forms with
(4.13)–(4.19) which we have fixed throughout the paper. Let K be the number field
associated to F as in (1.2), N the finite, normal extension of Q introduced at the end
of Section 4 containing the coefficients of L1, . . . , Lr and d = [N : Q]. We want to
apply the quantitative Subspace Theorem to any set of n linearly independent forms
from L1, . . . , Lr. We need the following estimates:

Lemma 8. (i). H2(Li) ≤
√
n(2n)n+1H∗(F ) for i = 1, . . . , r.

(ii). For each linearly independent subset {Li1 , . . . , Lin} of {L1, . . . , Lr} we have

|det (Li1 , . . . , Lin)| ≥ (2H∗(F ))1−(rn) .

Proof. (i). From (4.19), (4.23), (4.18) it follows that

H2(Li) ≤
( ∏
σ∈Gal(N/Q)

||σ(Li)||2
)1/d

=
( ∏
σ∈Gal(N/Q)

||Lσ∗(i)||2
)1/d

≤
√
n(2n)n+1H∗(F ) .

(ii). By Schmidt’s result [17], p. 203 the semi-discriminant

D(F ) :=
∏

(j1,...,jn)

|det (Lj1 , . . . , Ljn)|

is a positive integer, where the product is taken over all ordered n-tuples (j1, . . . , jn)
for which det (Lj1 , . . . , Ljn) 6= 0. Further, by (4.17) we have for each such n-tuple that
|det (Lj1 , . . . , Ljn)| ≤ 2H∗(F ). Denote by J the collection of all unordered subsets
{j1, . . . , jn} of {1, . . . , r} for which det (Lj1 , . . . , Ljn) 6= 0. Then J has cardinality
≤
(
r
n

)
. Hence

|det (Li1 , . . . , Lin)| ≥
∏

{j1,...,jn}∈J

|det (Lj1 , . . . , Ljn)| · (2H∗(F ))1−(rn)

= |D(F )|1/n!(2H∗(F ))1−(rn) ≥ (2H∗(F ))1−(rn). �
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Below we have stated our basic tool for dealing with the large solutions of (1.5). As
before, ||x|| denotes the maximum norm of x. After the proof of Proposition 2, we
will not use anymore Euclidean heights.

Proposition 2. Let Li1 , . . . , Lin be linearly independent linear forms among
L1, . . . , Lr and let 0 < δ ≤ 1. Then the set of primitive x ∈ Zn with

|Li1(x) · · ·Lin(x)| ≤ ||x||−δ , (6.5)

||x|| ≥ (eH∗(F ))(4r)n+1/δ (6.6)

is contained in the union of not more than

16(n+10)2
· δ−2n−4 log(4r) · log log(4r) (6.7)

proper linear subspaces of Qn.

Proof. Inequality (6.2) does not change if the linear forms M1, . . . ,Mn are replaced
by constant multiples. Therefore, we may replace (6.1) by the weaker condition that
M1, . . . ,Mn are constant multiples of linear forms M ′1, . . . ,M

′
n such that the coeffi-

cients of M ′1, . . . ,M
′
n generate an algebraic number field of degree D.

Let x ∈ Zn be a primitive solution of (6.5), (6.6). Then

|Li1(x) · · ·Lin(x)|

≤ (2H∗(F ))1−(rn) ·
(√
n · ||x||

)−3δ/4 by (6.5), (6.6)

≤ |det (Li1 , . . . , Lin)| ·H2(x)−3δ/4 by H2(x) ≤
√
n · ||x|| and Lemma 8 (ii).

Therefore, (6.2) holds with Li1 , . . . , Lin replacing M1, . . . ,Mn and 3δ/4 replacing δ.
Further, from Lemma 8 (i) and (6.6) it follows that x satisfies (6.3) with Li1 , . . . , Lin
and 3δ/4 replacing M1, . . . ,Mn and δ. Finally, from the construction of L1, . . . , Lr
in Section 4 it follows that for i = 1, . . . , r, Li is a constant multiple of a linear
form with coefficients in K(i), where K(i) is a conjugate of K, whence has degree
r. Therefore, there are constant multiples of Li1 , . . . , Lin whose coefficients generate
a number field of degree at most rn. Now by applying the quantitative Subspace
Theorem with Li1 , . . . , Lin , 3δ/4 and rn replacing M1, . . . ,Mn, δ and D, we obtain
that the set of primitive x ∈ Zn with (6.5) and (6.6) is contained in the union of at
most

16(n+9)2
(4/3δ)2n+4 log(4rn) log log(4rn)

proper linear subspaces of Qn. This is smaller than the quantity in (6.7). ut
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7. Reduction to the Subspace Theorem.

We will use some results from [5] and follow the arguments of Sections 7, 8 of [6]. Like
before, the norm form F satisfies (1.2) and (1.11) and the linear forms L1, . . . , Lr
satisfy (4.13)–(4.19). Further, N ⊂ C is the normal extension of Q chosen in Section 4
and for each σ ∈ Gal(N/Q), (σ∗(1), . . . , σ∗(r)) is the permutation of (1, . . . , r) defined
by (4.21). For σ ∈ Gal(N/Q), I ⊆ {1, . . . , r} we write σ∗(I) := {σ∗(i) : i ∈ I}. We
denote by ι the restriction to N of the complex conjugation on C.

We define a hypergraph H as follows. The vertices of H are the indices 1, . . . , r.
Further, the edges of H are the sets I of cardinality ≥ 2 such that {Li : i ∈ I} is
a linearly dependent set of linear forms (over N), whereas for each proper subset I ′

of I, the set {Li : i ∈ I ′} is linearly independent. As usual, two vertices i, j of H
are said to be connected if there is a sequence of edges I1, . . . , Im of H such that
i ∈ I1, Ij ∩ Ij+1 6= ∅ for j = 1, . . . ,m − 1 and j ∈ Im. Denote by C1, . . . , Ct the
connected components of H. It follows at once from (4.23) that if {Li : i ∈ I} is
linearly (in)dependent, then so is {Li : i ∈ σ∗(I)} for each σ ∈ Gal(N/Q). Hence if I
is an edge of H, then so is σ∗(I) for each σ ∈ Gal(N/Q). This implies that for each
connected component Ci of H and for each σ ∈ Gal(N/Q), σ∗(Ci) is also a connected
component of H.

Lemma 9. Either H is connected, or H has precisely two connected components, C1

and C2, say, and ι∗(C1) = C2.

Proof. We assume that the embedding α 7→ α(1) is the identity on K and that the
index 1 ∈ C1. Define the subfield J of N by

Gal(N/J) = {σ ∈ Gal(N/Q) : σ∗(C1) = C1} .

By (4.21) we have

Gal(N/J) ⊇ {σ ∈ Gal(N/Q) : σ∗(1) = 1} = Gal(N/K);

so J ⊆ K. It is easy to see that for σ ∈ Gal(N/Q), the left coset σGal(N/J) is equal
to {τ ∈ Gal(N/Q) : τ∗(C1) = Ci} where σ∗(C1) = Ci. Moreover, (4.21) implies that
for each index j ∈ {1, . . . , r}, there is a σ ∈ Gal(N/Q) with σ∗(1) = j and so for each
i ∈ {1, . . . , t} there is a σ ∈ Gal(N/Q) with σ∗(C1) = Ci. This implies that there are
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exactly t left cosets of Gal(N/J) in Gal(N/Q), and so

[J : Q] = t . (7.1)

Let V as before be the vector space defined by (1.3). We have

V J = V . (7.2)

This follows from some theory from Section 4, pp. 191–193 of [5]. By (4.16) of the
present paper, the linear form Li is proportional to L′i := α

(i)
1 X1 + · · · + α

(i)
n Xn for

i = 1, . . . , r, so the hypergraph H does not change if in its definition, Li is replaced
by L′i. For the space V and the field L on p. 192 of [5] we take Qn and the field N

of the present paper. In our situation, the quantity u defined by (4.5) of [5] is equal
to 1, and the field K1 defined by (4.3) on p. 192 of [5] is equal to J . Consider the
injective map from K to Nr,

ψ : ξ 7→ (ξ(1), . . . , ξ(r)) .

Note that ψ maps V onto the space {(L′1(x), . . . , L′r(x)) : x ∈ Qn}. Further, from
Lemma 6, (ii) on pp. 192–193 of [5] it follows that ψ maps J onto

Λ(F ) := {c = (c1, . . . , cr) ∈ Nr : for every x ∈ Qn there is an y ∈ Qn

with L′i(y) = ciL
′
i(x) for i = 1, . . . , r} .

Denoting the images of (c1, . . . , cr), (L′1(x), . . . , L′r(x)), (L′1(y), . . . , L′r(y)) under ψ−1

by λ, ξ, η, respectively, we obtain that J is the set of λ ∈ K such that for every ξ ∈ V
there is an η ∈ V with η = λξ. This implies (7.2).

By (7.2) and (1.11) we have that either J = Q in which case it follows from (7.1) that
H is connected; or that J is an imaginary quadratic field, in which case (7.1) implies
that H has precisely two connected components C1 and C2. Moreover, in this case
we have that ι is not the identity on J , so ι∗(C1) 6= C1, which implies ι∗(C1) = C2.
This completes the proof of Lemma 9. ut

Let x ∈ Zn. We write

ui := Li(x) (i = 1, . . . , r), u = (u1, . . . , ur) .

From (4.22) it follows that for each i ∈ {1, . . . , r} we have∏
σ∈Gal(N/Q)

|uσ∗(i)| =
∏

σ∈Gal(N/Q)

|Lσ∗(i)(x)| = |F (x)|d/r , (7.3)
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where as before d = [N : Q]. From (1.11) it follows that if x 6= 0, then F (x) 6= 0 and
so ui 6= 0 for i = 1, . . . , r. Further, (7.3) implies∏

σ∈Gal(N/Q)

|uσ∗(i)| ≥ 1 if x 6= 0. (7.4)

For each subset I of {1, . . . , r} we define a suitable height,

HI(u) :=
( ∏
σ∈Gal(N/Q)

max
i∈I
|uσ∗(i)|

)1/d

.

From (7.4) it follows at once that

HI(u) ≥ 1 for each non-empty subset I of {1, . . . , r}. (7.5)

Further, we have

HI1∪I2(u) ≤ HI1(u) ·HI2(u) if I1 ∩ I2 6= ∅. (7.6)

For if i ∈ I1 ∩ I2, then for each σ ∈ Gal(N/Q) we have

|uσ∗(i)| · max
j∈I1∪I2

|uσ∗(j)| = max
j∈I1∪I2

|uσ∗(i) · uσ∗(j)| ≤ max
j∈I1
|uσ∗(j)| ·max

j∈I2
|uσ∗(j)| ,

whence ( ∏
σ∈Gal(N/Q)

|uσ∗(i)|
)1/d

·HI1∪I2(u) ≤ HI1(u) ·HI2(u),

which together with (7.4) implies (7.6).

In what follows, we assume that the collection of edges of H is not empty. We deal
with the cases that H is connected and that H has two connected components,
simultaneously. Let C1 be a connected component of H (so either the whole vertex
set {1, . . . , r} or one of the two components).

Lemma 10. Let S be a maximal subset of C1 such that {Lj : j ∈ S} is linearly
independent. Then for each non-zero x ∈ Zn there is an edge I of H contained in C1

such that

HS(u) ≤ HI(u)n−1 . (7.7)



On the norm form inequality |F (x)| ≤ h 31

Proof. Fix x ∈ Zn, x 6= 0. We use the argument on p. 208 of [5]. We have

Li =
∑
j∈Di

cijLj for i ∈ C1,

where Di ⊆ S and where cij 6= 0 for j ∈ Di. As has been explained on p. 208 of
[5], for each subset D of S with D 6= ∅, D ( S, there is an i such that Di ∩D 6= ∅,
Di 6⊂ D. This implies in particular that there is an i1 ∈ C1 such that 1 ∈ Di1 and
Di1 has cardinality ≥ 2. If Di1 is not equal to the whole set S, then choose i2 such
that Di1 ∩ Di2 6= ∅ and Di2 6⊂ Di1 . If Di1 ∪ Di2 ( S, then choose i3 such that
Di3 ∩ (Di1 ∪ Di2) 6= ∅ and Di3 6⊂ Di1 ∪ Di2 . Continuing like this, we obtain sets
Di1 , . . . , Dis , such that

S = Di1 ∪ · · · ∪Dis ,

Dih ∩ (Di1 ∪ · · · ∪Dih−1) 6= ∅, Dih 6⊂ Di1 ∪ · · · ∪Dih−1 for h = 2, . . . , s.

Assuming s with this property to be minimal, we have s ≤ |S| − 1 ≤ n− 1 since we
started with a set Di1 of cardinality ≥ 2 and each newly chosen set Dih adds at least
one element to the union of the sets chosen previously. Now clearly, Ih := {ih} ∪Dih

is an edge of H for h = 1, . . . , s, and we have

S ⊂ I1 ∪ · · · ∪ Is, Ih ∩ (I1 ∪ · · · ∪ Ih−1) 6= ∅ for h = 2, . . . , s.

Together with (7.6) this implies HS(u) ≤ HI1(u) · · ·HIs(u). Now this fact and (7.5)
imply that there is an edge I of H such that

HS(u) ≤ HI(u)s ≤ HI(u)n−1 .

This proves Lemma 10. ut

Lemma 11. Suppose that H has edges. Then for every non-zero x ∈ Zn, there is an
edge I of H such that

||x|| ≤ n! · (2n)n
2−1 · 2(rn)−1 ·H∗(F )(

r
n)+n−2 ·HI(u)n−1 . (7.8)

Proof. Let S be the set from Lemma 10 and let x ∈ Zn\{0}. Choose σ ∈ Gal(N/Q)
such that

max
i∈S
|uσ∗(i)|
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is minimal. Then by Lemma 10, there is an edge I of H such that

max
i∈S
|uσ∗(i)| ≤ HI(u)n−1. (7.9)

We show that maxi∈S |uσ∗(i)| = maxi∈S′ |ui| where S′ is a set of cardinality n such
that {Lj : j ∈ S′} is linearly independent and then we estimate ||x|| from above in
terms of maxi∈S′ |ui|.

Define the set S′ by S′ := σ∗(S) if H is connected and S′ := σ∗(S) ∪ ι∗σ∗(S) if
H has two connected components, where ι denotes the complex conjugation on N .
First suppose that H is connected. Then {Lj : j ∈ σ∗(S)} is linearly independent
and it spans {L1, . . . , Lr}. By (1.11), we have that rank {L1, . . . , Lr} = n. Hence
S′ = σ∗(S) has cardinality n. Now suppose that H has two connected components.
Then by Lemma 9 these connected components are σ∗(C1) and ι∗σ∗(C1). We have
that {Lj : j ∈ σ∗(S)} is linearly independent and spans {Lj : j ∈ σ∗(C1)} and that
{Lj : j ∈ ι∗σ∗(S)} is linearly independent and spans {Lj : j ∈ ι∗σ∗(C1)}. Therefore,
{Lj : j ∈ S′} spans {L1, . . . , Lr}. Suppose that {Lj : j ∈ S′} is linearly dependent.
Then S′ contains an edge of H. This edge is contained in one of the two connected
components, so either in S′ ∩ σ∗(C1) = σ∗(S) or in S′ ∩ ι∗σ∗(C1) = ι∗σ∗(S). But
this is impossible, since both sets {Lj : j ∈ σ∗(S)} and {Lj : j ∈ ι∗σ∗(S)} are
linearly independent. It follows that also in the second case, {Lj : j ∈ S′} is linearly
independent and S′ has cardinality n.

If H is connected then clearly maxi∈S′ |ui| = maxi∈S |uσ∗(i)|. If H has two con-
nected components, then it follows from (4.24) and uj = Lj(x) for j = 1, . . . , r that
uι∗σ∗(j) = uσ∗(j) for j ∈ S, hence also maxi∈S′ |ui| = maxi∈S |uσ∗(i)|. By inserting
this into (7.9) we get in both cases,

max
i∈S′
|ui| ≤ HI(u)n−1 .

Therefore, (7.8) follows immediately, once we have shown that

||x|| ≤ n! · (2n)n
2−1 · 2(rn)−1 ·H∗(F )(

r
n)+n−2 ·max

i∈S′
|ui| . (7.10)

Suppose that S′ = {i1, . . . , in}. Let A be the matrix, whose j-th column consists of
the coefficients of Lij , for j = 1, . . . , n. Then x = (ui1 , . . . , uin)A−1. The elements of
A−1 are ±∆ij/∆, where ∆ij is the determinant of the (n−1)×(n−1)-matrix obtained
by removing the j-th row and i-th column from A, and where ∆ = det (Li1 , . . . , Lin).
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Hence

||x|| = | max
k=1,...,n

n∑
j=1

uij ·∆jk/∆| ≤ n ·max
j,k
|∆jk| · |∆|−1 ·max

i∈S′
|ui| . (7.11)

We have

|∆jk| ≤ (n− 1)! ·
(

max
k
||Lk||

)n−1

≤ (n− 1)! · (2n)n
2−1 ·H∗(F )n−1 by (4.18),

|∆|−1 ≤ (2H∗(F ))(
r
n)−1 by Lemma 8, (ii).

By inserting these inequalities into (7.11) we obtain (7.10). This proves Lemma 11.ut

We finally arrive at:

Proposition 3. Suppose that H has edges. Then for every solution x ∈ Zn of (1.5)
with x 6= 0, there are linearly independent linear forms Li1 , . . . , Lin among L1, . . . , Lr
such that

|Li1(x) · · ·Lin(x)| ≤ C · ||x||−1/(n−1) , (7.12)

with C :=
(
n! · (2n)n

2−1 · 2(rn)−1 ·H∗(F )(
r
n)+n−2

) 1
n−1 · h(n+1)/r . (7.13)

Proof. Fix a non-zero solution x ∈ Zn of (1.5). Choose linearly independent linear
forms Li1 , . . . , Lin from L1, . . . , Lr such that the quantity

U := |Li1(x) · · ·Lin(x)|

is minimal.

Let I be the edge from Lemma 11. Suppose that I has cardinality t. Each linear form
from {Lj : j ∈ I} is linearly dependent on the other forms in this set, and these other
forms are linearly independent. Hence {Lj : j ∈ I} has rank t− 1. Choose a subset T
of {1, . . . , r} of cardinality n− t+ 1 such that {Lj : j ∈ T ∪ I} has rank n. Then for
each i ∈ I, the set of linear forms {Lj : j ∈ T ∪ I\{i}} is linearly independent and
has cardinality n.

Pick σ ∈ Gal(N/Q). Choose iσ ∈ I such that |uσ∗(iσ)| = maxi∈I |uσ∗(i)|. Then the
set {Lj : j ∈ σ∗(T ∪ I\{iσ})} is linearly independent and has cardinality n. So by
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the definition of U we have

U ≤
∏

j∈σ∗(T∪I\{iσ})

|uj | =
∏

j∈T∪I
|uσ∗(j)| ·

(
max
i∈I
|uσ∗(i)|

)−1

.

It follows that U is bounded above by the geometric mean of the terms at the right-
hand side for all σ ∈ Gal(N/Q). By (7.3), the fact that T ∪ I has cardinality n + 1
and the definition of HI(u), this geometric mean is equal to |F (x)|(n+1)/rHI(u)−1.
Hence

U ≤ h(n+1)/r ·HI(u)−1 .

By inserting (7.8) we get Proposition 3. ut

8. Proof of Theorem 2.

We combine Propositions 1,2 and 3. We recall that n ≥ 2. It clearly suffices to show
that the set of primitive solutions of (1.5) is contained in the union of not more than

A := (16r)(n+10)2
·max

(
1,
( hn/rP
H∗(F )

) 1
n−1

)
·
(

1 +
log(eh ·H∗(F ))

log eP

)n−1

(8.1)

proper linear subspaces of Qn. We divide the primitive solutions x ∈ Zn of (1.5) into

large solutions, i.e., with ||x|| ≥ e−1
(
eh ·H∗(F )

)(4r)n+2

,

small solutions, i.e., with ||x|| < e−1
(
eh ·H∗(F )

)(4r)n+2

.

We first deal with the large solutions. First suppose that the hypergraph H defined
in Section 7 has no edges. Then by Lemma 9, the hypergraph H has two connected
components {1} and {2} with 2 = ι∗(1). This means that n = 2, r = 2, that the
linear forms L1, L2 are linearly independent and that L2 = L1 in view of (4.24).
Let x be a solution of (1.5). Then |u1| = |u2| ≤ h1/2 where ui = Li(x). Further, we
have x = (u1, u2)A−1, where A is the 2×2-matrix whose i-th column consists of the
coefficients of Li. Now by (4.18) and (4.17), the elements of A−1 have absolute values
at most

max(||L1||, ||L2||)
|det (L1, L2)|

≤ 43H∗(F )/H∗(F ) = 64.
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Hence ||x|| ≤ 128h1/2. So (1.5) does not have large solutions.

Now assume that H does have edges. Let C be the quantity defined by (7.13). Then
by Proposition 3, for every large solution x of (1.5) there are linearly independent
linear forms Li1 , . . . , Lin among L1, . . . , Lr with

|Li1(x) · · ·Lin(x)| ≤ C · ||x||−1/(n−1) ≤ ||x||−1/n . (8.2)

We apply Proposition 2 in Section 6 (with δ = 1/n) to (8.2). Note that the large prim-
itive solutions of (1.5) satisfy (6.6). Thus, on observing that for the set {i1, . . . , in}
we have at most

(
r
n

)
possibilities, we obtain that the set of large primitive solutions

of (1.5) is contained in the union not more than(
r

n

)
· 16(n+10)2

· n2n+4 log 4r · log
(
n log 4r

)
<

1
2
A

proper linear subspaces of Qn, where A is given by (8.1).

We now deal with the small primitive solutions of (1.5) and to this end we apply

Proposition 1 in Section 5. Taking B := e−1
(
eh ·H∗(F )

)(4r)n+2

and observing that

(
1 +

log eB
log eP

)n−1

≤ (4r)(n+2)(n−1)
(

1 +
log(eh ·H∗(F ))

log eP

)n−1

,

we infer that the set of small primitive solutions of (1.5) is contained in the union of
not more than

(300rn)n · (4r)(n+2)(n−1) ·max

(
1,
( hn/rP
H∗(F )

) 1
n−1

)
·
(

1 +
log(eh ·H∗(F ))

log eP

)n−1

<
1
2
A

proper linear subspaces of Qn. It follows that indeed, the set of all primitive solutions
of (1.5) is contained in the union of not more than A proper linear subspaces of Qn.
This proves Theorem 2. ut
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