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Symmetric improvements of Liouville’s
inequality: A survey

Jan-Hendrik Evertse ∗

Abstract. Let K1, K2 be algebraic number fields of degrees r ≥ 3, s ≥ 3, respectively
such that K1K2 has degree rs. Denote the conjugates of α ∈ K1 by α(1), . . . , α(r) and
those of β ∈ K2 by β(1), . . . , β(s). Let E be a subset of {(i, j) : i = 1, . . . , r, j = 1, . . . , s}.
According to Liouville’s inequality we have

∏
(i,j)∈E |α

(i) − β(j)| ≥ 2−rsM(α)−sM(β)−r

for α, β with Q(α) = K1, Q(β) = K2, where M(·) denotes the Mahler measure of an
algebraic number. We are interested in the problem whether there exists a symmetric
improvement of this inequality, i.e., whether we can replace both exponents r, s at the
right-hand side by smaller values. In this paper we give an overview of some (ineffective)
results related to this problem.

1991 Mathematics Subject Classification: 11J68.

1. Introduction

If f(X) = a(X − α(1)) · · · (X − α(r)) is the minimal polynomial of an algebraic
number α (i.e., with coefficients in Z having gcd 1) then the Mahler measure of α
is defined by

M(α) := |a|
r∏
i=1

max(1, |α(i)|) .

The generalisation of Liouville’s inequality to number fields states that if K is an
algebraic number field and α has degree r over K, then

|α− β| ≥ c(α,K) ·M(β)−r for β ∈ K,

where c(α,K) is an effective constant depending only on K and α. ¿From a
generalisation of Dirichlet’s theorem to number fields it follows that the exponent
r cannot be replaced by a number ≤ 2 (cf. [10], p. 253, Thm. 2A) if α ∈ R and
K ⊂ R. On the other hand, a generalisation by LeVeque [8] (Chap. 4) of Roth’s
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theorem [9] states that for every algebraic number α and every δ > 0 there are
only finitely many β ∈ K with

|α− β| < M(β)−2−δ .

We now consider symmetric analogues of these results. Let K1,K2 be number
fields satisfying

[K1K2 : K2] = r , [K1K2 : K1] = s , (1.1)

where K1K2 denotes the composite of K1, K2. Then the symmetric version of
Liouville’s inequality states that

|α− β| ≥ 2−[K1K2:Q]M(α)−sM(β)−r for α, β with Q(α) = K1,Q(β) = K2.
(1.2)

In 1982, Schmidt [11] conjectured the following symmetric version of Roth’s the-
orem: for every δ > 0 there are only finitely many pairs α, β with

|α− β| <
(

max(M(α),M(β))
)−2−δ

, Q(α) = K1, Q(β) = K2, α 6= β. (1.3)

This conjecture is as yet unproved. Some evidence for this conjecture is given by
a result of Bombieri and van der Poorten [1], which implies that there are positive
numbers c1(r, s, δ), c2(r, s, δ), increasing to infinity as δ ↓ 0, r → ∞ or s → ∞,
such that (1.3) has only finitely many solutions with

M(β) > M(α)c1(r,s,δ) or M(α) > M(β)c2(r,s,δ) . (1.4)

Bombieri and van der Poorten proved their result by means of a suitable adaptation
of Roth’s argument. A similar result may be deduced by Vojta’s method [12] which
uses Schmidt’s Subspace theorem.

Since we were not able to prove Schmidt’s conjecture, we tried to prove weaker
so-called symmetric improvements of Liouville’s inequality (1.2). These are finite-
ness results for inequalities of the type

|α− β| ≤
(
Ψ(M(α),M(β))

)−1 in α, β with Q(α) = K1,Q(β) = K2,

where Ψ is a function with

lim
max(x,y)→∞

Ψ(x, y)
xsyr

= 0 . (1.5)

Here we do not wish to impose restrictions on M(α) and M(β) such as (1.4).
Note that Schmidt’s conjecture stated above yields a symmetric improvement of
Liouville’s inequality only if r ≥ 3 and s ≥ 3. In [5] we proved the following much
weaker symmetric improvement. Assume K1,K2 are linearly disjoint, i.e.,

[K1K2 : Q] = [K1 : Q][K2 : Q] . (1.6)

Further assume

[K1 : Q] = [K1K2 : K2] = r ≥ 3, [K2 : Q] = [K1K2 : K1] = s ≥ 3. (1.7)
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Theorem 1. The inequality

|α− β| ≤
(
M(α)−sM(β)−r

)1− 1
1436 in α, β with Q(α) = K1,Q(β) = K2

has only finitely many solutions.

It is reasonable to assume that r ≥ 3, s ≥ 3 since otherwise not even Schmidt’s
conjecture would give a symmetric improvement of Liouville’s inequality. Condi-
tion (1.6) is unnatural but it is necessary in the proof.

We consider a more general situation. We continue to assume (1.6), (1.7).
Let α 7→ α(i) (i = 1, . . . , r) denote the isomorphic embeddings of K1 into C and
β 7→ β(j) (j = 1, . . . , s) the isomorphic embeddings of K2 into C. Let

E ⊆ {(i, j) : i = 1, . . . , r, j = 1, . . . , s}

be any non-empty subset. A generalisation of Liouville’s inequality (1.2) states
that ∏

(i,j)∈E

|α(i) − β(j)| ≥ 2−rsM(α)−sM(β)−r

for α, β with Q(α) = K1, Q(β) = K2 .

(1.8)

Again we are interested in symmetric improvements of this inequality, i.e., finite-
ness results for inequalities of the type∏

(i,j)∈E

|α(i) − β(j)| ≤
(
Ψ(M(α),M(β))

)−1

in α, β with Q(α) = K1, Q(β) = K2 ,

(1.9)

where Ψ is a function with (1.5).
In view of Schmidt’s conjecture one might expect that for “small” sets E , in-

equality (1.9) has only finitely solutions if Ψ(x, y) = max(x, y)2+δ, δ > 0, that the
function Ψ has to be chosen larger if E is larger and that finally no symmetric
improvement of (1.8) exists if E is too large. At the moment we are not able to
pose a precise conjecture about the best possible symmetric improvement, i.e.,
the smallest function Ψ for a given set E . Below we have stated some theorems
giving far from optimal symmetric improvements of (1.8). These results deal with
inequalities ∏

(i,j)∈E

|α(i) − β(j)| ≤
(
M(α)−sM(β)−r)

)1−c
in α, β with Q(α) = K1, Q(β) = K2

(1.10)

with positive, but very small values of c.
We first recall a result from [5]. A pair (i, j) with 1 ≤ i ≤ r, 1 ≤ j ≤ s is

called real if both maps α 7→ α(i), β 7→ β(j), defined on K1, K2, respectively,
have their images contained in R. The pair (i, j) is called complex if at least
one of these maps does not have its image contained in R. For each complex
pair (i, j) there is a pair (i′, j′) such that α(i′), β(j′) are the complex conjugates



4 Jan-Hendrik Evertse

of α(i), β(j), respectively for all α ∈ K1, β ∈ K2. We showed that if E has the
property that whenever a complex pair (i, j) belongs to E then also (i′, j′) ∈ E , and
if E has cardinality |E| < 1

3rs = 1
3 [K1K2 : Q], then (1.10) has only finitely many

solutions for c = 1
718 ·

rs−3|E|
rs+3|E| . On the other hand we showed that if E is the full set

{(i, j) : i = 1, . . . , r, j = 1, . . . , s} then for every c > 0 (1.10) has infinitely many
solutions. In fact, we constructed infinitely many solutions by picking arbitrary
α0, β0 with Q(α0) = K1, Q(β0) = K2 and then showing that there are infinitely
many a ∈ Z such that α := α0 + a, β := β0 + a is a solution of (1.10). So roughly
speaking, we showed that there is a symmetric improvement of (1.8) if E is “small”
and that there is no such symmetric improvement if E consists of all pairs (i, j).

We recently succeeded in giving a precise description of the collection of sets
E for which (1.8) has a symmetric improvement. We view the set {(i, j) : i =
1, . . . , r, j = 1, . . . , s} as an r×s-matrix of which i indexes the rows and j the
columns. A real row is a set {(i, 1), . . . , (i, s)} such that α 7→ α(i) maps K1 into
R. A real column is a set {(1, j), . . . , (r, j)} such that β 7→ β(j) maps K2 into R.
Let Ec denote the complement of E in {(i, j) : i = 1, . . . , r, j = 1, . . . , s}.

Theorem 2. Assume that K1, K2 satisfy (1.6), (1.7). Further, assume that Ec 6=
∅, that Ec is not contained in a real row and that Ec is not contained in a real
column. Then for

c =
1

718(r + s)2
(1.11)

inequality (1.10) has only finitely many solutions.

If Ec does not satisfy the conditions of Theorem 2 then basically there is no
symmetric improvement of Liouville’s inequality:

Theorem 3. Assume that K1, K2 satisfy (1.6), (1.7). Further, assume that Ec =
∅ or that Ec is contained in a real row or that Ec is contained in a real column.
Then for every c > 0, inequality (1.10) has infinitely many solutions.
More precisely, if for instance Ec 6= ∅ and Ec is contained in a real row, then for
every c > 0, (1.10) has infinitely many solutions with

r − 2
s
− c < logM(α)

logM(β)
<
r − 2
s

+ c . (1.12)

In Section 2 we will sketch some of the ideas behind the proofs of Theorems
2 and 3. The complete proofs of p-adic generalisations of Theorems 2 and 3 are
given in [6]. We would like to mention here that both the proofs of Theorems 2 and
3 use Schmidt’s Subspace theorem. Hence Theorem 2 is ineffective. A basic flaw
of our methods of proof is that we have to assume (1.6), (1.7). One would expect
that these conditions can be relaxed to [K1K2 : K2] = r ≥ 3, [K1K2 : K1] = s ≥ 3,
say. The value 1/718(r + s)2 for c in Theorem 2 arises from the proof and has no
special meaning. Very likely, the dependence on r and s is not best possible.

Theorem 3 states that (1.10) has infinitely many solutions with logM(α)
logM(β) lying

in a very specific interval. The next result, which is just a straightforward conse-
quence of a theorem of Corvaja ([2], p. 13, Thm. 2) implies that (1.10), and in
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fact some much stronger inequality, has only finitely many solutions if we require
logM(α)/ logM(β) to be very large or very small. This result may be viewed as
an explicit version of Vojta’s “Roth’s theorem with moving targets.” [12]

Theorem 4. Let K1,K2 be algebraic number fields of degrees r ≥ 1, s ≥ 1, re-
spectively and let E be any non-empty subset of {(i, j) : i = 1, . . . , r, j = 1, . . . , s}.
Further, let

c(r, s, δ) = s · exp(104δ−2 log 6r log(4δ−1 log 6r)) . (1.13)

Then for every δ > 0, the inequality∏
(i,j)∈E

|α(i) − β(j)| ≤M(β)−2−δ

has only finitely many solutions with

Q(α) = K1, Q(β) = K2, M(β) > M(α)c(r,s,δ) .

In Section 3 we deduce Theorem 4 from Corvaja’s result.

2. Sketches of the proofs of Theorems 2 and 3

The Mahler measure of F (X) = a(X − α(1)) · · · (X − α(r)) ∈ Z[X] is defined by

M(F ) = |a|
∏r
i=1 max(1, |α(i)|). For F ∈ Z[X] of degree r and

(
a b
c d

)
∈ SL2(Z)

we define the polynomial FU (X) = (cX + d)rF (aX+b
cX+d ). The resultant of F (X) =

a(X − α(1)) · · · (X − α(r)) and G(X) = b(X − β(1)) · · · (X − β(s)) is defined by

R(F,G) = asbr
r∏
i=1

s∏
j=1

(α(i) − β(j)) .

R(F,G) is a rational integer which is non-zero if and only if F and G have no
common factor. Further we have:

|R(F,G)| ≤ 2rsM(F )sM(G)r ; (2.1)
R(FU , GU ) = R(F,G) for U ∈ SL2(Z). (2.2)

Now let K1, K2 be algebraic number fields with (1.6), (1.7). Let α, β be numbers
with Q(α) = K1 and Q(β) = K2. Further, let F (X) = a(X −α(1)) · · · (X −α(r)),
G(X) = b(X−β(1)) · · · (X−β(s)) be the minimal polynomials of F , G, respectively.
From (1.6) it follows that α, β are non-conjugate, hence F and G have no common
factor. Let E be a non-empty subset of {(i, j) : i = 1, . . . , r, j = 1, . . . , s}. We
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have ∏
(i,j)∈E

|α(i) − β(j)| ≥
∏

(i,j)∈E

|α(i) − β(j)|
max(1, |α(i)|) max(1, |β(j)|)

≥ 2−rs
r∏
i=1

s∏
j=1

|α(i) − β(j)|
max(1, |α(i)|) max(1, |β(j)|)

= 2−rs|R(F,G)| ·M(F )−sM(G)−r

(2.3)

on multiplying both numerator and denominator with asbr. By inserting the
trivial lower bound |R(F,G)| ≥ 1, following from the fact that R(F,G) is a non-
zero integer, we get Liouville’s inequality (1.8). In the proof of Theorem 2 we used
the following non-trivial lower bound for |R(F,G)| which has been proved in [5].
In fact, the proof of this lower bound uses various other results, proved in [4], [7].
For a sketchy overview of the proof we refer to [3]. The foundation is Schmidt’s
Subspace theorem.

Theorem 5. Let F,G ∈ Z[X] be polynomials of degrees r ≥ 3, s ≥ 3, respectively
such that FG has splitting field L and such that FG has no multiple zeros. Then
there is a matrix U ∈ SL2(Z) such that

|R(F,G)| ≥ C(r, s, L)
(
M(FU )sM(GU )r

) 1
718 (2.4)

where C(r, s, L) is an ineffective positive number depending only on r, s, L.

The matrix U in the right-hand side of (2.4) is necessary because of (2.2).
Let again K1,K2 be number fields with (1.6), (1.7), E a subset of {(i, j) :

i = 1, . . . , r, j = 1, . . . , s}, α, β numbers with Q(α) = K1, Q(β) = K2 and F ,
G their respective minimal polynomials. Theorem 2 follows from Theorem 5 and
the elementary Lemma 6 below which has been proved in [6]. Below, constants
implied by �, � depend on K1, K2 only.

Lemma 6. Suppose that Ec 6= ∅, that Ec is not contained in a real row and that
Ec is not contained in a real column. Then for every U ∈ SL2(Z) there is a pair
(i0, j0) ∈ Ec with

|α(i0) − β(j0)|
max(1, |α(i0)|) max(1, |β(j0)|)

� M(FU )r+sM(GU )r+s

M(F )1/rM(G)1/s
. (2.5)

Now Theorem 2 is deduced as follows. Put fij := |α(i)−β(j)|
max(1,|α(i)|) max(1,|β(j)|) . Let

0 < θ < 1. Let U be the matrix from Theorem 5 and, assuming E sastisfies the
conditions of Theorem 2, let (i0, j0) ∈ Ec be the pair from Lemma 6. Then from
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fij � 1, (2.4), (2.5), M(F ) = M(α), M(G) = M(β) it follows∏
(i,j)∈E

|α(i) − β(j)| �
∏

(i,j)∈E

fij

�
( r∏
i=1

s∏
j=1

fij

)
f−θi0,j0 =

|R(F,G)|
M(F )sM(G)r

· f−θi0,j0

�
((

M(FU )sM(GU )r
) 1

718

M(F )sM(G)r

)
·
(

M(F )1/rM(G)1/s

M(FU )r+sM(GU )r+s

)θ
�
(
M(α)−sM(β)−r

)1− 1
718(r+s)2

taking θ = min(r,s)
718(r+s) so that the exponents on M(FU ), M(GU ) become non-

negative. This implies Theorem 2. ut

We now sketch the proof of Theorem 3. In what follows, we take c > 0 and
we choose δ > 0 sufficiently small in terms of c. Suppose for instance that Ec 6= ∅
and that Ec is contained in the real row {(1, 1), . . . , (1, s)} where α 7→ α(1) is a
real embedding of K1. Pick any α0, β0 with Q(α0) = K1, Q(β0) = K2. Constants
implied by �, � depend only on K1, K2, α0, β0 and c.

We start with the observation that for every Q� 1 there is a non-zero vector
(x, y) ∈ Z2 satisfying the inequalities

|x+ α
(1)
0 y| � Q−1, |x+ α

(i)
0 y| � Q for i = 2, . . . , r,

|x+ β
(j)
0 y| � Q for j = 1, . . . , s.

Indeed, using α(1)
0 ∈ R (which is essential) one shows that these inequalities define

a symmetric convex body in R2 of volume�� 1 and then the existence of a non-
zero integral solution follows from Minkowski’s theorem. More precisely, using
the (two-dimensional) Subspace theorem and Minkowski’s theorem on successive
minima one shows that for every Q� 1 the system of inequalities

Q−1−δ ≤ |x+ α
(1)
0 y| ≤ Q−1+δ, Q1−δ ≤ |x+ α

(i)
0 y| ≤ Q1+δ for i = 2, . . . , r,

Q1−δ ≤ |x+ β
(j)
0 y| ≤ Q1+δ for j = 1, . . . , s

}
(2.6)

has two linearly independent solutions in Z2, (a, b) and (c, d), say, which moreover
satisfy

|ad− bc| � 1. (2.7)

For further details we refer to [6].
Choose Q � 1 and corresponding linearly independent vectors (a, b), (c, d)

satisfying (2.6) and (2.7) and put α := (a+bα0)/(c+dα0), β := (a+bβ0)/(c+dβ0).
By (2.7) we have M(α) ��

∏r
i=1 max(|a + bα

(i)
0 |, |c + dα

(i)
0 |) and together with

(2.6) this yields

Qr−2−rδ �M(α)� Qr−2+rδ . (2.8)
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In a very similar way one shows

Qs−sδ �M(β)� Qs+sδ. (2.9)

Provided δ is sufficiently small this implies

r − 2− rδ
s+ sδ

� logM(α)
logM(β)

� r − 2 + rδ

s− sδ
. (2.10)

Since (a, b), (c, d) satisfy (2.6) and (2.7) we have for each pair (i, j),

|α(i) − β(j)| =

∣∣∣∣∣a+ bα
(i)
0

c+ dα
(i)
0

− a+ bβ
(j)
0

c+ dβ
(j)
0

∣∣∣∣∣ =
|ad− bc| · |α(i)

0 − β
(j)
0 |

|c+ dα
(i)
0 | · |c+ dβ

(j)
0 |

�

{
Q2δ if i = 1 ,
Q−2+2δ if i 6= 1 .

Now using that E contains all pairs (i, j) with i = 2, . . . , r, j = 1, . . . , s (which
follows from our assumption Ec ⊂ {(1, 1), . . . , (1, s)}) and (2.8), (2.9) we get∏

(i,j)∈E

|α(i) − β(j)| � Q−(r−2)s−sr+2rsδ �
(
M(α)−sM(β)−r

)1−c
assuming δ is sufficiently small. Now making δ even smaller if necessary and then
letting Q → ∞ we get in view of (2.10) infinitely many solutions (α, β) of (1.10)
with (1.12). This proves Theorem 3. Note that we started with an arbitrary pair
(α0, β0) and then showed that the orbit (a+bα0

c+dα0
, a+bα0
c+dα0

) (a, b, c, d ∈ Z, ad− bc 6= 0)
contains infinitely many solutions. Thus, there are infinitely many orbits, each
having infinitely many solutions. ut

3. Proof of Theorem 4.

Let K be an algebraic number field and MK its set of places. For every place
v ∈ MK , choose a normalised absolute value || · ||v such that if v is archimedean,
then the restriction of || · ||v to Q is | · |[Kv :R]/[K:Q] and if v lies above the prime
number p then the restriction of || · ||v to Q is | · |[Kv :Qp]/[K:Q]

p . We define the
absolute height of an algebraic number α by H(α) = M(α)1/degα. We need the
following result of Corvaja:

Theorem 7. Let n ≥ 1 and N ≥ 362 log 6n be integers. Let S1, . . . , Sn be pairwise
disjoint finite sets of places on K and S = S1 ∪ · · · ∪ Sn. Further, let µv (v ∈ S)
be non-negative reals. For tuples of algebraic numbers (β, α1, . . . , αn) put

A(β, α1, . . . , αn) := H(β) ·
(
4 ·

n∏
h=1

H(αh)3/n
)2N !

.
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Suppose there are N tuples (βk, α1k, . . . , αn,k) ∈ Kn+1 (k = 1, . . . , N) satisfying

0 < ||αhk − βk||v ≤ A(βk, α1k, . . . , αnk)−µv

for k = 1, . . . , N, v ∈ Sh, h = 1, . . . , n, (3.1)
αh1,k 6= αh2,k for 1 ≤ h1 < h2 ≤ n, k = 1, . . . , N , (3.2)

logA(βk, α1k, . . . , αnk)
logA(βk+1, α1,k+1, . . . , αn,k+1)

<
1

48nN2N !
for k = 1, . . . , N − 1. (3.3)

Then ∑
v∈S

µv <
9
√

log 6n√
N

. (3.4)

Proof. This is almost Thm. 2 of Corvaja [2], p. 13. Corvaja has the technical
condition n ≥ 3. If n < 3, Corvaja’s condition can be satisfied by adding two
new groups of non-archimedean places Sn+1, Sn+2 such that ||βk||v = 1 for k =
1, . . . , N , v ∈ Sn+1 ∪ Sn+2 and taking αh ∈ {−1, 0, 1}, µv = 0 for v ∈ Sh,
h = n + 1, n + 2. Thus, in Corvaja’s Thm. 2 the number n must be replaced
everywhere by n+2 and we have taken care of that by enlarging some of Corvaja’s
constants. Further, Corvaja assumes µv ≤ 1 for v ∈ S. If this is not satisfied one
may replace K by a sufficiently large finite extension K ′ and the set of places
Sh by the set S′h consisting of the continuations to K ′ of the places in Sh. Put

S′ = S′1 ∪ · · · ∪ S′n and µv′ := µv ·
[K′
v′ :Kv ]

[K′:K] for v′ ∈ S′ lying above v ∈ S. Then
(3.1)–(3.4) imply the same conditions with K,Sh, v, µv replaced by K ′, S′h, v

′, µv′ ,
respectively. and by taking K ′ appropriately we can achieve µv′ ≤ 1 for v′ ∈ S′.
Finally, in Corvaja’s Thm. 2 there is a system of inequalities (1.1) which is similar
to our system (3.1) except that it has at the right-hand side <-signs instead of ≤-
signs. An inspection of Corvaja’s proof (cf. pp. 35–40 of [2]) learns that Corvaja’s
Thm. 2 remains correct if these <-signs are replaced by ≤-signs.

In his original proof, Roth [9] constructed an auxiliary polynomial in N vari-
ables having large index at points (αh, . . . , αh) (h = 1, . . . , n) with equal coordi-
nates. Following Bombieri and van der Poorten [1], Corvaja constructed instead
a polynomial in N variables having large index at points (αh1, . . . , αhN ) with
distinct coordinates. We mention that Roth and Bombieri and van der Poorten
used Siegel’s lemma to construct the auxiliary polynomial, whereas Corvaja used
interpolation determinants as introduced by Laurent in transcendence theory. ut

The deduction of Theorem 4 from Theorem 7 is pretty much routine but we do
not wish to leave the technical details to the reader. Assume Theorem 4 is false.
Then there are algebraic number fields K1,K2 of degrees r ≥ 1, s ≥ 1, respectively,
a number δ with 0 < δ < 1 and some set E ⊂ {(i, j) : i = 1, . . . , r, j = 1, . . . , s} for
which there are infinitely many pairs (α, β) satisfying∏
(i,j)∈E

|α(i) − β(j)| ≤M(β)−2−δ, Q(α) = K1, Q(β) = K2, M(β) ≥M(α)c(r,s,δ) .
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Then clearly, there are infinitely many pairs (α, β) with

r∏
i=1

s∏
j=1

min
(
1, |α(i) − β(j)|

)
≤M(β)−2−δ ,

Q(α) = K1, Q(β) = K2, M(β) ≥M(α)c(r,s,δ) .

(3.5)

Let (α, β) be a solution of (3.5). For each j = 1, . . . , s, choose ij ∈ {1, . . . , r} such
that

|α(ij) − β(j)| ≤ |α(i) − β(j)| for i = 1, . . . , r. (3.6)

By the triangle inequality, we have |α(i) − α(ij)| ≤ |α(ij) − β(j)|+ |α(ij) − β(j)| ≤
2|α(i) − β(j)|, so |α(i) − β(j)| ≥ 1

2 |α
(ij) − α(i)|. Letting F (X) = a ·

∏r
i=1(X − α(i))

denote the minimal polynomial of α, its discriminant, which is given by D(F ) =
a2r−2

∏
1≤k<l≤r(α

(k) − α(l))2, is a non-zero rational integer. Hence

s∏
j=1

∏
i 6=ij

min(1, |α(i) − β(j)|) ≥
s∏
j=1

∏
i 6=ij

|α(i) − α(ij)|
2 max(1, |α(i)|) max(1, |α(ij)|)

≥
∏

1≤k<l≤r

|α(k) − α(l)|
2 max(1, |α(k)|) max(1, |α(l)|)

= 2−
r(r−1)

2
|D(F )|1/2

M(α)r−1

≥ 2−
r(r−1)

2 M(α)1−r .

Together with (3.5) this implies

s∏
j=1

min(1, |α(ij) − β(j)|) ≤ 2
r(r−1)

2 M(α)r−1M(β)−2−δ . (3.7)

Choose a normal, totally complex extension K of Q containing K1K2. Suppose
[K : Q] = d and let σ1, . . . , σd be the isomorphic embeddings of K into C. Then
d is even and we may assume without loss of generality that σk+d/2 = σk is
the complex conjugate of σk for k = 1, . . . , d/2. Thus, the normalised absolute
values on K corresponding to the archimedean places are || · ||vk = |σk(·)|2/d
(k = 1, . . . , d/2). Denote the set of archimedean places {v1, . . . , vd/2} by S. Put
ik := ij if σk is a continuation to K of the embedding β 7→ β(j) of K2. (3.6)
implies |α(ik) − σk(β)| ≤ |α(i) − σk(β)| for i = 1, . . . , r, k = 1, . . . , d. Hence for
k = 1, . . . , d/2 we have

|α(ik+d/2) − σk+d/2(β)| = min
i=1,...,r

|α(i) − σk(β)| = |α(ik) − σk(β)| .
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Now, noting that each map β 7→ β(j) can be extended to precisely [K : K2] = d/s
isomorphisms σk, we can rewrite (3.7) as

d/2∏
k=1

min(1, |α(ik) − σk(β)|2) =
d∏
k=1

min(1, |α(ik) − σk(β)|)

≤
(
2
r(r−1)

2 M(α)r−1M(β)−2−δ)d/s
and since α has degree [K1 : Q] = r and β has degree [K2 : Q] = s, this can be
translated into∏

v∈S
min(1, ||α(iv) − β||v) ≤ 2

r(r−1)
2s H(α)

r(r−1)
s H(β)−2−δ (3.8)

with α(iv) := σ−1
k (α(ik)) if v = vk.

Denote by A the left-hand side of (3.8). Choose θ > 0 sufficiently small. There
is a finite set V ⊂ [0, 1]d/2 such that for every (xv : v ∈ S) ∈ [0, 1]d/2 there is a
point (λv : v ∈ S) ∈ V with λv ≤ xv ≤ λv + θ for v ∈ S. In particular, there is a
(λv : v ∈ S) ∈ V with

Aλv+θ ≤ min(1, ||α(iv) − β||v) ≤ Aλv for v ∈ S.

Clearly, ∑
v∈S

λv ≥ 1− sθ (3.9)

and, in view of (3.8),

min(1, ||α(iv) − β||v) ≤
(

2
r(r−1)

2s H(α)
r(r−1)
s H(β)−2−δ

)λv
for v ∈ S.

Let S′ be the set of v with λv > 0 and partition S′ into subsets S1, . . . , Sn such
that v1, v2 belong to the same subset if and only if iv1 = iv2 . Note that n ≤ r. Put
ih := iv for v ∈ Sh. Then finally the latter system of inequalities can be rewritten
as

||α(ih) − β||v ≤
(

2
r(r−1)

2s H(α)
r(r−1)
s H(β)−2−δ

)λv
for v ∈ Sh, h = 1, . . . , n.

(3.10)
We now pick indices iv (v ∈ S) and a tuple (λv : v ∈ S) from the finite set V

such that (3.5) has infinitely many solutions (α, β) with (3.10). Choose the integer

N := [1300δ−2 log 6r] . (3.11)

Thus, the condition N > 362 log 6n of Theorem 7 is satisfied. Further we have
A(β, α(i1), . . . , α(in)) = H(β) · (4H(α)3)2N !. ¿From the assumptions M(β) ≥
M(α)c(r,s,δ), 0 < δ < 1 it follows that H(β)δ/3 ≥ H(α)(2+ 1

2 δ)6N !+
r(r−1)
s and so

for M(β) sufficiently large we have

2
r(r−1)

2s H(α)
r(r−1)
s H(β)−2−δ ≤ A(β, α(i1), . . . , α(in))−2−δ/2 .
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Further, since M(β) > M(α), the number β is not equal to any conjugate of α.
By inserting these facts into (3.10), we infer that the system of inequalities

0 < ||α(ih) − β||v ≤ A(β, α(i1), . . . , α(in))−λv(2+δ/2) (v ∈ Sh, h = 1, . . . , n)
(3.12)

has infinitely many solutions (α, β) with Q(α) = K1, Q(β) = K2.
We can now apply Theorem 7. From the infinitely many solutions of (3.12) we

select N , (α1, β1), . . . , (αN , βN ), say, such that (βk, α1k, . . . , αnk) with αhk = α
(ih)
k

satisfy (3.3). Thus we have obtained N tuples in Kn+1 satisfying (3.2), (3.3) and
(3.1) with S′ replacing S and with µv = λv(2 + δ/2) for v ∈ S′. From (3.9), (3.11)
it follows that for θ sufficiently small,∑

v∈S′
µv =

∑
v∈S′

λv(2 + δ/2) ≥ (1− sθ)(2 + δ/2) > 2 +
9
√

log 6n√
N

.

But this contradicts the conclusion (3.4) of Theorem 7. As we arrived at this
contradiction starting with the assumption that Theorem 4 is false, this completes
the proof of Theorem 4. ut
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