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LIOUVILLE’S INEQUALITY
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Abstract. Let K1, K2 be finite extensions of a number field K. For every place w of the

composite K1K2 we choose a normalised absolute value | · |w such that the product formula

is satisfied. Define the height H(α) =
∏
w max(1, |α|w) for α ∈ K1K2. Let T be a finite set

of places of K1K2. Liouville’s inequality states that
∏
w∈T |α− β|w �

(
H(α)H(β)

)−1 for

α, β ∈ K1K2 with α 6= β. We consider inequalities (*)
∏
w∈T |α−β|w ≤

(
H(α)H(β)

)−1+κ

in two unknowns α, β with K(α) = K1, K(β) = K2 where κ > 0. Under certain conditions

imposed on K1, K2 (i.e., [K1 : K] ≥ 3, [K2 : K] ≥ 3, [K1K2 : K] = [K1 : K][K2 : K]) we

shall describe the collection of sets of places T for which there is a κ > 0 such that (*) has

only finitely many solutions. Our proof goes back to the p-adic Subspace theorem.

1. Introduction.

We have to start with introducing normalised absolute values and heights. Let L be any

algebraic number field and ML its set of places. Denote by Lw the completion of L at a

place w ∈ ML. The set of normalised absolute values | · |w (w ∈ ML) on L is defined by

requiring

|x|w = |x|[Lw:R]/[L:Q] for x ∈ Q if w is archimedean;

|x|w = |x|[Lw:Qp]/[L:Q]
p for x ∈ Q if w lies above the prime number p.

Here | · |p is the p-adic absolute value with |p|p = p−1. The normalised absolute values

satisfy the product formula ∏
w∈ML

|x|w = 1 for x ∈ L\{0}.

Given any other number field K, the set of normalised absolute values | · |v (v ∈ MK) on

K is defined precisely as for L. Thus, we get for every finite extension of number fields
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L/K and every pair v ∈MK , w ∈ML with w lying above v the extension formula

|x|w = |x|[Lw:Kv ]/[L:K]
v for x ∈ K, (1.1)

where Kv denotes the completion of K at v. We define the absolute height of an algebraic

number x by taking any number field L with x ∈ L and putting

H(x) :=
∏

w∈ML

max(1, |x|w) .

By our choice of the normalised absolute values with [L : Q] in the denominators of the

exponents, this quantity is independent of the choice of L.

In what follows, K is an algebraic number field, K1, K2 are finite extensions of K and

K1K2 is their composite. Let T be a finite set of places of K1K2. We deal with numbers

α, β with K(α) = K1, K(β) = K2 and α 6= β. An immediate consequence of the product

formula is the following generalisation of Liouville’s inequality:

∏
w∈T
|α− β|w ≥

∏
w∈T

|α− β|w
max(1, |α|w) max(1, |β|w)

= H(α)−1H(β)−1 ·
∏
w 6∈T

max(1, |α|w) max(1, |β|w)
|α− β|w

≥ 1
2
H(α)−1H(β)−1. (1.2)

In certain situations it is possible to improve upon the exponents of either H(α) or H(β)

or both if the degrees [K1K2 : K1] or [K1K2 : K2] are sufficiently large. For instance, if

r := [K1K2 : K2] ≥ 3, then from S. Lang’s version of Roth’s theorem (cf. [9], Chap. 7) it

follows that for every fixed α with K(α) = K1 and for every δ > 0, there are only finitely

many β with ∏
w∈T
|α− β|w ≤ H(β)−(2/r)−δ , K(β) = K2 . (1.3)

(In Lang’s statement there is an exponent −2 since he uses absolute values normalised with

respect to K2 whereas our absolute values are normalised with respect to K1K2.) This

may be viewed as a one-sided improvement of Liouville’s inequality since for every fixed

α, we have that for all but finitely many β the right-hand side of (1.2) can be replaced by

a power of H(β) with exponent larger than −1.
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We are interested in so-called symmetric improvements of Liouville’s inequality, in which

we allow α to vary through K1 and β through K2 and in which both the exponents on

H(α) and H(β) are larger than −1. More precisely, we consider inequalities∏
w∈T
|α− β|w ≤

(
H(α)H(β)

)−1+κ in α, β with K(α) = K1, K(β) = K2, (1.4)

with κ > 0. Any result stating that such an inequality has only finitely many solutions

is called a symmetric improvement of Liouville’s inequality. We should mention here that

from results of Bombieri and van der Poorten [1], Corvaja [3] (Thm. 2) and Vojta [13] it

follows that there is a real function f with f(x) = o(x) for x→∞ such that (1.3) has only

finitely many solutions (α, β) with K(α) = K1, K(β) = K2 and H(α) ≤ f(H(β)). We are

interested in the truly symmetric situation in which we do not require the height of one of

the numbers H(α), H(β) to be much larger than the other.

We recall a symmetric improvement of Liouville’s inequality from [6]. Assume

[K1K2 : K1] ≥ 3 , [K1K2 : K2] ≥ 3 , (1.5)

[K1K2 : K] = [K1 : K] · [K2 : K] . (1.6)

For instance, for fixed α, Roth’s theorem stated above yields a one-sided improvement of

Liouville’s inequality in terms of H(β) only if [K1K2 : K2] ≥ 3. So in our symmetric

situation it is natural to assume (1.5). Condition (1.6) does not seem to be natural but it

is essential for the proof.

Denote by S the set of places of K lying below the places in T and write

T =
⋃
v∈S

Tv ,

where Tv is the set of places in T lying above v. Define

WT := max
v∈S

∑
w∈Tv

[(K1K2)w : Kv]
[K1K2 : K]

where (K1K2)w denotes the completion of K1K2 at w. Note that always WT ≤ 1 and that

WT = 1 precisely if there is a v ∈ S such that Tv contains all places of K1K2 lying above

v. In [6] (Thm. 4) we showed that if

WT <
1
3
, κ ≤ 1

718
· 1− 3WT

1 + 3WT
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then (1.4) has only finitely many solutions. On the other hand we showed that if WT

assumes the maximal value 1 then for all κ > 0 (1.4) has infinitely many solutions.

The result just mentioned does not deal with sets of places T with 1
3 ≤ WT < 1. The

purpose of this paper is to fill this gap, i.e., to give a precise description of those sets of

places T of K1K2 for which there exists a κ > 0 such that (1.4) has only finitely many

solutions.

We continue with the notation introduced above. We will always denote by v a place of

K, by w a place of K1K2, and by qi a place of Ki, for i = 1, 2. The completion of Ki at

qi is denoted by (Ki)qi . Thus, if w lies above v, then w lies above places q1 of K1 and q2

of K2 which in turn lie above v.

For the fields K1, K2 we assume again (1.5), (1.6) or, equivalently,

r := [K1 : K] ≥ 3, s := [K2 : K] ≥ 3, [K1K2 : K] = [K1 : K][K2 : K] = rs . (1.7)

Again, condition (1.6) is unnatural but necessary for the proof.

As before, T is a finite set of places of K1K2 and we write T = ∪v∈STv, where S consists

of places of K and for v ∈ S, Tv consists of the places in T lying above v. Theorem 1.1

below states in a precise way that there exists a κ > 0 for which (1.4) has only finitely

many solutions if and only if none of the sets Tv (v ∈ S) is “too large.” For v ∈ S, let T cv
denote the set of places of K1K2 which lie above v and do not belong to Tv. Then Tv is

“too large” or, which is the same, T cv is “too small” if

either T cv = ∅;

or there is a place q1 of K1 with (K1)q1 = Kv such that all places in T cv

lie above q1;

or there is a place q2 of K2 with (K2)q2 = Kv such that all places in T cv

lie above q2.


(1.8)
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Theorem 1.1. Assume (1.7). Consider the inequality∏
w∈T
|α− β|w ≤

(
H(α)H(β)

)−1+κ in α, β with K(α) = K1, K(β) = K2. (1.4)

(i). Suppose there is some v ∈ S for which (1.8) holds. Then for every κ > 0, inequality

(1.4) has infinitely many solutions.

(ii). Suppose there is no v ∈ S for which (1.8) holds. Then for every

κ ≤ 1
718(r + s)2

inequality (1.4) has only finitely many solutions.

From Theorem 1.1 we derive the following corollary:

Corollary 1.2. Assume (1.7). For a finite set T of places of K1K2, put

WT := max
v∈S

∑
w∈Tv

[(K1K2)w : Kv]
[K1K2 : K]

,

where S is the set of places of K lying below those in T and Tv is the set of places in T

lying above v for v ∈ S.

(i). If WT < 1−max( 1
r ,

1
s ) then for every κ ≤ 1

718(r+s)2 , inequality (1.4) has only finitely

many solutions.

(ii). There are finite sets T of places of K1K2 with WT = 1 − max( 1
r ,

1
s ) such that for

every κ > 0, inequality (1.4) has infinitely many solutions.

The constant 1
718(r+s)2 in part (ii) of Theorem 1.1 just arises from the proof and has no

special meaning. Very likely, its dependence on r and s is not best possible. We considered

only the problem to prove the existence of some κ > 0 for which (1.4) has only finitely

many solutions. We have not done any attempt to obtain the best possible value for κ.

It would be very interesting to determine, for a given set of places T , the infimum of the

functions Ψ such that the inequality∏
w∈T
|α− β|w ≤ Ψ(H(α),H(β))−1 in α, β with K(α) = K1, K(β) = K2

has only finitely many solutions. It is plausible that this infimum is the smallest if all sets

Tv are small and that it grows larger if one of the sets Tv is made larger. As yet, we are

not able to pose a precise conjecture.
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We deduce Theorem 1.1 from a slightly more general result. Let K be an algebraic number

field and | · |v (v ∈ MK) its set of normalised absolute values. Fix an algebraic closure

K of K and assume that all algebraic extensions of K occurring henceforth are contained

in K. For every v ∈ MK , we fix an algebraic closure Kv of Kv. To be formally correct,

we have to choose an isomorphic embedding ρ : K ↪→ K, and for v ∈ MK we have

to choose isomorphic embeddings σv : K ↪→ Kv, φv : Kv ↪→ Kv, ψv : K ↪→ Kv such

that ψvρ = φvσv. By identifying elements of K,K,Kv with their isomorphic images

we can dispose of the isomorphic embeddings and we get for every v ∈ MK inclusions

K ⊂ K ⊂ Kv, K ⊂ Kv ⊂ Kv. For every v ∈ MK there is a unique extension of | · |v to

Kv which we denote also by | · |v. Note that | · |v is defined on K.

Let again K1, K2 be extensions of K of degrees r, s, respectively. We denote by α 7→ α(i)

(i = 1, . . . , r) the K-isomorphic embeddings of K1 into K and by β 7→ β(j) (j = 1, . . . , s)

the K-isomorphic embeddings of K2 into K. Further, let S be a finite set of places of K.

Take subsets

Ev ⊂ {(i, j) : i = 1, . . . , r, j = 1, . . . , s} (v ∈ S).

Liouville’s inequality can be rephrased as∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|v ≥ 2−rs
(
H(α)H(β)

)−rs
for algebraic numbers α, β with K(α) = K1, K(β) = K2 and α, β non-conjugate over K.

We consider inequalities∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|v ≤
(
H(α)H(β)

)−rs(1−κ)

in α, β with K(α) = K1, K(β) = K2 , (1.9)

with κ > 0.

We view {(i, j) : i = 1, . . . , r, j = 1, . . . , s} as an r×s-matrix of which the rows are indexed

by i and the columns by j. By a Kv-row we mean a subset {(i, 1), . . . , (i, s)} such that

the map α 7→ α(i) maps K1 into Kv. By a Kv-column we mean a subset {(1, j), . . . , (r, j)}
such that β 7→ β(j) maps K2 into Kv. For v ∈ S, let Ecv denote the set of pairs from

{(i, j) : i = 1, . . . , r, j = 1, . . . , s} not belonging to Ev. We prove the following:

Theorem 1.3. Assume

[K1 : K] = r ≥ 3, [K2 : K] = s ≥ 3, K1, K2 are non-conjugate over K. (1.10)
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(i). Suppose there is a v ∈ S for which either Ecv = ∅ or Ecv is contained in a Kv-row or Ecv
is contained in a Kv-column. Then for every κ > 0, (1.9) has infinitely many solutions.

(ii). Suppose for each v ∈ S we have that Ecv 6= ∅, that Ecv is not contained in a Kv-row

and that Ecv is not contained in a Kv-column. Then for every

κ ≤ 1
718(r + s)2

inequality (1.9) has only finitely many solutions.

We consider the special case that K = Q and S = {∞} consists of the infinite place of Q.

To agree with the classical notation, we define the Mahler measure M(α) = H(α)deg (α)

for an algebraic number α. Thus, writing E for E∞, (1.9) becomes∏
(i,j)∈E

|α(i) − β(j)| ≤
(
M(α)sM(β)r

)−1+κ

in α, β with Q(α) = K1, Q(β) = K2 . (1.11)

Note that in this situation, Kv = R and that for instance an R-row is a set {(i, 1), . . . , (i, s)}
such that α 7→ α(i) maps K1 into R. From Theorem 1.3 we obtain at once the following

result which has been stated without proof already in [7]:

Corollary 1.4. Assume that K1, K2 have degrees r ≥ 3, s ≥ 3, respectively, over Q and

that K1, K2 are non-conjugate over Q.

If either Ec = ∅, or Ec is contained in an R-row or Ec is contained in an R-column, then

for every κ > 0, inequality (1.11) has infinitely many solutions.

If on the other hand, Ec 6= ∅, Ec is not contained in an R-row and Ec is not contained

in an R-column, then for every κ ≤ 1
718(r+s)2 , inequality (1.11) has only finitely many

solutions.

In Section 2 we deduce Theorem 1.1 from Theorem 1.3 and Corollary 1.2 from Theorem 1.1.

In the proof of part (i) of Theorem 1.3 we show more precisely, using the p-adic Subspace

theorem, that for every pair α0, β0 with K(α0) = K1, K(β0) = K2, there exist infinitely

many elements α, β of the form α = aα0+c
bα0+d , β = aβ0+c

bβ0+d with a, b, c, d ∈ K, ad−bc 6= 0, such

that (α, β) is a solution of (1.9). The proof of part (ii) uses an (ineffective) lower bound for

resultants obtained in [6] which in turn was a consequence of the p-adic Subspace theorem.

In Section 3 we introduce some notation. Part (i) is proved in Sections 4 and 5 and part

(ii) in Sections 6 and 7.
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2. Deduction of Theorem 1.1 and Corollary 1.2.

We deduce Theorem 1.1 from Theorem 1.3 and then Corollary 1.2 from Theorem 1.1. We

start with some generalities.

As before, K is a number field. Recall that for every place (equivalence class of absolute

values) v ∈ MK we have inclusions K ⊂ K ⊂ Kv, K ⊂ Kv ⊂ Kv. Further, | · |v has been

extended to Kv, hence is defined also on K. We need that numbers γ, δ ∈ Kv which are

conjugate over Kv (i.e., δ = σ(γ) for some Kv-invariant isomorphism σ) have |γ|v = |δ|v.

Let L be a finite extension of K. Denote by γ 7→ γ(k) (k = 1, . . . , t) the K-isomorphic

embeddings of L into K. For a place q of L, denote by Lq the completion of L at q. Fix

v ∈MK and partition {1, . . . , t} into subsets such that k1, k2 belong to the same subset if

and only if for every γ ∈ L, γ(k1), γ(k2) are conjugate over Kv. For the indices k in a given

subset, the absolute values given by |γ(k)|v for γ ∈ L are equal and are all extensions of

the absolute value | · |v on K and therefore represent a place q of L lying above v. In this

way, we obtain all places of L lying above v. Thus, {1, . . . , t} =
⋃
q|v F(q|v), where F(q|v)

consists of the indices k such that the absolute value given by |γ(k)|v for γ ∈ L represents

q and where the union is taken over all places q of L lying above v.

For γ with K(γ) = L, the fields Kv(γ(k)) (k ∈ F(q|v) ) are the isomorphic images of Lq
in Kv. Hence F(q|v) has cardinality [Lq : Kv]. In particular, Lq = Kv if and only if

F(q|v) = {k} for some k such that γ 7→ γ(k) maps L into Kv. By (1.1) we have for the

normalised absolute value on L corresponding to q, |γ|q = |γ(k)|[Lq :Kv ]/[L:K]
v for γ ∈ L,

k ∈ F(q|v).

Proof of Theorem 1.1. Let K1, K2 be finite extensions of K satisfying (1.7). Then

certainly they satisfy condition (1.10) of Theorem 1.3. As before, by α 7→ α(i) (i = 1, . . . , r)

we denote the K-isomorphic embeddings of K1 into K and by β 7→ β(j) (j = 1, . . . , s) those

of K2 into K.

Take v ∈ S. As we explained above, the set {1, . . . , r} can be partitioned into sets F(q1|v),

one for each place q1 of K1 lying above v, such that for i ∈ F(q1|v) the absolute values

given by |α(i)|v for α ∈ K1 represent q1. There is a similar partition of {1, . . . , s} into sets

F(q2|v), one for each place q2 on K2 lying above v.
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Because of (1.7), there are precisely rs K-isomorphic embeddings of K1K2 into K and

these are given by σij : α 7→ α(i), β 7→ β(j) for α ∈ K1, β ∈ K2 (i = 1, . . . , r, j = 1, . . . , s).

Similarly as above, the set {(i, j) : i = 1, . . . , r, j = 1, . . . , s} can be partitioned into sets

F(w|v), one for each place w of K1K2 lying above v, such that the absolute values given by

|σij(γ)|v for γ ∈ K1K2 ((i, j) ∈ F(w|v)) represent w. We observed above that F(w|v) has

cardinality [(K1K2)w : Kv]. Further, by (1.1), (1.7) we have |γ|w = |σij(γ)|[(K1K2)w:Kv ]/rs
w

for γ ∈ K1K2, (i, j) ∈ F(w|v). Hence |γ|w =
(∏

(i,j)∈F(w|v) |σij(γ)|v
)1/rs for γ ∈ K1K2.

In particular, we have

|α− β|w =
( ∏

(i,j)∈F(w|v)

|α(i) − β(j)|v
)1/rs

for α ∈ K1, β ∈ K2. (2.1)

We keep the notation of Theorem 1.1. Put

Ev :=
⋃
w∈Tv

F(w|v) for v ∈ S. (2.2)

From (2.1) it follows that for α, β with K(α) = K1, K(β) = K2 we have∏
w∈T
|α− β|w =

∏
v∈S

∏
w∈Tv

|α− β|w =
∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|1/rsv ,

hence (α, β) is a solution of (1.4) if and only if it satisfies (1.9) with the sets Ev defined by

(2.2).

We claim that (1.8) is equivalent to the condition on the sets Ecv in part (i) of Theorem

1.3. Clearly, Ecv = ∪w∈T cvF(w|v). So Ecv = ∅ if and only if T cv = ∅. In general, w

lies above q1 if and only if for each pair (i, j) ∈ F(w|v) we have i ∈ F(q1|v). Hence

∪w|q1F(w|v) = F(q1|v)×{1, . . . , s}, where the union is taken over all places w of K1K2

lying above q1. We have (K1)q1 = Kv if and only if F(q1|v) = {i} for some i such that

α 7→ α(i) maps K1 into Kv. Hence (K1)q1 = Kv if and only if ∪w|q1F(w|v) is equal to

a set {(i, 1), . . . , (i, s)} such that α 7→ α(i) maps K1 into Kv, i.e., a Kv-row. Therefore,

there is a place q1 of K1 with (K1)q1 = Kv such that all places in T cv lie above q1 if and

only if Ecv is contained in a Kv-row. Similarly, there is a place q2 of K2 with (K2)q2 = Kv

such that all places in T cv lie above q2 if and only if Ecv is contained in a Kv-column. This

proves our claim. Hence for number fields K1, K2 with (1.7) and for sets Ev with (2.2),

Theorem 1.1 is equivalent to Theorem 1.3. ut
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Proof of Corollary 1.2. Assume again (1.7). We first prove part (i). Suppose (1.8)

holds for some v ∈ S. If T cv = ∅ then WT = 1. If T cv is contained in the set of places w of

K1K2 lying above some place q1 of K1 with (K1)q1 = Kv then

∑
w∈T cv

[(K1K2)w : Kv]
[K1K2 : K]

≤
∑

w:w|q1

[(K1K2)w : (K1)q1 ]
r[K1K2 : K1]

=
1
r
, (2.3)

where the second sum is taken over the places w of K1K2 lying above q1. Hence WT ≥ 1− 1
r .

Similarly, if T cv is contained in the set of places w of K1K2 lying above some place q2 of K2

with (K2)q2 = Kv, then WT ≥ 1− 1
s . Hence WT ≥ 1−max( 1

r ,
1
s ), against our assumption.

Therefore, there is no v ∈ S with (1.8). Now part (ii) of Theorem 1.1 can be applied and

part (i) of Corollary 1.2 follows immediately.

We prove part (ii). Suppose for instance r ≤ s. Choose v ∈MK for which there is a place

w of K1K2 lying above v with (K1K2)w = Kv. Let q1 be the place of K1 lying below w;

then (K1)q1 = Kv. Now let T = Tv consist of all places of K1K2 lying above v but not

lying above q1. Then from (2.3) it follows that WT = 1 − 1
r = 1 − max( 1

r ,
1
s ). Further,

Tv satisfies (1.8). Hence by part (i) of Theorem 1.1, inequality (1.4) has infinitely many

solutions for every κ > 0. ut

3. Notation and simple facts.

We introduce some notation to be used throughout the paper and mention some elementary

facts.

Let K be an algebraic number field and S a finite set of places of K which from now on

contains all infinite places. We define the ring of S-integers and the group of S-units by

OS = {x ∈ K : |x|v ≤ 1 for v 6∈ S} , O∗S = {x ∈ K : |x|v = 1 for v 6∈ S}

respectively, where by v 6∈ S we mean v ∈MK\S. For x ∈ OS we define

|x|S :=
∏
v∈S
|x|v .

Then by the product formula we have

|x|S ≥ 1 for x ∈ OS\{0}, |x|S = 1 for x ∈ O∗S . (3.1)
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Let v ∈MK . There is an extension of | · |v to Kv. For a1, . . . , an ∈ Kv we put

|a1, . . . , an|v := max(|a1|v, . . . , |an|v) .

Further, for a binary form F (X,Y ) = a0X
r + a1X

r−1Y + · · ·+ arY
r with a1, . . . , ar ∈ Kv

we put

|F |v := |a0, . . . , ar|v .

For vectors a = (a1, . . . , an) ∈ OnS we define the truncated height

HS(a) = HS(a1, . . . , an) :=
∏
v∈S
|a1, . . . , an|v

and for binary forms F with coefficients in OS we define

HS(F ) :=
∏
v∈S
|F |v .

By (3.1) we have for non-zero vectors a ∈ OnS and for non-zero binary forms F ∈ OS [X,Y ],

HS(a) ≥ 1 , HS(F ) ≥ 1. (3.2)

We mention some other facts:

Lemma 3.1. Let v ∈ MK and let F = A
∏r
i=1(αiX + γiY ) be a non-zero binary form

with A ∈ Kv, αi, γi ∈ Kv for i = 1, . . . , r. Then

c−1
v |F |v ≤ |A|v

r∏
i=1

|αi, γi|v ≤ cv|F |v , (3.3)

where cv is a constant ≥ 1 depending only on v and r, with cv = 1 if v is finite.

Proof. [9], Chap. 3, Section 2. ut

Lemma 3.2. let α be algebraic over K of degree r. Then there is a binary form F ∈
OS [X,Y ] of degree r, irreducible over K, such that

F (α, 1) = 0 , c−1H(α)r ≤ HS(F ) ≤ cH(α)r , (3.4)

where c is a constant ≥ 1 depending only on S and K(α).
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Proof. [6], Lemma 6. ut

We briefly go into discriminants and resultants. Let Ω be an arbitrary integral domain

with quotient field of characteristic 0. Let F be a binary form with coefficients in Ω. In an

algebraic extension of the quotient field of Ω we can factor F as F = A
∏r
i=1(αiX + γiY ).

The discriminant of F is defined by

D(F ) := A2r−2
∏

1≤i<j≤r

(αiγj − αjγi)2 . (3.5)

This is independent of the choice of A and the αi, γi. Moreover, D(F ) ∈ Ω and D(F ) = 0

precisely when F has a multiple factor. For binary forms F ∈ Ω[X,Y ] and non-singular

matrices U =
(
a
c
b
d

)
with entries in Ω we define

FU := F (aX + bY, cX + dY ) . (3.6)

Then we have D(FU ) = (detU)r(r−1)D(F ) so in particular

D(FU ) = D(F ) if detU = 1. (3.7)

Let F, G be binary forms with coefficients in Ω. In some algebraic closure of the quotient

field of Ω, the forms F and G factor as F = A
∏r
i=1(αiX+γiY ), G = B

∏s
j=1(βjX+δjY ).

Then the resultant of F and G is given by

R(F,G) := AsBr
r∏
i=1

s∏
j=1

(αiδj − γiβj) . (3.8)

This does not depend on the choice of A, B, the αi, γi and the βj , δj . Further, R(F,G) ∈ Ω

and R(F,G) = 0 precisely when F , G have a common factor. It is also clear that for non-

singular matrices U with entries in Ω we have R(FU , GU ) = (detU)rsR(F,G) and so

R(FU , GU ) = R(F,G) if detU = 1. (3.9)

Lastly, we have

Lemma 3.3. Let v ∈MK . Let F = A
∏r
i=1(αiX + γiY ) and G = B

∏s
j=1(βjX + δjY ) be

non-zero binary forms with A, B, αi, γi (i = 1, . . . , r), βj , δj (j = 1, . . . , s) all belonging

to Kv. Then

|D(F )|1/2v

|F |r−1
v

��
∏

1≤i<j≤r

|αiγj − αjγi|v
|αi, γi|v · |αj , γj |v

, (3.10)

|R(F,G)|v
|F |sv|G|rv

��
r∏
i=1

s∏
j=1

|αiδj − γiβj |v
|αi, γi|v · |βj , δj |v

(3.11)
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where the constants implied by �, � depend on r, s and v only.

Proof. By (3.5) we have |D(F )|1/2v = |A|r−1
v

∏
1≤i<j≤r |αiγj−αjγi|v and by (3.3) we have

|F |r−1
v �� |A|r−1

v

∏
1≤i<j≤r |αi, γi|v · |αj , γj |v. By taking the quotient, the term |A|r−1

v

cancels and we get (3.10). Inequality (3.11) is proved in precisely the same way. ut

4. Preparations for the proof of part (i) of Theorem 1.3.

Let K be an algebraic number field. As before, we write |x, y|v for max(|x|v, |y|v). In this

section, S is a finite set of places of K, containing all infinite places.

Our first basic tool is the Subspace theorem, first proved by Schmidt [12] for S consisting

of only the archimedean places, and later by Schlickewei [11] in full generality.

Proposition 4.1 (Subspace Theorem). Let n ≥ 2, δ > 0. For v ∈ S, let L(v)
1 , . . . , L

(v)
n

be linearly independent linear forms in K[X1, . . . , Xn]. Then there are finitely many proper

linear subspaces V1, . . . , Vt of Kn such that the set of solutions of

∏
v∈S

n∏
i=1

|L(v)
i (x)|v ≤ HS(x)−δ in x ∈ OnS

is contained in V1 ∪ · · · ∪ Vt.

Our second tool is the adèlic generalisation of Minkowski’s theorem on successive minima

of convex bodies proved by McFeat [10] (see also [2]). We state the special case, needed for

our purposes. Let K, S be as above. For v ∈ S, let A1v, . . . , Anv be positive real numbers

and L
(v)
1 , . . . , L

(v)
n linear forms with

L
(v)
1 , . . . , L

(v)
n ∈ Kv[X1, . . . , Xn], L

(v)
1 , . . . , L

(v)
n linearly independent. (4.1)

Define the set

Π := {x ∈ OnS : |L(v)
i (x)|v ≤ Aiv for v ∈ S, i = 1, . . . , n}.

Put

s(v) :=
[Kv : R]
[K : Q]

if v is archimedean, s(v) := 0 if v is non-archimedean
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and define for λ > 0 the dilatation of Π:

λ ∗Π := {x ∈ OnS : |L(v)
i (x)|v ≤ λs(v)Aiv for v ∈ S, i = 1, . . . , n}

(note that we have only a dilatation factor at the archimedean places). Then the successive

minima λ1, . . . , λn of Π are given by

λi := min{λ > 0 : λ ∗Π contains i linearly independent vectors}.

Proposition 4.2 (Minkowski’s Theorem). Assume (4.1). Then 0 < λ1 ≤ · · · ≤ λn <

∞ and

λ1 · · ·λn ��
( ∏
v∈S

n∏
i=1

Aiv
)−1

, (4.2)

where the constants implied by �, � depend on K, S, n and the linear forms L(v)
i (v ∈

S, i = 1, . . . , n) only.

We now deduce some specific results needed in the proof of part (i) of Theorem 1.3. Let

K, S be as above and let rv (v ∈ S) be integers ≥ 2. In what follows we deal with linear

forms in two variables with algebraic coefficients but not necessarily in Kv. Thus, let

L
(v)
i = αivX + βivY ∈ K[X,Y ] (v ∈ S, i = 1, . . . , rv)

be linear forms with

rank {L(v)
i , L

(v)
j } = 2 for v ∈ S, 1 ≤ i < j ≤ rv. (4.3)

Further, suppose there is a v0 ∈ S with

α1,v0 , β1,v0 ∈ Kv\{0}, (4.4)

α1,v0/β1,v0 6∈ K . (4.5)

In the remainder of this section, constants implied by �, � will depend on K, S, the

linear forms L(v)
i (v ∈ S, i = 1, . . . , rv), and a parameter δ > 0.

Lemma 4.3. Let u denote the cardinality of S and let δ be a real with 0 < δ < 1/2u. For

every Q� 1 and every non-zero vector (x, y) ∈ O2
S with

|L(v0)
1 (x, y)|v0 � Q−1+δ ,

|L(v0)
i (x, y)|v0 � Q1+δ for i = 2, . . . , rv0 ,

|L(v)
i (x, y)|v � Qδ for v ∈ S\{v0}, i = 1, . . . , rv

 (4.6)
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we have in fact

Q−1−3uδ � |L(v0)
1 (x, y)|v0 � Q−1+δ ,

Q1−3uδ � |L(v0)
i (x, y)|v0 � Q1+δ for i = 2, . . . , rv0 ,

Q−3uδ � |L(v)
i (x, y)|v � Qδ for v ∈ S\{v0}, i = 1, . . . , rv.

 (4.7)

Proof. Assume there are a positive real Q and a non-zero vector (x, y) ∈ O2
S which

satisfies (4.6) but does not satisfy (4.7). We have to show that Q� 1.

Our assumptions on Q and (x, y) imply

|L(v0)
1 (x, y)|v0 � Q−1+δ−ε1,v0 ,

|L(v0)
i (x, y)|v0 � Q1+δ−εi,v0 for i = 2, . . . , rv0 ,

|L(v)
i (x, y)|v � Qδ−εiv for v ∈ S\{v0}, i = 1, . . . , rv,

 (4.8)

where εiv = (3u + 1)δ for exactly one pair in the set {(i, v) : v ∈ S, i = 1, . . . , rv}, and

εiv = 0 for all other pairs in this set. In fact, we may assume

εiv = (3u+ 1)δ for exactly one pair from {(i, v) : v ∈ S, i = 1, 2},

εiv = 0 for all other pairs in this set.

}
(4.9)

Indeed, if εiv = (3u+ 1)δ for some v ∈ S, i > 2 then we can achieve (4.9) by interchanging

L
(v)
2 and L

(v)
i . This does not affect (4.3), (4.4), (4.5).

We go towards an application of the Subspace Theorem. Assume (4.9). Noting that by

(4.3) we can express X,Y as linear combinations of L(v)
1 , L

(v)
2 and using (4.8), (4.9) we

obtain

|x, y|v0 � max(|L(v0)
1 (x, y)|v0 , |L

(v0)
2 (x, y)|v0)� Q1+δ , (4.10)

|x, y|v � max(|L(v)
1 (x, y)|v, |L(v)

2 (x, y)|v)� Qδ for v ∈ S\{v0}. (4.11)

Hence

HS(x, y) =
∏
v∈S
|x, y|v � Q1+uδ .

From (4.8), (4.9) and this last inequality we infer

∏
v∈S

2∏
i=1

|L(v)
i (x, y)|v � Q

(−1+δ)+(1+δ)+2(u−1)δ−
(∑

v∈S

∑2

i=1
εiv

)
= Q−(u+1)δ

� HS(x, y)−
(u+1)δ
1+uδ .
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We can apply Proposition 4.1 because of (4.3). It follows that there are finitely many

one-dimensional linear subspaces V1, . . . , Vt of K2, independent of Q and (x, y), such that

(x, y) ∈ V1 ∪ · · · ∪ Vt .

For i = 1, . . . , t, fix (ξi, ηi) ∈ Vi\{0}. By (4.5) we have L(v0)
1 (ξi, ηi) 6= 0. Suppose (x, y) ∈

Vj . Then (x, y) = λ(ξj , ηj) for some λ ∈ K∗ and so

|L(v0)
1 (x, y)|v0

|x, y|v0

=
|L(v0)

1 (ξj , ηj)|v0

|ξj , ηj |v0

≥ min
i=1,...,t

|L(v0)
1 (ξi, ηi)|v0

|ξi, ηi|v0

> 0

where the right-hand side is independent of Q, (x, y). By combining this with the first

inequality of (4.8) we can improve (4.10) to

|x, y|v0 � Q−1+δ

and together with (4.11) and the assumption d < 1/2u this gives

HS(x, y) =
∏
v∈S
|x, y|v � Q−1+uδ � Q−1/2.

Recalling that HS(x, y) � 1 by (3.2), we arrive at Q � 1. This completes the proof of

Lemma 4.3. ut

Lemma 4.4. Let δ > 0. For every Q� 1, there are linearly independent vectors (x1, y1),

(x2, y2) ∈ OS such that for k = 1, 2,

Q−1−δ � |L(v0)
1 (xk, yk)|v0 � Q−1+δ

Q1−δ � |L(v0)
i (xk, yk)|v0 � Q1+δ for i = 2, . . . , rv0 ,

Q−δ � |L(v)
i (xk, yk)|v � Qδ for v ∈ S\{v0}, i = 1, . . . , rv

 (4.12)

and such that

|x1y2 − x2y1|v �� 1 for v ∈ S. (4.13)

Proof. Without loss of generality we assume 0 < δ < 1. Let u denote the cardinality of

S.

We are going to apply Minkowski’s theorem to the set

Π :=

(x, y) ∈ O2
S :
|L(v0)

1 (x, y)|v0 ≤ Q−1, |y|v0 ≤ Q ,

|x|v ≤ 1, |y|v ≤ 1 for v ∈ S\{v0}

 .
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Condition (4.1) is satisfied because of (4.4). Let λ1, λ2 denote the successive minima of

Π. By Proposition 4.2 we have

λ1λ2 �� 1 . (4.14)

Choose linearly independent vectors (x1, y1), (x2, y2) from O2
S such that for k = 1, 2 we

have (xk, yk) ∈ λk ∗Π, that is,

|L(v0)
1 (xk, yk)|v0 ≤ Q−1λ

s(v0)
k , |yk|v0 ≤ Qλ

s(v0)
k ,

|xk|v ≤ λs(v)
k , |yk|v ≤ λs(v)

k for v ∈ S\{v0}.

}
(4.15)

We first show that these vectors satisfy (4.13). By (4.14), (4.15) we have

|x1y2 − x2y1|v0 � |L
(v0)
1 (x1, y1)y2 − L(v0)

1 (x2, y2)y1|v0 � Q−1Q(λ1λ2)s(v0) � 1 ,

|x1y2 − x2y1|v � (λ1λ2)s(v) � 1 for v ∈ S\{v0}.

Further, since x1y2 − x2y1 is a non-zero S-integer, we have by (3.1) that for v ∈ S,

|x1y2 − x2y1|v ≥
∏
v′∈S\{v} |x1y2 − x2y1|−1

v′ � 1. This proves (4.13).

We now prove (4.12). For k = 1, 2 we have

|L(v0)
1 (xk, yk)|v0 � Q−1λ

s(v0)
k ,

|L(v0)
i (xk, yk)|v0 � Qλ

s(v0)
k for i = 2, . . . , rv0 ,

|L(v)
i (xk, yk)|v � λ

s(v)
k for v ∈ S\{v0}, i = 1, . . . , rv.

 (4.16)

Indeed, by (4.4), the linear forms L(v0)
1 and Y are linearly independent, hence for i =

2, . . . , rv0 , the linear form L
(v0)
i is a linear combination of L(v0)

1 , Y . Now the inequalities

on the second row follow from (4.15). The other inequalities are obvious consequences of

(4.15).

By (4.14) we have λ1 � 1. By inserting this into (4.16) for k = 1 and being generous we

obtain
|L(v0)

1 (x1, y1)|v0 � Q−1+δ/9u2
,

|L(v0)
i (x1, y1)|v0 � Q1+δ/9u2

for i = 2, . . . , rv0 ,

|L(v)
i (x1, y1)|v � Qδ/9u

2
for v ∈ S\{v0}, i = 1, . . . , rv.

Lemma 4.3 yields that for Q� 1 we have in fact,

Q−1−δ/3u � |L(v0)
1 (x1, y1)|v0 � Q−1+δ/9u2

,

Q1−δ/3u � |L(v0)
i (x1, y1)|v0 � Q1+δ/9u2

for i = 2, . . . , rv0 ,

Q−δ/3u � |L(v)
i (x1, y1)|v � Qδ/9u

2
for v ∈ S\{v0}, i = 1, . . . , rv.

 (4.17)
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From (4.17), (4.16) we infer λs(v)
1 � Q−δ/3u for v ∈ S if Q � 1 and then from (4.14)

it follows λs(v)
2 � Qδ/3u for v ∈ S. On substituting this into (4.16) for k = 2, assuming

Q� 1, we get

|L(v0)
1 (x2, y2)|v0 � Q−1+δ/3u ,

|L(v0)
i (x2, y2)|v0 � Q1+δ/3u for i = 2, . . . , rv0 ,

|L(v)
i (x2, y2)|v � Qδ/3u for v ∈ S\{v0}, i = 1, . . . , rv.

By applying Lemma 4.3 once more, we obtain for Q� 1,

Q−1−δ � |L(v0)
1 (x2, y2)|v0 � Q−1+δ/3u ,

Q1−δ � |L(v0)
i (x2, y2)|v0 � Q1+δ/3u for i = 2, . . . , rv0 ,

Q−δ � |L(v)
i (x2, y2)|v � Qδ/3u for v ∈ S\{v0}, i = 1, . . . , rv.

 (4.18)

Now (4.17) and (4.18) together imply (4.12) for k = 1, 2. This proves Lemma 4.4. ut

5. Proof of part (i) of Theorem 1.3.

We keep the notation and assumptions of the previous sections. Thus, K is an algebraic

number field, K1, K2 are two extensions of K with (1.10) and S is a finite set of places

of K. We assume that S contains all infinite places. This is no loss of generality since if

we add a finite number of new places v to S and choose Ev = ∅ for these, then this affects

neither inequality (1.9) nor the condition on the sets Ecv in part (i) of Theorem 1.3. Let Ev
(v ∈ S) be subsets of {(i, j) : i = 1, . . . , r, j = 1, . . . , s} and suppose that for some v0 ∈ S,

either Ecv0
= ∅, or Ecv0

is contained in a Kv-row, or Ecv0
is contained in a Kv-column. We

pick any α0, β0 with K(α0) = K1, K(β0) = K2. We show that for every κ > 0, inequality

(1.9) has infinitely many solutions (α, β) of the type

α =
aα0 + c

bα0 + d
, β =

aβ0 + c

bβ0 + d
with a, b, c, d ∈ OS , ad− bc 6= 0. (5.1)

We choose a parameter δ > 0. Below, all constants implied by �, � will depend on K,

S, α0, β0 and δ.

The following observation is useful:
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Lemma 5.1. Let a, b, c, d ∈ OS with |ad− bc|v �� 1 for v ∈ S and let α, β be given by

(5.1). Then

H(α)r ��
∏
v∈S

r∏
i=1

|aα(i)
0 + c, bα

(i)
0 + d|v ,

H(β)s ��
∏
v∈S

s∏
j=1

|aβ(j)
0 + c, bβ

(j)
0 + d|v .

(5.2)

Proof. We prove only the inequality for H(α). Let v ∈MK . From the observations in the

beginning of Section 2, it follows that {1, . . . , r} can be partitioned into sets F(q1|v), one

for each place q1 on K1 lying above v, such that for i ∈ F(q1|v) the absolute values given

by |α(i)|v for α ∈ K1 represent q1. Further, the set F(q1|v) has cardinality [(K1)q1 : Kv]

and by (1.1) we have |α|q1 = |α(i)|[(K1)q1 :Kv ]/r
v for α ∈ K1, i ∈ F(q1|v). A consequence

of this is, that
∏
q1|v |aα0 + c, bα0 + d|rq1 =

∏r
i=1 |aα

(i)
0 + c, bα

(i)
0 + d|v for v ∈ MK (with

|x, y|q1 = max(|x|q1 , |y|q1)). By taking the product over v ∈MK and applying the product

formula we get

H(α)r =
∏

q1∈MK1

|aα0 + c, bα0 + d|rq1 =
∏

v∈MK

r∏
i=1

|aα(i)
0 + c, bα

(i)
0 + d|v .

Since a, b, c, d ∈ OS , the product of the terms with v 6∈ S is� 1. On the other hand, using

a(bα(i)
0 + d) − b(aα(i)

0 + c) = ad − bc, we get that the product of the terms with v 6∈ S is

�
∏
v 6∈S |ad−bc|rv =

∏
v∈S |ad−bc|−rv � 1. This implies the inequality for H(α) in (5.2).ut

In what follows, let u denote the cardinality of S. In the proof of part (ii) of Theorem 1.3

we distinguish two cases.

Case 1. Ecv0
= ∅.

Let Q > 1. By Proposition 4.2 (the one-dimensional case) or the strong approximation

theorem for absolute values, there is a d with

d ∈ OS\{0} , |d|v ≤ Q−1 for v ∈ S\{v0}. (5.3)

Then by the product formula we have

|d|v0 ≥ Qu . (5.4)

Take

α =
1

α0 + d
, β =

1
β0 + d

.
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By Lemma 5.1, (5.3), (5.4) we have for Q� 1,

H(α)��
∏
v∈S

r∏
i=1

|1, α(i)
0 + d|1/rv �� |d|v0 , H(β)�� |d|v0 . (5.5)

Assuming Q� 1 we have by (5.3),

∏
(i,j)∈Ev

|α(i) − β(j)|v =
∏

(i,j)∈Ev

|α(i)
0 − β

(j)
0 |v

|α(i)
0 + d|v · |β(j)

0 + d|v
� 1 for v ∈ S\{v0}

and by (5.4), (5.5),

∏
(i,j)∈Ev0

|α(i) − β(j)|v0 =
r∏
i=1

s∏
j=1

|α(i)
0 − β

(j)
0 |v0

|α(i)
0 + d|v0 · |β

(j)
0 + d|v0

� |d|−2rs
v0

� H(α)−rsH(β)−rs

so altogether, ∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|v � H(α)−rsH(β)−rs . (5.6)

From (5.4), (5.5) we infer H(α) � Qu, H(β) � Qu. Thus, letting Q → ∞, we infer

that (5.6) has infinitely many solutions and so, for every κ > 0, (1.9) has infinitely many

solutions.

Case 2. Ecv0
6= ∅ and Ecv0

is contained in a Kv0-row or a Kv0-column.

We deal only with the case that Ecv0
is contained in a Kv0-row since the argument for

Kv0-columns is similar. Without loss of generality we assume

α(1) ∈ Kv0 for α ∈ K1, (5.7)

Ev0 ⊆ {(1, 1), . . . , (1, s)} . (5.8)

Fix κ > 0 and let δ > 0 be a parameter sufficiently small in terms of κ. By (5.7) and

K(α0) = K1 6= K we have α(1)
0 ∈ Kv0 , α(1)

0 6∈ K. Further, by K(α0) = K1, K(β0) = K2

and (1.10), the numbers α(1)
0 , . . . , α

(r)
0 , β

(1)
0 , . . . , β

(s)
0 are distinct and non-zero. Hence the

linear forms L(v)
1 = α

(1)
0 X + Y, . . . , L

(v)
r = α

(r)
0 X + Y , L(v)

r+1 = β
(1)
0 X + Y, . . . , L

(v)
r+s =

β
(s)
0 X + Y (v ∈ S) satisfy the conditions (4.3), (4.4), (4.5) with rv = r + s for v ∈ S and

so we can apply Lemma 4.4 to these forms. According to this lemma, for every Q � 1,

20



there are linearly independent vectors (a, c), (b, d) ∈ O2
S such that the inequalities

Q−1−δ � |xα(1)
0 + y|v0 � Q−1+δ (5.9)

Q1−δ � |xα(i)
0 + y|v0 � Q1+δ for i = 2, . . . , r, (5.10)

Q1−δ � |xβ(j)
0 + y|v0 � Q1+δ for j = 1, . . . , s, (5.11)

Q−δ � |xα(i)
0 + y|v � Qδ for v ∈ S\{v0}, i = 1, . . . , r, (5.12)

Q−δ � |xβ(j)
0 + y|v � Qδ for v ∈ S\{v0}, j = 1, . . . , s (5.13)

are simultaneously satisfied for (x, y) = (a, c) and for (x, y) = (b, d) and moreover,

|ad− bc|v �� 1 for v ∈ S. (5.14)

Let α, β be given by (5.1). We estimate the heights H(α), H(β) from above and below in

terms of Q. Since (a, c), (b, d) satisfy (5.9), (5.10), (5.12) we have

Qr−2−rδ �
r∏
i=1

|aα(i)
0 + c, bα

(i)
0 + d|v0 � Qr−2+rδ ,

Q−rδ �
r∏
i=1

|aα(i)
0 + c, bα

(i)
0 + d|v � Qrδ for v ∈ S\{v0},

so

Qr−2−urδ �
∏
v∈S

r∏
i=1

|aα(i)
0 + c, bα

(i)
0 + d|v � Qr−2+urδ .

Together with (5.14) and Lemma 5.1 this implies

Qr−2−urδ � H(α)r � Qr−2+urδ . (5.15)

In precisely the same way, using (5.11), (5.13), (5.14) and Lemma 5.1 one shows

Qs−usδ � H(β)s � Qs+usδ . (5.16)

We now estimate from above
∏
v∈S

∏
(i,j)∈Ev |α

(i) − β(j)|v. By (5.1) we have

|α(i) − β(j)|v =
|ad− bc|v · |α(i)

0 − β
(j)
0 |v

|bα(i)
0 + d|v · |bβ(j)

0 + d|v
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and together with (5.14) and the fact that (b, d) satisfies (5.9)–(5.13) this implies

|α(1) − β(j)|v0 � Q2δ for j = 1, . . . , s,

|α(i) − β(j)|v0 � Q−2+2δ for i = 2, . . . , r, j = 1, . . . , s,

|α(i) − β(j)|v � Q2δ for v ∈ S\{v0}, i = 1, . . . , r, j = 1, . . . , s.

By (5.8), the set Ev0 contains all pairs (i, j) with i = 2, . . . , r, j = 1, . . . , s. By combining

the inequalities just mentioned and inserting (5.15), (5.16) we get∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|v � Q−(r−2)s−rs+2ursδ �
(
H(α)H(β)

)−rs(1−κ/2)
,

provided we choose δ sufficiently small. By (5.15), (5.16), the heights H(α), H(β) go to

infinity with Q. It follows that the last inequality, and consequently (1.9), has infinitely

many solutions. This completes the proof of part (i) of Theorem 1.3. ut

6. Proof of part (ii) of Theorem 1.3 (modulo a proposition).

We prove part (ii) of Theorem 1.3. In the proof we use a proposition whose proof is

postponed to Section 7.

Let K be an algebraic number field and S a finite set of places of K. We assume that S

contains all infinite places which, by the observations in the first paragraph of Section 5, is

no loss of generality. Further, K1, K2 satisfy (1.10). In what follows, constants implied by

�, � depend only on K, K1, K2 and S. We use the notation introduced in the previous

sections.

Pick α, β with K(α) = K1, K(β) = K2. By Lemma 3.2 there are binary forms F, G ∈
OS [X,Y ], irreducible over K, such that

F (α, 1) = 0 , H(α)r �� HS(F ) , degF = r ,

G(β, 1) = 0 , H(β)s �� HS(G) , degG = s .

}
(6.1)

We can express F , G as F = A
∏r
i=1(X−α(i)Y ), G = B

∏s
j=1(X−β(j)Y ) with A, B ∈ OS .

By applying (3.11) and taking the product over v ∈ S we get

∏
v∈S

r∏
i=1

s∏
j=1

|α(i) − β(j)|v
|1, α(i)|v · |1, β(j)|v

�� |R(F,G)|S
HS(F )sHS(G)r

. (6.2)
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Recall definition (3.6). The next result is our main tool:

Proposition 6.1. There is a matrix U ∈ SL(2, OS) (i.e., with entries in OS and deter-

minant 1) such that

|R(F,G)|S �
(
HS(FU )sHS(GU )r

)1/718
, (6.3)

where the constant implied by � is ineffective.

Remark. The matrix U in the right-hand side is necessary because of (3.9).

Proof. We apply Theorem 2 of [6] to F and G. From (1.10), (6.1) it follows that degF =

r ≥ 3, degG = s ≥ 3, and that FG has no multiple factor. Hence the conditions of

Theorem 2 of [6] are satisfied. It follows from that result that there is a matrix U1 =(
a
c
b
d

)
∈ GL(2, OS), i.e., with determinant ad− bc =: ε ∈ O∗S , such that

|R(F,G)|S �
(
HS(FU1)sHS(GU1)r

)1/718

, (6.4)

where the implied constant is determined by r, s, S and the splitting field of FG over K,

so by K, S, K1, K2. The proof of (6.4) uses results from other papers, i.e., [5], [6]. A

sketchy overview of the proof is given in [4]. The proof goes back to Schlickewei’s p-adic

generalisation of Schmidt’s Subspace Theorem. Therefore, the constant implied by � in

(6.4) is ineffective.

From the S-unit theorem it follows that there are ε1, ε2 ∈ O∗S with

ε−1 = ε1ε
2
2 , |ε1|v � 1 for v ∈ S, (6.5)

where ε = detU1. Now take U :=
(
ε2a
ε2c

ε1ε2b
ε1ε2d

)
where

(
a
c
b
d

)
= U1 as above. Thus,

detU = 1, i.e., U ∈ SL(2, OS). By (6.5) we have

FU (X,Y ) = ε2FU1(X, ε1Y ) , |FU |v � |ε2|v · |FU1 |v for v ∈ S

and by taking the product over v ∈ S and applying (3.1) we obtain

HS(FU )�
( ∏
v∈S
|ε2|v

)
HS(FU1) = HS(FU1) .

Similarly, we get HS(GU )� HS(GU1). Together with (6.4) this implies (6.3). ut
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Proposition 6.2. Let Ev ⊆ {(i, j) : i = 1, . . . , r, j = 1, . . . , s} (v ∈ S) be sets such that for

each v ∈ S we have that Ecv 6= ∅, Ecv is not contained in a Kv-row and Ecv is not contained

in a Kv-column. Then for every U ∈ SL(2, OS) there are pairs (iv, jv) ∈ Ecv (v ∈ S) such

that ∏
v∈S

|α(iv) − β(jv)|v
|1, α(iv)|v · |1, β(jv)|v

� HS(FU )r+sHS(GU )r+s

HS(F )1/rHS(G)1/s
. (6.6)

The proof is postponed to Section 7.

Proof of part (ii) of Theorem 1.3. The conditions on the sets Ecv in part (ii) of Theorem

1.3 are precisely those of Proposition 6.2 so we can apply the latter. Let U be the matrix

from Proposition 6.1 and choose pairs (iv, jv) ∈ Ecv (v ∈ S) according to Proposition 6.2.

Let θ be a real with 0 < θ < 1 which will be specified later. Put

f
(v)
ij :=

|α(i) − β(j)|v
|1, α(i)|v · |1, β(j)|v

for v ∈ S, i = 1, . . . , r, j = 1, . . . , s.

Now we have∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|v

�
∏
v∈S

∏
(i,j)∈Ev

f
(v)
ij =

(∏
v∈S

r∏
i=1

s∏
j=1

f
(v)
ij

)
·
(∏
v∈S

∏
(i,j)∈Ecv

f
(v)
ij

)−1

� |R(F,G)|S
HS(F )sHS(G)r

·
∏
v∈S

(
f

(v)
iv,jv

)−θ by (6.2) and fij � 1

�
(
HS(FU )sHS(GU )r

)1/718

HS(F )sHS(G)r
·

(
HS(F )1/rHS(G)1/s

HS(FU )r+sHS(GU )r+s

)θ
by (6.3), (6.6).

By choosing θ = min(r,s)
718(r+s) so that the exponents on HS(FU ) and HS(GU ) become non-

negative and then using (6.1) we get∏
v∈S

∏
(i,j)∈Ev

|α(i) − β(j)|v �
(
HS(F )sHS(G)r

)−1+ 1
718(r+s) max(r,s)

�
(
H(α)H(β)

)−rs(1− 1
718(r+s) max(r,s) )

.

This implies that for every κ ≤ 1
718(r+s)2 (1.9) has only finitely many solutions. This

completes the proof of part (ii) of Theorem 1.3. ut
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7. Proof of Proposition 6.2.

We keep the notation and assumptions from the previous sections. In particular, K is a

number field, K1, K2 are finite extensions of K with (1.10), S is a finite set of places of

K containing all infinite places, and Ev (v ∈ S) are subsets of {(i, j) : i = 1, . . . , r, j =

1, . . . , s} satisfying the conditions of Proposition 6.2. Let α, β be numbers withK(α) = K1,

K(β) = K2 and F , G corresponding binary forms in OS [X,Y ] with (6.1). Thus,

F = A
r∏
i=1

(X − α(i)Y ) , G = B
s∏
j=1

(X − β(j)Y ) with A,B ∈ OS . (7.1)

Let U =
(
a
c
b
d

)
∈ SL(2, OS). We have

FU = A
r∏
i=1

(γ(i)X + δ(i)Y ) , GU = B
s∏
j=1

(ξ(j)X + η(j)Y ) (7.2)

with (γ(i)

δ(i)

)
=
(a
b

−c
−d

)
·
( 1
α(i)

)
,
( ξ(j)

η(j)

)
=
(a
b

−c
−d

)
·
( 1
β(j)

)
(7.3)

for i = 1, . . . , r, j = 1, . . . , s.

For the moment we fix a place v ∈ S. We define:

fi :=
|1, α(i)|v
|γ(i), δ(i)|v

(i = 1, . . . , r),

gj :=
|1, β(j)|v
|ξ(j), η(j)|v

(j = 1, . . . , s),

∆pq :=
|α(p) − α(q)|v

|γ(p), δ(p)|v · |γ(q), δ(q)|v
(1 ≤ p, q ≤ r, p 6= q),

Θpq :=
|β(p) − β(q)|v

|ξ(p), η(p)|v · |ξ(q), η(q)|v
(1 ≤ p, q ≤ s, p 6= q),

Eij :=
|α(i) − β(j)|v

|γ(i), δ(i)|v · |ξ(j), η(j)|v
(i = 1, . . . , r, j = 1, . . . , s).



(7.4)

Below, we have collected some properties of these quantities. Constants implied by �, �
depend only on K, K1, K2, S, v.

Lemma 7.1. We have

f1 · · · fr ��
|F |v
|FU |v

, (7.5)
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g1 · · · gs ��
|G|v
|GU |v

, (7.6)

|D(F )|1/2v

|FU |r−1
v

� ∆pq � 1 for 1 ≤ p, q ≤ r, p 6= q, (7.7)

|D(G)|1/2v

|GU |s−1
v

� Θpq � 1 for 1 ≤ p, q ≤ s, p 6= q, (7.8)

|R(F,G)|v
|FU |sv|GU |rv

� Eij � 1 for i = 1, . . . , r, j = 1, . . . , s. (7.9)

Proof. (7.5) and (7.6) are immediate consequences of (7.1), (7.2) and Lemma 3.1. By

(7.3) and ad− bc = 1 we have α(p) − α(q) = γ(p)δ(q) − γ(q)δ(p), hence

∆pq =
|γ(p)δ(q) − γ(q)δ(p)|v
|γ(p), δ(p)|v · |γ(q), δ(q)|v

.

This implies ∆pq � 1 for 1 ≤ p, q ≤ r, p 6= q. From (3.10) and (3.7) it follows that∏
1≤p<q≤r ∆pq � |D(FU )|1/2v /|FU |r−1

v = |D(F )|1/2v /|FU |r−1
v . This implies for each ∆pq the

lower bound in (7.7). Using that by (7.3), ad−bc = 1 we have β(p)−β(q) = ξ(p)η(q)−ξ(q)η(p),

we can prove (7.8) in precisely the same way. By (7.3) and ad−bc = 1 we have α(i)−β(j) =

γ(i)η(j) − δ(i)ξ(j) and so

Eij =
|γ(i)η(j) − δ(j)ξ(i)|v
|γ(i), δ(i)|v · |ξ(j), η(j)|v

.

This implies Eij � 1 for all i, j. Further, by (3.11), (3.9) we have
∏r
i=1

∏s
j=1Eij �

|R(FU , GU )|v/|FU |sv|GU |rv= |R(F,G)|v/|FU |sv|GU |rv. This implies for each Eij the lower

bound in (7.9). ut

We assume for the moment

f1 = min(f1, . . . , fr, g1, . . . , gs) . (7.10)

Lemma 7.2. Assume (7.10). Then

fq � |D(F )|1/2v · |F |1/rv · |FU |
−r+1− 1

r
v for q = 2, . . . , r. (7.11)

Proof. By the vector identity

(α(1) − α(q))
(

1
α(p)

)
= (α(p) − α(q))

(
1
α(1)

)
+ (α(1) − α(p))

(
1
α(q)

)
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we get for all p, q with 1 ≤ p, q ≤ r,

|α(1) − α(q)|v · |1, α(p)|v � max
(
|α(p) − α(q)|v · |1, α(1)|v, |α(1) − α(p)|v · |1, α(q)|v

)
.

By dividing this by |γ(1), δ(1)|v ·|γ(p), δ(p)|v ·|γ(q), δ(q)|v and then using (7.10) and the upper

bound from (7.7) we obtain

∆q1fp � max(∆pqf1,∆1pfq)� fq for p = 1, . . . , r, q = 2, . . . , r.

Together with (7.5) and the lower bound in (7.7) this implies

fq � ∆q1(f1 · · · fr)1/r � |D(F )|1/2v

|FU |r−1
v

·

(
|F |v
|FU |v

)1/r

for q = 2, . . . , r, which is (7.11). ut

Lemma 7.3. Assume (7.10). Then

gq � |R(F,G)|v · |G|1/sv · |FU |−sv · |GU |
−r− 1

s
v for q = 1, . . . , s. (7.12)

Proof. We have again a vector identity

(α(1) − β(q))
(

1
β(p)

)
= (β(p) − β(q))

(
1
α(1)

)
+ (α(1) − β(p))

(
1
β(q)

)
from which we deduce

|α(1) − β(q)|v · |1, β(p)|v � max
(
|β(p) − β(q)|v · |1, α(1)|v, |α(1) − β(p)|v · |1, β(q)|v

)
for all p, q with 1 ≤ p, q ≤ s. By dividing this by |γ(1), δ(1)|v · |ξ(p), η(p)|v · |ξ(q), η(q)|v and

then using (7.10) and the upper bounds from (7.8), (7.9) we get

E1qgp � max(Θpqf1, E1pgq)� gq for p = 1, . . . , s, q = 1, . . . , s.

Using this together with (7.5) and the lower bound in (7.9) we obtain

gq � E1q(g1 · · · gs)1/s � |R(F,G)|v
|FU |sv|GU |rv

·

(
|G|v
|GU |v

)1/s

for q = 1, . . . , s, which is (7.12). ut
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Lemma 7.4. Assume (7.10). Then there is a pair (iv, jv) ∈ Ecv such that

fivgjv � |D(F )|1/2v · |R(F,G)|v · |F |1/rv |G|1/sv · |FU |
−(r+s)+1− 1

r
v |GU |

−r− 1
s

v . (7.13)

Proof. We distinguish two cases.

Case 1. α(1) ∈ Kv.

Then x 7→ x(1) maps K1 into Kv since K(α) = K1. Hence {(1, 1), . . . , (1, s)} is a Kv-row.

So Ecv 6⊂ {(1, 1), . . . , (1, s)} by our assumption. Therefore, there is a pair (iv, jv) ∈ Ecv with

iv ∈ {2, . . . , r} and jv ∈ {1, . . . , s}. Now we obtain (7.13) by combining (7.11) with q = iv

and (7.12) with q = jv.

Case 2. α(1) 6∈ Kv.

The set Ecv is not empty. Pick any pair (iv, jv) ∈ Ecv . If iv 6= 1 we derive again (7.13) from

(7.11) with q = iv and from (7.12) with q = jv. Suppose iv = 1. There is a h ∈ {2, . . . , r}
such that α(h) is conjugate to α(1) over Kv. Then ξ(h), η(h) are conjugate over Kv to ξ(1),

η(1), respectively. Since numbers conjugate over Kv have the same | · |v-value, this implies

fiv = f1 = fh. Now (7.13) follows from (7.11) with q = h and from (7.12) with q = jv. ut

We now drop assumption (7.10). Then in general we have:

Lemma 7.5. There is a pair (iv, jv) ∈ Ecv such that

|α(iv) − β(jv)|v
|1, α(iv)|v · |1, β(jv)|v

�|D(F )|−1/2
v |D(G)|−1/2

v |R(F,G)|−1
v ·

· |FU |
(r+s)−1+ 1

r
v |GU |

(r+s)−1+ 1
s

v |F |−1/r
v |G|−1/s

v . (7.14)

Proof. The right-hand side of (7.14) remains unchanged if the pairs (F, r) and (G, s) are

interchanged. Further, it remains unchanged if f1, . . . , fr are permuted or if g1, . . . , gs are

permuted. Hence there is no loss of generality to assume f1 = min(f1, . . . , fr, g1, . . . , gs),

i.e., (7.10). Therefore, we may apply Lemma 7.4. Let (iv, jv) be the pair from this lemma.

Then from (7.4), (7.9) (the upper bound) and (7.13) it follows

|α(iv) − β(jv)|v
|1, α(iv)|v · |1, β(jv)|v

= Eiv,jv (fivgjv )−1 � (fivgjv )−1

� |D(F )|−1/2
v |R(F,G)|−1

v · |FU |
(r+s)−1+ 1

r
v |GU |

r+ 1
s

v |F |−1/r
v |G|−1/s

v .

By multiplying the right-hand side with |D(G)|−1/2
v |GU |s−1

v which is� 1 by (7.8) we arrive

at (7.14). ut
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Proof of Proposition 6.2. Choose for each v ∈ S a pair (iv, jv) with (7.14) and take

the product over v ∈ S. Since the binary forms F , G have S-integral coefficients, are

irreducible and have no common factor, the numbers D(F ), D(G), R(F,G) are non-zero

S-integers and so |D(F )|S ≥ 1, |D(G)|S ≥ 1, |R(F,G)|S ≥ 1 by (3.1). Further, we have

HS(FU ) ≥ 1, HS(GU ) ≥ 1 by (3.2). Hence

∏
v∈S

|α(iv) − β(jv)|v
|1, α(iv)|v · |1, β(jv)|v

� |D(F )|−1/2
S |D(G)|−1/2

S |R(F,G)|−1
S ·

·HS(FU )(r+s)−1+ 1
rHS(GU )(r+s)−1+ 1

sHS(F )−1/rHS(G)−1/s

� HS(FU )r+sHS(GU )r+s ·HS(F )−1/rHS(G)−1/s ,

which is what we wanted to prove. ut
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