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1. Introduction

Summary. Recall that a monogenic order is an order of the shape Z[a],
where « is an algebraic integer. This is generalized to orders Z, for not
necessarily integral algebraic numbers « as follows. For an algebraic num-
ber a of degree n, let M, be the Z-module generated by 1,«,...,a" !; then
Zo = 1{£ € Q(a) : EM, € M} is the ring of scalars of M,. We call an
order of the shape Z, rationally monogenic. If o is an algebraic integer, then
Zo = Z|a] is monogenic. Rationally monogenic orders are invariant rings of
primitive polynomials or binary forms (see, e.g., [5], [15], [16], [17], [6], [19],
[10, Chap. 16]). If «, 8 are two GLga(Z)-equivalent algebraic numbers, i.e.,
B = % for some (2%) € GLy(Z), then Zy = Zg. Given an order O of a
number field, we call a GLa(Z)-equivalence class of o with Z, = O a rational
monogenization of O.

We prove the following. If K is a quartic number field, then K has only
finitely many orders with more than two rational monogenizations. This is
best possible. Further, if K is a number field of degree > 5, the Galois group
of whose normal closure is 5-transitive, then K has only finitely many orders
with more than one rational monogenization. The proof uses finiteness results
for unit equations, which in turn were derived from Schmidt’s Subspace
Theorem. Except for the hypothesis on the normal closure of K, our result
implies a conjecture posed in [4].
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We generalize the above results to rationally monogenic orders over rings
of S-integers of number fields. Our results extend work of Bérczes, Gyéry
and the author [2] on monogenic orders.

Background and results. Let K be a number field. Denote its ring of
integers by Og. An order O of K (i.e., a subring of K that as a Z-module
is free of rank [K : Q)]) is called monogenic if there is @ € O with O = Z[a].
The set of a with Z[a] = O can be divided into so-called Z-equivalence
classes, where aq, as are called Z-equivalent if ay — ag € Z or ay 4+ ag € Z.
A Z-equivalence class of o with Z[a] = O is called a monogenization of O.
Every order of a quadratic number field has precisely one monogenization.
Orders of number fields of degree > 3 may be non-monogenic or have more
than one monogenization. From work of Gyéry [12) [13] it can be deduced,
and in fact in an effective form, that if K is any number field of degree
> 3 then every order O of K has at most finitely many monogenizations. If
one keeps the number field K fixed and restricts to monogenic orders of K,
then most of these have only a few monogenizations. Bérczes, Gy&ry and the
author [2) Theorem 1.1| obtained the following result.

THEOREM A. Let K be a number field of degree > 3. Then K has only
finitely many orders with more than two monogenizations.

This result is optimal. For instance, if € is a unit of O with Q(¢) = K,
then Z[e] = Z[e 1], while € and e~! are not Z-equivalent. More generally, let
a € Ok be such that Q(a) = K, suppose there are integers ¢, d such that
ca + d is a unit of O, let a,b be integers such that (‘CL g) € GLy(Z), and

put g := ggis Then Z]a] = Z[S], while « and (3 are not Z-equivalent.
This suggests that it is natural to consider the GL2(Z)-equivalence classes
of elements o with Z[a] = O. Here, o, f € K are called GLa(Z)-equivalent

if there is (%) € GL2(Z) such that 3 = aa+h

co+d’
We say that a group G acts t-transitively on a finite set S if for any
pairwise distinct i1,...,7; € S and pairwise distinct ji,...,j: € S, there is

o € G such that o(iy) = ji,...,0(it) = j¢. If K = Q(«) and L is the normal
closure of K, we say that Gal(L/Q) is t-transitive if it acts t-transitively on
the set {a, ..., (™} of conjugates of .

Then from [2, Theorems 1.1 and 1.2(ii)], the following can be deduced:

THEOREM B. Let K be a number field of degree > 5 such that the Galois
group of its normal closure is 4-transitive. Then for all orders O of K with
at most finitely many exceptions, the set of o with Z[a] = O is contained in
at most one GLa(Z)-equivalence class.

It is not known whether the condition on the normal closure of K is
necessary. It can be proved in an elementary way that if K is a cubic number
field and O an order of K, then the set of @ € O with Z[a] = O is contained in
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at most one GLy(Z)-equivalence class. For quartic number fields K, the above
theorem is false. In fact, |2], end of Section 1] gives the following construction:

THEOREM C. Let 1, s be integers such that f(X) = (X2 —7)2 - X —s is
irreducible, and let K = Q(«), where « is a root of f. Then K has infinitely
many orders On, (m = 1,2,...) with the following property: O, = ZLlouy,)
= Z[Bm], where By = 2, — T, cm = B2, — Sm for some integers rum, Sm.

It is clear that a,, B, in the above theorem are not GLa(Z)-equivalent.

Our aim is to generalize Theorem [B] to orders attached to non-integral
algebraic numbers. Let « be an algebraic number of degree n and f, € Z[X]
its primitive minimal polynomial, i.e., with coefficients having gcd 1. Then
the order Z, attached to « is the invariant ring or order of f, (see Naka-
gawa [15], Simon [16] or [5], [17], [6], [19], [10, Chap. 16]). Nakagawa and
Simon defined this order by giving a Z-module basis for it, together with
a multiplication table. A direct definition of Z, is as follows. Define the
Z-module

1

(1.1) M, = {:ro +ria+ -+ iz, .., Ty € L}

Then Z, is the ring of scalars of M,, i.e.,
(1.2) Zo :={£€Qa) : EMy C My}

If o is an algebraic integer, then o' € M, for i > n, and thus, Z, =
M, = Z[a]. Further, if o, f are GLo(Z)-equivalent, i.e., f = %j_‘db for some
(2%) € GLa(Z), then one easily verifies that Mg = (ca + d)! "M, which
implies Zg = Zq.

To simplify the formulation of our results, we introduce the following
terminology. We call an order O of a number field K rationally monogenic
if O = Z,, for some a with K = Q(«). A GLa(Z)-equivalence class of « with
Zo, = O is called a rational monogenization of O.

We give some other descriptions for Z,. Let again « be an algebraic
number of degree n, and denote by f, its primitive minimal polynomial, i.e.,
fa =aoX"+---+ay, € Z[X] with ap > 0 and ged(ag, ..., a,) = 1. Then Z,
is the Z-module with basis

(1.3) L,wi, .. wno1, wi=apel+aa™ 4+ a0 (i=1,...,n—1)

(see [10, p. 365, Thm. 16.2.9, formula (16.2.7)] or Lemma [2.1] in the present
paper). This is precisely the invariant order of f, as defined by Nakagawa
[15] and Simon [16]. Del Corso, Dvornicich and Simon [6, Prop. 2] (see also
Lemma in the present paper) proved the much simpler expression

Zo = Zla) N Z[a Y.

From the basis (1.3)) one deduces that the discriminant of the order Z, is
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equal to the discriminant of f,, i.e.,
(14) D(ZQ) :DQ(Q)/@(l,wl,...,wn_l)
= (Z(Q)n72DQ(a)/Q(1, a,...,H

a2 [ @9 - a9y =D(f.),

1<i<j<n

n—l)

where o). .. (™ are the conjugates of a.

The orders Z,, are part of a much more general theory on invariant rings
of binary forms (see [15], [17], [6], [19], [10, Chap. 16]). We briefly comment
on this at the end of this section.

It follows from the work of Birch and Merriman [5] on binary forms that
an order of a number field has at most finitely many rational monogeniza-
tions. Gyéry and the author [8, Cor. 2| proved that every algebraic number «
of degree n is GLg(Z)-equivalent to an algebraic number a* with height
H(a*) < C(n, D), where H(a*) is the maximum of the absolute values of
the coefficients of fu+, D is the discriminant of f,, and C(n, D) is effectively
computable. Together with this implies that it can be decided effec-
tively whether a given order of a number field has rational monogenizations
and that these can be determined effectively.

It can be shown that a rationally monogenic order O of a number field
of degree > 3 is primitive, i.e., there are no order @ and integer a > 1 such
that O = Z + aO'. Tt follows from classical work of Delone and Faddeev [7]
that every primitive order of a cubic number field has precisely one rational
monogenization. Further, work of Bérczes, Gy6éry and the author [I] implies
that an order of a number field of degree n > 4 cannot have more than
n - 224" rational monogenizations. Gydry and the author [I0, Chap. 17]
improved this to 2°"°. From recent work of Bhargava [3] it follows that for
quartic orders this bound can be improved to 40.

We are now ready to state the main result of this paper, which gives a
generalization of Theorem [B|to not necessarily integral algebraic numbers .

THEOREM 1.1.

(i) Let K be a quartic number field. Then K has only finitely many orders
with more than two rational monogenizations.

(ii) Let K be a number field of degree > 5 and suppose that the Galois group
of its normal closure is 5-transitive. Then K has only finitely many
orders with more than one rational monogenization.

Theorem [C]implies that there are quartic number fields, having infinitely
many orders with two rational monogenizations. We do not know whether the
condition on the normal closure of K is necessary if [K : Q] > 5. Probably, try-
ing to remove or relax this condition would considerably complicate the proof.
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The proof of Theorem uses, among other things, finiteness results for
unit equations in more than two unknowns. The present proofs of these de-
pend on ineffective methods from Diophantine approximation, e.g., Schmidt’s
Subspace Theorem or the Faltings—Rémond method. As a consequence, our
proof of Theorem is ineffective in that it does not allow one to determine
the exceptional orders. Further, although for unit equations we have good
upper bounds for the number of solutions, it is because of the ‘other things’
that we cannot give an upper bound for the number of exceptional orders.

We state a consequence, which partly confirms Conjecture 4.2 in [4]. We
adopt the terminology of [4]. Given a number field K, denote by PZ(K)
the set of primitive, irreducible polynomials f€Z[X], such that there is «
with f(a)=0 and Q(a) =K. We call two polynomials f,gePZ(K) GLa(Z)-
equivalent if thereis (%) € GL2(Z) such that g(X)==£(cX +d)dee/ f(2L0).

cX+d
Further, f and g are called Hermite equivalent if there are «, 8 such that

Q()=Q(B)=K, f(a)=0, g(#)=0and Mg=AM, for some A € K* (see
above). It was shown in [4] that GL2(Z)-equivalent polynomials are Hermite
equivalent. As we will show, Theorem implies the following, which except
for the assumption on the normal closure of K is [4, Conjecture 4.2].

THEOREM 1.2.

(i) Let K be a quartic number field. Then there are only finitely many Her-
mite equivalence classes in PZ(K) that fall apart into more than two
GL2(Z)-equivalence classes.

(ii) Let K be a number field of degree > 5 such that the Galois group of its
normal closure is b-transitive. Then there are only finitely many Hermite
equivalence classes in PZ(K) that fall apart into more than one GLa(Z)-
equivalence class.

Another consequence of our investigations, which probably could be
proved by other means as well, is the following.

THEOREM 1.3. Let K be a number field of degree > 3. Then K has
infinitely many orders that are rationally monogenic but not monogenic.

Finally, we would like to comment on the connection between the or-
ders Z, defined above, and invariant orders of binary forms. Birch and
Merriman [5] introduced for a binary form

F(X,Y)=aoX"4+a; X" 'Y + - +a,Y" € Z[X,Y]

that is irreducible over Q the Z-module Z g with Z-basis 1, w1, ..., w,_1 given
by (1.3), where F(«,1) = 0. Nakagawa [I5] proved that Zp is an order of
the number field Q(«), in fact,

(1.5) wiW; = — E Qitj—kWE + E Qi j—kWk
max(i+j—n,1)<k<i J<k<min(i+j,n)
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for 7,7 = 1,...,n — 1, where w,, := —a,. Thus, Zp is called the invariant
ring or order of F. This order was further studied by Simon [I6], [I7] and Del
Corso, Dvornicich and Simon [6].

Notice that in the definition of Zr we have not required that the coeffi-
cients of F' have greatest common divisor 1. Our order Z, is just Zr where
F(X,Y) =Ydeaf (X/Y) is an irreducible binary form whose coefficients
have greatest common divisor 1.

More generally, given any commutative ring R and binary form F =
S 0ai XY € R[X,Y], one can formally define the invariant ring Rp
of F' by taking the free R-module with basis 1,w1,...,w,_1 with prescribed
multiplication table ((1.5)). Here, it is no longer required that F' is irreducible,
nor even that ag # 0, and even ayp = --- = a, = 0 is allowed. Wood [19]
studied invariant rings of binary forms in a much broader context.

The remainder of our paper is organized as follows. In Section 2| we have
collected some basic properties of rationally monogenic orders. Although
these are all known, we have provided proofs for convenience of the reader.
Sections [3]and [4] contain preparations, where in Section [3| we apply finiteness
results for unit equations. In Section [5| we finish the proofs of Theorems
[LIHL3 Finally, in Section [6] we generalize the orders Z, to domains Ogq,
where Og is the ring of S-integers of a number field k and « is algebraic
over k, and state and prove a generalization of Theorem [I.I] but with a
notion of equivalence that is slightly weaker than GLy(Og)-equivalence.

2. Lemmas over principal ideal domains. In this section, we have
collected some generalities on rationally monogenic orders. We state and
prove everything over an arbitrary principal ideal domain A of characteris-
tic 0. Most of the results in this section have been proved elsewhere in a more
general context (see for instance [10, Chaps. 16 and 17|, [1], [6]). For con-
venience of the reader we have repeated the short proofs, specialized to the
situation of this paper. In the proofs of Theorems [I.IHI.3] we apply the re-
sults of the present section with A = Z. In Section [6] we use a local-to-global
argument, and apply the results of the present section to localizations of Og.

In what follows, if F' is any field, { € P}(F) := FU{oo} and C = (24) €
GLa(F), we write C¢ := ggis, with the conventions that this is co if £ = oo
and ¢ =0; a/cif £ = 0o and ¢ # 0; and oo if ¢ # 0 and £ = —d/c.

Let A be a principal ideal domain of characteristic 0, and k its field of
fractions. Fix a finite extension K of k of degree n > 3. Let L be its normal
closure over k and z — z(® (i = 1,...,n) the k-isomorphic embeddings
of K in L. Further, denote by A, Ay, the integral closures of A in K and L,
respectively. Recall that both A, A; are Dedekind domains; in the case
that A =7Z, Ag and Ay, are just the rings of integers of K and L.
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Given any domain B D A, we call a, 8 € K GLa(B)-equivalent if there
is C' € GLa(B) such that g = Ca.
Let a € K with K = k(«). Define the free A-module

(2.1) Mo = {zo+ 210+ + 10" 120, ..., 201 € A}

and its ring of scalars

(2.2) Ay ={{ € K : EMy T My}

As one easily verifies, if a, 5 are two GLa(A)-equivalent elements of A, then
Mq = AMg for some A € K*, and thus A, = Ag.

We give some other descriptions of A,. Let fo, = ap X" +---+a, € A[X]
be a primitive minimal polynomial of «, i.e., with ged(ag, ..., a,) = 1. Such
a polynomial exists since A is a principal ideal domain.

LEMMA 2.1. We have
(2.3) A, = {:co +xiw1 o+ T 1Wh—1 1 XO, e Tp—1 € A}
where

Wws ::aga’+a1az_1+---+ai_1a (i:1,...,n—1),
and
(2.4) Ay = Ala] N Al .

Identity (2.3)) follows from [10, p. 365, Thm. 16.2.9, formula (16.2.7)]),
while (2.4)) is a consequence of [6, Prop. 2|. For the convenience of the reader,
we repeat the proofs.

Proof of Lemma[2.1l Let N, denote the A-module on the right-hand side
of (2.3). We prove the inclusions N, € A, C Ala] N Ala™!] C N,.
First observe that if 1 <t <n—-1,0<j5<n—1, then
i1
wiaj:ZakaiH_kEMa ifi+j7<n-1,
k=0

wial = (wi — fa(a))aj = — Zakaiﬂ_k eEM, ifi+j>n,
k=i
implying N, C A,.
Second, Ay € My Nal™M, C Ala] N Ala™Y.
Third, let ¢ = P(a) = Q(a™!) € Ala] N Ala™!], where P,Q € A[X]. We
prove by induction on deg P that £ € N,. For deg P = 0 this is clear. Let
deg P = r > 1. Consider the polynomial

H(X):= X%eQp(X) - xdeQQ(Xx1) e A[X].

The polynomial H is non-zero, since otherwise P(X) = Q(X~!), which is
impossible. Let b be the leading coefficient of P. Then b is also the leading
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coefficient of H. Since H(«) = 0, f, must divide H in k[X]. But by assump-
tion, the coefficients of f, have ged 1, so by Gauss’ Lemma f, divides H in
A[X], in particular, the leading coefficient ag of f, divides b. Now if r > n,
we have P(«a) = P*(«) where P*(X) = P(X) — (b/ao) X" ™" fo(X) is a poly-
nomial in A[X] of degree < r and we can apply the induction hypothesis. If
r < n, then P(a) = (b/ag)w, + P*(a), where P* € A[X] has degree < r. We
already know that w, € Ala] N Ala™!], so P*(a) € A[a] N Ala™]. We can
again apply the induction hypothesis. =

Let M be an A-submodule of Agx with basis v1,...,vn, say, where n =
[K : k]. The discriminant ideal 0pq/4 of M over A is defined as the ideal
of A generated by Dg/k(71,--,7) = (det(’yi(J))i,j:L_,,m)Q. This does not
depend on the choice of basis.

LEMMA 2.2. Let a € K with k(o) = K and let fo = apX™ + -+ + ap,
€ A[X] be a primitive minimal polynomial of a. Then 04,74 = D(fa)A,
where D(fa) = a5" > T 1cicjcp (@@ — al))2,

Proof. Same reasoning as in (1.4]). =

For ay,...,a, € L, denote by [aq,...,a,] the fractional ideal of Ap,
i.e., Ap-module, generated by aq,...,a,. Further, for a finitely generated
A-submodule M of K and for distinct ¢,5 € {1,...,n}, let 9;;(M) be the
fractional ideal of Aj, generated by €@ — ¢U) for all € € M. Thus, if M is
generated as an A-module by &1, ... ,&,, we have

(2.5) 0 (M) = [6) — W) e — ).

LEMMA 2.3. Let o be such that K = k(a) and i,5 € {1,...,n} with
i # j. Then

[a® — o] =[1,a®]-1,a)] 045(Aa).
Proof (cf. [10, Lemma 17.6.4]). Let w1,...,wn—1 be as in (2.3). Then
afa(X) = (X —a) (@i X" +wa X"+ +wy),
where w,, := —a,,. This implies
(a® — 00X fo(X)
= (X = a")a? fo(X) = (X = al")a¥ fo(X)
= (X — aD)(X — ) - (P — D) x4 @) — WD),
We apply Gauss’ lemma for Dedekind domains, which in our case asserts

that if g1, g2 € L[ X] then [g192] = [g1] - [92], where [g] is the fractional ideal
of Ap generated by the coefficients of g € L[X]. Using the fact that the
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coefficients of f, have ged 1, together with (2.3) and ([2.5)), we obtain
[a(i) _ a(j)] — [1,a(i)] : [1,a(j)] . [wgi) _ ng)’ o 7""731 _ wgzl]
=[1,aD]-[1,a9] - 0;;(4s). =

If [K : k] =n > 4 then for a with K = k(«) and pairwise distinct
i,7,k,l € {1,...,n}, we define the cross ratio
) B (D) — a))(a®) — M)
(26) <tigt(@) = T ) (0l — )’

LEMMA 2.4. Suppose [K : k] =n > 4. Let o, 8 be such that k(a) = k()
= K and Ay = Ag. Then for all pairwise distinct i,j,k,l € {1,...,n} we
have

cryjn ()
crijhi (B)
Proof. Lemmaimplies [erijr ()] = [crijei(B)] for all 4,4, k, 1. w
LEMMA 2.5. Let K be a finite extension of k, and let a, B be such that
k(o) =k(B) = K.
(i) Suppose that [K : k] = 3. Then a, 8 are GLa(k)-equivalent.
(ii) Suppose [K : k] =n > 4. Then «, B are GLa(k)-equivalent if and only if
crijri() = cryjp(B) for all pairwise distinct i,7,k,1 € {1,...,n}.

€ A7

Proof (cf. [10, Lemma 17.7.2]). (ii) From elementary projective geom-
etry, we know that crjji(a) = cryjp(f) for all pairwise distinct 7,7, k,1 €
{1,...,n} if and only if there is C € GLg(L) such that 8 = Ca® for

i =1,...,n. Suppose the latter to be the case. Then since n > 4, the matrix
C is determined uniquely up to a scalar. Clearly, we have () = O'(C)Oé(z) for
i =1,...,n and every o € Gal(L/k). If we assume that one of the entries

of C'is 1, then o(C) = C for every o € Gal(L/k), i.e., C € GLa(k).

(i) By elementary projective geometry, there is a unique (up to a scalar
factor) C' € GLy(L) such that ) = Ca® for i = 1,2,3. If we take C
such that one of its entries is 1 then similarly to above it follows that C €
GLa(k). =

LEMMA 2.6. Assume that [K : k] > 3. Let o, § be such that k(o) = k()
= K and A, = Ag. Suppose that o,  are GLa(k)-equivalent. Then o, 3 are
GLa(A)-equivalent.

Proof (cf. [10, Proposition 17.6.5]). Since A is a principal ideal domain,
we may assume that § = Ca, where the entries of C belong to A and
have gecd 1. Further, C can be put in Smith Normal Form, i.e., there are
matrices U,V € GLy(A) such that UCV = (&9) with a € A\ {0}. Let
B1 := UB, a; := V~'a. Then since a,3 ¢ k we have ay,3; # oo, and
moreover Ay, = Ag, and 31 = aay. We have to show that a € A*.
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Let fo,(X) = apX™ + -+ + a, € A[X] be a primitive minimal polyno-
mial of a1, i.e., with ged(ag,...,a,) = 1. Then £; has primitive minimal
polynomial

I8, (X) = Ao, (X/a) = AMa "ap X" + ' "a XM+ an),
B

where A € k is such that the coefficients of fg are in A and have
ged 1. By (2.3), Ao, is a free A-module with basis 1, wi,...,w,—1 with
w; = 2_:10 akazl_k fori=1,...,n — 1. By replacing oy with 81 = a«y, and
a; by Aa'""a;, we see that Ag, has basis 1, Aal""wi, Aa?wa, . Aa .

Since An, = Ag,, this must imply
N e A* fori=1,...,n—1,
hence a € A* and A € A*. =

3. Application of unit equations. Let K be a number field of degree
n > 4 and L its normal closure. In the case n = 4 we do not impose any
constraints on L, while for n > 5 we assume that Gal(L/Q) is 5-transitive.

We call ay € K k-special if K = Q(aq) and there are ao, ..., qp such
that Zo, = -+ = Zq, and a1, ..., qy are pairwise GLy(Z)-inequivalent. We
call a1 special if it is 2-special.

Theorem [I.]] follows, once we have shown that in the case n = 4, the
3-special numbers of K lie in only finitely many GL2(Z)-equivalence classes,
and in the case n > 5 that the special numbers of K lie in only finitely
many GLgy(Z)-equivalence classes. Indeed, the orders of K with k rational
monogenizations are all of the shape Z, where « is k-special, and if such «
lie in only finitely many GLg(Z)-equivalence classes, there are only finitely
many orders Zi,.

In the present section we prove the following proposition. Here, we apply
some results from the theory of unit equations.

ProrosITION 3.1.

(i) Let K be a quartic number field. Then the set of 3-special numbers of K
is contained in finitely many GLa(Q)-equivalence classes.

(ii) Let K be a number field of degree n > 5 such that the Galois group of
its normal closure L is 5-transitive. Then the set of special numbers of
K is contained in finitely many GL2(Q)-equivalence classes.

We will show later (see Proposition below) that the GL2(Q)-
equivalence class of a special number is the union of finitely many GLy(Z)-
equivalence classes.

We start with some initial observations. Let o, € K with Q(a) =
Q(B) = K, Za = Zg and o, f GLy(Z)-inequivalent. Then

(3.1)  cryjm(e) # cryjm(B)  for all pairwise distinct 4, 7,k,1 € {1,...,n}.
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Indeed, suppose that for some tuple (4, j, k, ), say (1,2,3,4), we have equal-
ity. In the case n = 4 this implies equality for each permutation (i, j, k,1)
of (1,2,3,4) since crji(-) is a fractional linear transformation of crigss(-).
In the case n > 5, we obtain equality for all 4, j, k,[ since by our assump-
tion on the normal closure L, there is ¢ € Gal(L/Q) that maps criasa(-)
to cryjp(-). Lemma now implies that «, 5 are GL2(Q)-equivalent, and
subsequently Lemma implies that «, 8 are GLga(Z)-equivalent, contrary
to our assumption.
Another important observation is the identity for cross ratios

(3.2) ety () + crigj(a) = 1

for all @ € K and all pairwise distinct 4, j,k,1 € {1,...,n}. Now let o, 5 be
such that Q(a) = Q(8) = K and Z, = Zg. Put

L Cl‘ijkl(ﬁ)_
Eijkl *= —— 7 >
cryjp ()
then from (3.2)) and Lemma we deduce
(3.3) crijri(@) - €ijm + cring (@) - ey = 1, €iji € OF, cury € OF,

where Oy is the ring of integers of L. This allows us to apply the theory of
unit equations.
We first prove part (i), and then part (ii).

Proof of Proposition ( i). Let K be a quartic number field, and let
a € K be 3-special. Choose 3,7 € K such that «, 3, are pairwise GLy(Z)-
inequivalent, and Z, = Zg = Z~. Put
criini(B) - ergr(y)
— Nijkl *= ——— ~
criji (o) criji (o)
for each permutation (i, j, k,1) of (1,2,3,4).

By (3.1)(3.3), the pairs (1,1), (€1234,€1432), (1234, 71432) are three dis-
tinct solutions to the equation

Eijkl ‘=

(3.4) crigga(a)r +crige(a)y =1 inz,y € OF.
We now apply the following result on unit equations @

LEMMA 3.2. Let F' be a field of characteristic 0 and I' a subgroup of F™*
of finite rank. Then there are only finitely many pairs (a,b) € F* x F* with
a+ b =1 such that the equation

ax+by=1 imzx,yel

has more than two solutions, the pair (1,1) included.

(*) Equations with unknowns from a multiplicative group I' of finite rank are often
called unit equations since in most applications, I is the unit group of a domain.
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Proof. This is essentially a result of Gyéry, Stewart, Tijdeman, and the
author [II, Thm. 1]; see also [9 Thm. 6.1.6]. Their proof uses a finiteness
result for linear unit equations in several unknowns, which in turn follows
from Schmidt’s Subspace Theorem. m

We continue with the proof of Proposition (1) Since has three dis-
tinct solutions in Oj including (1, 1), and O7 is finitely generated, Lemma
implies that if o runs through the 3-special numbers of K, then crisss(c)
runs through a finite set. If (4,7, k,1) is a permutation of (1,2,3,4), then
cr;ji(+) is a fractional linear transformation of cria34(+), hence crjjp (o) runs
through a finite set as well. Now Lemma (ii) implies that the 3-special
numbers o € K lie in only finitely many GL2(Q)-equivalence classes. m

Proof of Proposition ( ii). Let K be a number field of degree n > 5
such that the Galois group of its normal closure L is 5-transitive. Take a
special o € K. Choose 3 such that Zg = Z,. Recall that by Lemma

- Cl"ijkl(ﬁ)
K Crijkl(a)

for all pairwise distinct ¢, j, k,l € {1,...,n}. Viewing (3.2)) and (3.3) as linear
equations in cr;jp (o) and cryji (), from Cramer’s rule we derive

€0

(3.5) () = —M L
Eilkj — Eijkl
Our strategy is as follows. Using algebraic relations between the ;1 and
finiteness results for unit equations, we show that if a runs through the
special numbers of K, then one of the €1, say €1234, Tuns through a finite
set. Our assumption that Gal(L/Q) is 5-transitive implies that the numbers
€ijk1 are all conjugate to one another, thus it follows that ;;; runs through
a finite set for all 4, 7, k, . But then implies that crj;r (o) runs through
a finite set for all 4, j, k,l. Finally, Lemma (ii) implies that the special
numbers « € K lie in only finitely many GL2(Q)-equivalence classes.

We first collect some algebraic relations between the €;;5;. It is straight-
forward to verify

€ijkl = Ejilk = €klij = Elkjis

-1
(3.6) €ijkl = Eikjls
Eijkl __ .
Eijlk Cilkj
for all pairwise distinct 4, j, k,l € {1,...,n} and moreover,
Eijkl
(3.7) = Ejmlk
Eijkm

for all pairwise distinct 4,5, k,l,m € {1,...,n}.



Orders with few rational monogenizations 13

We derive a few more relations. From (3.5) and (3.6) it follows that

crijrl(B) = €ijricriju (o) = ZZ‘% Picking a fifth index m, we get

- Tjmik (B)Crijem(B) _ €jkim — 1 Eimkj — 1 cajr — 1
crijr(B) Ejkml — 1 Eimjk — 1 ear; — 1

We apply this with (i, 7, k,1,m) = (5,1,2,3,4). Thus, we obtain

(3.8) (1234 — 1)(€1245 — 1)(€1253 — 1) = (€1243 — 1)(€1254 — 1)(€1235 — 1),

where, as mentioned before, all entries belong to O7 . We apply the following
result.

LEMMA 3.3. Let F' be a field of characteristic 0 and I' a subgroup of F™*
of finite rank. Consider the equation

(3.9 (z1—D(xe—(xs—1)= (11 — )(y2 — D(ys — 1)
in T1,T2,T3,Y1,Y2,Y3 € I

There is a finite subset S of I' such that every solution of (3.9) satisfies one
of the following:

(a) at least one of x1,...,ys belongs to S;

(b) there are s1,s2,s3 € {£1} such that (x1,x3,23) is a permutation of
(1", 9575 5"

(c) at least one of the numbers in {x;xj, xi/x;, yiyj,vi/y; - 1 < i < j <3}
is either —1 or a primitive cube root of unity.

Proof. This is a result of Bérczes, Gyéry, and the author |2, Prop. 8.1].
They deduced the above lemma from a finiteness result for linear unit equa-
tions in several unknowns, and so again Schmidt’s Subspace Theorem is in
the background. =

We apply Lemma with I' = O7 to . We show that each of
the three cases (a)—(c) gives rise to only finitely many possible values for
£1234. Recall that we assume that Gal(L/Q) is 5-transitive. Hence for any
two quintuples of distinct indices (4, j,k,1,m) and (¢, 5, k',1",m’), there is
o € Gal(L/Q) mapping oD, 30 (M) g(m) 4o o) g6 om)) gm")
respectively. Consequently, any two &1, €y j/ 471 are conjugate to each
other. Similarly, from an identity between e-s with indices from a quintuple
(i, 7, k,1,m) we can derive a similar identity with indices from (7', 5/, k', ', m’)
by applying a suitable element of Gal(L/Q).

The above observations imply that if we have shown that one of the ;1
runs through a finite set, then so does £1234. This settles case (a). As for (b)
and (c), using again the above observations, we are left with the following
subcases. Let T denote the group of 6th roots of unity in L.
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CASE bl. £€1234 = €£€1243. Then by " €1432 = gzii = 1, which by
conjugacy implies 1234 = 1.

CASE b2. £1234 = 61_2143. By ' s 61_2143 = 61_213481432, SO 6%234 = £1432.
By conjugacy, we may interchange the indices 2 and 3, while keeping 1
and 4 fixed, so we also have €304 = 5f3142. Applying again (3.6]), this gives
£1234 = €430 Hence e3gs, = 1.

CASE b3. £1234 = €1254- By " and " ] = £L234 — Soud3 £1534. By

. £€1254 €2145
conjugacy, €1234 = 1.

CASE b4. €1934 = 51_2154. By conjugacy, we may interchange 2 and 3, keep-
ing 1,4, 5 fixed, so we have 1304 = 51_3154, which together with implies
€1234 = €1354. From and we deduce g%‘;i = £1234. Multiplying
these relations together, we obtain €345, = 1.

CASE cl. €1934 - €1245 € T. By interchanging 3 and 5, and keeping 1,2,4
fixed, we see that £1254 - 1243 € T. Using (3.6) and (3.7)), we get

€1234 * €1245 €1534
= =eis €T
€1254 * £€1243 €2534

and by conjugacy, €1234 € T .

CASE c2. gﬁ?"; € T. Interchanging 2 and 3, and keeping 1,4, 5 fixed, we
obtain % € 7, and then, using 1324 = 5{21:))4, we get €945 - €1345 € T.
By taking conjugates, we obtain €1934 - €1235 € T, and also €1234 - €5234 € T .

Applying (3.7), the latter yields 1234 - £125% € T. Hence €545, € T

€1235

As mentioned above, this completes the proof of Proposition "

4. Investigation of GLa(k)-classes. Let K be a number field of de-
gree > 4. In the next section we show (Proposition that the GL2(Q)-
equivalence class of each special number in K is the union of finitely many
GL2(Z)-equivalence classes. Together with Proposition this will imply
Theorem In the present section, we develop some machinery needed for
the proof of Proposition We have worked out this machinery for arbi-
trary principal ideal domains of characteristic 0 so that we can use it also in
Section [6] where we will prove a generalization of Theorem over rings of
S-integers of number fields.

Let A be a principal ideal domain of characteristic 0, k its field of frac-
tions, K an extension of k of degree n > 4, and L the normal closure of K
over k. We consider so-called special pairs in K, i.e., pairs («, ) such that
k(o) = k(B) = K, Ay = Ag and «, 3 are GLy(A)-inequivalent. Two spe-
cial pairs (o, 8) and (a*, 5*) are called GLy(k)-equivalent if o* is GLa(k)-
equivalent to o and B* is GLa(k)-equivalent to £.
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Let (a, ), (a*,8*) be two GLa(k)-equivalent special pairs. Then since
we are working over a principal ideal domain A,

(4.1) o =Ca, [*=0,
where C = (‘ég), C'= (‘Z,’ 3’,) with
a,b,e,d e A, ged(a,b,c,d) =1, A:=ad—be #0,

a v, d,deA geddV,d,d)y=1 A :=dd-bd#0.

Recall that by Lemma |2.4] we have % € Aj for all pairwise distinct
ij

i,7,k,le{l,...,n}.

PROPOSITION 4.1. Let d be the discriminant ideal of Ay, and let a(a, f3)
crijkl(8)

() 1 for all pairwise

denote the ideal of Ar generated by all numbers
distinct i,j,k,l € {1,...,n}. Then

(4.2) AAp D05 - a(a, B)2

Recall that by Lemmas and the ideal a(a, 3) is not zero. We
mention that our proof also implies that A/A" € A* but this will not be
needed.

We start with some preparations and then prove two lemmas, which
together imply Proposition

Let C, C’ be the matrices from . Since A is a principal ideal domain,
there are matrices U, V,U’, V' € GLg(A) such that

A0 A0
UC’V:< ) U’C”V’z( )
0 1 0 1

Put oy := V7 la, of := Ua*, By := V718, Bf := U'B. Then af = Aay,
B = A'B1, Aoy = Ap,, Aar = Ags, (a1, B1), (aF, B7) are GLa(k)-equivalent
special pairs, and a(a, 1) = a(a, 8). So in the proof of Proposition we
may replace a, o*, B, B* by a1, af, p1, 87, in other words, without loss of
generality we may assume

(4.3) o = Aa, B*=AB.
So assume (|4.3). Let
fa=ao X"+ +an, fzg=b X"+ -+,

be primitive minimal polynomials of «, 8. By Lemma , the ring A, = Ag
has A-module bases

{1,601,...,607171}, {1?;013"'7[)7171}
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respectively, where
i—1 i—1

(4.4) wj :Zajozl_g, Pi :ijﬁz_] (i=1,...,n—1).
j=0 j=0

Hence there are a matrix M = (mjj;);j=1,..n—1 € GL,—1(A) and m;o € A
(t=1,...,n—1) such that

n—1
(4.5) pi:mi70+2mijwj fori=1,...,n—1.
j=1
Let us write [...] for the fractional ideal of A generated by the elements

between the brackets.
LEMMA 4.2. The following holds:

(4.6) 4] = A7,

(4.7) mij =0 (mod A7) fori=1,....,n—1,j > i,
(4.8) ged(my;, Ay =1 fori=1,...,n—1,

(4.9) [a0, A] = [bo, A].

Proof. By (4.3), there are non-zero A, i € k such that o*, 8* have prim-
itive minimal polynomials

for = MapAT"X" + a AP an),

for = u(bg A" X"+ by ATTXTL 4 by,

From , it follows that A,« = Ag« has A-module bases

(4.11) {1, AAY Wy, A w0}, {L A o, A T )

Hence there are M* = (mfj)i,jzl,,,,ynfl € GL,—1(A4) and mi, € A (@G =
1,...,n — 1) such that

(4.10)

n—1
pA" s = m; o+ Z mz‘j)\Aj_”wj fori=1,...,n—1.
j=1
A comparison with (4.5)) gives

n—1
uﬂllinpi =ti0+ Z tijw; (’l =1,... ,n),
j=1
where
(4.12) tij = pA" "my; = AN "ml (i,j=1,...,n—1).

Since M = (m;;) € GL,—1(A), the entries of each row of M have ged 1. It
follows that the fractional ideal generated by the entries of the ith row of
T = (tij)ij=1,..n—1 18 [1A"="]. Hence the fractional ideal generated by all
entries of T is [uA'~"]. Similarly, since also M* € GL,_1(A), the fractional
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ideal generated by the entries of the jth column of T is [AA7~"]. Hence
the fractional ideal generated by all entries of T is [NAA'""]. So [AA7"] =
[# A7), On the other hand, using det M € A* and det M* € A*, we find
that [detT] = [A*~tA—"(=1/2] = [n~1 A=n(=1)/2] By combining these
two identities and the fact that n > 4, we obtain

N =[u. [4]=[4]
This proves (4.6). Further, by (4.12)),
[mij] = [A7"mj)],

and since m;; € A this implies (4.7). Combining (4.7) with det M € A* we
obtain (4.8)).

It remains to prove (4.9)). Note that by (4.4) we have

w? = ajwi — agwa,  pi = bip1 — bopo.

Substituting (4.5)) and using the congruences (4.7]), we obtain the following

congruences modulo AA,:

bi(m1,o + mi1wi) — bo(ma,0 + Mo w1 + maswa)
= (m10 + miawi)? = mi g+ 2mygmiw + mi w?
= mio + 2m170m171w1 + mil(alwl — aowg)
= mio + (2myomi 1 + milal)wl - m%’laowg (mod AA,).

Comparing the coefficients of wy, we see that bymaoo = aomil (mod A).
Combined with (4.8]), this gives (4.9). m

For the remainder of the proof of it will be convenient to work
locally. Let Vi, be the set of discrete valuations on L corresponding to the
non-zero prime ideals of Ay, i.e., v € V}, corresponds to the prime ideal p
if v(x) is the exponent of p in the unique prime ideal decomposition of [z].
Further, put 6, := v(9) = min {v(x) : x € d}.

LEMMA 4.3. Let v € V. Then for all pairwise distinct i,j,k,1 €

{1,...,n} we have

(4.13) u(A) g55v+2-u<cr”’“(5) - 1>.
Crijkl(a)
Proof. We assume without loss of generality that
(4.14) v(A) > 5,.

We frequently use the following facts. Let as before 2 — 2(%) (i=1,...,n)
be the k-isomorphic embeddings of K in L so that

o = ag(X — a(l)) (X _a(n)), fs = bo(X —,8(1)) (X _B(n)).



18 J.-H. Evertse

Since fq, fg are primitive, by Gauss’ Lemma we have

(4.15)  w(ag) + Y _min(0,0(a)) =0, v(by)+ > min(0,v(8%)) = 0.

i=1 i=1
By Lemma [2.2| we have ? = [D(f,)] = [D(f3)]. Using
D)= [ (- aty?

1<i<j<n

and likewise for f3, and inserting (4.15]), we obtain
(4.16) 16, = Z (v(a(i) — 9y — min(0, v(a¥)) — min(O,v(a(j))))

1<i<j<n
= >, (@Y =) = min(0,0(8")) — min(0,v(5))).
1<i<j<n
For a,b,c € L we write a = b (mod ¢) if v(a — b) > v(c). By and (4.7,
bW = mi,0 + m171a0a(i) (mod A) fori=1,...,n;
here we use the fact that wj, p; (j = 1,...,n — 1) and their conjugates all

lie in Ay. This implies
(4.17) bo(BY — gy = ml,lag(a(i) —a¥) (mod A)  fori,j=1,...,n.

In the remainder of the proof we distinguish the cases v(ag) < v(A)
and v(ag) > 2v(A). First assume that

v(ag) < 3v(A).
Let 7, j be any two distinct indices from {1,...,n}. Then by and ([4.16)),
v(m1,1ao(a(i) _ a(j)))
< v(ag) + v(a® — al) — min(0, v(a?)) — min(0, v(a'¥))
< $u(A) + 16,
and together with this gives
v( bo (B8 — B9

1) = b - 4.

which is > 0 by (4.14]). Using the trivial observation for discrete valuations

(4.18) v(xi—1)>ec>0fori=1,23,4 = U(mlxz—l) >c
T3T4

we deduce
’U(Crijkl(ﬁ) o 1> Z %U(A) _ %5@
cryjp ()

for all pairwise distinct 4, j, k,l € {1,...,n}, which implies (4.13]).
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Next, assume that
(4.19) v(ag) > Fv(A).
Then implies that also
(4.20) v(by) > 2v(A).

We first observe that
(4.21) v(ar) < 0y,  v(b1) < Oy
Indeed, recall that the discriminant D(F’) of a binary form

F = zn: 2 XY
i=0

is a polynomial in Zxg,...,z,]. Consequently, if F' as above and G =
S o yiX" 'Y are binary forms in A[X,Y], we have

v(D(F) — D(GQ)) > Orgnz’lélnv(mi — Yi)-
Applying this with F(X,Y)=Y"f,(X/Y) and G(X,Y)=F(X,Y)—ao X" —
a1 X" 1Y, and noting that D(G) = 0 since G is divisible by Y2, we see that
0y = v(D(F)) = v(D(F) — D(G)) > min(v(ao), v(a1)).

By ([#19) and ({14) we have v(ag) > 3v(A) > &,. Hence v(ar) < §,. The
proof of v(by) < ¢, is the same, using (4.20)) instead of (4.19).

Assume without loss of generality that

v(aM) = min(v(aM), ..., v(a™)).

Then
(4.22) v(a®) > —168, fori=2,...,n.

Indeed, suppose that v(a(i)) < —%51, for some ¢ > 2. Then by (4.16)),

-1

%61, > v(a(l)_1 — o ) > %51,,

which is impossible. Thus,
(4.23) v(aga®) > v(A) - 36, fori>2,
' v(age™) = v(ar + ag(a® + -+« + ™)) < 6,

where in the derivation of the first inequality we use (4.19) and in that of
the last inequality we use (4.21)) and (4.14]).

Let k£ be an index such that
(%)) = min(v(8W),...,v(B™)).
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Then completely similarly to (4.22)) and (4.23) we derive
v(BW) > 306, fori#k,
v(boB®) <6, v(boSY) > Lu(A) — 15, fori#k,

where we have used (4.20]) instead of (4.19)). We show that the index k must
be equal to 1. Recall that by (4.17]),

bo(BD — B = my 1ag(@? — o) (mod A)  for i > 2.
Assuming k # 1, for i # 1, k this congruence contradicts the two inequalities
u(bo(BY — B1)) > Lv(A) — 15, implied by ([24),

v(miag(al” —al)) <4, < Ju(4) - 56,
implied by , , . So indeed k£ = 1, and thus becomes
v(BW) > ~15, fori>2,
v(boBM) < 6,0 v(b0BY) > Lo(A) = 15, fori > 2.
Let 1 € {2,...,n}. By and we have
bo(B89)2 + b1 89 = my o 4+ mo1aoa® + mya(ap(a)? + a;a®) (mod A),

(4.24)

(4.25)

while

<
—~
>
~
|
=]

! o by (£19), (122),
v(bo(B)?) > Lu(A) —6, by [@20), [@E25),
5, by @E19), [@22).

1
—~
)
o
S
N
V
N[ —
-1
—~
S
~—
|
N[ =

These relations together imply
U@lﬂ(i) —m20 — m2,2a10z(i)) > %U(A) -0, fori>2.

Now let 7,7 be any two distinct indices with 2 < 4,5 < n. Then by the
inequality just derived,

(4.26) U(bl(ﬁ(i) — B —mgsar(a® — a(j))) > 2u(A) — 6.
Further, by (£8), (E21), and (E16),
(4.27)  v(mggar (@ —al9)))

<w(ay) + v(a(i) — a(j)) — min(0, v(a(i))) — min(O,v(a(j))) <
which together with (4.26[) implies

(4.28) v( (59 — p9) 5 - 1) > 1u(A) - 36,

Inequality (4.28]) holds for any pair of indices i,j > 2. We still have to
look at the case where one of the indices is 1. Let j > 2. Then by (4.23)

[\G] [V

Ou,
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and (TT),

v(ao(a(l) _ a(j))) <4,
which together with (4.17) implies
(1 — g0)
v( bo(8 b ) —1>>U(A)—5v.

leao(a(l) — a(]))

(4.29)

Finally, from (4.28]), (4.29), (4.14) and observation (4.18) we deduce
v Crz]kl(ﬁ) -1 > %'U(A)—%év
cryjr ()
for all pairwise distinct 4, j,k,0 € {1,...,n}. This implies (4.13) and thus
completes the proof of Lemma [£.3] =

Proof of Proposition [{.1 By applying Lemma for all v € Vy, the
inclusion (4.2)) clearly follows. m

5. Proofs of Theorems [I.LTHI.3l Let K be a number field. Recall
that a1 € K is k-special if K = Q(a;) and there are aas,...,ax such
that aq,...,a; are pairwise GLg(Z)-inequivalent and Z,, = -+ = Zqg,.
A 2-special number is called special. We first prove the following.

PROPOSITION 5.1. Let K be a number field of degree n > 3. Then the

GL2(Q)-equivalence class of every special o € K is the union of at most
finitely many GLa(Z)-equivalence classes.

Proof. First let n = 3. By Lemmas (1) and any two numbers «,
with Z, = Zg are GLa(Z)-equivalent. Hence there are no special numbers
in K.

Next let n > 4. Denote by L the normal closure of K. Let C be the
GL2(Q)-equivalence class of a special a € K. We first split C into finitely
many subclasses. Since cross ratios of GL2(Q)-equivalent numbers are the
same, we may define cr;j1;(C) := crjjp(e) for any a € C and any distinct
i,j,k,l € {1,...,n}. For every a € C there is § € K such that Z, = Zg and
B is not GLy(Z)-equivalent to . From Lemma [2.4] and it follows that
€ijkl := ikl (B)/crijr (o) € OF for all distinct 4,7, k,1 € {1,...,n} and

(5.1) etk (C)eijn + crun; (C)ear; = 1

for all distinct 4, j,k,l € {1,...,n}.
We apply the following result, due to Lang [14].

LEMMA 5.2. Let F be a field of characteristic 0, let a,b € F*, and let I"
be a subgroup of F* of finite rank. Then the equation

ar+by=1 inz,yel

has only finitely many solutions.
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By applying this to with I" = O7, we infer that there is a finite set
depending only on C such that for all 4, j, k, [, €5 belongs to this set, and
so, for all 4, j, k, [, crijri(B) belongs to a finite set depending only on C. Now
Lemma [2.5(ii) implies that the GL2(Q)-equivalence class of 3 belongs to a
finite collection depending only on C. Further, by Lemma the classes in
this collection are disjoint from C. This implies that C can be partitioned
into a finite collection of subclasses

C(D) := {a € C : there is § € D with Z, = Zg},

where D is the GLy(Q)-equivalence class of some special number, distinct
from C.

Take a GL2(Q)-equivalence class D # C for which C(D) # (). We have
to show that C(D) is the union of finitely many GLy(Z)-equivalence classes.
We use the fact that for every positive integer A there is a finite set F(A)
of integer 2 x 2-matrices such that if C'is any 2 x 2-matrix with |det C| = A,
then there is U € GLo(Z) with UC € F(A).

Fix o € C(D) and then g € D with Z, = Zg. Then choose a* € C(D); we
let o vary. Further choose 8* € D with Zq+ = Zg-. Thus, (a, ) and (a*, 5*)
are two GL2(Q)-equivalent special pairs as in Proposition with A = Z.
Let C be the matrix from (4.1)), so with o* = Ca, and put A := |det C|.
Then there is U € GLg(Z) such that

UC =: Cy € F(A).

Let a** := Ua* = Cia. By Proposition[f.1] A belongs to a finite set depend-
ing on «, 8, hence so does C1, and thus o**. This implies that the GLy(Z)-
equivalence class of o* belongs to a finite collection depending on «, 8. This
shows that indeed C(D) is the union of finitely many GLa(Z)-equivalence
classes. m

Proof of Theorem[I1.1l Propositions[3.1]and [5.1]imply that if K is quartic
then the 3-special numbers o € K lie in finitely many GLg(Z)-equivalence
classes. Further, if K has degree > 5 and the Galois group of its normal
closure is 5-transitive, then the special numbers in K lie in finitely many
GL2(Z)-equivalence classes. As we observed in Section |3 this implies Theo-

rem [1] =

Proof of Theorem[I. Let K be either a quartic field, or a number field
of degree > 5 such that the Galois group of the normal closure of K is 5-
transitive. Consider a Hermite equivalence class H of polynomials in PZ(K)
that falls apart into at least three GLa(Z)-equivalence classes if [K : Q] = 4,
and into at least two GLa(Z)-equivalence classes if [K : Q] > 5. Recall that
f,9 € PZ(K) are Hermite equivalent if f has a root « and g a root  such
that Q(a) = Q(B) = K and Mg = AM,, for some non-zero A. This implies
Zo = Zg. Now if f,g € H are GLa(Z)-inequivalent, then so are a, 5. So the
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order O = Z, has at least three rational monogenizations if [K : Q] = 4,
and at least two rational monogenizations if [K : Q] > 5. Since O is an order
of a conjugate of K and K has only finitely many conjugates, Theorem
implies that there are only finitely many possibilities for O. Given O, the set
of a with Z, = O is the union of finitely many GLgy(Z)-equivalence classes.
Hence the set of f € PZ(K) having a root a with Z, = O is the union of
finitely many GLa(Z)-equivalence classes. The class #H is the union of some
of these classes. So we have only finitely many possibilities for 7. m

Proof of Theorem [I.3 Take an algebraic number « of degree n > 3.
Let fo(X) = aoX™ + -+ + a, € Z[X] be the primitive minimal polyno-
mial of o and Fo(X,Y) := X"fo(X/Y) its homogenization. By Thue’s
Theorem [I§], there is a number C such that if z,y are integers with
F,(x,y) = £1, then |z|, |y| < C. Let p, ¢ be distinct prime numbers such that
p,q > C* := max(C,|ag|, |an|). The number (¢/p)a has primitive minimal
polynomial fo,/,(X) = ¢" fa(pX/q) (one verifies easily that the coefficients
of this polynomial have ged 1, since p, g > |agl, |an|). The polynomial f,, /p,
hence by the order Zgy,/p, has discriminant (pg)"™ Y D(f,). So the
orders Z with p,q running through the primes exceeding C*, are all
different.

We claim that among these orders, at most finitely many are monogenic.
Indeed, suppose that Z, /, is monogenic. Then Z, , = Zg = Z[f] for some
algebraic integer 8. Assume that § is GLga(Z)-equivalent to ga/p. That is,
8= a(qa/p)+b

~ clga/p)td
minimal polynomial of 5 is

f8(X) = £¢"(—cX + a)"fa(
Its homogenization is
Fg(X,Y)=Y"f3(X/Y) = £F,(p(dX — bY),q(—cX +aY)).

Since f is integral, the leading coefficient of fg is 1, which implies 1 =
F3(1,0) = £F,(pd, —qc). But this is impossible, since at least one of [pd|, |qc]
exceeds the bound C' defined above. We conclude that 5 cannot be GLy(Z)-
equivalent to ga/p. So any order Zg, /p that is monogenic must have two ra-
tional monogenizations. By Proposition there are at most finitely many
pairs of distinct primes p,q > C* for which this is possible. This leaves us
with infinitely many rationally monogenic orders Z that are not mono-
genic. m

qo/p>

for some (¢ %) € GL2(Z). Then the necessarily monic primitive

p(dX —b) >
g(—cX +a))

qo/p

6. A generalization over the S-integers. In this section, we will state
and prove a generalization of Theorem to the ring Og of S-integers of a
number field. The ring of S-integers is a Dedekind domain, but in general not
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a principal ideal domain, therefore, the arguments from the previous sections
cannot be carried over. Thus, in our generalization of Theorem [I.1] we will
not work with GL2(Og)-equivalence of algebraic numbers, but rather with
numbers that are GLa(Oy)-equivalent for all non-zero prime ideals p of Og,
where Oy is the localization of Og at p.

Before stating and proving our result, we have collected some generaliza-
tions of the material from Section [2| to Dedekind domains of characteristic 0.
Most of these are equivalent, but for our purposes more convenient formula-
tions of material from [I0, Chap. 17].

Let A be a Dedekind domain of characteristic 0 and k its quotient field.
Denote by P(A) the collection of non-zero prime ideals of A and by CI(A)
the class group of A (fractional ideals modulo principal fractional ideals).
Further, let C1(A)[m] be the subgroup of elements of C1(A) whose mth power
is the principal ideal class. The localization of A at a prime ideal p € P(A)
is given by

Ay ={zfy:z €A yec A\p}
We define the group of matrices

G(A):== () k*GLy(4y),
peEP(A)
that is, the group of matrices C' such that for every p € P(A) there is A\, € k*
with A, 'C € GLa(4y).
Let a, B € k be of degree > 3 over k. We say that «, 3 are G(A)-equivalent
if there is C' € G(A) with = Ca. Then

(6.1) «,pB are G(A)-equivalent
< «,f are GLy(Ay)-equivalent for every p € P(A).

Indeed, = is clear. As for <, suppose that o, § are GLa(Ay)-equivalent for
every p € P(A). Then there is C € GLa(k) such that § = Ca. But C' is
determined uniquely up to a scalar in k*, hence C' € k*GL3(A;) for every
peP(A),ie, CeGA).

We compare G(A)-equivalence with GLa(A)-equivalence.

LEMMA 6.1. G(A)/k*GL2(A) = Cl(A)[2].

Proof. Let lay,...,a,] denote the fractional ideal of A generated by

ai,...,a, and for a matrix C' with entries in k, let [C] denote the fractional
ideal generated by the entries of C'. We claim that
(6.2) G(A) = {C € GLy(k) : [det C] = [C]?}.

Indeed, let C' € G(A). Then for all p € P(A) there is A\, € k* such that
/\p_lC € GLa(A4y), hence [C]? - A, = )\gAp = [det C] - A, for all p, implying
[C]? = [det O]. Conversely, assume [det C] = [C]2. Then for all p € P(A)
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there is A, € k* with [C]A, = Ay A, since Ay is a principal ideal domain.
So det(A,'C) = A\, 2det C € Af, ie., \;'C € GLy(Ay) for all p € P(A),
implying C' € G(A).

Now define the map

G(A) — Cl(A)[2], C + ideal class of [C].

By this is a well-defined group homomorphism. Its kernel is the group
of matrices C' € G(A) such that [C] is principal, this is precisely k*GLy(A).
To show that the homomorphism is surjective, pick any ideal class of A
whose square is principal, and take an ideal from this class. By a well-known
property of Dedekind domains, this ideal is generated by two elements, say
it is [a,b]. Then, using another property of Dedekind domains, [a?,b%] =
[a,b]? = [A] for some A € A, hence there are u, v € A such that ua®—vb? = \.
Take C = (& ). Then [C]? = [a,b]* = [\] = [det C], so C' € G(A), and C
maps to the ideal class of [a,b]. =

Lemmal6.1]implies that a G(A)-equivalence class is the union of precisely
#(Cl(A)[2]) GL2(A)-equivalence classes. This quantity is finite for instance
if A is the ring of S-integers of a number field.

Let K be a finite extension of k of degree n > 3. Given a with k(«) = K,
we define the A-module

My = {zo+ 210+ + 2H 10"

DXOy ..., Tpo1 € A}
and its ring of scalars
Ag i ={£ € K : EMy = My}

For p € P(A), let M o be the Ay-module generated by 1,«;, ..., a™ 1 and
Set Ap7a = {§ & K N 5Mp7a g Mp,a}. Then

(6.3) Apo=AyA,  forall p e P(A),
(6.4) Ado= (] A4pa
pEP(A)

LEMMA 6.2. Let o, 5 € K be such that k(o) = k(8) = K and o, B are
G(A)-equivalent. Then A, = Ag.

Proof. From (6.1]) it follows that «, 8 are GLa(Ap)-equivalent for all p,
so Ap.o = Ay for all p. Now apply (6.4)). =

LEMMA 6.3. Let o, € K satisfy k(o) = k() = K and A, = Ag.
Suppose that o, B are GLa(Kk)-equivalent. Then they are G(A)-equivalent.

Proof. From it follows that A, = Ap g and then from Lemma
that «, 8 are GLa(Ap)-equivalent for all p € P(A); here we have used the
fact that the Ay are principal ideal domains. Now implies that they are
G(A)-equivalent. =
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Suppose that [K : k] =n > 4. Let L be the normal closure of K/k and
z s z(® (t=1,...,n) the k-isomorphic embeddings K < L. Denote by A,
the integral closure of A in L. Define the cross ratios crjju () (K = k(a))

by .

LEMMA 6.4. Let o, B be such thatk(a) =k(8) = K and Ay = Ag. Then
for all pairwise distinct i,7,k,l € {1,...,n} we have

Cl”ijkl(a)

crijri(B)

Proof. For p € P(A), let A, 1 be the integral closure of A, in L. Then

ﬂpep(A) Ap 1 = Ap. By (6.3) we have A, o, = Ay g, and so by Lemma

o) ¢ A% for all p € P(A). Since (yepea) Afy = A}, this implies our

crijr(8)
lemma. =

€ A7

We now specialize to rings of S-integers of number fields. Let k be a
number field and Oy its ring of integers. Let S be a finite set of non-zero
prime ideals of O, and

Og :={z/y : z,y € Ok, y composed of prime ideals from S}

the ring of S-integers. As before, we denote by P(Og) the set of non-zero
prime ideals of Og. Further, for p € P(Og), we denote by O, the localization
of Og at p, so that

GOs)= (] KkGL(0y).
peP(Os)

Let K be a finite extension of k of degree n > 4, and L the normal closure
of K/k.

Denote by Og g the integral closure of Og in K. By an Og-order of K
we mean a ring O such that Og C O C Og i and kO = K.

Recall that o, € K are called G(Og)-equivalent if f = Ca for some
C € G(Og). A rational monogenization of an Og-order O is a G(Og)-
equivalence class of a such that Og, = O.

Taking a with K = k(«), we say that the Galois group Gal(L/k) is
t-transitive if the action of Gal(L/k) on the set of conjugates of o in L is
t-transitive. We are now ready to state our generalization.

THEOREM 6.5. Let k be an algebraic number field and S a finite set of
prime ideals from Oy. Further, let K be a finite extension of k, and L the
normal closure of K/k.

(i) Assume that [K : k] = 4. Then K has only finitely many Og-orders with
more than two rational monogenizations.
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(ii) Assume that [K : k] > 5 and that Gal(L/k) is 5-transitive. Then K has
only finitely many Og-orders with more than one rational monogeniza-
tion.

The proof is very similar to that of Theorem We will mainly focus
on the differences.

We keep the notation and assumptions from Theorem[6.5] We call ¢ € K
k-special if k(c1) = K and if there are ao,...,a € K such that aq,...,q
are pairwise G(Og)-inequivalent and Og o, = -+ = Og 4, . We call oy special
if it is 2-special.

Proof of Theorem[6.5 It suffices to show that if [K : k] = 4 then the 3-
special numbers in K lie in at most finitely many G(Og)-equivalence classes,
while if [K : k] > 5 and Gal(L/k) is 5-transitive then the special numbers
in K lie in at most finitely many G(Og)-equivalence classes.

STEP 1. The 3-special numbers in K if [K : k] = 4, respectively the special
numbers in K if [K : k] > 5 lie in at most finitely many GLqo(k)-equivalence
classes.

The proof is exactly the same as that of Proposition [3.1], replacing ev-
erywhere Z, Q, O} by Og, k, (’)gL, where Og y, is the integral closure of Og
in L. Lemmas [3.2| and can be applied with I' = (’)S 1» since the latter
group is finitely generate by the Dirichlet—Chevalley— Weil theorem.

STEP 2. Let K be any extension of k with [K : k] > 4. Then the GLa(k)-
equivalence class of each special number in K is the union of finitely many
G(Og)-equivalence classes.

Let C be the GLy(k)-equivalence class of a special number in K. Com-
pletely similarly to the proof of Proposition[5.1], applying Lemma[6.4] Lemma
with I = O% ;, and Lemma one shows that C is the union of finitely

many subclasses
C(D) :={a € C : there is § € D with Og, = Og g},

where D # C is the GLa(k)-equivalence class of a special number.

Let D # C be a GLa(k)-equivalence class such that C(D) # (). We show
by means of a local-to-global argument that C(D) is the union of finitely
many G(Og)-equivalence classes.

Fix a € C(D), and then 8 € D with Og, = Ogg. Let T be the set of
prime ideals p of Og such that p divides the discriminant ideal © of Og ,, or

such that some prime ideal P of Og 1, above p divides the ideal a(a, ) of

Og, 1, generated by the numbers % — 1 for all pairwise distinct 7, j, k,[ €
ij

{1,...,n}. Clearly, T is finite. Next, choose a* € C(D) that we let vary, and
then 8* € D with Og o = 0575*.
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Let p be a prime ideal of Og. We apply the theory of Section [] with
A = O,. By we have Op o = Op g, Op o = Op . Hence (a, ) and
(a*, 5*) are two GLa(k)-equivalent special pairs as in Proposition Let
C be the matrix from , i.e., with o = Ca, and put A := det C. We
use the fact that there is a finite set F([A]) of 2 x 2-matrices with entries
in Op, depending only on p and on the ideal [A] := AQ, such that there is
U € GL2(0O,) with

UC =: ¢y € F([A]).

Let o™ := Ua* = Cia. Proposition {4.1| implies that [A] belongs to a finite
set depending on «, 8 and p, hence so does C7, and thus o**. This implies that
the GL2(Op)-equivalence class of o* belongs to a finite collection depending

on a, f3,p.

But for p € T, i.e., for all but finitely many p, Proposition [£.1]implies that
[A] = [1], hence a* is GL2(Op)-equivalent to . Now from it follows
that there is a finite collection of G(Og)-equivalence classes depending only
on «,  to which a* must belong. This shows that indeed C(D) is the union of

finitely many G(Og)-equivalence classes, and completes Step 2 of our proof
of Theorem [6.5] w
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