
ACTA ARITHMETICA
Online First version

Orders with few rational monogenizations

by

Jan-Hendrik Evertse (Leiden)

To the memory of Professor Andrzej Schinzel (1937–2021)

1. Introduction

Summary. Recall that a monogenic order is an order of the shape Z[α],
where α is an algebraic integer. This is generalized to orders Zα for not
necessarily integral algebraic numbers α as follows. For an algebraic num-
ber α of degree n, let Mα be the Z-module generated by 1, α, . . . , αn−1; then
Zα := {ξ ∈ Q(α) : ξMα ⊆ Mα} is the ring of scalars of Mα. We call an
order of the shape Zα rationally monogenic. If α is an algebraic integer, then
Zα = Z[α] is monogenic. Rationally monogenic orders are invariant rings of
primitive polynomials or binary forms (see, e.g., [5], [15], [16], [17], [6], [19],
[10, Chap. 16]). If α, β are two GL2(Z)-equivalent algebraic numbers, i.e.,
β = aα+b

cα+d for some
(
a b
c d

)
∈ GL2(Z), then Zα = Zβ . Given an order O of a

number field, we call a GL2(Z)-equivalence class of α with Zα = O a rational
monogenization of O.

We prove the following. If K is a quartic number field, then K has only
finitely many orders with more than two rational monogenizations. This is
best possible. Further, if K is a number field of degree ≥ 5, the Galois group
of whose normal closure is 5-transitive, then K has only finitely many orders
with more than one rational monogenization. The proof uses finiteness results
for unit equations, which in turn were derived from Schmidt’s Subspace
Theorem. Except for the hypothesis on the normal closure of K, our result
implies a conjecture posed in [4].
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We generalize the above results to rationally monogenic orders over rings
of S-integers of number fields. Our results extend work of Bérczes, Győry
and the author [2] on monogenic orders.

Background and results. Let K be a number field. Denote its ring of
integers by OK . An order O of K (i.e., a subring of K that as a Z-module
is free of rank [K : Q]) is called monogenic if there is α ∈ O with O = Z[α].
The set of α with Z[α] = O can be divided into so-called Z-equivalence
classes, where α1, α2 are called Z-equivalent if α1 − α2 ∈ Z or α1 + α2 ∈ Z.
A Z-equivalence class of α with Z[α] = O is called a monogenization of O.
Every order of a quadratic number field has precisely one monogenization.
Orders of number fields of degree ≥ 3 may be non-monogenic or have more
than one monogenization. From work of Győry [12, 13] it can be deduced,
and in fact in an effective form, that if K is any number field of degree
≥ 3 then every order O of K has at most finitely many monogenizations. If
one keeps the number field K fixed and restricts to monogenic orders of K,
then most of these have only a few monogenizations. Bérczes, Győry and the
author [2, Theorem 1.1] obtained the following result.

Theorem A. Let K be a number field of degree ≥ 3. Then K has only
finitely many orders with more than two monogenizations.

This result is optimal. For instance, if ε is a unit of OK with Q(ε) = K,
then Z[ε] = Z[ε−1], while ε and ε−1 are not Z-equivalent. More generally, let
α ∈ OK be such that Q(α) = K, suppose there are integers c, d such that
cα + d is a unit of OK , let a, b be integers such that

(
a b
c d

)
∈ GL2(Z), and

put β := aα+b
cα+d

. Then Z[α] = Z[β], while α and β are not Z-equivalent.
This suggests that it is natural to consider the GL2(Z)-equivalence classes

of elements α with Z[α] = O. Here, α, β ∈ K are called GL2(Z)-equivalent
if there is

(
a b
c d

)
∈ GL2(Z) such that β = aα+b

cα+d
.

We say that a group G acts t-transitively on a finite set S if for any
pairwise distinct i1, . . . , it ∈ S and pairwise distinct j1, . . . , jt ∈ S, there is
σ ∈ G such that σ(i1) = j1, . . . , σ(it) = jt. If K = Q(α) and L is the normal
closure of K, we say that Gal(L/Q) is t-transitive if it acts t-transitively on
the set {α(1), . . . , α(n)} of conjugates of α.

Then from [2, Theorems 1.1 and 1.2(ii)], the following can be deduced:

Theorem B. Let K be a number field of degree ≥ 5 such that the Galois
group of its normal closure is 4-transitive. Then for all orders O of K with
at most finitely many exceptions, the set of α with Z[α] = O is contained in
at most one GL2(Z)-equivalence class.

It is not known whether the condition on the normal closure of K is
necessary. It can be proved in an elementary way that if K is a cubic number
field and O an order of K, then the set of α ∈ O with Z[α] = O is contained in
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at most one GL2(Z)-equivalence class. For quartic number fields K, the above
theorem is false. In fact, [2, end of Section 1] gives the following construction:

Theorem C. Let r, s be integers such that f(X) = (X2 − r)2 −X − s is
irreducible, and let K = Q(α), where α is a root of f . Then K has infinitely
many orders Om (m = 1, 2, . . .) with the following property: Om = Z[αm]
= Z[βm], where βm = α2

m − rm, αm = β2
m − sm for some integers rm, sm.

It is clear that αm, βm in the above theorem are not GL2(Z)-equivalent.
Our aim is to generalize Theorem B to orders attached to non-integral

algebraic numbers. Let α be an algebraic number of degree n and fα ∈ Z[X]
its primitive minimal polynomial, i.e., with coefficients having gcd 1. Then
the order Zα attached to α is the invariant ring or order of fα (see Naka-
gawa [15], Simon [16] or [5], [17], [6], [19], [10, Chap. 16]). Nakagawa and
Simon defined this order by giving a Z-module basis for it, together with
a multiplication table. A direct definition of Zα is as follows. Define the
Z-module

(1.1) Mα :=
{
x0 + x1α+ · · ·+ xn−1α

n−1 : x0, . . . , xn−1 ∈ Z}.

Then Zα is the ring of scalars of Mα, i.e.,

(1.2) Zα := {ξ ∈ Q(α) : ξMα ⊆ Mα}.

If α is an algebraic integer, then αi ∈ Mα for i ≥ n, and thus, Zα =
Mα = Z[α]. Further, if α, β are GL2(Z)-equivalent, i.e., β = aα+b

cα+d
for some(

a b
c d

)
∈ GL2(Z), then one easily verifies that Mβ = (cα+ d)1−nMα, which

implies Zβ = Zα.
To simplify the formulation of our results, we introduce the following

terminology. We call an order O of a number field K rationally monogenic
if O = Zα for some α with K = Q(α). A GL2(Z)-equivalence class of α with
Zα = O is called a rational monogenization of O.

We give some other descriptions for Zα. Let again α be an algebraic
number of degree n, and denote by fα its primitive minimal polynomial, i.e.,
fα = a0X

n + · · ·+ an ∈ Z[X] with a0 > 0 and gcd(a0, . . . , an) = 1. Then Zα

is the Z-module with basis

(1.3) 1, ω1, . . . , ωn−1, ωi = a0α
i + a1α

i−1 + · · · ai−1α (i = 1, . . . , n− 1)

(see [10, p. 365, Thm. 16.2.9, formula (16.2.7)] or Lemma 2.1 in the present
paper). This is precisely the invariant order of fα as defined by Nakagawa
[15] and Simon [16]. Del Corso, Dvornicich and Simon [6, Prop. 2] (see also
Lemma 2.1 in the present paper) proved the much simpler expression

Zα = Z[α] ∩ Z[α−1].

From the basis (1.3) one deduces that the discriminant of the order Zα is
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equal to the discriminant of fα, i.e.,

D(Zα) = DQ(α)/Q(1, ω1, . . . , ωn−1)(1.4)

= a2n−2
0 DQ(α)/Q(1, α, . . . , α

n−1)

= a2n−2
0

∏
1≤i<j≤n

(α(i) − α(j))2 = D(fα),

where α(1), . . . , α(n) are the conjugates of α.
The orders Zα are part of a much more general theory on invariant rings

of binary forms (see [15], [17], [6], [19], [10, Chap. 16]). We briefly comment
on this at the end of this section.

It follows from the work of Birch and Merriman [5] on binary forms that
an order of a number field has at most finitely many rational monogeniza-
tions. Győry and the author [8, Cor. 2] proved that every algebraic number α
of degree n is GL2(Z)-equivalent to an algebraic number α∗ with height
H(α∗) ≤ C(n,D), where H(α∗) is the maximum of the absolute values of
the coefficients of fα∗ , D is the discriminant of fα, and C(n,D) is effectively
computable. Together with (1.4) this implies that it can be decided effec-
tively whether a given order of a number field has rational monogenizations
and that these can be determined effectively.

It can be shown that a rationally monogenic order O of a number field
of degree ≥ 3 is primitive, i.e., there are no order O′ and integer a > 1 such
that O = Z+ aO′. It follows from classical work of Delone and Faddeev [7]
that every primitive order of a cubic number field has precisely one rational
monogenization. Further, work of Bérczes, Győry and the author [1] implies
that an order of a number field of degree n ≥ 4 cannot have more than
n · 224n3 rational monogenizations. Győry and the author [10, Chap. 17]
improved this to 25n

2 . From recent work of Bhargava [3] it follows that for
quartic orders this bound can be improved to 40.

We are now ready to state the main result of this paper, which gives a
generalization of Theorem B to not necessarily integral algebraic numbers α.

Theorem 1.1.

(i) Let K be a quartic number field. Then K has only finitely many orders
with more than two rational monogenizations.

(ii) Let K be a number field of degree ≥ 5 and suppose that the Galois group
of its normal closure is 5-transitive. Then K has only finitely many
orders with more than one rational monogenization.

Theorem C implies that there are quartic number fields, having infinitely
many orders with two rational monogenizations. We do not know whether the
condition on the normal closure ofK is necessary if [K : Q] ≥ 5. Probably, try-
ing to remove or relax this condition would considerably complicate the proof.
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The proof of Theorem 1.1 uses, among other things, finiteness results for
unit equations in more than two unknowns. The present proofs of these de-
pend on ineffective methods from Diophantine approximation, e.g., Schmidt’s
Subspace Theorem or the Faltings–Rémond method. As a consequence, our
proof of Theorem 1.1 is ineffective in that it does not allow one to determine
the exceptional orders. Further, although for unit equations we have good
upper bounds for the number of solutions, it is because of the ‘other things’
that we cannot give an upper bound for the number of exceptional orders.

We state a consequence, which partly confirms Conjecture 4.2 in [4]. We
adopt the terminology of [4]. Given a number field K, denote by PI(K)
the set of primitive, irreducible polynomials f ∈Z[X], such that there is α
with f(α)=0 and Q(α)=K. We call two polynomials f, g∈PI(K) GL2(Z)-
equivalent if there is

(
a b
c d

)
∈GL2(Z) such that g(X)=±(cX+d)deg ff

(
aX+b
cX+d

)
.

Further, f and g are called Hermite equivalent if there are α, β such that
Q(α)=Q(β)=K, f(α)=0, g(β)=0 andMβ=λMα for someλ∈K∗ (see (1.1)
above). It was shown in [4] that GL2(Z)-equivalent polynomials are Hermite
equivalent. As we will show, Theorem 1.1 implies the following, which except
for the assumption on the normal closure of K is [4, Conjecture 4.2].

Theorem 1.2.

(i) Let K be a quartic number field. Then there are only finitely many Her-
mite equivalence classes in PI(K) that fall apart into more than two
GL2(Z)-equivalence classes.

(ii) Let K be a number field of degree ≥ 5 such that the Galois group of its
normal closure is 5-transitive. Then there are only finitely many Hermite
equivalence classes in PI(K) that fall apart into more than one GL2(Z)-
equivalence class.

Another consequence of our investigations, which probably could be
proved by other means as well, is the following.

Theorem 1.3. Let K be a number field of degree ≥ 3. Then K has
infinitely many orders that are rationally monogenic but not monogenic.

Finally, we would like to comment on the connection between the or-
ders Zα defined above, and invariant orders of binary forms. Birch and
Merriman [5] introduced for a binary form

F (X,Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X,Y ]

that is irreducible over Q the Z-module ZF with Z-basis 1, ω1, . . . , ωn−1 given
by (1.3), where F (α, 1) = 0. Nakagawa [15] proved that ZF is an order of
the number field Q(α), in fact,

(1.5) ωiωj = −
∑

max(i+j−n,1)≤k≤i

ai+j−kωk +
∑

j<k≤min(i+j,n)

ai+j−kωk
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for i, j = 1, . . . , n − 1, where ωn := −an. Thus, ZF is called the invariant
ring or order of F . This order was further studied by Simon [16, 17] and Del
Corso, Dvornicich and Simon [6].

Notice that in the definition of ZF we have not required that the coeffi-
cients of F have greatest common divisor 1. Our order Zα is just ZF where
F (X,Y ) = Y degαfα(X/Y ) is an irreducible binary form whose coefficients
have greatest common divisor 1.

More generally, given any commutative ring R and binary form F =∑n
i=0 aiX

n−iY i ∈ R[X,Y ], one can formally define the invariant ring RF

of F by taking the free R-module with basis 1, ω1, . . . , ωn−1 with prescribed
multiplication table (1.5). Here, it is no longer required that F is irreducible,
nor even that a0 ̸= 0, and even a0 = · · · = an = 0 is allowed. Wood [19]
studied invariant rings of binary forms in a much broader context.

The remainder of our paper is organized as follows. In Section 2 we have
collected some basic properties of rationally monogenic orders. Although
these are all known, we have provided proofs for convenience of the reader.
Sections 3 and 4 contain preparations, where in Section 3 we apply finiteness
results for unit equations. In Section 5 we finish the proofs of Theorems
1.1–1.3. Finally, in Section 6 we generalize the orders Zα to domains OS,α,
where OS is the ring of S-integers of a number field k and α is algebraic
over k, and state and prove a generalization of Theorem 1.1 but with a
notion of equivalence that is slightly weaker than GL2(OS)-equivalence.

2. Lemmas over principal ideal domains. In this section, we have
collected some generalities on rationally monogenic orders. We state and
prove everything over an arbitrary principal ideal domain A of characteris-
tic 0. Most of the results in this section have been proved elsewhere in a more
general context (see for instance [10, Chaps. 16 and 17], [1], [6]). For con-
venience of the reader we have repeated the short proofs, specialized to the
situation of this paper. In the proofs of Theorems 1.1–1.3 we apply the re-
sults of the present section with A = Z. In Section 6 we use a local-to-global
argument, and apply the results of the present section to localizations of OS .

In what follows, if F is any field, ξ ∈ P1(F ) := F ∪{∞} and C =
(
a b
c d

)
∈

GL2(F ), we write Cξ := aξ+b
cξ+d , with the conventions that this is ∞ if ξ = ∞

and c = 0; a/c if ξ = ∞ and c ̸= 0; and ∞ if c ̸= 0 and ξ = −d/c.
Let A be a principal ideal domain of characteristic 0, and k its field of

fractions. Fix a finite extension K of k of degree n ≥ 3. Let L be its normal
closure over k and x 7→ x(i) (i = 1, . . . , n) the k-isomorphic embeddings
of K in L. Further, denote by AK , AL the integral closures of A in K and L,
respectively. Recall that both AK , AL are Dedekind domains; in the case
that A = Z, AK and AL are just the rings of integers of K and L.
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Given any domain B ⊇ A, we call α, β ∈ K GL2(B)-equivalent if there
is C ∈ GL2(B) such that β = Cα.

Let α ∈ K with K = k(α). Define the free A-module

(2.1) Mα :=
{
x0 + x1α+ · · ·+ xn−1α

n−1 : x0, . . . , xn−1 ∈ A}
and its ring of scalars

(2.2) Aα := {ξ ∈ K : ξMα ⊆ Mα}.
As one easily verifies, if α, β are two GL2(A)-equivalent elements of A, then
Mα = λMβ for some λ ∈ K∗, and thus Aα = Aβ .

We give some other descriptions of Aα. Let fα = a0X
n+ · · ·+an ∈ A[X]

be a primitive minimal polynomial of α, i.e., with gcd(a0, . . . , an) = 1. Such
a polynomial exists since A is a principal ideal domain.

Lemma 2.1. We have

(2.3) Aα =
{
x0 + x1ω1 + · · ·+ xn−1ωn−1 : x0, . . . , xn−1 ∈ A

}
where

ωi := a0α
i + a1α

i−1 + · · ·+ ai−1α (i = 1, . . . , n− 1),

and

(2.4) Aα = A[α] ∩A[α−1].

Identity (2.3) follows from [10, p. 365, Thm. 16.2.9, formula (16.2.7)]),
while (2.4) is a consequence of [6, Prop. 2]. For the convenience of the reader,
we repeat the proofs.

Proof of Lemma 2.1. Let Nα denote the A-module on the right-hand side
of (2.3). We prove the inclusions Nα ⊆ Aα ⊆ A[α] ∩A[α−1] ⊆ Nα.

First observe that if 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, then

ωiα
j =

i−1∑
k=0

akα
i+j−k ∈ Mα if i+ j ≤ n− 1,

ωiα
j = (ωi − fα(α))α

j = −
n∑

k=i

akα
i+j−k ∈ Mα if i+ j ≥ n,

implying Nα ⊆ Aα.
Second, Aα ⊆ Mα ∩ α1−nMα ⊆ A[α] ∩A[α−1].
Third, let ξ = P (α) = Q(α−1) ∈ A[α] ∩ A[α−1], where P,Q ∈ A[X]. We

prove by induction on degP that ξ ∈ Nα. For degP = 0 this is clear. Let
degP = r ≥ 1. Consider the polynomial

H(X) := XdegQP (X)−XdegQQ(X−1) ∈ A[X].

The polynomial H is non-zero, since otherwise P (X) = Q(X−1), which is
impossible. Let b be the leading coefficient of P . Then b is also the leading
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coefficient of H. Since H(α) = 0, fα must divide H in k[X]. But by assump-
tion, the coefficients of fα have gcd 1, so by Gauss’ Lemma fα divides H in
A[X], in particular, the leading coefficient a0 of fα divides b. Now if r ≥ n,
we have P (α) = P ∗(α) where P ∗(X) = P (X)− (b/a0)X

r−nfα(X) is a poly-
nomial in A[X] of degree < r and we can apply the induction hypothesis. If
r < n, then P (α) = (b/a0)ωr +P ∗(α), where P ∗ ∈ A[X] has degree < r. We
already know that ωr ∈ A[α] ∩ A[α−1], so P ∗(α) ∈ A[α] ∩ A[α−1]. We can
again apply the induction hypothesis.

Let M be an A-submodule of AK with basis γ1, . . . , γn, say, where n =
[K : k]. The discriminant ideal dM/A of M over A is defined as the ideal
of A generated by DK/k(γ1, . . . , γn) := (det(γ

(j)
i )i,j=1,...,n)

2. This does not
depend on the choice of basis.

Lemma 2.2. Let α ∈ K with k(α) = K and let fα = a0X
n + · · · + an

∈ A[X] be a primitive minimal polynomial of α. Then dAα/A = D(fα)A,
where D(fα) = a2n−2

0

∏
1≤i<j≤n(α

(i) − α(j))2.

Proof. Same reasoning as in (1.4).

For α1, . . . , αr ∈ L, denote by [α1, . . . , αr] the fractional ideal of AL,
i.e., AL-module, generated by α1, . . . , αr. Further, for a finitely generated
A-submodule M of K and for distinct i, j ∈ {1, . . . , n}, let dij(M) be the
fractional ideal of AL generated by ξ(i) − ξ(j) for all ξ ∈ M. Thus, if M is
generated as an A-module by ξ1, . . . , ξr, we have

(2.5) dij(M) = [ξ
(i)
1 − ξ

(j)
1 , . . . , ξ(i)r − ξ(j)r ].

Lemma 2.3. Let α be such that K = k(α) and i, j ∈ {1, . . . , n} with
i ̸= j. Then

[α(i) − α(j)] = [1, α(i)] · [1, α(j)] · dij(Aα).

Proof (cf. [10, Lemma 17.6.4]). Let ω1, . . . , ωn−1 be as in (2.3). Then

αfα(X) = (X − α)(ω1X
n−1 + ω2X

n−2 + · · ·+ ωn),

where ωn := −an. This implies

(α(i) − α(j))Xfα(X)

= (X − α(j))α(i)fα(X)− (X − α(i))α(j)fα(X)

= (X − α(i))(X − α(j)) · ((ω(i)
1 − ω

(j)
1 )Xn−1 + · · ·+ (ω

(i)
n−1 − ω

(j)
n−1)).

We apply Gauss’ lemma for Dedekind domains, which in our case asserts
that if g1, g2 ∈ L[X] then [g1g2] = [g1] · [g2], where [g] is the fractional ideal
of AL generated by the coefficients of g ∈ L[X]. Using the fact that the
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coefficients of fα have gcd 1, together with (2.3) and (2.5), we obtain

[α(i) − α(j)] = [1, α(i)] · [1, α(j)] · [ω(i)
1 − ω

(j)
1 , . . . , ω

(i)
n−1 − ω

(j)
n−1]

= [1, α(i)] · [1, α(j)] · dij(Aα).

If [K : k] = n ≥ 4 then for α with K = k(α) and pairwise distinct
i, j, k, l ∈ {1, . . . , n}, we define the cross ratio

(2.6) crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
.

Lemma 2.4. Suppose [K : k] = n ≥ 4. Let α, β be such that k(α) = k(β)
= K and Aα = Aβ. Then for all pairwise distinct i, j, k, l ∈ {1, . . . , n} we
have

crijkl(α)

crijkl(β)
∈ A∗

L.

Proof. Lemma 2.3 implies [crijkl(α)] = [crijkl(β)] for all i, j, k, l.

Lemma 2.5. Let K be a finite extension of k, and let α, β be such that
k(α) = k(β) = K.

(i) Suppose that [K : k] = 3. Then α, β are GL2(k)-equivalent.
(ii) Suppose [K : k] = n ≥ 4. Then α, β are GL2(k)-equivalent if and only if

crijkl(α) = crijkl(β) for all pairwise distinct i, j, k, l ∈ {1, . . . , n}.
Proof (cf. [10, Lemma 17.7.2]). (ii) From elementary projective geom-

etry, we know that crijkl(α) = crijkl(β) for all pairwise distinct i, j, k, l ∈
{1, . . . , n} if and only if there is C ∈ GL2(L) such that β(i) = Cα(i) for
i = 1, . . . , n. Suppose the latter to be the case. Then since n ≥ 4, the matrix
C is determined uniquely up to a scalar. Clearly, we have β(i) = σ(C)α(i) for
i = 1, . . . , n and every σ ∈ Gal(L/k). If we assume that one of the entries
of C is 1, then σ(C) = C for every σ ∈ Gal(L/k), i.e., C ∈ GL2(k).

(i) By elementary projective geometry, there is a unique (up to a scalar
factor) C ∈ GL2(L) such that β(i) = Cα(i) for i = 1, 2, 3. If we take C
such that one of its entries is 1 then similarly to above it follows that C ∈
GL2(k).

Lemma 2.6. Assume that [K : k] ≥ 3. Let α, β be such that k(α) = k(β)
= K and Aα = Aβ. Suppose that α, β are GL2(k)-equivalent. Then α, β are
GL2(A)-equivalent.

Proof (cf. [10, Proposition 17.6.5]). Since A is a principal ideal domain,
we may assume that β = Cα, where the entries of C belong to A and
have gcd 1. Further, C can be put in Smith Normal Form, i.e., there are
matrices U, V ∈ GL2(A) such that UCV =

(
a 0
0 1

)
with a ∈ A \ {0}. Let

β1 := Uβ, α1 := V −1α. Then since α, β ̸∈ k we have α1, β1 ̸= ∞, and
moreover Aα1 = Aβ1 and β1 = aα1. We have to show that a ∈ A∗.
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Let fα1(X) = a0X
n + · · · + an ∈ A[X] be a primitive minimal polyno-

mial of α1, i.e., with gcd(a0, . . . , an) = 1. Then β1 has primitive minimal
polynomial

fβ1(X) = λfα1(X/a) = λ(a−na0X
n + a1−na1X

n−1 + · · ·+ an),

where λ ∈ k is such that the coefficients of fβ1 are in A and have
gcd 1. By (2.3), Aα1 is a free A-module with basis 1, ω1, . . . , ωn−1 with
ωi =

∑i−1
k=0 akα

i−k
1 for i = 1, . . . , n− 1. By replacing α1 with β1 = aα1, and

ai by λai−nai, we see that Aβ1 has basis 1, λa1−nω1, λa
2−nω2, . . . , λa

−1ωn−1.
Since Aα1 = Aβ1 , this must imply

λai−n ∈ A∗ for i = 1, . . . , n− 1,

hence a ∈ A∗ and λ ∈ A∗.

3. Application of unit equations. Let K be a number field of degree
n ≥ 4 and L its normal closure. In the case n = 4 we do not impose any
constraints on L, while for n ≥ 5 we assume that Gal(L/Q) is 5-transitive.

We call α1 ∈ K k-special if K = Q(α1) and there are α2, . . . , αk such
that Zα1 = · · · = Zαk

and α1, . . . , αk are pairwise GL2(Z)-inequivalent. We
call α1 special if it is 2-special.

Theorem 1.1 follows, once we have shown that in the case n = 4, the
3-special numbers of K lie in only finitely many GL2(Z)-equivalence classes,
and in the case n ≥ 5 that the special numbers of K lie in only finitely
many GL2(Z)-equivalence classes. Indeed, the orders of K with k rational
monogenizations are all of the shape Zα where α is k-special, and if such α
lie in only finitely many GL2(Z)-equivalence classes, there are only finitely
many orders Zα.

In the present section we prove the following proposition. Here, we apply
some results from the theory of unit equations.

Proposition 3.1.

(i) Let K be a quartic number field. Then the set of 3-special numbers of K
is contained in finitely many GL2(Q)-equivalence classes.

(ii) Let K be a number field of degree n ≥ 5 such that the Galois group of
its normal closure L is 5-transitive. Then the set of special numbers of
K is contained in finitely many GL2(Q)-equivalence classes.

We will show later (see Proposition 5.1 below) that the GL2(Q)-
equivalence class of a special number is the union of finitely many GL2(Z)-
equivalence classes.

We start with some initial observations. Let α, β ∈ K with Q(α) =
Q(β) = K, Zα = Zβ and α, β GL2(Z)-inequivalent. Then

(3.1) crijkl(α) ̸= crijkl(β) for all pairwise distinct i, j, k, l ∈ {1, . . . , n}.
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Indeed, suppose that for some tuple (i, j, k, l), say (1, 2, 3, 4), we have equal-
ity. In the case n = 4 this implies equality for each permutation (i, j, k, l)
of (1, 2, 3, 4) since crijkl(·) is a fractional linear transformation of cr1234(·).
In the case n ≥ 5, we obtain equality for all i, j, k, l since by our assump-
tion on the normal closure L, there is σ ∈ Gal(L/Q) that maps cr1234(·)
to crijkl(·). Lemma 2.5 now implies that α, β are GL2(Q)-equivalent, and
subsequently Lemma 2.6 implies that α, β are GL2(Z)-equivalent, contrary
to our assumption.

Another important observation is the identity for cross ratios

(3.2) crijkl(α) + crilkj(α) = 1

for all α ∈ K and all pairwise distinct i, j, k, l ∈ {1, . . . , n}. Now let α, β be
such that Q(α) = Q(β) = K and Zα = Zβ . Put

εijkl :=
crijkl(β)

crijkl(α)
;

then from (3.2) and Lemma 2.4 we deduce

(3.3) crijkl(α) · εijkl + crilkj(α) · εilkj = 1, εijkl ∈ O∗
L, εilkj ∈ O∗

L,

where OL is the ring of integers of L. This allows us to apply the theory of
unit equations.

We first prove part (i), and then part (ii).

Proof of Proposition 3.1(i). Let K be a quartic number field, and let
α ∈ K be 3-special. Choose β, γ ∈ K such that α, β, γ are pairwise GL2(Z)-
inequivalent, and Zα = Zβ = Zγ . Put

εijkl :=
crijkl(β)

crijkl(α)
, ηijkl :=

crijkl(γ)

crijkl(α)

for each permutation (i, j, k, l) of (1, 2, 3, 4).
By (3.1)–(3.3), the pairs (1, 1), (ε1234, ε1432), (η1234, η1432) are three dis-

tinct solutions to the equation

(3.4) cr1234(α)x+ cr1432(α)y = 1 in x, y ∈ O∗
L.

We now apply the following result on unit equations (1).

Lemma 3.2. Let F be a field of characteristic 0 and Γ a subgroup of F ∗

of finite rank. Then there are only finitely many pairs (a, b) ∈ F ∗ × F ∗ with
a+ b = 1 such that the equation

ax+ by = 1 in x, y ∈ Γ

has more than two solutions, the pair (1, 1) included.

(1) Equations with unknowns from a multiplicative group Γ of finite rank are often
called unit equations since in most applications, Γ is the unit group of a domain.
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Proof. This is essentially a result of Győry, Stewart, Tijdeman, and the
author [11, Thm. 1]; see also [9, Thm. 6.1.6]. Their proof uses a finiteness
result for linear unit equations in several unknowns, which in turn follows
from Schmidt’s Subspace Theorem.

We continue with the proof of Proposition 3.1(i). Since (3.4) has three dis-
tinct solutions in O∗

L including (1, 1), and O∗
L is finitely generated, Lemma 3.2

implies that if α runs through the 3-special numbers of K, then cr1234(α)
runs through a finite set. If (i, j, k, l) is a permutation of (1, 2, 3, 4), then
crijkl(·) is a fractional linear transformation of cr1234(·), hence crijkl(α) runs
through a finite set as well. Now Lemma 2.5(ii) implies that the 3-special
numbers α ∈ K lie in only finitely many GL2(Q)-equivalence classes.

Proof of Proposition 3.1(ii). Let K be a number field of degree n ≥ 5
such that the Galois group of its normal closure L is 5-transitive. Take a
special α ∈ K. Choose β such that Zβ = Zα. Recall that by Lemma 2.4,

εijkl :=
crijkl(β)

crijkl(α)
∈ O∗

L

for all pairwise distinct i, j, k, l ∈ {1, . . . , n}. Viewing (3.2) and (3.3) as linear
equations in crijkl(α) and crlijk(α), from Cramer’s rule we derive

(3.5) crijkl(α) =
εilkj − 1

εilkj − εijkl
.

Our strategy is as follows. Using algebraic relations between the εijkl and
finiteness results for unit equations, we show that if α runs through the
special numbers of K, then one of the εijkl, say ε1234, runs through a finite
set. Our assumption that Gal(L/Q) is 5-transitive implies that the numbers
εijkl are all conjugate to one another, thus it follows that εijkl runs through
a finite set for all i, j, k, l. But then (3.5) implies that crijkl(α) runs through
a finite set for all i, j, k, l. Finally, Lemma 2.5(ii) implies that the special
numbers α ∈ K lie in only finitely many GL2(Q)-equivalence classes.

We first collect some algebraic relations between the εijkl. It is straight-
forward to verify

(3.6)


εijkl = εjilk = εklij = εlkji,

ε−1
ijkl = εikjl,
εijkl
εijlk

= εilkj

for all pairwise distinct i, j, k, l ∈ {1, . . . , n} and moreover,

(3.7)
εijkl
εijkm

= εjmlk

for all pairwise distinct i, j, k, l,m ∈ {1, . . . , n}.
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We derive a few more relations. From (3.5) and (3.6) it follows that
crijkl(β) = εijklcrijkl(α) =

εilkj−1
εiljk−1 . Picking a fifth index m, we get

1 =
crjmlk(β)crijkm(β)

crijkl(β)
=

εjklm − 1

εjkml − 1
·
εimkj − 1

εimjk − 1
·
εiljk − 1

εilkj − 1
.

We apply this with (i, j, k, l,m) = (5, 1, 2, 3, 4). Thus, we obtain

(3.8) (ε1234 − 1)(ε1245 − 1)(ε1253 − 1) = (ε1243 − 1)(ε1254 − 1)(ε1235 − 1),

where, as mentioned before, all entries belong to O∗
L. We apply the following

result.

Lemma 3.3. Let F be a field of characteristic 0 and Γ a subgroup of F ∗

of finite rank. Consider the equation

(3.9) (x1 − 1)(x2 − 1)(x3 − 1) = (y1 − 1)(y2 − 1)(y3 − 1)

in x1, x2, x3, y1, y2, y3 ∈ Γ.

There is a finite subset S of Γ such that every solution of (3.9) satisfies one
of the following:

(a) at least one of x1, . . . , y3 belongs to S;
(b) there are s1, s2, s3 ∈ {±1} such that (x1, x3, x3) is a permutation of

(ys11 , ys22 , ys33 );
(c) at least one of the numbers in {xixj , xi/xj , yiyj , yi/yj : 1 ≤ i < j ≤ 3}

is either −1 or a primitive cube root of unity.

Proof. This is a result of Bérczes, Győry, and the author [2, Prop. 8.1].
They deduced the above lemma from a finiteness result for linear unit equa-
tions in several unknowns, and so again Schmidt’s Subspace Theorem is in
the background.

We apply Lemma 3.3 with Γ = O∗
L to (3.8). We show that each of

the three cases (a)–(c) gives rise to only finitely many possible values for
ε1234. Recall that we assume that Gal(L/Q) is 5-transitive. Hence for any
two quintuples of distinct indices (i, j, k, l,m) and (i′, j′, k′, l′,m′), there is
σ ∈ Gal(L/Q) mapping α(i), β(i),. . .,α(m), β(m) to α(i′), β(i′), . . . , α(m′), β(m′),
respectively. Consequently, any two εijkl, εi′,j′,k′,l′ are conjugate to each
other. Similarly, from an identity between ε-s with indices from a quintuple
(i, j, k, l,m) we can derive a similar identity with indices from (i′, j′, k′, l′,m′)
by applying a suitable element of Gal(L/Q).

The above observations imply that if we have shown that one of the εijkl
runs through a finite set, then so does ε1234. This settles case (a). As for (b)
and (c), using again the above observations, we are left with the following
subcases. Let T denote the group of 6th roots of unity in L.



14 J.-H. Evertse

Case b1. ε1234 = ε1243. Then by (3.6), ε1432 = ε1234
ε1243

= 1, which by
conjugacy implies ε1234 = 1.

Case b2. ε1234 = ε−1
1243. By (3.6), ε−1

1243 = ε−1
1234ε1432, so ε21234 = ε1432.

By conjugacy, we may interchange the indices 2 and 3, while keeping 1
and 4 fixed, so we also have ε1324 = ε−1

1342. Applying again (3.6), this gives
ε1234 = ε−1

1432. Hence ε31234 = 1.

Case b3. ε1234 = ε1254. By (3.6) and (3.7), 1 = ε1234
ε1254

= ε2143
ε2145

= ε1534. By
conjugacy, ε1234 = 1.

Case b4. ε1234 = ε−1
1254. By conjugacy, we may interchange 2 and 3, keep-

ing 1, 4, 5 fixed, so we have ε1324 = ε−1
1354, which together with (3.6) implies

ε1234 = ε1354. From (3.6) and (3.7) we deduce ε1254
ε1354

= ε1234. Multiplying
these relations together, we obtain ε31234 = 1.

Case c1. ε1234 · ε1245 ∈ T . By interchanging 3 and 5, and keeping 1, 2, 4
fixed, we see that ε1254 · ε1243 ∈ T . Using (3.6) and (3.7), we get

ε1234 · ε1245
ε1254 · ε1243

=
ε1534
ε2534

= ε1532 ∈ T

and by conjugacy, ε1234 ∈ T .

Case c2. ε1234
ε1245

∈ T . Interchanging 2 and 3, and keeping 1, 4, 5 fixed, we
obtain ε1324

ε1345
∈ T , and then, using ε1324 = ε−1

1234, we get ε1245 · ε1345 ∈ T .
By taking conjugates, we obtain ε1234 · ε1235 ∈ T , and also ε1234 · ε5234 ∈ T .
Applying (3.7), the latter yields ε1234 · ε1234

ε1235
∈ T . Hence ε31234 ∈ T .

As mentioned above, this completes the proof of Proposition 3.1.

4. Investigation of GL2(k)-classes. Let K be a number field of de-
gree ≥ 4. In the next section we show (Proposition 5.1) that the GL2(Q)-
equivalence class of each special number in K is the union of finitely many
GL2(Z)-equivalence classes. Together with Proposition 3.1 this will imply
Theorem 1.1. In the present section, we develop some machinery needed for
the proof of Proposition 5.1. We have worked out this machinery for arbi-
trary principal ideal domains of characteristic 0 so that we can use it also in
Section 6 where we will prove a generalization of Theorem 1.1 over rings of
S-integers of number fields.

Let A be a principal ideal domain of characteristic 0, k its field of frac-
tions, K an extension of k of degree n ≥ 4, and L the normal closure of K
over k. We consider so-called special pairs in K, i.e., pairs (α, β) such that
k(α) = k(β) = K, Aα = Aβ and α, β are GL2(A)-inequivalent. Two spe-
cial pairs (α, β) and (α∗, β∗) are called GL2(k)-equivalent if α∗ is GL2(k)-
equivalent to α and β∗ is GL2(k)-equivalent to β.
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Let (α, β), (α∗, β∗) be two GL2(k)-equivalent special pairs. Then since
we are working over a principal ideal domain A,

(4.1) α∗ = Cα, β∗ = C ′β,

where C =
(
a b
c d

)
, C ′ =

(
a′ b′

c′ d′

)
with

a, b, c, d ∈ A, gcd(a, b, c, d) = 1, ∆ := ad− bc ̸= 0,

a′, b′, c′, d′ ∈ A, gcd(a′, b′, c′, d′) = 1, ∆′ := a′d′ − b′c′ ̸= 0.

Recall that by Lemma 2.4 we have crijkl(β)
crijkl(α)

∈ A∗
L for all pairwise distinct

i, j, k, l ∈ {1, . . . , n}.

Proposition 4.1. Let d be the discriminant ideal of Aα, and let a(α, β)
denote the ideal of AL generated by all numbers crijkl(β)

crijkl(α)
− 1 for all pairwise

distinct i, j, k, l ∈ {1, . . . , n}. Then

(4.2) ∆AL ⊇ d5 · a(α, β)2.

Recall that by Lemmas 2.5 and 2.6, the ideal a(α, β) is not zero. We
mention that our proof also implies that ∆/∆′ ∈ A∗, but this will not be
needed.

We start with some preparations and then prove two lemmas, which
together imply Proposition 4.1.

Let C,C ′ be the matrices from (4.1). Since A is a principal ideal domain,
there are matrices U, V, U ′, V ′ ∈ GL2(A) such that

UCV =

(
∆ 0

0 1

)
, U ′C ′V ′ =

(
∆′ 0

0 1

)
.

Put α1 := V −1α, α∗
1 := Uα∗, β1 := V ′−1β, β∗

1 := U ′β. Then α∗
1 = ∆α1,

β∗
1 = ∆′β1, Aα1 = Aβ1 , Aα∗

1
= Aβ∗

1
, (α1, β1), (α∗

1, β
∗
1) are GL2(k)-equivalent

special pairs, and a(α1, β1) = a(α, β). So in the proof of Proposition 4.1 we
may replace α, α∗, β, β∗ by α1, α∗

1, β1, β∗
1 , in other words, without loss of

generality we may assume

(4.3) α∗ = ∆α, β∗ = ∆′β.

So assume (4.3). Let

fα = a0X
n + · · ·+ an, fβ = b0X

n + · · ·+ bn

be primitive minimal polynomials of α, β. By Lemma 2.1, the ring Aα = Aβ

has A-module bases

{1, ω1, . . . , ωn−1}, {1, ρ1, . . . , ρn−1}
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respectively, where

(4.4) ωi =

i−1∑
j=0

ajα
i−j , ρi =

i−1∑
j=0

bjβ
i−j (i = 1, . . . , n− 1).

Hence there are a matrix M = (mij)i,j=1,...,n−1 ∈ GLn−1(A) and mi,0 ∈ A
(i = 1, . . . , n− 1) such that

(4.5) ρi = mi,0 +
n−1∑
j=1

mijωj for i = 1, . . . , n− 1.

Let us write [. . .] for the fractional ideal of A generated by the elements
between the brackets.

Lemma 4.2. The following holds:

[∆] = [∆′],(4.6)

mij ≡ 0 (mod ∆j−i) for i = 1, . . . , n− 1, j > i,(4.7)
gcd(mii, ∆) = 1 for i = 1, . . . , n− 1,(4.8)
[a0, ∆] = [b0, ∆].(4.9)

Proof. By (4.3), there are non-zero λ, µ ∈ k such that α∗, β∗ have prim-
itive minimal polynomials

(4.10)
fα∗ = λ(a0∆

−nXn + a1∆
1−nXn−1 + · · ·+ an),

fβ∗ = µ(b0∆
′−nXn + b1∆

′1−nXn−1 + · · ·+ bn).

From (4.3), (4.10) it follows that Aα∗ = Aβ∗ has A-module bases
(4.11) {1, λ∆1−nω1, . . . , λ∆

−1ωn−1}, {1, µ∆′1−nρ1, . . . , µ∆
′−1ρn−1}.

Hence there are M∗ = (m∗
ij)i,j=1,...,n−1 ∈ GLn−1(A) and m∗

i,0 ∈ A (i =
1, . . . , n− 1) such that

µ∆′i−nρi = m∗
i,0 +

n−1∑
j=1

m∗
ijλ∆

j−nωj for i = 1, . . . , n− 1.

A comparison with (4.5) gives

µ∆′i−nρi = ti,0 +

n−1∑
j=1

tijωj (i = 1, . . . , n),

where
(4.12) tij = µ∆′i−nmij = λ∆j−nm∗

ij (i, j = 1, . . . , n− 1).

Since M = (mij) ∈ GLn−1(A), the entries of each row of M have gcd 1. It
follows that the fractional ideal generated by the entries of the ith row of
T = (tij)i,j=1,...,n−1 is [µ∆′i−n]. Hence the fractional ideal generated by all
entries of T is [µ∆′1−n]. Similarly, since also M∗ ∈ GLn−1(A), the fractional
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ideal generated by the entries of the jth column of T is [λ∆j−n]. Hence
the fractional ideal generated by all entries of T is [λ∆1−n]. So [λ∆1−n] =
[µ∆′1−n]. On the other hand, using detM ∈ A∗ and detM∗ ∈ A∗, we find
that [detT ] = [λn−1∆−n(n−1)/2] = [µn−1∆′−n(n−1)/2]. By combining these
two identities and the fact that n ≥ 4, we obtain

[λ] = [µ], [∆] = [∆′].

This proves (4.6). Further, by (4.12),

[mij ] = [∆j−im∗
ij ],

and since m∗
ij ∈ A this implies (4.7). Combining (4.7) with detM ∈ A∗ we

obtain (4.8).
It remains to prove (4.9). Note that by (4.4) we have

ω2
1 = a1ω1 − a0ω2, ρ21 = b1ρ1 − b0ρ2.

Substituting (4.5) and using the congruences (4.7), we obtain the following
congruences modulo ∆Aα:

b1(m1,0 +m1,1ω1)− b0(m2,0 +m2,1ω1 +m2,2ω2)

≡ (m1,0 +m1,1ω1)
2 ≡ m2

1,0 + 2m1,0m1,1ω1 +m2
1,1ω

2
1

≡ m2
1,0 + 2m1,0m1,1ω1 +m2

1,1(a1ω1 − a0ω2)

≡ m2
1,0 + (2m1,0m1,1 +m2

1,1a1)ω1 −m2
1,1a0ω2 (mod∆Aα).

Comparing the coefficients of ω2, we see that b0m2,2 ≡ a0m
2
1,1 (mod ∆).

Combined with (4.8), this gives (4.9).

For the remainder of the proof of (4.2) it will be convenient to work
locally. Let VL be the set of discrete valuations on L corresponding to the
non-zero prime ideals of AL, i.e., v ∈ VL corresponds to the prime ideal p
if v(x) is the exponent of p in the unique prime ideal decomposition of [x].
Further, put δv := v(d) = min {v(x) : x ∈ d}.

Lemma 4.3. Let v ∈ VL. Then for all pairwise distinct i, j, k, l ∈
{1, . . . , n} we have

(4.13) v(∆) ≤ 5δv + 2 · v
(
crijkl(β)

crijkl(α)
− 1

)
.

Proof. We assume without loss of generality that

(4.14) v(∆) > 5δv.

We frequently use the following facts. Let as before x 7→ x(i) (i = 1, . . . , n)
be the k-isomorphic embeddings of K in L so that

fα = a0(X − α(1)) · · · (X − α(n)), fβ = b0(X − β(1)) · · · (X − β(n)).
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Since fα, fβ are primitive, by Gauss’ Lemma we have

(4.15) v(a0) +
n∑

i=1

min(0, v(α(i))) = 0, v(b0) +
n∑

i=1

min(0, v(β(i))) = 0.

By Lemma 2.2 we have d = [D(fα)] = [D(fβ)]. Using

D(fα) = a2n−2
0

∏
1≤i<j≤n

(α(i) − α(j))2

and likewise for fβ , and inserting (4.15), we obtain

(4.16) 1
2δv =

∑
1≤i<j≤n

(
v(α(i) − α(j))−min(0, v(α(i)))−min(0, v(α(j)))

)
=

∑
1≤i<j≤n

(
v(β(i) − β(j))−min(0, v(β(i)))−min(0, v(β(j)))

)
.

For a, b, c ∈ L we write a ≡ b (mod c) if v(a− b) ≥ v(c). By (4.5) and (4.7),

b0β
(i) ≡ m1,0 +m1,1a0α

(i) (mod ∆) for i = 1, . . . , n;

here we use the fact that ωj , ρj (j = 1, . . . , n − 1) and their conjugates all
lie in AL. This implies

(4.17) b0(β
(i) − β(j)) ≡ m1,1a0(α

(i) − α(j)) (mod ∆) for i, j = 1, . . . , n.

In the remainder of the proof we distinguish the cases v(a0) ≤ 1
2v(∆)

and v(a0) >
1
2v(∆). First assume that

v(a0) ≤ 1
2v(∆).

Let i, j be any two distinct indices from {1, . . . , n}. Then by (4.8) and (4.16),

v(m1,1a0(α
(i) − α(j)))

≤ v(a0) + v(α(i) − α(j))−min(0, v(α(i)))−min(0, v(α(j)))

≤ 1
2v(∆) + 1

2δv,

and together with (4.17) this gives

v

(
b0(β

(i) − β(j))

m1,1a0(α(i) − α(j))
− 1

)
≥ 1

2v(∆)− 1
2δv,

which is > 0 by (4.14). Using the trivial observation for discrete valuations

(4.18) v(xi − 1) ≥ c > 0 for i = 1, 2, 3, 4 =⇒ v

(
x1x2
x3x4

− 1

)
≥ c

we deduce

v

(
crijkl(β)

crijkl(α)
− 1

)
≥ 1

2v(∆)− 1
2δv

for all pairwise distinct i, j, k, l ∈ {1, . . . , n}, which implies (4.13).
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Next, assume that

(4.19) v(a0) >
1
2v(∆).

Then (4.9) implies that also

(4.20) v(b0) >
1
2v(∆).

We first observe that

(4.21) v(a1) ≤ δv, v(b1) ≤ δv.

Indeed, recall that the discriminant D(F ) of a binary form

F =
n∑

i=0

xiX
n−iY i

is a polynomial in Z[x0, . . . , xn]. Consequently, if F as above and G =∑n
i=0 yiX

n−iY i are binary forms in A[X,Y ], we have

v(D(F )−D(G)) ≥ min
0≤i≤n

v(xi − yi).

Applying this with F (X,Y )=Y nfα(X/Y ) and G(X,Y )=F (X,Y )−a0X
n−

a1X
n−1Y , and noting that D(G) = 0 since G is divisible by Y 2, we see that

δv = v(D(F )) = v(D(F )−D(G)) ≥ min(v(a0), v(a1)).

By (4.19) and (4.14) we have v(a0) >
1
2v(∆) > δv. Hence v(a1) ≤ δv. The

proof of v(b1) ≤ δv is the same, using (4.20) instead of (4.19).
Assume without loss of generality that

v(α(1)) = min(v(α(1)), . . . , v(α(n))).

Then

(4.22) v(α(i)) ≥ −1
2δv for i = 2, . . . , n.

Indeed, suppose that v(α(i)) < −1
2δv for some i ≥ 2. Then by (4.16),

1
2δv ≥ v(α(1)−1 − α(i)−1

) > 1
2δv,

which is impossible. Thus,

(4.23)
v(a0α

(i)) > 1
2v(∆)− 1

2δv for i ≥ 2,

v(a0α
(1)) = v(a1 + a0(α

(2) + · · ·+ α(n))) ≤ δv,

where in the derivation of the first inequality we use (4.19) and in that of
the last inequality we use (4.21) and (4.14).

Let k be an index such that

v(β(k)) = min(v(β(1)), . . . , v(β(n))).
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Then completely similarly to (4.22) and (4.23) we derive

(4.24)
v(β(i)) ≥ −1

2δv for i ̸= k,

v(b0β
(k)) ≤ δv, v(b0β

(i)) > 1
2v(∆)− 1

2δv for i ̸= k,

where we have used (4.20) instead of (4.19). We show that the index k must
be equal to 1. Recall that by (4.17),

b0(β
(i) − β(1)) ≡ m1,1a0(α

(i) − α(1)) (mod ∆) for i ≥ 2.

Assuming k ̸= 1, for i ̸= 1, k this congruence contradicts the two inequalities

v(b0(β
(i) − β(1))) > 1

2v(∆)− 1
2δv implied by (4.24),

v(m1,1a0(α
(i) − α(1))) ≤ δv < 1

2v(∆)− 1
2δv

implied by (4.8), (4.23), (4.14). So indeed k = 1, and thus (4.24) becomes

(4.25)
v(β(i)) ≥ −1

2δv for i ≥ 2,

v(b0β
(1)) ≤ δv, v(b0β

(i)) > 1
2v(∆)− 1

2δv for i ≥ 2.

Let i ∈ {2, . . . , n}. By (4.5) and (4.7) we have

b0(β
(i))2 + b1β

(i) ≡ m2,0 +m2,1a0α
(i) +m2,2(a0(α

(i))2 + a1α
(i)) (mod ∆),

while

v(a0(α
(i))2) > 1

2v(∆)− δv by (4.19), (4.22),

v(b0(β
(i))2) > 1

2v(∆)− δv by (4.20), (4.25),

v(a0α
(i)) > 1

2v(∆)− 1
2δv by (4.19), (4.22).

These relations together imply

v(b1β
(i) −m2,0 −m2,2a1α

(i)) > 1
2v(∆)− δv for i ≥ 2.

Now let i, j be any two distinct indices with 2 ≤ i, j ≤ n. Then by the
inequality just derived,

(4.26) v
(
b1(β

(i) − β(j))−m2,2a1(α
(i) − α(j))

)
> 1

2v(∆)− δv.

Further, by (4.8), (4.21), and (4.16),

(4.27) v(m2,2a1(α
(i) − α(j)))

≤ v(a1) + v(α(i) − α(j))−min(0, v(α(i)))−min(0, v(α(j))) ≤ 3
2δv,

which together with (4.26) implies

(4.28) v

(
b1(β

(i) − β(j))

m2,2a1(α(i) − α(j))
− 1

)
> 1

2v(∆)− 5
2δv.

Inequality (4.28) holds for any pair of indices i, j ≥ 2. We still have to
look at the case where one of the indices is 1. Let j ≥ 2. Then by (4.23)
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and (4.14),
v(a0(α

(1) − α(j))) ≤ δv,

which together with (4.17) implies

(4.29) v

(
b0(β

(1) − β(j))

m1,1a0(α(1) − α(j))
− 1

)
> v(∆)− δv.

Finally, from (4.28), (4.29), (4.14) and observation (4.18) we deduce

v

(
crijkl(β)

crijkl(α)
− 1

)
> 1

2v(∆)− 5
2δv

for all pairwise distinct i, j, k, l ∈ {1, . . . , n}. This implies (4.13) and thus
completes the proof of Lemma 4.3.

Proof of Proposition 4.1. By applying Lemma 4.3 for all v ∈ VL, the
inclusion (4.2) clearly follows.

5. Proofs of Theorems 1.1–1.3. Let K be a number field. Recall
that α1 ∈ K is k-special if K = Q(α1) and there are α2, . . . , αk such
that α1, . . . , αk are pairwise GL2(Z)-inequivalent and Zα1 = · · · = Zαk

.
A 2-special number is called special. We first prove the following.

Proposition 5.1. Let K be a number field of degree n ≥ 3. Then the
GL2(Q)-equivalence class of every special α ∈ K is the union of at most
finitely many GL2(Z)-equivalence classes.

Proof. First let n = 3. By Lemmas 2.5(i) and 2.6, any two numbers α, β
with Zα = Zβ are GL2(Z)-equivalent. Hence there are no special numbers
in K.

Next let n ≥ 4. Denote by L the normal closure of K. Let C be the
GL2(Q)-equivalence class of a special α ∈ K. We first split C into finitely
many subclasses. Since cross ratios of GL2(Q)-equivalent numbers are the
same, we may define crijkl(C) := crijkl(α) for any α ∈ C and any distinct
i, j, k, l ∈ {1, . . . , n}. For every α ∈ C there is β ∈ K such that Zα = Zβ and
β is not GL2(Z)-equivalent to α. From Lemma 2.4 and (3.3) it follows that
εijkl := crijkl(β)/crijkl(α) ∈ O∗

L for all distinct i, j, k, l ∈ {1, . . . , n} and

(5.1) crijkl(C)εijkl + crilkj(C)εilkj = 1

for all distinct i, j, k, l ∈ {1, . . . , n}.
We apply the following result, due to Lang [14].

Lemma 5.2. Let F be a field of characteristic 0, let a, b ∈ F ∗, and let Γ
be a subgroup of F ∗ of finite rank. Then the equation

ax+ by = 1 in x, y ∈ Γ

has only finitely many solutions.
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By applying this to (5.1) with Γ = O∗
L, we infer that there is a finite set

depending only on C such that for all i, j, k, l, εijkl belongs to this set, and
so, for all i, j, k, l, crijkl(β) belongs to a finite set depending only on C. Now
Lemma 2.5(ii) implies that the GL2(Q)-equivalence class of β belongs to a
finite collection depending only on C. Further, by Lemma 2.6, the classes in
this collection are disjoint from C. This implies that C can be partitioned
into a finite collection of subclasses

C(D) := {α ∈ C : there is β ∈ D with Zα = Zβ},
where D is the GL2(Q)-equivalence class of some special number, distinct
from C.

Take a GL2(Q)-equivalence class D ̸= C for which C(D) ̸= ∅. We have
to show that C(D) is the union of finitely many GL2(Z)-equivalence classes.
We use the fact that for every positive integer ∆ there is a finite set F(∆)
of integer 2×2-matrices such that if C is any 2×2-matrix with |detC| = ∆,
then there is U ∈ GL2(Z) with UC ∈ F(∆).

Fix α ∈ C(D) and then β ∈ D with Zα = Zβ . Then choose α∗ ∈ C(D); we
let α∗ vary. Further choose β∗ ∈ D with Zα∗ = Zβ∗ . Thus, (α, β) and (α∗, β∗)
are two GL2(Q)-equivalent special pairs as in Proposition 4.1, with A = Z.
Let C be the matrix from (4.1), so with α∗ = Cα, and put ∆ := |detC|.
Then there is U ∈ GL2(Z) such that

UC =: C1 ∈ F(∆).

Let α∗∗ := Uα∗ = C1α. By Proposition 4.1, ∆ belongs to a finite set depend-
ing on α, β, hence so does C1, and thus α∗∗. This implies that the GL2(Z)-
equivalence class of α∗ belongs to a finite collection depending on α, β. This
shows that indeed C(D) is the union of finitely many GL2(Z)-equivalence
classes.

Proof of Theorem 1.1. Propositions 3.1 and 5.1 imply that if K is quartic
then the 3-special numbers α ∈ K lie in finitely many GL2(Z)-equivalence
classes. Further, if K has degree ≥ 5 and the Galois group of its normal
closure is 5-transitive, then the special numbers in K lie in finitely many
GL2(Z)-equivalence classes. As we observed in Section 3, this implies Theo-
rem 1.1.

Proof of Theorem 1.2. Let K be either a quartic field, or a number field
of degree ≥ 5 such that the Galois group of the normal closure of K is 5-
transitive. Consider a Hermite equivalence class H of polynomials in PI(K)
that falls apart into at least three GL2(Z)-equivalence classes if [K : Q] = 4,
and into at least two GL2(Z)-equivalence classes if [K : Q] ≥ 5. Recall that
f, g ∈ PI(K) are Hermite equivalent if f has a root α and g a root β such
that Q(α) = Q(β) = K and Mβ = λMα for some non-zero λ. This implies
Zα = Zβ . Now if f, g ∈ H are GL2(Z)-inequivalent, then so are α, β. So the
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order O = Zα has at least three rational monogenizations if [K : Q] = 4,
and at least two rational monogenizations if [K : Q] ≥ 5. Since O is an order
of a conjugate of K and K has only finitely many conjugates, Theorem 1.1
implies that there are only finitely many possibilities for O. Given O, the set
of α with Zα = O is the union of finitely many GL2(Z)-equivalence classes.
Hence the set of f ∈ PI(K) having a root α with Zα = O is the union of
finitely many GL2(Z)-equivalence classes. The class H is the union of some
of these classes. So we have only finitely many possibilities for H.

Proof of Theorem 1.3. Take an algebraic number α of degree n ≥ 3.
Let fα(X) = a0X

n + · · · + an ∈ Z[X] be the primitive minimal polyno-
mial of α and Fα(X,Y ) := Xnfα(X/Y ) its homogenization. By Thue’s
Theorem [18], there is a number C such that if x, y are integers with
Fα(x, y) = ±1, then |x|, |y| ≤ C. Let p, q be distinct prime numbers such that
p, q > C∗ := max(C, |a0|, |an|). The number (q/p)α has primitive minimal
polynomial fqα/p(X) = qnfα(pX/q) (one verifies easily that the coefficients
of this polynomial have gcd 1, since p, q > |a0|, |an|). The polynomial fqα/p,
hence by (1.4) the order Zqα/p, has discriminant (pq)n(n−1)D(fα). So the
orders Zqα/p, with p, q running through the primes exceeding C∗, are all
different.

We claim that among these orders, at most finitely many are monogenic.
Indeed, suppose that Zqα/p is monogenic. Then Zqα/p = Zβ = Z[β] for some
algebraic integer β. Assume that β is GL2(Z)-equivalent to qα/p. That is,
β = a(qα/p)+b

c(qα/p)+d for some
(
a b
c d

)
∈ GL2(Z). Then the necessarily monic primitive

minimal polynomial of β is

fβ(X) = ±qn(−cX + a)nfα

(
p(dX − b)

q(−cX + a)

)
.

Its homogenization is

Fβ(X,Y ) = Y nfβ(X/Y ) = ±Fα(p(dX − bY ), q(−cX + aY )).

Since β is integral, the leading coefficient of fβ is 1, which implies 1 =
Fβ(1, 0) = ±Fα(pd,−qc). But this is impossible, since at least one of |pd|, |qc|
exceeds the bound C defined above. We conclude that β cannot be GL2(Z)-
equivalent to qα/p. So any order Zqα/p that is monogenic must have two ra-
tional monogenizations. By Proposition 5.1 there are at most finitely many
pairs of distinct primes p, q > C∗ for which this is possible. This leaves us
with infinitely many rationally monogenic orders Zqα/p that are not mono-
genic.

6. A generalization over the S-integers. In this section, we will state
and prove a generalization of Theorem 1.1 to the ring OS of S-integers of a
number field. The ring of S-integers is a Dedekind domain, but in general not
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a principal ideal domain, therefore, the arguments from the previous sections
cannot be carried over. Thus, in our generalization of Theorem 1.1 we will
not work with GL2(OS)-equivalence of algebraic numbers, but rather with
numbers that are GL2(Op)-equivalent for all non-zero prime ideals p of OS ,
where Op is the localization of OS at p.

Before stating and proving our result, we have collected some generaliza-
tions of the material from Section 2 to Dedekind domains of characteristic 0.
Most of these are equivalent, but for our purposes more convenient formula-
tions of material from [10, Chap. 17].

Let A be a Dedekind domain of characteristic 0 and k its quotient field.
Denote by P(A) the collection of non-zero prime ideals of A and by Cl(A)
the class group of A (fractional ideals modulo principal fractional ideals).
Further, let Cl(A)[m] be the subgroup of elements of Cl(A) whose mth power
is the principal ideal class. The localization of A at a prime ideal p ∈ P(A)
is given by

Ap := {x/y : x ∈ A, y ∈ A \ p}.
We define the group of matrices

G(A) :=
⋂

p∈P(A)

k∗GL2(Ap),

that is, the group of matrices C such that for every p ∈ P(A) there is λp ∈ k∗
with λ−1

p C ∈ GL2(Ap).
Let α, β ∈ k be of degree ≥ 3 over k. We say that α, β are G(A)-equivalent

if there is C ∈ G(A) with β = Cα. Then

(6.1) α, β are G(A)-equivalent
⇐⇒ α, β are GL2(Ap)-equivalent for every p ∈ P(A).

Indeed, ⇒ is clear. As for ⇐, suppose that α, β are GL2(Ap)-equivalent for
every p ∈ P(A). Then there is C ∈ GL2(k) such that β = Cα. But C is
determined uniquely up to a scalar in k∗, hence C ∈ k∗GL2(Ap) for every
p ∈ P(A), i.e., C ∈ G(A).

We compare G(A)-equivalence with GL2(A)-equivalence.

Lemma 6.1. G(A)/k∗GL2(A) ∼= Cl(A)[2].

Proof. Let [a1, . . . , ar] denote the fractional ideal of A generated by
a1, . . . , ar and for a matrix C with entries in k, let [C] denote the fractional
ideal generated by the entries of C. We claim that

(6.2) G(A) = {C ∈ GL2(k) : [detC] = [C]2}.
Indeed, let C ∈ G(A). Then for all p ∈ P(A) there is λp ∈ k∗ such that
λ−1
p C ∈ GL2(Ap), hence [C]2 · Ap = λ2

pAp = [detC] · Ap for all p, implying
[C]2 = [detC]. Conversely, assume [detC] = [C]2. Then for all p ∈ P(A)
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there is λp ∈ k∗ with [C]Ap = λpAp since Ap is a principal ideal domain.
So det(λ−1

p C) = λ−2
p detC ∈ A∗

p, i.e., λ−1
p C ∈ GL2(Ap) for all p ∈ P(A),

implying C ∈ G(A).
Now define the map

G(A) → Cl(A)[2], C 7→ ideal class of [C].

By (6.2) this is a well-defined group homomorphism. Its kernel is the group
of matrices C ∈ G(A) such that [C] is principal, this is precisely k∗GL2(A).
To show that the homomorphism is surjective, pick any ideal class of A
whose square is principal, and take an ideal from this class. By a well-known
property of Dedekind domains, this ideal is generated by two elements, say
it is [a, b]. Then, using another property of Dedekind domains, [a2, b2] =
[a, b]2 = [λ] for some λ ∈ A, hence there are u, v ∈ A such that ua2−vb2 = λ.
Take C =

(
a b
vb ua

)
. Then [C]2 = [a, b]2 = [λ] = [detC], so C ∈ G(A), and C

maps to the ideal class of [a, b].

Lemma 6.1 implies that a G(A)-equivalence class is the union of precisely
#(Cl(A)[2]) GL2(A)-equivalence classes. This quantity is finite for instance
if A is the ring of S-integers of a number field.

Let K be a finite extension of k of degree n ≥ 3. Given α with k(α) = K,
we define the A-module

Mα := {x0 + x1α+ · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ A}

and its ring of scalars

Aα := {ξ ∈ K : ξMα = Mα}.
For p ∈ P(A), let Mp,α be the Ap-module generated by 1, α, . . . , αn−1, and
set Ap,α := {ξ ∈ K : ξMp,α ⊆ Mp,α}. Then

Ap,α = ApAα for all p ∈ P(A),(6.3)

Aα =
⋂

p∈P(A)

Ap,α.(6.4)

Lemma 6.2. Let α, β ∈ K be such that k(α) = k(β) = K and α, β are
G(A)-equivalent. Then Aα = Aβ.

Proof. From (6.1) it follows that α, β are GL2(Ap)-equivalent for all p,
so Ap,α = Ap,β for all p. Now apply (6.4).

Lemma 6.3. Let α, β ∈ K satisfy k(α) = k(β) = K and Aα = Aβ.
Suppose that α, β are GL2(k)-equivalent. Then they are G(A)-equivalent.

Proof. From (6.3) it follows that Ap,α = Ap,β and then from Lemma 2.6
that α, β are GL2(Ap)-equivalent for all p ∈ P(A); here we have used the
fact that the Ap are principal ideal domains. Now (6.1) implies that they are
G(A)-equivalent.
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Suppose that [K : k] = n ≥ 4. Let L be the normal closure of K/k and
x 7→ x(i) (i = 1, . . . , n) the k-isomorphic embeddings K ↪→ L. Denote by AL

the integral closure of A in L. Define the cross ratios crijkl(α) (K = k(α))
by (2.6).

Lemma 6.4. Let α, β be such that k(α) = k(β) = K and Aα = Aβ. Then
for all pairwise distinct i, j, k, l ∈ {1, . . . , n} we have

crijkl(α)

crijkl(β)
∈ A∗

L.

Proof. For p ∈ P(A), let Ap,L be the integral closure of Ap in L. Then⋂
p∈P(A)Ap,L = AL. By (6.3) we have Ap,α = Ap,β , and so by Lemma 2.4,

crijkl(α)
crijkl(β)

∈ A∗
p,L for all p ∈ P(A). Since

⋂
p∈P(A)A

∗
p,L = A∗

L, this implies our
lemma.

We now specialize to rings of S-integers of number fields. Let k be a
number field and Ok its ring of integers. Let S be a finite set of non-zero
prime ideals of Ok, and

OS := {x/y : x, y ∈ Ok, y composed of prime ideals from S}

the ring of S-integers. As before, we denote by P(OS) the set of non-zero
prime ideals of OS . Further, for p ∈ P(OS), we denote by Op the localization
of OS at p, so that

G(OS) =
⋂

p∈P(OS)

k∗GL2(Op).

Let K be a finite extension of k of degree n ≥ 4, and L the normal closure
of K/k.

Denote by OS,K the integral closure of OS in K. By an OS-order of K
we mean a ring O such that OS ⊆ O ⊆ OS,K and kO = K.

Recall that α, β ∈ K are called G(OS)-equivalent if β = Cα for some
C ∈ G(OS). A rational monogenization of an OS-order O is a G(OS)-
equivalence class of α such that OS,α = O.

Taking α with K = k(α), we say that the Galois group Gal(L/k) is
t-transitive if the action of Gal(L/k) on the set of conjugates of α in L is
t-transitive. We are now ready to state our generalization.

Theorem 6.5. Let k be an algebraic number field and S a finite set of
prime ideals from Ok. Further, let K be a finite extension of k, and L the
normal closure of K/k.

(i) Assume that [K : k] = 4. Then K has only finitely many OS-orders with
more than two rational monogenizations.
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(ii) Assume that [K : k] ≥ 5 and that Gal(L/k) is 5-transitive. Then K has
only finitely many OS-orders with more than one rational monogeniza-
tion.

The proof is very similar to that of Theorem 1.1. We will mainly focus
on the differences.

We keep the notation and assumptions from Theorem 6.5. We call α1 ∈ K
k-special if k(α1) = K and if there are α2, . . . , αk ∈ K such that α1, . . . , αk

are pairwise G(OS)-inequivalent and OS,α1 = · · · = OS,αk
. We call α1 special

if it is 2-special.

Proof of Theorem 6.5. It suffices to show that if [K : k] = 4 then the 3-
special numbers in K lie in at most finitely many G(OS)-equivalence classes,
while if [K : k] ≥ 5 and Gal(L/k) is 5-transitive then the special numbers
in K lie in at most finitely many G(OS)-equivalence classes.

Step 1. The 3-special numbers in K if [K : k] = 4, respectively the special
numbers in K if [K : k] ≥ 5 lie in at most finitely many GL2(k)-equivalence
classes.

The proof is exactly the same as that of Proposition 3.1, replacing ev-
erywhere Z, Q, O∗

L by OS , k, O∗
S,L, where OS,L is the integral closure of OS

in L. Lemmas 3.2 and 3.3 can be applied with Γ = O∗
S,L, since the latter

group is finitely generated by the Dirichlet–Chevalley–Weil theorem.

Step 2. Let K be any extension of k with [K : k] ≥ 4. Then the GL2(k)-
equivalence class of each special number in K is the union of finitely many
G(OS)-equivalence classes.

Let C be the GL2(k)-equivalence class of a special number in K. Com-
pletely similarly to the proof of Proposition 5.1, applying Lemma 6.4, Lemma
5.2 with Γ = O∗

S,L, and Lemma 6.3, one shows that C is the union of finitely
many subclasses

C(D) := {α ∈ C : there is β ∈ D with OS,α = OS,β},
where D ≠ C is the GL2(k)-equivalence class of a special number.

Let D ≠ C be a GL2(k)-equivalence class such that C(D) ̸= ∅. We show
by means of a local-to-global argument that C(D) is the union of finitely
many G(OS)-equivalence classes.

Fix α ∈ C(D), and then β ∈ D with OS,α = OS,β . Let T be the set of
prime ideals p of OS such that p divides the discriminant ideal d of OS,α, or
such that some prime ideal P of OS,L above p divides the ideal a(α, β) of
OS,L generated by the numbers crijkl(β)

crijkl(α)
−1 for all pairwise distinct i, j, k, l ∈

{1, . . . , n}. Clearly, T is finite. Next, choose α∗ ∈ C(D) that we let vary, and
then β∗ ∈ D with OS,α∗ = OS,β∗ .
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Let p be a prime ideal of OS . We apply the theory of Section 4 with
A = Op. By (6.3) we have Op,α = Op,β , Op,α∗ = Op,β∗ . Hence (α, β) and
(α∗, β∗) are two GL2(k)-equivalent special pairs as in Proposition 4.1. Let
C be the matrix from (4.1), i.e., with α∗ = Cα, and put ∆ := detC. We
use the fact that there is a finite set F([∆]) of 2 × 2-matrices with entries
in Op, depending only on p and on the ideal [∆] := ∆Op, such that there is
U ∈ GL2(Op) with

UC =: C1 ∈ F([∆]).

Let α∗∗ := Uα∗ = C1α. Proposition 4.1 implies that [∆] belongs to a finite
set depending on α, β and p, hence so does C1, and thus α∗∗. This implies that
the GL2(Op)-equivalence class of α∗ belongs to a finite collection depending
on α, β, p.

But for p ̸∈ T , i.e., for all but finitely many p, Proposition 4.1 implies that
[∆] = [1], hence α∗ is GL2(Op)-equivalent to α. Now from (6.1) it follows
that there is a finite collection of G(OS)-equivalence classes depending only
on α, β to which α∗ must belong. This shows that indeed C(D) is the union of
finitely many G(OS)-equivalence classes, and completes Step 2 of our proof
of Theorem 6.5.
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