STELLINGEN

In the theorems below, the following notation is used. Let k be an algebraically closed field of characteristic 0 and L an algebraic function field of transcendence degree 1 over k. Denote by g_L the genus of K. Further, denote by M_L the set of normalized discrete valuations on L that are trivial on k and define the absolute values $|\cdot|_{\nu} := e^{-\nu(\cdot)}|$ ($\nu \in M_K$) and define the ring of T-integers $\mathcal{O}_T = \{x \in L : |x|_{\nu} \leqslant 1 \text{ for } \nu \not\in S\}$. For $x \in O_T$ define $|x|_T := \prod_{\nu \in S} |x|_{\nu}$. For $x_1, \ldots, x_n \in L$, put $H_T(x_1, \ldots, x_n) := \prod_{nu \in T} \max_{1 \le i \le n} |x_i|_{\nu}$. Let K = k(t) be the field of rational functions in the variable t and S a finite subset of M_K containing the valuation ν_{∞} with $\nu_{\infty}(t) = -1$.

1. Let $n \ge 3$. Assume $x_1, \ldots, x_n \in K$ and $\sum_{i=1}^n x_i = 0$ but that no non-empty proper subsum vanishes. Then

$$H_S(x_1,\ldots,x_n) \leqslant e^{\binom{n-1}{2}\max(2g_K-2+\#S,0)} \Big(\prod_{i=1}^n |x_i|_S\Big) \Big(\prod_{\nu \notin S} \max_i (|x_i|_{\nu})\Big)^{n-1}.$$

In particular, if x_1, \ldots, x_n are k-linearly independent, then we can replace $\max(2g_K - 2 + \#S, 0)$ by $2g_K - 2 + \#S$. (Corollary 2.2.11)

- 2. Let n > 2. If l_1, \ldots, l_n are positive integers satisfying $\frac{1}{l_1} + \cdots + \frac{1}{l_n} \leqslant \frac{1}{\binom{n-1}{2}}$, then the equation $x_1^{l_1} + \cdots + x_n^{l_n} = 0$ does not have a solution $x_1, \ldots, x_n \in k[t]$ such that x_1, \ldots, x_n are non-constant and have no common zeros.
- 3. Let L be a finite normal extension of K and T the set of normalized valuations of L lying above those in S, $\{l_1, \ldots, l_n\}$ a set of linear forms in two variables with coefficients in L which is invariant under the action of $\operatorname{Gal}(L/K)$, $\mathbb A$ an admissible tuple (Definition 4.3.1) and λ_1, λ_2 the successive minima of $\mathcal C = \prod_{\nu \in S} \mathcal C_{\nu}$ (see Section 3.1 of this thesis), where

$$C_{\nu} = \{ \mathbf{x} \in K_{\nu}^2 : |l_i(\mathbf{x})|_{\omega} \leqslant A_{i\omega} \text{ for } i = 1, \dots, n, \omega \in T, \omega | \nu \}.$$

Then

$$\lambda_1 \lambda_2 \geqslant \left(\prod_{\omega \in T} \max_{1 \leqslant i < j \leqslant n} \frac{|\det(l_i, l_j)|_{\omega}}{A_{i\omega} A_{j\omega}} \right)^{1/[L:K]},$$

$$\lambda_1 \lambda_2 \leqslant e^{(n+1)\#S} \left(\prod_{\omega \in T} \max_{1 \leqslant i < j \leqslant n} \frac{|\det(l_i, l_j)|_{\omega}}{A_{i\omega} A_{j\omega}} \right)^{1/[L:K]}.$$

(Lemma 4.3.2)

4. For a polynomial P with coefficients in K, we define $H^*(P) := \prod_{\nu \in M_K} \max(1, |p_1|_{\nu}, \dots, |p_t|_{\nu})$, where p_1, \dots, p_t are the non-zero coefficients of P. Call two binary forms $F, F^* \in \mathcal{O}_S$ $\mathrm{GL}(2, \mathcal{O}_S)$ -equivalent if $F^*(X, Y) = uF(aX + bY, cX + dY)$ for some $u \in k^*$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2, \mathcal{O}_S)$.

Let $F \in \mathcal{O}_S[X,Y]$ be a binary cubic form of non-zero discriminant D(F). Then F is $GL(2,\mathcal{O}_S)$ -equivalent to a binary form F^* such that

$$H^*(F^*) \leqslant e^{12\#S} |D(F)|_S$$

(Corollary 4.3.7).

5. Let $F \in \mathcal{O}_S[X,Y]$ be a binary form of degree $n \geqslant 4$ with non-zero discriminant. Then F is $GL(2,\mathcal{O}_S)$ -equivalent to a binary form F^* such that

$$H^*(F^*) \leqslant e^{(n-1)(\#S(n+11)-5)} |D(F)|_S^{20+\frac{1}{n}}$$

(Main Theorem of Chapter 5).

6. Under the assumption of the abc-conjecture over number fields the following can be proved. Let $F \in \mathbb{Z}[X,Y]$ be a binary form of degree $n \geq 4$ with non-zero discriminant. Then F is $\mathrm{GL}(2,\mathbb{Z})$ -equivalent to a binary form F^* of height

$$Hj(F^*) \le c_1(n)|D(F)|^{c_2(n)},$$

where $H^*(F^*)$ is the maximum of the absolute values of the coefficients of F^* .

7. Let $n \ge 4$. Let $f \in k[t][x]$ be a polynomial of degree n with distinct roots $\gamma_1, \ldots, \gamma_n \in \overline{k(t)}$. Choose for every $\nu \in M_K$ an extension of $|\cdot|_{\nu}$ to $\overline{k(t)}$. Then for every finite subset S of M_K ,

$$\prod_{\nu \in S} \min_{1 \leq i < j \leq n} |\gamma_i - \gamma_j|_{\nu} \geqslant c(n)^{-1} H^*(f)^{-n+1 + \frac{n}{40n+2}},$$

where
$$c(n) = \exp\left(\frac{(n-1)\left((n+11)\#S-5\right)}{20+1/n}\right)$$
.

8. Let $f \in k[t][x]$ be a cubic polynomial with distinct roots $\gamma_1, \gamma_2, \gamma_3 \in \overline{k(t)}$ and $\nu \in M_K$. Then

$$\min_{1 \le i < j \le 3} |\gamma_i - \gamma_j|_{\nu} \geqslant H^*(f)^{-2}.$$

On the other hand, there exists c > 0 such that for every H > 0 there exists a cubic polynomial $f \in k[t][x]$ with

$$\min_{1 \le i < j \le 3} |\gamma_i - \gamma_j|_{\nu} \le cH^*(f)^{-2}, \quad H^*(f^*) \ge H.$$

- 9. It is not knowledge but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. Carl Friedrich Gauss
- 10. If you have a good theory, forget about the reality. Slavoj Žižek