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Introduction

Roth’s theorem gives an optimal solution to the problem how well a given al-
gebraic number can be approximated by other algebraic numbers. A natural
question is to ask how well two varying algebraic numbers can approximate
each other. There is only one non-trivial result, proved by Evertse, but
this is far from optimal. Its proof is based on a weak version of the abc-
conjecture, which is a consequence of a generalization of Roth’s Theorem,
hence it is non-effective.

Let k£ be an algebraically closed field of characteristic 0. Over algebraic
function fields of transcendence degree 1 over k there is a proved analogue
of the abc-conjecture, i.e., the Mason-Stothers Theorem. This suggests
that it should be possible to develop much stronger symmetric Diophantine
approximation results over function fields. My research focuses mainly on
this interesting problem.

To tackle this problem, one considers two cases: either the two algebraic
functions that approximate each other are conjugate over the field of rational
functions k() or not.

The first case is strongly connected to the following problem: over the
integers, two binary forms (i.e., homogeneous polynomials) F,G € Z[X,Y]
are called equivalent if G(X,Y) = F(aX + bY,cX + dY') for some matrix
( a g) € GL(2,Z). Two equivalent binary forms have the same discriminant.
A binary form F' is called reduced if its height H(F) (maximum of the

absolute values of its coefficients) is minimal among the heights of the binary
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Introduction

forms in its equivalence class.

Conjecture. The height H(F') of a reduced binary form F of degree n > 4
and non-zero discriminant D has an upper bound of the form ci(n)| D],

where c1(n), ca(n) are numbers depending only on n.

An analogous estimate for n = 2 and n = 3 follows from work of La-
grange, Gauss and Hermite. However, the general case is still open. There

is only the following much weaker effective result from [11]:

Theorem (Evertse, Gyory). Let F(X,Y) € Z[X,Y] be a reduced binary
form of degree n > 2 and discriminant D(F) # 0. Then

H(F) < exp((cin)*" [ D),
where c1, ¢y are effectively computable, absolute constants.

More generally, we may consider the ring of integers of an algebraic
number field and even the ring of S-integers instead of Z. A weak version

of Evertse [9] implies the following:

Theorem (Evertse). Let F' € Z[X,Y] be a reduced binary form of degree

n > 1 with splitting field L over Q and non-zero discriminant. Then

H(F) < C"¥(n, L)| D(F)|7,

The constant here depends on n, L and is ineffective in the sense that it
is not effectively computable from the method of proof. We call this result
a ’semi-effective’ upper bound since it is effective in terms of D(F), but
ineffective in terms of n and L.

We proved an analogue of the above conjecture over k[t]. Our main tools
are an analogue of the geometry of numbers over function fields (see Thunder
[24]) and Mason’s theorem which is an analogue of the abc-conjecture over

function fields.



We start with some notation.

Fix K = k(t) where k is an algebraically closed field of characteristic 0
and t is transcendental over k. For x € k[t], define |z|o = e1°8(®)_ For f
E[t]\{0}, define v,(f)(p € k) by f = (t—p)””(f)g where g € k[t] and g(p) # 0.
We extend this to k(t) by setting v,(0) := oo and I/p(g) = 1,(f) — vp(g)
for f,g € k[t],g # 0. Define |z|, = ¢ ¥ for € K. For a polynomial F

with coefficients ay, ..., a, in k[t], define H(F) := max(|ag|co, - - -, |an]oo)-
m —_—
If a binary form F' has a factorization F(X,Y) = H(aiX + G;Y) over K,
i=1
define its discriminant by D(F) = [](cif; — «;B3;)?. For two binary forms
1<j

)= [J(ix +8:Y), GX,Y) = [ [(sX +6;Y),
i=1 j=1

we define their resultant by

m n

R(F,G) = [ [ [](e:8; — 8iv))-

i=1 j=1
Let L be a finite extension of K = k(t). We say an absolute value on

[Leo: K]

| - |w on L is an extension of | - |, on K if |z|, = |z} for every z € K.

Here L, K, are the completions of L, K at w, v respectively. Define

1/[L:K]
H*(ml,...,xn):( I] maX(1,|x1|w,...,|xn|w))

weMp,

for (x1,...,2,) € L™,

and

m

H(F) =max(|ag|so, - - -, |am|oo) for F = Z a; XY € k[t)[X, Y]

1=0

For aring R, we say that two binary forms F, G € R[X,Y] are GL (2, R)-
equivalent if there exists u € R* and U = (g 2) € GL(2,R) such that
G = uFy, where Iy (X,Y) = F(aX + bY,cX + dY'). Later we will apply
this definition to a polynomial ring k[t] or a function field L.

We recall Mason’s ABC-theorem for function fields.



Introduction

Theorem (Mason). Let L be a finite extension of K = k(t), g1, the genus of
L andT a finite set of valuations of L. Let vy, 72,73 be non-zero elements of
L satisfying v1 +v2 +7v3 = 0 and v(y1) = v(y2) = v(v3) for every valuation
v & T. Then either % € k, which means H*(%) =1, or H*(%) <
o(#T+291-2)/[L:K]

As a consequence we derived a non-trivial result, Theorem 5, on how
well two algebraic functions that are conjugate over k(¢) can approximate
each other. We will come back to this with more details in the next few
pages.

To study how well two algebraic functions non-conjugate over k(t) can
approximate each other involves a study of two binary forms, and requires
one to find a non-trivial lower bound for the resultant of two binary forms
in terms of their heights. To obtain such a bound, we developed a general-
ization of Mason’s theorem to more variables, based on work of Brownawell
and Masser [6], J.T.-Y. Wang [25] and Zannier [26].

This dissertation is organized as follows.

Chapter 1 introduces some very standard notation and collects some
results related to discriminants, resultants, valuations, heights and twisted
heights.

In Chapter 2, we introduce Mason’s ABC-theorem for function fields
and give a generalization, which is a solid basis to build our effective results
on.

In Chapter 3 we develop some geometry of numbers over the rational
function field k(t). The main result concerns the successive minima of a
so-called S-convex symmetric body.

With the help of the results in Chapter 3, we develop in Chapter 4 a
reduction theory for binary forms over the rational function field.

In Chapter 5, we first derive some consequences of the Riemann-Hurwitz
formula, and by combining these with the results from Chapter 1 to 4 we

prove the following effective result, which is analogous to the conjecture



mentioned above. The only earlier work in this direction is due to Gaal
[13]. His results are formulated differently, but they imply a similar result,
with a larger upper bound in terms of |D(F)|« for binary forms F' with
F(1,0)=1.

Theorem 1. Let F' € k[t][X,Y] be a binary form of degree n = 4 with
non-zero discriminant. Then F is GL (2, k[t])-equivalent to a binary form
F* such that
H(F*) < ™ +5m=0) D(F) 204

In Chapter 5, we in fact deduce a general version of Theorem 1, which
deals with binary forms over localizations of k[t] away from a finite set of
elements of k.

In Chapter 6, we focus on the finiteness of the number of equivalence

classes of binary forms of given discriminant and show the following

Theorem 2. Given n € Z,n = 4, non-zero 6 € k[t] and a finite extension
L of K, there are only finitely many GL (2, K')-equivalence classes of binary

forms satisfying

[ F e kt)[X,Y], D(F) € 6k,
F' has splitting field L over K,
deg F' = n,
| £ is not GL (2, L)-equivalent to a binary form in k[X,Y].

Remark. Theorem 2 becomes false if the last condition is replaced by F not
being GL (2, K)-equivalent to a binary form in k[X,Y]. A counterezample
1s given in Chapter 6.

In Chapter 7, we effectively estimate the resultant of two binary forms
from below in terms of their discriminants and heights. This is based on

ideas of Evertse and Gyory for number fields. They deduced the following:
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Theorem (Evertse, Gyory [12]). Let F' € Z[X,Y] be a binary form of
degree m = 3 and G € Z[X,Y] a binary form of degree n = 3 such that FG
has splitting field L over Q and FG is square-free. Then

[R(F,G)| = C"M(m,n, L)(|D(F)["/ =D D(G) [/ (=) I,
Theorem (Evertse [10]). Let m,n = 3 and let (F,G) be a pair of binary
forms with coefficients in 7 such that deg F' = m,deg G = n, F'G is square-
free and FG has splitting field L over Q. Then there is an U € GL (2,7Z)
such that

[R(F,G)| = C™ (m,n, L) (H(Fy)"H(Gy)™) T

The ineffectivity mainly comes from Schmidt’s subspace theorem from
Diophantine approximation. We apply a generalization of Mason’s theorem

(see Chapter 2) to obtain effective results as follows.

Theorem 3. Assume F,G € k[t][X,Y] are two binary forms such that
deg ' =m > 3,deg G =n = 3, FG is square-free and splits in k(t). Then

IR(F, )0 = |D(F)| 27 |D(G)| 2.
As a consequence of Theorem 1 and Theorem 3, we also show that

Theorem 4. Let m,n > 2 and let F,G be binary forms in k[t|[X,Y] such
that FG is square-free and splits in k(t). Then there exists U € GL (2, k[t])
such that

IR(F,G)|os = c1(m,n) ' H(Gy) ™7 H(Fy)™,

where

mn(4dm+4n+11)
ci(m,n) =exp | — 17

We actually prove a more general result where F'G splits over a given

arbitrary finite extension L of k(t).



As an application, in Chapter 8 we prove a root separation result and a
symmetric improvement of a Liouville-type inequality.
A result of Mahler states that for a polynomial f(X) = a(X—v1) ... (X—
~n) with complex coefficients we have
—n-1 DN

i R 1 e dyu
1<rir2]n<n|% 7]‘ =z (n+ ) H(f)» 1

In case that f has integer coefficients and non-zero discriminant this

implies that

: e > —n—1 1—n‘
KIFQ}I@'% vjl =2 (n+1) H(f) (*)

This inequality is proved by an elementary argument, similar to Liou-
ville’s inequality from Diophantine approximation on the approximation of
algebraic numbers by rationals. Therefore, we call (x) a Liouville-type in-
equality.

The root separation problem is to prove a similar inequality with instead
of 1 —n a larger exponent on H(f). But this is still open. The only known
case is, rather surprisingly, that when n = 3 the exponent 1 — n is best
possible. The latest result [7] of Y. Bugeaud and A. Dujella shows that for
n = 4 the exponent cannot be bigger than —2"3—_1.

We obtain an improvement of the exponent over the rational function

field as follows.

Theorem 5. Let K = k(t) and f € K[X] be a polynomial of degree n > 4
n

with splitting field L. Write f = a [[(X —~;) witha € K* and ~; € L. Fiz
i=1
an extension of | - | to L and denote this also by | - |eo. Define

. Vi — ’leoo
min .
1<i<j<n max(L, |7iloo) max(1, [j]o0)

AOO(f) =

Then
Aoo(f) = es(n) L H(f) " oo,
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where
(n—1)(n+6)

20+ 1/n )

We return to number fields. If we consider two algebraic numbers «, 3

c3(n) = exp(

not conjugate to each other, the problem becomes more general. A typical
result is the following generalization of (x): for 7" a finite set of valuations
of K(a, ), we have

1/[L:K] .
(H o m) > SH () (5)7,

weT

where ||, = |- Z[)LW:QP]

if w lies above p € {oo} U {primes}. The exponents
of H*(a) and H*(f) can be improved. A generalization of Roth’s theorem
by S. Lang implies that there is a constant C' > 0 depending on « and K (/3)

such that

1/[L:K]
(H o — m) > CHY(8)" %M,

weT
where r = [K(«, 8) : K(B)] = 3.
On the other hand, if we allow both a and 3 to vary, the problem gets
more difficult. Evertse obtained the following improvement of Liouville-type

inequality.

Theorem (Evertse). Let K be an algebraic number field and o, B distinct
numbers algebraic over K. Let L = K(a, ). Suppose that

L: K] = [K(a) : K]K(8) : K], [K(a) : K] > 3, [K(8) : K] > 3.

Let T be a finite set of valuations of L above v € My such that

1 1
w = m%[[zw : KI/] < §
Then
|Oé — B|W ineff * * =144
11 max(L, [l max(L.18l) = (L, T)(H*(a)H*(B)) .

weT



1-3w

where (5 = m

Following the same idea, we give an analogous improvement of Liouville-
type inequality over the rational function field, which is effective.
Let K = k(t) and &, n be distinct and algebraic over K. Let L = K(&,n)

and T a finite set of valuations on L. Define

’5 | 1/[L:K]
Pp— — ,r] =
AT(f’ 77) T (g maX(L |§|w) maX<17 n"-’)> |

Then we have the following Liouville-type inequality

Ar(€,m) = H €)™ H ()~
and the following effective improvement

Theorem 6. Suppose &,n are algebraic over K = k(t) with [K(¢) : K| >3
and [K(n): K] =2 3. Let L = K(§,n) and assume

[L: K] = [K(¢) : K][K(n) : K].

Suppose that .
1

= —_— L, : K —

“ [L:K]Z[“ <3

w|oo
weT

Let g1, g2 be the genera of K(&) and K(n) respectively. Then

_ . . —1+9
Ar(&,m) = ca(m,n, g1, g2, @) (H* () H*(n)) ;
where ¥ = % and
1 (.1, g1, g2, ) = exp (426m+426n—1?17;—1-844914-84492 - (metn) (mtn—5) (1— 19))

Last but not least, we remark that in this dissertation we prove more
general versions of Theorem 3, 4, 5, 6 with multiple valuations, whilst The-

orem 3 holds in a general function field of transcendent degree 1.






Chapter 1

Preliminaries

In this chapter we collect some results related to discriminants, resultants,
valuations, heights and twisted heights.

Unless otherwise stated, throughout this dissertation, £ will be an alge-
braically closed field of characteristic 0 and K = k(t) the rational function
field in the variable t. By a function field, we always mean a finite extension

of K.

1.1 Discriminants and resultants

Let L be an arbitrary field. Let
F(IX,)Y)=a X" + a1 X" 'V 4 +a,Y" € L[X,Y]

be a binary form of degree n > 2.
n

We have a factorization F(X,Y) = [[(X + 3;Y) over an algebraic
i=1
closure L of L. As usual, we define the discriminant of F to be

D(F) = H(Oézﬂj — a;3)*.

1<j

11



12 Chapter 1. Preliminaries

This is a homogeneous polynomial of degree 2n — 2 in Zayg, ..., ay]. In
particular, for a linear form, we define its discriminant to be 1.
It is easy to show that for U = (g g) € GL(2,L) and \ € L, we have

D(\F) = X" 2D(F),
D(Fy) = (detU)"" " VD(F),

where Fyy(X,Y) = F(aX +bY,cX +dY).

Let F(X,Y) = apX™+ a1 X™ Y+ +a, Y™ and G(X,Y) = b X" +
bi X" Y + ... 4+ b,Y" be two binary forms with coefficients in L. The
resultant R(F, G) of F, G is defined by the determinant

aO a/]_ ) ) am
ao al ) o« .. am
aO al LY “ . am
R(F,.G):=1|by b -+ by , (1.1.1)
bo by - bs
bo by -+ by

where the first n rows consist of coefficients of F' and the last m rows of
coefficients of G.

Over the algebraic closure L of L, suppose that we have factorizations

m n
HazX+ﬁz H’V]XWL(SY
=1

J=1

Then

n

R(F.G) = [ [ [ [ (@i; = 8. (11.2)

i=1 j=1
Hence R(F,G) = 0 holds exactly when F, G have a common factor.
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The resultant has the following properties:
R(\F, uG) = N"u"R(F, G),

R(F1F2,G) = R(F, G)R(F2, G),
R(G, F) = (~1)™R(F,G),
R(F,G+ HF) = R(F,G),
where \,u € L, F,G, F}, F5 are binary forms and H is a binary form of

degree n — m if n = m.

For an invertible matrix U = (g g), define
Fy(X,Y) = F(aX +bY,cX +dY).

Then R(Fy,Gy) = (det U)™R(F, G).

1.2 Valuations on function fields

Recall K = k(t). Denote by Mg the collection of normalized discrete
valuations on K that are trivial on k. This set is described as follows. For
f € K[tI\{0}, define v,(f)(p € kU {o0}) by f = (t —p)**\)g where g € k[t]
and g(p) # 0 if p € k; further, define vo(f) = — deg f. We extend this to
k(t) by setting 1/,(0) := oo and Vp(g) =1p(f) — vp(g) for f,g € k[t],g # 0.
Then Mg = {vp : p € kU{oo}}. In this thesis we often work with absolute
values. We define the absolute value |- |, by e () for v € Mg. These

absolute values satisfy the product formula
II =t =1
veEMyk

for every x € K*. All valuations of K are non-archimedean, so for a binary
form F' € K[X,Y] we have

ID(P)y < i (a2 ~2) (12,1
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for every v € Mg. Let S be a finite set of valuations of K, containing the
‘infinite valuation’ v,. Define the ring of S-integers and group of S-units
by

Os = {zeK:|z|, <1forv¢gS},
Og {reK:|z|,=1forv &S}

We define the S-norm of z € K by

It is clear that |z|g > 1 for v € Og\{0} and |z|g =1 for z € OF.

Remark 1.2.1. Let K be a purely transcendental extension of k of tran-
scendence degree 1. Choose t such that K = k(t). The ’infinite valuation’
Voo 15 the one with vso(t) < 0. The choice of the infinite valuation depends
on the choice of a transcendental element t generating K. In what follows,
we make a distinction between the infinite valuation vo, and the other valu-
ations on K. But we should mention that in our arguments we could as well

have chosen any other valuation to play the role of the infinite valuation.

Recall that k is an algebraically closed field of characteristic 0, and K =
k(t). Let L be a finite extension of K. We say a valuation w is normalized if
w(L*) = Z. Denote by My, the normalized valuations on L that are trivial
on k. For valuations v € Mg, w € M, we say that w lies above v, and
denote it by w|v, if the restriction of w to K is a positive multiple of v. Then
for every v € M, we have finitely many valuations w € M, above v. For
every w € My, we define the corresponding absolute value ||, := e~ w(@),
Then we have w(z) = e(w|v)v(z) for wlv,z € K, where e(w|v) is called the
ramification index. Let L, denote the completion of L at w. In our case, k

is algebraically closed with char £ = 0 and the residue field of v is k, hence
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the residue degree is 1, implying that e(w|v) = [Ly, : K,]. Thus our chosen
absolute value is a prolongation of | - Z[,L“:K”], rather than | - |,, to L, hence
by Proposition 1.2.7 of [4], we have the relation |z|, = [Ny g, (7)], for
every x € L. By assumption, K has characteristic 0, so the extension L/K

is separable. Hence

NL/K(JI) = HNLW/KV(.T) for x € L,

wlv

so we have
H 2]w = |Np/k(z)]y for x € Lyv € Mg
wl|v
and
H |z|, =1 for z € L*.
weMp,

Similarly, we define the T-norm of x € L by

e = ] =l

wEL

We recall some facts about Dedekind domains. For a non-zero fractional
ideal a of a Dedekind domain A and a prime ideal p of A, we denote by

v, (a) the exponent of p in the prime ideal factorization of a.

Lemma 1.2.2. There is a bijection between the non-zero prime ideals of A
and the discrete valuations of F' that are non-negative on A, given by p +— vy
such that vy(a) is the exponent of p in the unique prime ideal factorization

of the ideal generated by a.

Proof. See [1]. O

Lemma 1.2.3. Let A be a Dedekind domain with fraction field K. Let L

be a finite separable extension of K1, and B the integral closure of A in L.
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Assume that L]/Ky is tamely ramified. Denote by Dpjy the discriminant
ideal and D g4 the different ideal of B over A. Let p be a prime ideal
of A, let p1,...,pr be the prime ideals of B above p, and v the valuation

corresponding to p, and w; corresponding to @; fori=1,...,r. Then

Npyk,(®pja) = Dpya-

Further

T

v(Dpja) = Z (e(wi|y) - 1).

=1

Proof. For the first part, see Proposition 6, §3, Chapter III of [22].
Since the extension L/ K7 is tamely ramified with residue degree f(w;|v) =
1, we get by Proposition 13, §6, Chapter I1I of [22],

wi(Dpja) =e(wilv) —1fori=1,...,r

hence
,

v(Dpya) = v(Nijse D)) = D (elwiln) - 1),

1=1

which gives the claim. O

Later we will apply this lemma frequently to the case K1 = k(t), A = k[t]
and K1 = K, the completion of K at vand A = R, := {z € K, : v(z) > 0}
for v € M.
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1.3 Polynomials and heights

Recall K = k(t). For v € My, denote by K, the completion of K at

the valuation v. Then v has a unique extension to K. Define
R, ={zx € K, :v(z) > 0}
to be the local ring of K. Then its group of units is

R; ={z € K, : v(z) = 0}.

For x = (x1,x9,...,2y) € K!, define
v(x) = min v(x;),
Ix[l, = ™ = max |,
1<i<n

and for x € K", define the homogeneous height and S-height

Hi() = [ I,

veMg

Hs(x) = [ [ I1xlls-

ves
Clearly, the product is well-defined and Hp (x) = 1 for every x # 0 because
of the product formula. Also, Hx (Ax) = Hg(x).
For a polynomial P € K[Xy,...,X,] or P € K,[X1,...,X,]| we define

|P|, to be the maximum of the | - |,-values of its coefficients.

Lemma 1.3.1 (Gauss’ lemma). Let K be a field, |- |, a non-archimedean
¢

absolute value on K, and P = [[ P, with P € K[Xy,...,X,] for i =
i=1

1,...,t. Then

t
Pl =] 1Pl
=1
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Proof. See [14]. O

As a direct consequence, we have
n
Corollary 1.3.2. Let F' = [[(a; X + 5;Y) with a;, 8; € K fori=1,...,n.
i=1

n
Then |F|, = [] max(|cily, |Bilv) for every v € Mk.
i=1

For L a finite extension of K and a polynomial P € L[X7,..., X;,], we
define

[L:K]
Npjk(P) = H ai(P),
i=1

where o71,..., 0. are the K-embeddings of L into K, and o;(P) is ob-

tained by the action of ¢; on the coefficients of P.

1.4 (Galois theory of valuations

In this section, we give a brief sketch of some aspects of Galois theory

of valuations that will be needed later.

Lemma 1.4.1. Let K be a field with a non-trivial absolute value | - |, and
L a finite Galois extension of K with Galois group G = Gal(L/K). Then
for every two absolute values ||y, |- | on L prolonging |-|,, thereis o € G

such that |z|, = |o(x)|. for x € L.

Proof. See Corollary 1.3.5 of [4]. O

For v € Mg and L a Galois extension of K, denote by A(v) the set of
normalized valuations of L above v. Fix w; € A(v). The completion L,
of L at wy is a Galois extension of K,,. We may view L as a subfield of

Ly, . As mentioned before, the absolute values on L defined above satisfy
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the relation |z|w, = [Nz, /K, ()]s for x € Ly,. Without loss of generality,
we may assume K C K, C L,, C K, and K C L C L,, C K,. Let
E(w1|v) be the set {0 € G : w1 00 = w;} equipped with composition. This
is by definition the decomposition group of w; over v. By, for instance, §9,

Chapter II of [18], we have an isomorphism

Gal(Lw, /K,)) — E(wilvy),

o +— o|L.
Thus we may view Gal(L,, /K,) as a subgroup of G. Further, let
Ewv)={ceG:w=wjo0} forwe Av). (1.4.1)

Since G acts transitively on A(v) (see §9, Chapter II, [18]), the sets £(w|v)
form a partition of G, and in fact they are the right cosets of Gal(L, /K))

in G, so have the same cardinality:
(L, : K] = [Ly : K] for w,w’ above v. (1.4.2)

It is now reasonable to put g, := #E(w|v) = [Ly, @ K,|. If we still denote
by | - |, the prolongation of | - |, from K to K,, and hence on L, , then
I/

lz|, = |NLw1/K,,($ ] for x € L,,. It follows that for z € L,w €

A(v),o € E(w|v), we have
|zl = lo(@)|w, = lo ()]} (1.4.3)

Notice that ¢ € Gal(L/K), hence we may extend o € E(w|v) to a K-

isomorphism from L, to L, , by sending o = lim «,, to o(a) = lim o(ay,)
n—oo n—oo

where o € L, and «, € L. Moreover, for every x € L, we also have

2l = lo(2)|w, = |o ()]
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1.5 Twisted heights

Let S be a finite set of valuations of K. We define the ring of S-adeles

Ag = HK,, ={(xy)|z, € K, for every v € S}

ves
with componentwise addition and multiplication.

Further, let
GL,(Ag) = {(A4))]|A, € GL,(K,) for every v € S},

where GL,,(R,) is the subgroup of GL,,(K) of n x n matrices whose entries

are in R, and whose determinant is in R, .

For A = (A,) € GL,(Ag), define

| det(A)]s = [ ] Idet(A,)],.
ves
Also, we define the v-norm of A, as follows: if A, = (a;j)1<ij<n, then
|Ayll, = max|ai;|,. Given a ring R we denote by R"™ the module of n-
(3

’

dimensional column vectors with entries in R.

Lemma 1.5.1. Let v € Mg. For Ay, € GL,(Ry,) and x € K], we have
v(A,x) = r(x).

Proof. Let A, = (a;5),x = (x1,...,2,) € K"

As minv(a;;) = 0, we have

i,J
v(A,x) = min v(ajpry + -+ ainTy)

1<i<n

> ; gy

> Din vlai;v))

> ; , ; .

> i v(zi) + min v(aij)

> v(x).

Since A;' € GL,(R,), we have similarly for A, € GL,(R,),x € K" that
v(x) = v(A;1A,x) > v(A,x). This completes the proof. O
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For A € GL,(Ag),x € K" define the divisor

divy(x) == Z v(Ayx)v + Z v(x)v

veS vgS

and its degree

deg(diva(x)) = > v(A,x)+ > v(x).

ves vgS

Also define the corresponding twisted additive height

ha(x) = —deg(diva(x)) = = Y _w(Ax) = > v(x).
ves vegS
The sum is well-defined by the fact that for every x € K*, we have v(x) =0
for almost all v € M. Define the twisted multiplicative height for x € K™
by:
Ha(x) == exp(ha(x)) = [ T 14l T T I1x-
ves vegsS
It is projective in the sense that, by the product formula, H4(Ax) = H4(x)
forx e K" A\ e K*.
Lastly, we define for A € GL,,(Ag)

div(A) = diva(K™) := > v(det(4,))r,
ves

and

ha(K™) = —deg(div(A)),
exp(ha(K™)) = [ ] | det Ay], = | det(A)].

veS

=
=
=
I

Lemma 1.5.2. Let A € GL,(Ag). Then there exist positive constants cy, ca
depending on A such that coHg (x) < Ha(x) < c1Hg(x) for all x € K™.
In particular, for x # 0, we have H4(x) = ca.
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Proof. Let c1 = [] [JAvlly and c2 = [] [|A L
ves ves
Clearly, we have ||A,x||, < ||Av]lv]|x]|, because for all v € S, the

valuation is non-archimedean. Similarly we have ||x||, = [|A, 4,x|, <
145l Ayl bence 451 Il < 11AX]L < 1A Ixl for v € S.
By taking the product over all v € Mg we get coHi(x) < Ha(x) <
a1 Hg (x). O

Consider a finite extension L of K. Let S be a finite subset of My and
let 7' C M7, be the set of valuations of L lying above those of S. For x € L

put |z|r := [] |z|w. Define the ring of T-integers and T-units
weT

Opr ={zelL:|x|, <1forw¢gT},

Of ={relL:|z|,=1forw¢T}.

Then Or is the integral closure of Og in L. We have
|z|r = [N Kk (2)|s for x € L, (1.5.1)

and in particular,

K]

lr = |25 for 2 € K. (1.5.2)

For w € My, denote by L, the completion of L at w. Then there is a

unique extension of w to L. For x = (21, ... ,xn)T € L, we define
w(x) = 121£nw(xi)’
x|l = max |zi], = max e <),
1<i<n 1<i<n

Similarly as before, we define div4(x),div(A) for x € L", A € GL,,(Ar) by
replacing K, S with L, T respectively. That is,

divy(x) == Z w(Apx)w,

weMp,
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div(4) = > w(det(Ay))w

weMy,
Define
ha(x) = —deg(diva(x))/[L: K],
ha(L") = —deg(div(A))/[L : K],
and

Ha) = esp(ial) = (] IAuxl) ™™

weMy,

HA(L™) := exp(ha(K™)) ( H | det Ay lw ) = [ det(A)|".

weEM,

The height H4 on L" is compatible with the one on K™ H(L")
HA(K™).

We recall Thunder’s analogue of Minkowski’s convex body theorem for

function fields.

Lemma 1.5.3. Let L be a finite extension of K of degree m, and H4 be
the twisted height on L™ corresponding to A € GLy(Ag). Then there is a

basis ay,...,a, of L™ satisfying
HHA (a;) < Ha(LM)emortm=1/m,

where gy, is the genus of L.
Proof. See Theorem 1 of [24].

Lemma 1.5.4. For every basis {x1,...,Xp} of L™, we have

n

[[HaGxi) = Ha(L™).

i=1
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In particular, there is a basis {ay,...,a,} of K™ such that

n

[ Hatai) = Ha(K™).

i=1

Proof. See Lemma 5 of [24] for the inequality. The equality is a combination
with Lemma 1.5.3. O



Chapter 2

Height estimates for solutions

of S-unit equations

Let |- |0 denote the ordinary absolute value on Q and for a prime p, denote
by | - |, the p-adic absolute value, normalized such that |p|, = p~!. Let K
be a number field and M its collection of places (equivalence classes of
absolute values). For every v € Mk, choose |- |, from v such that if v lies
above p € {oo} U {primes}. Then |z|, = |:E|:£,K”:Qp] for x € Q.

We recall the Subspace Theorem, due to Schmidt and Schlickewei.

For X = [z : -+ : x,) € P"(K), define |X|, := max(|z1|y, ..., |zn|,) for
v € Mg and HK(%) = H ‘%|y
vEMEK

Subspace Theorem. Let n > 1, and let S be a finite set of places of
K. Forv e S, let Loy, ..., Ly be linearly independent linear forms with
coefficients in K. Further, let C > 0,0 > 0. Then the set of solutions of
the inequality

H | Loy (X) ... Ly (X)]

Y < CHp (%)™ 179
B e

ves

in X € P"(K) is contained in a finite union of proper linear subspaces of

25
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P (K).

This was proved by Schmidt in [20], [21] in the case that S contains only
archimedean places, and by Schlickewei [19] in full generality.

As a consequence, in [9] Evertse derived the following result.

Let S be a finite set of places of K containing all archimedean places.
Define the ring of S-integers Og = {x € K : |z|, < 1 for v & S}. Define

|z|g = H |z|, for z € Og,
vesS

Hg(xy,...,zp) = Hmax(|x1|y, ooy |xnly) for zq, ... 2y € Og.
ves

Theorem (Evertse). Let K be an algebraic number field and S a finite set

of valuations of K containing those archimedean ones. Assume x1,...,xT, €
n

Og such that Y x; = 0 but no non-empty proper subsum vanishes. Then
i=1
for every € > 0 we have

n
Hg(w,... a0) < Cln,e, )| [ il §
=1

Here C'(n,¢€,S) is an ineffective constant. In this chapter, we are going

to prove a much stronger analogue of this result over function fields.

2.1 Height estimates

Let K = k(t), L a finite extension of K. For x1,...,x, € L, define

Hi(wy, .. an) = [ max(ilw, ., |2alo),
wEMT,

Hi(xy,.. ) = [ max(L[21]w, ., [2al).
weMp,
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Hzy,.an) =[] max(|zif, - o)) /5,
weM,

H* (w1, yan) = || max(1, |21, - Janlo) Y/ EED
weM7y,

For a finite set T' C M, define

Hy(zy,. . wn) = | [ max(|zil, - |2alw)-
weT

Lemma 2.1.1 (Mason). Let L be a finite extension of K = k(t), and T
a finite set of valuations of L. Let v1,7v2,73 be non-zero elements of L
satisfying v1 +v2 +v3 = 0 and v(vy1) = v(y2) = v(73) for every valuation
v & T. Then either % € k, which means H*(%) =1, or H*(%) <
o #T4+291—2) /[L:K]

Proof. See Chapter I, Lemma 2 of [17]. m

Corollary 2.1.2. With the above notation, we have in both the cases ::—; €
ol
k, 7; ¢ k that
H*(ﬂ) < e#T+290-1)/[L:K]
72

Proof. This follows directly from the facts that g; = 0 and #71" > 1. [

Recall
Or ={zelL:|x|, <1forw¢gT},

Of ={relL:|z|,=1forw¢gT}.
Note that by the product formula, we have

H*(%) = ( H max(1,

weM,

1/[L:K]
)

n
72

= (T mastnlen k) = Hn),

weMy,
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and if 1,72 € Op, then H(”ﬂ,’yg)[L:K] < Hr(v,72)-

Brownawell and Masser obtained the following generalization:

Theorem 2.1.3. Let L be a finite extension of K = k(t), and T a finite
set of valuations of L. Put ¢' = max(0,2g — 2). Let uq,...,u, be T-units
in L satisfying ui + - -+ + up = 0 but > u; # 0 for every non-empty proper

i€l
subset I of {1,...,n}. Then

H(u, ... up) < ez D=2 @#T+g)/[L:K]

Proof. See [6]. O

We deduce the following result, which will be improved in the next

section.

Corollary 2.1.4. Let L be a finite extension of K = k(t), and T a finite
set of valuations of L. Put ¢ = max(0,2g — 2). Let uq,...,u, be elements
of Op satisfying ui+---+up = 0 but > u; # 0 for every non-empty proper

el
subset I of {1,...,n}. Then

(n—1)(n—2)

n
Hr(uy, ... up) < e2DO-2#HT+d)) H“i‘T 2
i=1
Proof. Let U be the collection of w € Mp\T such that w(u;), 7 =1,...,n,
are not all equal. Then clearly #U < oo.
Now consider the complement of T"U U. For every w ¢ T U U, we
have w(uy) = -+ = w(uy). Since uw; € Or, there are two cases: either

w(u;) = 0, which is the case for almost all valuations, or w(u;) > 0. Let

V=4{wegTUulU: : wu)="-=w(u,) >0}
(n=1)(n=2)(#T+#U+g")
If V= (), then by Theorem 2.1.3, we have H(uy, ... ,up) < e 2[L:K]
IfV #0, then ;L +---+ %= +1 = 0 and each nontrivial partial sum is

non-zero by assumption. As 2,4 =1,...,n —1, and 1 are all elements of
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O7 > and the height function H is projective, we obtain by Theorem 2.1.3

Uul Up—1 (n=1)(n=2)(#T+#U+g")
H(uy,...,up)=H(—,...,——= 1) <e 2(L:K] . (2.1.1)
U, U,
On the other hand, since u; € Op fori =1,...,n, we have nax [uilw <
<i<n

1, hence min |u;|, < e~ ! for w € U, and therefore

X

1
#U < - 2.1.2
© H min |u;, ( )
weT 1<i<n

Combining (2.1.1) with (2.1.2) we derive that

. , 1 (n=1)n=2) ]
Hp(ui, ... up) < eﬂnl)(ﬂ)(#ﬂ@(ﬂ_) H
min |u;le max | ;e
weT 1<i<n wéT 1<i<n
n
(n—=1)(n—2)
1(n—1)(n—2)(#T+g —m ==
< ez (n=1)(n=2)(# +9)HH‘W|W 2
w@T i=1
n
(n-1)(n—2)
Lin—1)(n—2)(#T+g' —a
—  ea(n—)(n=2)(# g)’H“i‘T 2
i=1
as claimed. O]

2.2 S-unit equations and heights

Actually, from an effective version of the subspace theorem over function
fields, we can deduce better results.
The following theorem is originally stated in terms of additive heights
and over function fields K7 associated to arbitrary nonsingular varieties.
We restate it in our notation in the special case for curves, i.e., for function

fields of transcendence degree 1. For n € Z>1, put

C(n) = e(;)(29K1—2+#S1)’ Cl(n) _ e(g) max(0,2gK1—2+#51).
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Theorem 2.2.1. Let K1 be a finite extension of K = k(t) and Ly, ..., L,
hyperplanes in PN (K1) defined by linear forms with coefficients in k. Let
S1 C Mg, be a finite set of valuations. If the coordinates of X = [xg : -+ :

ry] € PN(K1) are linearly independent over k, then
. 1L;(X)]o 1 (N4 1)K :k(2)]
11 m}nH EEi > C(N 4+ 1) H(X) :
veST J€J

where the minimum is taken over all subsets J of {1,...,q} such that the

linear forms L; (j € J) are linearly independent.

Proof. See Theorem 1 of [25]. O
Corollary 2.2.2. Assume x1,...,x, € Og, are k-linearly independent.
Then

n
(H |$isl> w1+ -+ wnls, = C(n) " Hg, (1, ., 2n).

i=1
Proof. We apply Theorem 2.2.1 with N =n —1,X =[z1: -+ : 2], L; =
xi(i=1,...,n),Lps1 =21+ + Tp.
For each v € S1, choose t(v) € {1,...,n} such that [z,,)|, = Jnax (|z4]w),
<i<n

and take J(v) = {1,...,n+ 1}\{¢t(v)}. Then

[T IT 5 = oty e

veS: jeJ(v) Y
hence as z; € Og,,

n

<H |!E¢|51|) 21 4 - + s,
1=1 -1 —
Hs, (0 >l s ()

This completes the proof. O

Actually, the condition that x1,...,z, be k-linearly independent can be

relaxed to the condition that z; + - - - + x,, have no vanishing subsum.
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Corollary 2.2.3. Let z1,...,x, € Og, such that > x; # 0 for any non-
el
empty subset I C {1,...,n}. Let Sy be a finite subset of Mg,, T a subset

of S1. Then

n
[T leilsi o+ +zaly = C'(n) Hylan, .. x0).
=1

Proof. We proceed by induction on n. For n = 1 the assertion is trivial
since 1 € Og,. Let N > 2 and assume the assertion is true for n < N.
We now consider the case n = N. Since each v € S is non-archimedean,

Le, |zy+ -+ xu|, < Jnax |z;|y, it suffices to deal with the special case

\Z\
T=025].
First suppose that x1,...,zy are k-linearly independent. Then the as-
sertion is true by Corollary 2.2.2. Next assume that rankg{x1,..., 2y} <

N. Then, possibly after rearranging the indices, we may assume that
1+ -4+ axy = a1xy + - + ayty, where 1 < u < N, ag,...,a, € k*
and u is minimal with this property. Then x1,...,x, are k-linearly inde-
pendent and no subsum of the right-hand side is 0. Partition S; into two

subsets

W _ - 1) = '
S {ves : 11385\7(|xz|y) 112?£<u(|$z’z/)}7

(2) = . ~ ;
S {V €5 1252](\](|$1|u) > 12?<Xu(|ml|V)}‘

Then we have xy41 + -+ 2y = (a1 — )z1 + -+ - + (ay — 1)z, and hence
|Tys1 + -+ 2n|y < nax (Jz;],) for v € S, Combining this with the
u

XX
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induction hypothesis, we derive that

N
(T lwls ) los - + s,

i=1

U N
= (H |laizi|s,|arzr + - - - + auxulsl) H |zils,

i=1 i=u+1

N
> C(u) 'Hg, (a121, . . ., Gy2y) H |zi|s,
=u+1
N
= C(uw) ' Hgw(x1,. . w)Hge (21, za) [] lwils,
i=u+1
N
> C(u) 'Hgo (21, .., 2N)|Tup1 + -+ + N[5 H il s,
i=u+1
} C’(u)_lHS(l)(ml, ce ,:L‘N)C/(N - u)_lHS(g)(mu+1, ce ,UN)
P C/(N>_1H51 (-Tla s ,I’N),
which completes the induction step. O

With the help of two lemmas stated below and a similar idea as in the
proof of Theorem 1, [26], we obtain a generalization of Theorem 1 of [26].
The following two lemmas are from [25], which deals with a more general
case. We restate and prove the lemmas in our specific case. Recall that for
every z € Ki\k we have a derivation d/dz. For each valuation v € Mk,
we choose a local parameter £ = £, with v(§) = 1. Then we have another
corresponding derivation d/d¢.

Let f1,..., fn € Ky be k-linearly independent. Define the Wronskian
related to z as W = W,(f1,..., fn) := det ((d/dz)jflfi) I<ij<n’ Then it is
well-known that W # 0.

Lemma 2.2.4. (i) For h € K1, we have

Wo(hfr, ... hfn) = K"Wo(F1, .. fn).
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(1t) For any & € Ki\k we have

Walfiso o) = det (Y1 (d/dey ™ 1)

1<,5<n

Proof. For (i), assume h # 0, otherwise it is trivial. By the Leibniz rule for

derivatives, we have for each 1 <7 < n that
m—1 m
(d/d2)"™ (hfi) = h(d/d2)" fi = ( l ) (d/dz)""h- (d/dz)"f;,
=0

is a Kj-linear combination of h(d/dz)lfi,O <!l < m—1. The deter-
minant remains unchanged if we recursively replace the j-th column by
(h(d/dz)= f1, ..., h(d/dz)?=  f,)T for 7 = 2,...,n. Then the assertion
follows immediately.

For (ii), we will prove by induction that (d/dz)" f; — (%)m - (d/dE)™ f;
is a Ki-linear combination, independent of i, of (d/d€)fi,...,(d/d¢)™ 1 f;.
Then the assertion is clear for the same reason as in (i). By the chain rule,

we know
(d/dz)fi = (d/df)fu

<d/dz>2fi_<d/dz><d§> (@/de) fi+ (32 - (afde)’s

Let m > 3 and assume our assertion is true for m — 1, i.e.,

df m—2

(d/dz)" " fi = ()™M dfde)™ ™ fi =y g;(d/d€) ;.
j=1

with each g; € Ki. Put go = 0. Then by the chain rule, we have

-2

)" (d/dE)" i = ((d/dz)g; + ;- 1 )(d/dS)sz

7j=1

3

(@)= f; — (5

dg

+ ((d/d2)(2)" " + gma> )(d/dé)m i

This completes the induction and hence the proof. O
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Lemma 2.2.5. For every v € Mg,, we have

v(W) + <n> v( dz ) = n min v(f;),

2 EE; 1<i<n
where &, 1s a local parameter of v.

Proof. Let v € M, and a local parameter §, of v. For k-linearly dependent

fi,..., fn we have W = 0 and the assertion is clear. Assume that fi,..., f,
. . . dé,
are k-linearly independent. Let m = — 1r<nil£nu( fi),l = —v( déz ), and put

gi = fi€)'. By Lemma 2.2.4 we have

W = W.(fi,..., fn)

= é-y—nm : WZ(QI?"'?QTL)

= e (527 0 )

1<i,j<n
d&y
d

gomm. &/_z(;) - det <€ly(j—1)( . )L (d/dgy)j—ng)

1<i,5<n

Since V(ff,(jfl)(%)j_l) = 0and v(g;) = v(fi)+m > 0, we have v((d/d&,) 1 g;) >
0, hence v(W) = —nm — l(g), as claimed. O

Lemma 2.2.6. Let fi,..., [, be k-linearly independent elements of K.
Then for every v € Mg, , we have

)+ () == (3) + ot
i=1
Proof. See [26] or [6]. O

Lemma 2.2.7. Let fi,..., fn be k-linearly independent elements of K1 and
n

b=">" fi. Then
=1

7

o bls, [T 15ils, ( TT max(4i)" > Hs, (.- fo).
i=1

vES,
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Proof. Let v € Sy, choose j(v) € {1,...,n} such that v(f;(,)) = min(v(f;)).
(2

Then W,(f1,..., fn) does not change if we replace f;,) by b. Applying

Lemma 2.2.6, we get

oy () () = () 400 - im0

=1

Now let v € S;. Then by Lemma 2.2.5, we get

v(W) + <n> v( dz ) = n min v(f;).

2 d_gy 1<i<n

Taking the sum over all v € Mg,, and noticing that > v(W) =

veEMK,
0, > V(C%Z) = 2¢k,, we deduce that
vEMK, Y
n n u : .
(2> (295, —2)+ (2) #S12 Y Y vty v)=Y minv(fi)+n y  minv(fi).
vesS: i=1 vesS; veS: vEgS,
Hence
n ] -n
) > (1bls, [T 145 )  TT mas(il) (T maxtifil))
=1 VES) vegSh

or equivalently,

s, TT1Als, ( TT max(Ifil)) " > Hs, (- fo)
=1

I/%Sl
[]

Lemma 2.2.8. Let S1,T be as in Corollary 2.2.53. Let x1,...,x, € Ky be

such that for each non-empty subset I C {1,...,n}, we have »  x; # 0.
i€l

Then

n
n
[ lwils,ler + - +a:n|T( I1 m?X(|xi|y)) > C'(n) " He (s .. ),
=1 vegSy

with T C 57.
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This is a slight generalization of Corollary 2.2.3.

Proof. Observe that C'(h)C'(l) < C'(h+1) for h,1 > 0.

We proceed by induction on n. For n = 1, the assertion follows trivially
from the product formula. Let N > 2 and assume the assertion is true for
n < N. We prove the assertion for n = N. We may again assume that
T = 57 without loss of generality since each v € S; is non-archimedean,

e, |z1+ - +zp|y < max |z,

\Z\
First suppose that x1,...,z, are k-linearly independent. Then the as-

sertion is true by Lemma 2.2.7.

Now, possibly after rearranging the indices, suppose that z1+---4+x, =
a1T1+- - Fayxry, with 1 <u <n,ay,...,a, €k* where u with this property
has been chosen minimally and no proper subsum of the right-hand side
vanishes. Then z1,...,x, are k-linearly independent. Partition S; into two

subsets

SW = {v e S max (|zi],) = max (|Jzil,)},

1<i<n 1<i<u

S@ —{ves: max (|xily) > rgax(\xi],,)}.

1<i<n A

Then we have zy41 + -+ + 2, = (a1 — )y + - -+ + (ay, — 1)z, and hence
|Tys1 + -+ aply < Juax (|z;],) for v € S@). Combining this with the
u

X
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induction hypothesis, we derive that

[T lzils. |21 + - + 2als,

U n
- (H|aixi|51|a1x1+'”+auxu|51> H |xi|51
i=1

i=u+1

-1
> C'(u)"'Hg,(ayry, ... ,auxu)( fnax (|laizil, ) H |zi|s,
vES: i=u+1
—u
—1
= C/<U) HS(1)<:C17"'7 )HS(2 L1y, H ‘xl‘Sl( 11’28‘<X (lxl‘ ))
i=u+1 vESh
/ -1 -
> 0 Hgo o) (lnn -+ anlsor T] lads, ) (T ma (i)
i=u+1 V€St
> C'(uw) " Hgo (21, .., 20)C" (0 — ) T Hge) (Tug 1, - - - 5 )
u—nm —Uu
“(TD ) (1T o )
vES1 vES1
—n
2 C/(n)_1H51(I17"‘7xN)< max |1"L| ) ’
1<i<n
véS,
which completes the induction step. O

Theorem 2.2.9. Let S1,T be as above. Let x1,...,x, € K1 be such that
> xi # 0 for any non-empty subset I C {1,...,n}. Then
el

n

n
[Tleils, -lov -+ anlr - ( [T mas(lail)) > ') Hrlas, )

=1 y@ZSl

where uw = ranki{x1, ..., x,}.

This result improves Lemma 2.2.8 and is inspired by an idea of Zannier
[26].
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s(s—1)

Proof. Recall that C'(s) = e~ 2 max(201, =2+#51.0) for s € N. Then C’(s)C"(t) <
C'(s+1).

First notice that the special case u = n is just Lemma 2.2.7.

For the general case we proceed by induction on n, the case n = 1
being trivial. Let N > 2 and assume the assertion is true for all n < N,
now consider the case n = N. Like in the proof of Lemma 2.2.8, we only
have to consider the special case T' = Sy. Let x1,...,2z, be k-linearly

independent with u maximal and assume, renumbering indices if necessary,
v

T4y = aw; with ag,...,a, € k* and 1 < v < w.

i=1
First assume v = u. Then each z; is a k-linear combination of x1, ..., zy,
hence
ily) = i) 2.2.1
max (|zily) = max (|zily) (2.2.1)

Then by applying Lemma 2.2.8 to ajx1, ..., ay%y, |- |, and using that |- |,

is trivial on k* for v € Mg, , we get

u
u
[Tlwitsi o+ +anls, (T mas (il)) > elw) ™ Ho(an, 0.
i=1 vgS1

(2.2.2)

Clearly, mzi>jcv(|xz|,,) > x|y for i > u,v & Sy, so
(3

N—u
(TT jmas Geih)) =TT IT el
1<i<N
vESy i>u vgS,

and hence by the product formula,

N—u
11 |$z‘|sl( g%(mry)) > 1. (2.2.3)
i>u Vg5

Combining (2.2.2) with (2.2.3) we derive the assertion when v = u.

So we assume 1 < v < u < N. Applying again Lemma 2.2.8 to
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aixri, ..., ayTy We get

v
v
H‘xi|51’$1 ++'TN‘51( 1121?’2(1)(’:62‘11)) 2 C(U)71H51<ZE1,...,SCU).
i=1 vgS:

(2.2.4)

We claim that there exists h < N such that there are two finite sequences

{ui}, {71} of integers of the same length h satisfying the following:
(1) wo =v,up = u,uyp > uy_q for 1 <UL < h,

(ii)) jo=0,u<j; < Nforl > 1, js # js for s # ¢,

(iii) there is a renumbering of the indices v + 1,...,u such that for [ > 0
xj, is a k-linear combination of x1, ...,y and for all { = 0
l uy

u+1
| | |z, |5, | | |75, |21 +"‘+5L‘N|5’1( I I maX(|$i|u))
1€A;

i=0 i=1 VS,
> c(w) " He, (21, ., 2u), (2.2.5)

where we put |zgls, =1 and A ={1,...,w}U{j,...,5u}

Then this construction will finish the proof in the end.

We prove this claim by induction on [. The first step when [ = 0 is
just (2.2.4). Let r > 0 and assume that wo,...,ur,jo,.-.,jr have been
constructed such that u, < u and (2.2.5) holds for I = 0,...,7. We show
the existence of w41, jr4+1 such that (2.2.5) holds for [ = r + 1. For any
index 0 < 5 < N we have

u Uy u
r= Y Mgz =Y Aigrit Y Aigai=Tir + Uy,
=1 =1

i=u,+1

with A; ; € k£ uniquely determined.
We claim that there is j such that both T}, and Uj, are non-zero.

Assume the contrary, then for each j € {1,..., N}, either U;, = 0 i.e.,



40 Chapter 2. Height estimates for solutions of S-unit equations

v
zj =T}, or Tj, =0, that is, ; = Uj,. Since x1 + -+ +zy = Y a;x; and
i=1
N
v < up + 1, we derive that Y U, = 0, or equivalently, >  z; =0. But
j=1 U;»#0
u, < u, so we have Uy, # 0, and hence {j : Uj, # 0} # (). This gives a

vanishing subsum, which contradicts the assumption.

Let j be the smallest index with Uj, # 0,7}, # 0 and put j,11 = j.

Then clearly 5 > u because z1,...,x, are k-linearly independent with u
maximal. Renumbering the indices u, + 1,...,u, we can write
Ur41
Uj7-+177’ = Z )‘i,jrﬂxia (2'2'6)
i=u,+1
where A\;j.., # 0 for v, +1 < i < up41. This defines w,4q satisfying
ur < Upy1 < u and gives xj ., a linear combination of x1,...,xy,,,. Since

for | <r+1, u; < ur < upy1 and x5, is a linear combination of x1, ..., xy,,
we infer that j,4+1 # Ji.
Put B = A1 1\A; = {11} U{w+1,...,u;41}. The assumption in (iii)

for w,, 7, gives

r Ur Up+T
[Tlzils, | { TT1zls, | lor+ -+ axls, ( 11 max<|xz-|y>)
i=0 i=1 ied:

VS,
> c(uy) ' Hg, (20 € Ay). (2.2.7)
U Urg1
Notice that Tj,,, = > Nij, @i = Tj, . — >, Nij.Ziasasumofx;
and —\; ;. Ti, up+1 Sli_lg Upy1, the assumggitgrjcl)f Lemma 2.2.8 is satisfied

and the components are indeed k-linearly independent, since T}, ., # 0,
x1,...,%,y are k-linearly independent with v maximal and A;; ., # 0 for

ur +1 <2 < upyp. By Lemma 2.2.8, we obtain

IT loils Tyl TT ma(lely)
vegSh

1€B,

Up41—Ur+1 1 _
) = c(upy1—up+1)" "Hg, (z;: 1 € By).

(2.2.8)
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Combining this with (2.2.7), we get

r—+1 Upr41
[ 1zils T 12ils | Tl len + - + anls, x (2.2.9)
=0 =1

)UT+1_Ur+1

Upr+T
<( I mstied)) ™ (TL et
V€St 1€B,

> C'(u,) YO (upg1 — ur + 1) Hg, (x5 01 € Ay Hg, (x50 € B,).
Noticing that for any v € Mk, ,
75,1 v < min(max(|z;|, i € Ay), max(|zi|, 7 € By)),

max(|z;|y i =1,...,upy1) < max(max(|z;|, i € Ay), max(|z;], : i € By)),

we deduce that for v € M,

T, . lv max(|zily i =1,. .., urp1) < max(|ag], 0 i € Ay) max(|ai], 04 € By)).

Taking the product over v € Sj, and inserting (2.2.9), we obtain

r+1 Ur4+1

[T 1zils T wils, - lo1 + - + 2nls, %
=0 =1

><( %}f('xim)um( H ggg;um))

ygSl 1€ B,
> O (up) " O (g1 — up + 1) Hegy (21,0, Ty )

UT+1_UT+1

Observing that C'(2)C'(y+1) < C'(z+y) for z,y > 1 and AjUB; = A1,
we get

r+1 Up41

Ur+1+1"+1
[T lzsls, TT foelsibos + -+ anls, ( TT max (failo)
ZeArJ'_l
1=0 1=1 VS
> Cl<ur+1)_1H5'1 (@1, Ty )-

This verifies (iii) for » 4+ 1 in place of r (in case u, < u), and completes the

proof of the claim.
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Now for uy, jp, since x1, ..., x, are k-linearly independent with u max-

imal, we have
h N
u+h
[Tkeids [T lsilor +-+onls, (- TT e (al.))
i=0 i=1 v S1
> C'(u) " Hg, (z1,...,2N). (2.2.10)

Clearly we have

max |$Z‘ H ‘xz’y for ¢ 55 C:= {1 uajl?' .- 7jh}7

1<i<N

ngSl V€S1

SO
N—u—h
= =1
( max (|, ) > T[T I leile = [[l=ils.  @211)
Vg5 vgSy ieC icC

Combining (2.2.10) and (2.2.11) completes the proof. O
Example 2.2.10. Let x1, x2, x3, x4, x5 be k-linearly independent, x4 = —x4—

x5+ 2x3. Thenn =6,u=>5,v=3,71 =6,u; = u.

Let x1,x9,x3, x4 be k-linearly independent, x5 = 2x3 — x4, 16 = —313 +
xo. Thenn =6,u=4,v=2,51 =6,u; = 3,j2 =5, uz = u.

Let x1, ..., x5 be k-linearly independent, xg = —x3+xT2— 24, T7 = —X5+
x1. Thenn =7Tu=>50v =2, and we get j1 = 6,u; =4,j2 = 7,us = u, or
we reorder x3, x4, 5 by x5, Tly, xh, then we get j1 = T,u1 = 3, jo = 6, us = u.
Corollary 2.2.11. Let n > 3. Assume x1,...,xy, € K1 and iazl =0 but

=1
no non-empty proper subsum vanishes. Then

n—1

n
Hg, (x1,...,2p) < ("3 ") max(2gxc, —2+4#51,0) (H xi&) H max (|2, )
7
i=1

ve€S1

If x1,... @y are k-linearly independent, then we can replace max(2gx, —
2 4+ #5857, O) by 29x, — 2+ #51.
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Proof. Simply apply Theorem 2.2.9 for xq,...,xp—1. n

n
Corollary 2.2.12. Let n > 3. Assume x1,...,xn € Og, and > x; =0 but
i=1
no non-empty proper subsum vanishes. Then

n

Hg, (21, ... 2n) < e("2) max(2, —24#51.0) H izl

i=1
Proof. This is a direct consequence since for z € Og,, |z|s, < 1. O
For n = 4, the constant Wléﬂ is best possible, as is shown by the
following example from [5].
Example 2.2.13. Let K = k(t), and 1 = (t" + 13,090 = 3", 03 =

=3t"(t" + 1),x4 = —1 where r is a positive integer. Take S to be the set of
valuations corresponding to oo and the prime factors of t(t"+1). Then #S =
r+2, z; (i =1,2,3,4) are S-units, Hg(x1, 9,13, 14) = €3 = 329K —2+#5)
This implies that for n = 4 the constant w 1s best possible.

Remark 2.2.14. Corollary 2.2.12 s much stronger than its analogue over

number fields, i.e., Lemma 2. Lemma 2 first involves an exponent 1 + &
n

on [] |zils, and second an ineffective constant C(n, S1,€), which is caused
i=1

by the ineffectivity of the Subspace Theorem. We also notice the improve-

ment in comparison with the result of Corollary 2.1.4, with a much sharper

)(n—2)

exponent 1 instead of (n_+
Theorem 2.2.9 and its Corollary 2.2.11 imply the following results:

Lemma 2.2.15 (Mason, Stothers). Let L be a finite extension of K = k(t),
and T a finite set of valuations of L. Let vy1,7v2,v3 be non-zero elements of
L satisfying v1 +v2 +7v3 = 0 and v(y1) = v(y2) = v(v3) for every valuation
v @T. Then either L € k, which means H*(12) =1, or

(L) € #T+200-2)/[L:K],
72
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In particular, let a(t),b(t),c(t) be coprime polynomials over k such that
a(t) + b(t) = c(t) and not all of them are constants. Then

max(dega(t), degb(t),degc(t)) < deg(rad(abc)) — 1,
where rad(f) denotes the product of the distinct prime factors of f.

Proof. Assume that 7;, 7o are k-linearly independent. Apply Corollary
2211 withn =3, K1 = L, Sy =T and z; = 7; (1 = 1,2,3) and ap-
ply the product formula. For the particular case that a(t),b(t),c(t) are
polynomials from k[t] without a common factor, let S be the set of valu-
ations consisting of v, and those corresponding to the zeros of abc. Then

#51 = deg(rad(abc)) — 1 and thus our assertion follows directly from Corol-

lary 2.2.11. O
Theorem 2.2.16 (Brownawell, Masser). Assume uy,...,u, are Sy-units
satisfying up + -+ + up, = 0 but no non-empty proper subsum vanishes.
Then

1
Hg, (u1,...,up) < exp ((n ) ) max(#S + 29k, — 2,0)) .

This is mentioned after Theorem B of [6].

Proof. Apply Corollary 2.2.11 by taking 7" = S; and noticing that for an

Si-unit x, we have |z|g, = 1 and |z|, = 1 for every v ¢ 5. O

Theorem 2.2.17 (Zannier). Let ai,...,a, € Kj be Si-units such that

> ai # 0 for every nonempty I C {1,...,n}. Putb=a1+---+a,. Then
el

Z(V(b) —minv(a;)) < (g) max(#51 + 29k, — 2,0)

VEST

where p = rank{ay, ..., an}.
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This is Theorem 1 of [26], except that there the result was stated #S57 +
29k, — 2 instead of max(#51 + 29k, —2,0). However, the proof in [26] gives

only the inequality with the maximum with 0.

Proof. This follows directly by taking T = Syj,2; = a;(i = 1,...,n) in

Theorem 2.2.9 and using the fact that ay,...,a, are Si-units. O

Theorem 2.2.18 (Davenport). If f(t),g(t) are nonzero polynomials over
k such that g(t)? # f(t)3, then

deg(g(t)? — f(t)®) > § deg (1) + 1.

Proof. This is an analogue of Hall’s conjecture over the function fields. It
is first proved by Davenport in [8].

In Corollary 2.2.11, let T' = S be the set S consisting of v, and the val-

3

uations corresponding to the zeros of fg, and 21 = f(t)3, 20 = —g(t)?, 23 =

g(t)?> — f(t)3. Then
Hg(f()%, g(t)%) < e®72|g(t)% — f(1)%]s.
In particular, when f(¢), g(t) are coprime, we deduce that

< max(deg f(t)*, deg g(t)?)
< deg(rad(fg)) — 1+ deg(g(t)* — f(1)%)
< deg f(t) + deg g(t) + deg(g(t)* — f(1)*) — 1.

S(3deg f(t) + 2deg g(1))

Hence
1+ 3 deg f(t) < deg(g(t)* — f(1)*).

The case when f(t),g(t) are not coprime is a direct consequence of the

above. O]






Chapter 3

Geometry of numbers over

function fields

Minkowski’s results on successive minima of convex bodies have analogues
over function fields. These are discussed in this chapter. Our main reference
is Thunder [24].

3.1 Successive minima

Recall K = k(t) is the rational function field over an algebraically closed
field k of characteristic 0 and for v € Mg, R, ={zr € K, : ||, < 1}. A
subset C, of K] is called a v-adic convex symmetric body if it has the

following properties:

e C, is closed and bounded in the topology of K] induced by | - |, and

has 0 as an interior point;
e for every x € C,,a € K, with |o], < 1, we have ax € Cy;
e for every x,y € C,, we have x +y € C,,.

47
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Remark 3.1.1. These properties imply that C, is an R,-module.

Let S be a finite subset of Mg containing ve, and Ag = [] K, the ring
ves
of S-adeles. Consider K as a subring of Ag by identifying z € K with the

adele (x,),eg with z, = 2 for all v € S. A subset C of A% is called convex
symmetric if C = ] C, with C, v-adic convex symmetric for v € S.  We
need two lemmas.yes

Lemma 3.1.2. Let v € Mg and C, C K. Then C, is a v-adic symmetric
convex body if and only if C, = {x € K} : || Aux|l, < 1} for some A, €
GLTL(KZ/)'

Proof. First, notice that from the definition, C, is an R,-module. It is also
bounded, hence there is a constant C' > 0 such that ||x|, < C for every
x € C,.

It is easy to see that C, contains a basis of K, since 0 is an interior point.
Hence there exists a free R,-module M of rank n such that M C C,. Take
a € K, with |af, = C. Then C, C {x € K} : |x|, < |a|,}. Hence C, is
contained in the free R, -module M3 = aR;} of rank n.

As is well-known, R, is a principal ideal domain, hence by Chapter III,
Theorem 7.1 of [16], we know that C, is also a free R,-module of rank n.
Take an R,-basis of C,, let B, be the matrix whose columns consists of
this basis, and let A, = B,!. Then C, = {B,y : y € R"} = {x € K" :
[Avx|l, < 1} O

Remark 3.1.3. For C, = R, we will choose A, to be I,,, the n x n identity

matriz. This does not change C,.

Example 3.1.4. Take v be the valuation corresponding to 0. Then K, =
k((t)),R, = CJ[t]]. Let C, = {x € k((t)" : ||x||, < 1}. Then C, =
{(x1,...,2pn) € C()" : = € tk[[t]], 1 = 1,...,n}. We may take A, =
diag(, ..., ¥) and this gives C, = {x € k((t))" : || Aux|, < 1}.
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Lemma 3.1.5. Forx € K"\{0} there exists f € K such that || Ao (fX)|loo =
(), | Au(f)lly = 1 for v € 8,0 # v and | fxlly = 1 for v & 8.

Proof. For consistency put A, = I, the n X n identity matrix for v ¢ S.
Let {v1,...,vm} C Mg\{ve} be the finite set of valuations such that
|Ayx||, # 1, with corresponding uniformizers ¢t — py,...,t — py, € K. Let

m
ni = —vi(Ayx) for 1 <i<mand f =[]t —p)™. Then ||As(fX)|loc =
=1

2
Ha(x), ||Av,(fx)||l, = 1 for i = 1,...,m and ||A,,(fx)]|,, = 1 for v ¢

{v1,...,Vm, Vo }, as claimed. O

Let C C A% be an S-convex symmetric body and A € e

. By Lemma
3.1.2, there exists A € GL,(Ag), such that C, = {x € K] : | A,x|, < 1} for

each v € 5. We view OF as a subset of [[ K7 via the diagonal embedding.

ves
For A € €%, define
Mo = {ax:x € Cx,a € K, |a|oo < A}, (3.1.1)
o= (M) x ] G (3.1.2)
VES, VF#Voo
Then
Moo = {x € KL & || AvoX||co < A},
and

ANOg:={xe0g: Hy(x) <A}

Remark that by Lemma 3.1.5, for every x € O% with H4(x) < A, there
exists f € K such that || fx]|, = 1 for v # vo and || Ao (fX)|lec = Ha(x) <
A. In particular, fx € k[t]™.

Definition 3.1.6. The i-th successive minimum X\; of C is the minimum
of all X € €% such that X\C N 0% contains at least i K-linearly independent

points.

Clearly, given A € e and x € A\C, we have H4(x) < \.
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Theorem 3.1.7. The successive minima exist and 0 < Ay < -+ < Ay, < 00.
Moreover, there exists a basis x1,...,x, of K™ such that x; € \;C N OF,

and || Aco (Xi)|loo = Ha(x;) = Nj for alli=1,...,n.

Proof. For every x € K™\ {0}, we have Hx(x) € ¢ and also Ha(x) >
co > 0 unless x = 0 by Lemma 1.5.2. Hence there is x; € K"\{0} such
that H4(x1) is minimal. Further, by Lemma 3.1.5 we may choose x; such
that || Aso(x1)]lcc = Ha(x1). Then automatically, \j = H4(x) is the first
successive minimum. Successively, for j = 1,...,n — 1, we take x;1 to
be a point x € K™ such that x is K-linearly independent of xi,...,x;
and H(x;j4+1) is minimal with this property, and we may also assume that
| Ay (xj41)]|y = 1 for v # vo by Lemma 3.1.5. With this choice, H4(x1) <
oo < Ha(xp) and x; € Hy(x;)C for @ = 1,...,n, hence \; exists and
Ni < Ha(x;) for i = 1,...,n. We claim that \; = Hx(x;) and xq,...,xp,
are as required. Assume the contrary, let ¢ be the smallest index such that
H4(x;) > A\i. There are K-linearly independent points yq,...,y; in K™ N
AiC. Clearly, we have Ha(x;) > N\ = Ha(y;) for j = 1,...,4. So by our
choice of x;, we know that each y; is K-linearly dependent of x1,...,x;1,
which contradicts the fact that yi,...,y; are K-linearly independent. This

completes the proof of the claim. n

Theorem 3.1.8. Let C be an S-convex body. Then there is an Og-module

basis ay, ..., a, of OF such that ||Aso(a;)||cc = Ha(a;) = N fori=1,...,n.
n

Also, we have [ N\i = | det Al.

i=1
Proof. By Lemma 1.5.4, we can choose a K-basis of column vectors ay, ..., a,
n
of K™ such that [ Ha(a;) = Ha(K"™).
i=1

Let u; = Ha(a;), and assume that p < -+ < pp, without loss of gener-
ality. By Lemma 3.1.5 we may also assume that || A (ai)||cc = Ha(a;) = i,

n
whence a; € OF for i = 1,...,n. Then Hy(K") = [[ w and ay,...,a; €
i=1
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,uZC By the definition of successive minima, we have \; < p; for all 7, hence

H)\ Ha(K™).

On the other hand, by Theorem 3.1.7, we may take a K-basis xl, ceyXp
with x; € \C, Ha(x;) = ); for all i. By lemma 1.5.4, we have H i
i=1
n
HA(K™). Therefore, we get u; = \; and [[ \i = Ha(K™) = | det 4.
=1
For v € S let l;,(x Zazw% and let A, = (aijv)i; be the n x n

matrix with the coefficients of liy on the i-th row. Let A, = det(l;,(ay)).

Note that [|A,a;]l, = max liv(a;j)],. By the rules of matrix multiplication,

we have A, (ay,...,a,) = (liw(a;));; = Ay, where (ay,...,a,) is the matrix
with columns ay,...,a,. Then by taking determinants, we get
n
[1det AL, [ Idet(ar, ... an)l = T 1AM < HHIIQ%Xnuw(amV
ves ves vesS ves j=1
n n
= TIdI14a0) =] Hatay)
j=1 ves j=1
= |det A= ] Idet A,],.
vesS

Thus we deduce that [] |det(ai,...,a,), < 1. Since a; € OF, we
vesS
have |det(ay,...,a,)|y < 1forv ¢ S. By the product formula we have

[] |det(as,...,a,)], = 1, hence |det(ay,...,a,)|, = 1forv & S. This
ves
implies that ay, ..., a;, is an Og-module basis of OF. O

3.2 A generalization

For an arbitrary field L, we denote by L[X1, ..., X,]' the L-vector space
of linear forms in n variables with coefficients in L. Recall that K = k(t)

and S a finite set of valuations of K containing v,. For each v € S, let
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M1y, ..., My, be linearly independent linear forms from K,[X,..., Xn]hn
and define

C,={xeK]: 1r£1ia<>%\mi,,(x)|,j < 1}

By Lemma 3.1.2, this is indeed a symmetric v-adic convex body. Then for
C = ][ Cv, Theorem 3.1.8 gives the equality

vesS
n
[T =11 detm, ... mu )l
=1 vesS
with A;,4 = 1,...,n the successive minima of [] C,. We may generalize

ves
this result as follows.

Let S be a finite set of valuations of K containing the infinite valuation
oo. For every v € S, ||, has a unique extension to the algebraic closure K.
Let l1,,..., Ly, m = n be a set of linear forms in K[Xl, . ,Xn]hn, with

rank n. Let C, = {x € K : |liy(x)], <1(1 <i<m)} and C = [] Cy.
ves
Since rank(l1y, ..., lny) = n, C is indeed a convex symmetric body. We say

that {l1,,...,lmy} is Gal(K,/K,)-symmetric, if for every o € Gal(K,/K,),
the linear forms o(l1,),...,0(lny) are a permutation of 1y, . .., lyy,. With
this setting, we have the following result, which is a function field analogue

of a result from the geometry of numbers over number fields by Evertse [9].

Theorem 3.2.1. Let £, = {l1,, ..., L} C K,[X1,...,X,] be a Gal(K, /K,)-

symmetric set of linear forms of rank n for each v € S. Let \i,...,\, be

the successive minima of C. Then

n

| | N = I | ~ max | det(liyny -y L)y,
1< < <in<m
i=1 ves

n

H A < e(m=1)n#5/2 H max | det(liypy -y linw) o
veS

o 1<i < +<in<m
1=
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Proof. Let vin S and define G, := Gal(K,/K,). Since £, = {l1,, ..., lmy}
is Gal(K,/K,)-symmetric, we have an action of G, on L,. Consider the
Gy-orbits and without loss of generality, assume that l1,,...,[,, are rep-

resentatives for the orbits. Let K, be the field over K, generated by the

(1) o) the K, y-isomorphic embeddings of K,

w o Ty

into K,,, where m;, = [Kj, : K,]. Then it is clear that

coefficients of [;,,, and o

L, = U{US) (liy)7 - ,Ugnw)(lw)} (321)
i=1
This implies
Coh={xe K} :|lpx)|, <1(1<i<r)}.

Let O;, be the integral closure of R, in Kj;,,. Then it is a free R,-module
of rank [Kj;, : K] (see [22], Chap. II, Prop. 3). Let W w™) be an

w ) g2

R,-basis of O;,. Then it is also a K, -basis of K;,. Hence we may write

miy

iy =Y w) M, (3.2.2)
j=1

where Mi(lf) € K,[X1,... ,Xn]hn. By the choice of our R,-basis, it is easy
My .

to see that for y = ngi)zj, with z; € K,, we have |y|, < 1 if and
j=1

only if |z;], < 1 for j = 1,...,m4. Hence |l;(x)], < 1 if and only if

|Mi(g)(x)|,, < 1for j=1,...,my, and therefore

C={xeKk": MY, <11<i<nrl<j<m)h

w

T
By (3.2.1), we have Y m;, = m. Let {My,,..., My} be the linear
i=1

forms Mi(g)(l <i<r1<j<myy) in some order. Then

C,={xeK": |Myx), <1(1

/N

i<m)}.
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Without loss of generality, we may assume that for each v € S,

| det(Myy, ..., Mp))|, = max | det(M;,p,y .oy M, 0)|0-

1<y < <in<m

By Lemma 3.1.2, we must have | det(Mi,, ..., Mp,)|, > 0, so we may write

n
Mj, = > &nMp,, with &, € K, for all j = 1,...,m. By Cramer’s
h=1
det(Miy .., My, My,
dZt((Miy,‘..,Miw...?Mw)) and hence |, < 1. By the
ultrametric inequality, we have |Mj, (x)|, < max | M, (x)], for every x €

A

rule, we have £, =

K. Therefore, we have
C,={xeK]: |Myx),<1(1<i<n)}.

By Theorem 3.1.8, we have for the successive minima of C

n
ITn = []ldetM, ..., M)l
i=1 ves
:]]KmE%KmM“MQ““”MWM” (3.2.3)
veSs
By applying (% (ma) g K, 2.9), we infer th
y applying o/, ..., 0., : Kj, — K, to (3.2.2), we infer that
Miv

W

o (l) =Y o @M 1< h < ma 1 <P <
j=1

In view of (3.2.1) we may write this in a matrix form

llz/ Ml(i)
: - Ql/ 5
- M)

or simply £, = Q,M,, where Q, = diag(Biy, ..., By,) is a block matrix

with B;, = (agf) (wg)))hyj. Since wg), . ,wgni”) is an R,-basis of O;,,, and
()¢, (4)

integral over R,, we know that their conjugates o, ,’(w;;’) are also integral
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over R,, and moreover that every matrix B;, is invertible. Further, every

entry of ;! is of the form ﬁ with |p/, < 1.
T

Now we have |det Q,|, = [] | det Biy|, and as is well known, (det Bi,)?
i=1
generates the ideal Dy, sk, , where D, /i, 1s the local discriminant of

Ky /K,. Recall that K, is complete, hence there is exactly one valuation

Vi, on Kj;, above v, with ramification index e;, = m;,. By Lemma 1.2.3,
2- V(det Bil/) =e;, — L.

We deduce that

7-. r

- (6“,—1)/2 —m+r —m+1
H|detBiV|y:e i=1 =e 2z e 2z .
i=1

Hence Q! = (wli,j)m with |w,i,j|l, < ¢™". From M, = Q1 L, we know that
each M;, is a linear combination of the linear forms [/;, with coefficients
whose | - [,-value is at most e(™ /2, Combining this with (3.2.3), and
applying the Cauchy-Binet formula from linear algebra which is valid over

any field, we conclude that

1< < <in<m

H \; < elm—Dn#S/2 H max  [det(lip, ..., L))o
=1 ves

On the other hand, each entry of M, has | - |,-value no more than 1,

hence similarly as above, we have

1@13&3”@ | det(liyny -y linw) |y < 1<¢1g1-a<xz‘n<m | det(Mi,py .oy Miu)lw,

which combined with (3.2.3) gives

n

| | N = I | - max | det(liyny -y linw) v
1<i1 < <ip<m
=1 ves
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Remark 3.2.2. The proof of Theorem 3.2.1 remains valid if for v € S, we
take sets of linear forms {liy, ..., lyw) .} of different cardinalities m(v) >

n, and different numbers r(v) of Gy-orbits. In that case, our estimate for

n
H N; becomes
=1

n

H N < H en(m(V)—T(V))/Q max ‘ det(lily, cee ,linu)|u~

" 11y.-43tn
i=1 ves

Now let L be a finite extension of K of degree m and of genus gy,

Lemma 3.2.3. Let ¢ = €29, Then for every tuple (a,, : w € My) such that

aw € €% forw e My, ay =1 for almost all w, H Qp = ¢,
weMiy,

there is an x € L* such that |x|, < ay for allw € Mp.

Proof. Let ay, = €™ for w € My, with r, € Z and r, = 0 for almost all

w. Consider the divisor D = ) r,w. By the Riemann-Roch theorem,
weMp,
if degD = > r, = 2¢gr, then the dimension dimg{z € L : w(z) =
weMy,
—r, for w € My, or x = 0} is positive, hence there exists x € L* such that

w(T) = 1y, L, [2lw < ay for allw € M. 0



Chapter 4

Reduction theory for binary

forms over k(t)

In this chapter we work out a reduction theory for binary forms over k(t).
This is a function field analogue of the reduction theory over number fields
developed in [9]. We follow the arguments from [9].

Recall that K = k(t) and S a finite set of valuations of K containing the
infinite valuation v4. For a binary form F(X,Y) = agX™ + a1 X" 1Y +
4 apY" € Og[X, Y], let

Hg(F) = [ [ max(laols. - - [an],).

ves
We say that two binary forms F, G € Og[X,Y] are GL (2, Og)-equivalent if
for some v € OF and (‘é 2) € GL2(Og), we have

G(X,Y) =uF(aX +bY,cX +dY).

This equivalence relation preserves the S-value of the discriminant: |D(F)|g =
[D(G)ls-

Definition 4.0. A binary form F € Og[X,Y] is called S-reduced if Hg(F') <
Hs(G) for each binary form G that is GL (2, Og)-equivalent to F.

o7



58 Chapter 4. Reduction theory for binary forms over k(t)

This is well-defined since Hg(F) always lies in ¢Z and for F € Og[X,Y]
we have Hg(F) > 1.
Remark that by (1.2.1), we have |D(F)|s < Hg(F)?"2.

4.1 Discriminant and genus

Let F' € Og[X, Y] be a binary form with D(F') # 0 and deg F' = n. The
ring Og is a localization of k[t], hence it is a principal ideal domain. So we
may factor F' as F' = F - - - Fy where F; € Og[X, Y] is an irreducible binary
form over K. If Fi(1,0) # 0 we may assume that F; = Fi(1,0)Ng, /(X —
a;Y) with K; = K (o), where «; is a root of F;(X, 1). Let O; be the integral
closure of Og in K;. Since Og is a principal ideal domain, O; is a free Og-
module of rank [K; : K]. Assume it has an Og-basis {w1,...,wy } where
d; = [K; : K] = deg F;. The relative discriminant D; = D[Q/K(‘Ula W)
of an Og-basis wi, ..., wy, is determined up to a multiplication by an element
of O, hence the discriminant ideal Do, /05 of O over Og generated by D;

is uniquely determined.

Lemma 4.1.1. With the notation as above, we have D;|D(F;) for i =
1,....d

Proof. The proof is similar to that of Lemma 3 of [2]. We have included it
for convenience of the reader.

We may assume without loss of generality that F'(1,0) # 0 for if not,
we may replace F' by F(X, mX +Y) for some integer m with F'(1,m) # 0,
which does not affect F; and D(F;) fori=1,...,d. Fixi € {1,...,n}. If
F; has degree 1 then (D;) = (1), D(F;) = 1. Assume that F; has degree
d; = 2. By assumption F(1,0) # 0, hence

Fi = boX % + 0y X% 4o by Y = boNg, 5 (X — oY),
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where b; € Og and by = F;(1,0) # 0.
Let

th = boa; + b1,
Oy = b()Oél-2 + b1y + bo,
di—1

Hdi_l = b()Oz,L.

+ b104?i_2 + -+ bg—1-

We claim that they are integral over Og. This is equivalent to the assertion

that 6;—b; is integral over Og for j = 1, ..., d;—1; we prove this by induction

on j. For j =1, since > bhozgli_h = 0, we have ) bhbgfl(boai)d"_h =0,

h=0 h=0
hence 61 —b; is integral over Og. Now let 7 > 2 and suppose the claim is true
d;
for j —1. Then using 6; = ;0;_1 4+ bj and 0;_ 1ad AR > bdi—h%- ,
h=d;—j+1

d;
we deduce from ) bhagl"_h = 0 that
h=0

(0 — bj)™ J+1+Zbd_ 07 (0 — by)"

_ ec_li—]+1ac_ii—]+1+§ :Qd ]bd ha

7—1 )
d;
_ pdi—j+1 _di—j+1 di—j h
= 9j—1 a, — 9;’—1 ba,—no;
h:di—j—l—l

Therefore §; — b; is integral over Og[f;_1], and hence it is integral over Og

by the induction hypothesis. This completes the induction hypothesis.
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Consider the relative discriminant of {1,61,...,604,1}:
1 0 0y 2
b1 b() - 0 d—1
DK¢/K<17017""6)d—;—1) = det : R DKi/K(17ai7"‘aaiz )
bdi.fl b.l 60
_ H (o — a0y2
1<h<I<d;
= D(F;), (4.1.1)
where agh) denotes the h-th conjugate of «; in K;, and the last equality

comes from the definition. Also, we have 0; = Zajhwh with a;, € Og.
h

Then we have

DKi/K(la 91, PN ,Qdi_l) = det(ajh)2DKi/K(w1, PN ,wdi). (4.1.2)
Now (4.1.1) and (4.1.2) complete the proof. O

Because taking the discriminant commutes with localization (see [15]),
the ideal Do, /o4 of Og is also generated by the relative discriminant ideal
Do, of the integral closure Ok, of k[t] in Kj, so Do, /05 = Doy, k1 Os-
See also Chapter 111, §2, [18].

Lemma 4.1.2. Let K1,..., Ky be as before. Fori=1,...,d, let gk, be the
genus of K;. If #S5 > 1, then

d
H€29Ki < e(#S*Q)(”*d)]D(F)]S.
i=1

Proof. By Lemma 1.2.3, we have an element p of k such that if v = v, is

its corresponding valuation,

v(Dog,) = > v(Do ny) = Y _(e(wlr) = 1).

wlv wlv
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Further, by the Riemann-Hurwitz formula,

2K, —2 = [Kit K29k -2+ Y (e(wly)—1)

wlv
= 2+ > ) (e(wly) = 1)+ Y wv(Doy,)
vesS wlv vgSs
< 2+ Y)Y lewly) — 1)+ Y w(D(F)),
vesS wlv vegS

where the last inequality comes from Lemma 4.1.1.

Since f(w|v) = 1 for each w|v, we have ) e(w|r) = d;. By the definition

wlv
of the resultant, we have
d
pFy = [I RBE.E?I]DPF, (4.1.3)
I<i<jsr i=1

d
where R(F;, Fj) € Og. Hence [[ D(EF;)|D(F).
=1
d 1
Using > d; = n, we get
i=1

d

d
gk —2) < D (“2di+ Y (di—1)+ Y v(D(F))

=1 i=1 ves vgS

= (n—d)#S—2m—> v(D(F)).

ves

d
Thus, we conclude that [] e29%: < e(#5=2(=d)| D(F)|s. O
i=1

4.2 Preparations on polynomials

Let K = k(t). We still denote by |- |, the unique extension of | - |,
to K,. Recall that for P € K,[Xi,...,X;] we have defined |P|, =
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max(|a|y, ..., |an|y), where ay,..., a, are the non-zero coefficients of P.

For a finite set S of valuations containing {vo }, P € K[X1,..., X;,], define

Pls=( ][] Pl for P#0,
veMg\S
and |0|s = 0 by convention. This is well-defined since |P|, = 1 for almost
all v € M. For P = a a constant, we have by the product formula |P|g =
IT lal,. If P € Og[Xy,...,Xn]\{0}, then |P|s > 1. Clearly, [aP|g =

ves
la|s|Pls for a € K*,P € K[Xi,...,Xy;]). Define the inhomogeneous

height of P € K[X1,...,Xn] by

For P € Og[X1,...,Xu], we have |P|, < 1 for every v € S, hence

= H max(1, |P|,)

veS
Similarly, for a finite extension L of K, and P € L[Xj,..., X;], we define

Lemma 4.2.1. Let P € Og[X,Y] be a binary form. Then there exists

u € OF such that H*(uP) = [] |P|,.
ves

Proof. We may write P = 1(boX" + b1 X" 1Y + - + b,Y") € Og[X,Y],
where a,b; € k[t](1 < i < n), ged(bo, ..., by, a) = b, <1 for
every v ¢ S. Since ged(bo,...,by,a) = 1 we have in fact |a|, = 1 for

l
v &§,ie., a € (’)g. Assume that ged(bo,...,b,) = b[](t — pi) with
i=1

hi > 0,p; € S,1 < i <l and b € k[t] a polynomial with zeros outside S.

Let
bi a

u =
l ’ l
Ht_p@ Ht_pl
=1 =1

b =
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Then
b, € OsNE[t)(0<i<n), ueOf

and

1
P= a(ngn XY 4l Y™,

We deduce that

* _ _ _ deg b;
H*(uP) quax(l, [uPly) = max(L, [uP]oo) = max (e15%).
ve

On the other hand, we have that ged(b,...,b,) = b is coprime with
t — p for each p € S with p # oo, hence max (|b}|,) = 1 for v € S\{o0}.

1<i<n

Recalling that u € O, we see that

[1 max (|b;l,)

b 5 0<i<n
[T1Ph = JJ meax () ==
oisn U H ]u\,,
ves ves ves
— ! - H*
= Org%(lbzlu) H*(uP).
ves

]

Clearly, this result only depends on the coefficients and hence can be
extended for polynomials in more variables.

For F(X,Y) = apX" + a1 X" 'Y 4+ +a,Y" € Og[X,Y], let L be its
splitting field over K, and G = Gal(L/K) the corresponding Galois group.
In this case, Np i (P) = [] o(P).

ocG
Lemma 4.2.2. Let F = aNp g (l). Then there are o' € K* and A € L*
such that I = a/Np k(') where I’ = \l € Op[X,Y], and

e I 1Pt <ldls< T 1FL"

veMg\S vEMK\S
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Proof. Notice that by section 1.4 the sets £(w|v) (w|v) are a partition of
G = Gal(L/K), so

Nyl =[Tle@b=T] TI le®l =]]l

oeG wlv oe€(wlv) wlv

Let wg € T. Then by Lemma 3.2.3, there exists A € L* such that

Mwo < € TT INLyx (Do,
vegS

Mo <1 for w € T\{wo},
< I5t for w € Mp\T.

For this X and @/ = aNp/(A)7!, we see that F' = o' Ny k(M) and the
coefficients of Al are in Or. Hence, we have Ny /i (I') € Os[X,Y]. So we

have

P, = |a/|,,|NL/K(l/)|,, < |a/]V forv ¢ S.

From the product formula, we deduce that |a'|s < ( [] |F|,)~! and
I/GMK\S

dls = |als|Np k() |G|SH|)\|w

weT

> e ras [ INyx);!
veMi\S

= e [ IFL.

veMg\S

]

Lemma 4.2.3. Let F(X,Y) = apX" +a; X" 'YV + .- 4+4a,Y" € Os[X, Y]
n

be a binary form with D(F) # 0. Then we have a factorization F = a || li,
i=1

where a € K* and the l; are linear forms in Op[X,Y] such that for every

o€, o(ly),...,o(ly) is a permutation of ly, ..., 1,.
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Proof. Since K[X,Y] is a UFD, we may assume F' = fi--- fy with f; irre-
ducible over K, 1 <17 < g.

For a fixed 7 with 1 < i < g, if fi # Y, we may write f; = ¢;Np, /i (li),
with L; a subfield of L/K generated by a root of f;(X,1), ¢; € K,l; €
L;[X,Y]"". By Lemma 4.2.2, we have f; = ¢;Np,k(lj) with ¢ € K,I; €
Or[X,Y]"". So we have F = a ﬁ Np,/k(l}) with a € K,l; € Or[X,Y].

i=1
This gives a factorization into linear forms of Op[X,Y], up to a scalar in

K.
For every o € Gal(L/K), the restriction o|z, is a K-isomorphism of L;,

hence o acts as a permutation. This completes the proof. O]

Remark 4.2.4. In accordance with Lemma 4.2.3, later we will view o € G

as a permutation of (1,...,n) such that o(l;) = lyq) fori=1,...,n.

4.3 Reduced binary forms and successive min-

ima

Let F(X,Y) € Og[X,Y] be a binary form of degree n > 1 with D(F) #
0, and let L be the splitting field of F(X,Y) over K and G = Gal(L/K).
n

By Lemma 4.2.3 we have a factorization F' = a [] [; with ; € L[X, y]lin
i=1
and for each o0 € G a permutation o(ly),...,0(l,) of l1,... 1.

For w € My, and o € G, there is w o 0 € My, such that |z|yes = |0(2)|w
forz e L,and woo € T if and only if w € T'.

Definition 4.3.1. We call A = (A, : w € T,i = 1,...,n) an admissible
tuple if A;, > 0 and AJ(Z-)M = Ajwos forweT,ccGi=1,...,n.

For v € S, denote by A(v) the set of valuations of L lying above v, and
put
C,={xe K2 |l;(x)|y <A fori=1,...,n, wrl (4.3.1)
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It is easy to check that this is a v-adic symmetric convex body since D(F) #

0. Consider C = H C, and let A1, Ay be the successive minima of C. Here
veS
C, and C depend on A, but for convenience we omit the subscript A here.

To estimate A\ \g, we try to rewrite C,, so that Theorem 3.2.1 can be applied
to it.

Lemma 4.3.2. Let A be an admissible tuple and let A1, o be the successive

minima of C. Assume n = 2. Then

d L] 1/[L:K]
t ’ia j w

T1<i<j<n AiuAje

t(L:. L
« (n1)#s raetili; b)lw . 4.3.
/\1)\2 X € H lg?éa‘dj};n AiwAjw ( ’ 3)

weT
Proof. First, let s(w) = [L, : K] if w|oo and s(w) = 0 otherwise. As
C,={xec K2?:|l;(x)|l, < A, fori=1,...,n, w|v}, we have

ACy = {|Li(x)|w <A@ Ay, fori=1,...,n, wv}}.

By Theorem 3.1.8, we can choose an Og-basis {y1,y2} of O?g such that y; €

\Ci = 1,2. Since det(ls, ;) det(y1,y2) = det ( por fgg) we deduce
that

W — 1 det (li(yl) li(y2)>

AiwAjw | det(y1, ¥2)|wAiwAju Li(y) Li(y2) /|,
(>\1>\2)s(w)
| det(y1,¥2)]w
Hence
et e _ Q>

O W)l  \AA2)7 — O K]

H1<r?<ajx<n AiwAje = | det(y1,y2)|T (A1A2) '

weT

This gives (4.3.2).
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v

For the second inequality, put B;, = A(lj/, g (i) with corresponding w €
A(v) and o € E(w|v). We show that this is independent of the choice of
w,o. Let W', 0’ be another pair with w’ € A(v) and ¢’ € £(w'|v). Then
woT=uwfor 7 =0 1¢’, and by the admissibility of A,

AU’*l(i),w’ = ATfla'*l(i)w’ = AU”(i)w’oT*l = Aafl(i),wa

hence the B;, are well-defined. Moreover, since £(w|v) is a right-coset of
Gal(Ly, /K,), if j = 7(i) for 7 € Gal(Ly, /K,), then By, = Bj,.
With this notation, by (1.4.3) we have that for x € K2 the condition

11;(x)]|w < Ajy for 1 < i < n,w e A(v)
is equivalent to the condition
lo(li)(%)]y < Bygiy, for 1 <i<myw € A(v),0 € E(wly),

that is,
llo(i)(X) v < Bo(s),y for 1 < i <n,o € Gal(L/K),

which is equivalent to the condition
|l;(x)|, < By for 1 <i < n.
Altogether, we get
C,={xe K2:|l;(x)], < By for 1 <i<n}.

Since | - |, is normalized, the value set of K} is ez, hence for v € S, we

can choose a;, € K,;,1 <7 < n satistying

Biu/e < |ail/|1/ < Biu (1 < l < TL)
aiy = ajy, if ¢ = 7(j) for 7 € Gal(L,, /K,).

Put m;, = ai_ylli for v € 5,1 < i < n. By the choice of [; and a;,, the
system {mi,,...,mu,} is Gal(K, /K, )-symmetric. Further, let

C,={x€KZ2:|my(x), <1for1<i<n}
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Then C;, C C,. Hence, the successive minima A}, X, of [] C,, satisfy \; < ]

ves
for i = 1,2. By Theorem 3.2.1, we have

Mg < NN, < e D#S max | det(m; ., mju)|y
---§1<z<j§n

nD#S TT oy 00t  G)lw

¢ I<i<isn |aivajuly

max
- 1<i<g<n BiVBju ’

< e(nJrl)#S TT | det<ll7l])|1/ (434)

Finally, by (1.4.3) we have
| det(li, 1)l = lo(det(ls, ;)2 = [ det(ls ), log)) IV

for w|v and o € E(w|v), where g, = #&(w|v). This leads to

| det(l;, 1), | det(ly(i)s o)) v
[ mee =50 = 1 H i =g

wly wlv oe€(w|v) U(Z)vyBU(j)aV

det(ly(iy, lo(i)) v
— T e | det(ly () Lo ()]

seGallL/K) S Botiy»Bati)

s [L:K]
) <maX |det(l2,lj)\,,> |

1<i<j<n B’iVBjV

hence we deduce that

det(li 1) el )
det li,lj v det lialj w
1<IZI'1<%X<n Biz/BjV - (H 1<Izn<a}'X<n AiwAjw '
ves weT

Together with (4.3.4), this implies (4.3.3), and we complete the proof of our

lemma.

]

Using Lemma 4.3.2, we can prove the following
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Theorem 4.3.3. Let F' € Og[X,Y] be a binary form of degree n with non-

zero discriminant and with splitting field L over K, and choose a factoriza-

n .

tion F = a [[l; with a € K*,l; € LIX,Y]"" such that for every o € G,
i=1

(o(l1),...,0(ln)) is a permutation of (l1,...,l,). Put

M = HﬁAiwy

weT =1

| det(li, ) |w
= H 1<z<]<n AzwA]w ‘

(i) If n = 2 and F has no factor in K[X,Y]", then F is GL(2,Og)-

equivalent to a binary form F* such that

H* (F*) < en(n+1)#S‘a|%Rn/[L:K]M2/[L:K}.

(ii) Ifn > 3 and F does have a factor in K[X,Y]%", then F is GL (2, Og)-

equivalent to a binary form F* such that

H*(F*) < (e”<”+1>#5 a2 R/ MQ/[L;K}) (=0 (n=2)

Proof. By Theorem 3.1.8, we have a basis a; = (a11, a21), a2 = (a2, aze) of
(’)?g such that a; € \; [] C, for i = 1, 2. Hence we have

ves
lianlo < A A,
li(az)|w < )‘S(W)Aiwa 439
for 1 <i < nweT, with s(w) = [Ly : K] if w|ve and zero otherwise.
Take U = (Z;} a). Then U € GL(2,0g), and Fy = a ﬁ m; with m; =

1=1
li(a1)X + li(a2)Y for i =1,...,n. We deduce that for w € T,

n
Fule < laly [ [ max(li(a)lu, [li(az)l)
i=1
n

< X5 T A

i=1
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Also, we have
L:K] L:K]
ITlalo = 1™, TT1Fole = [Ful!
wlv wlv

and

therefore, we get
H [Fuly = (H | Fyr o) Y BT < JafgAp MY/ K],
ves weT

By Lemma 4.2.1, there exists u € Of such that F* = uly satisfies

H*(F*) =[] |Fulv, hence
ves

H*(F*) < |a|gA§ MK, (4.3.6)

What remains is to estimate Ao. First assume that I’ has no linear factor

in K[X,Y], so F'(a;) € Og\{0}. Now by (4.3.5) we have

1< [T #@olo = [T lak - TT T 1atan)le < Jafs ™" ar.

weT weT weT i=1

Together with Lemma 4.3.2, we deduce that

AL < en(n—l—l)#s’a‘sRn/[L:K}Ml/[L:K]’

and therefore by (4.3.6),

H* (F*) < en(n+1)#S‘a|%Rn/[L:K]M2/[L:K}.

Next assume that F' does have a linear factor in K[X,Y]. If F(a;) # 0,
we still have the above result. Assume F'(a;) = 0 and n > 3. Without loss
of generality, let {1(a;) = 0. Since D(F') # 0, we have

n

W .= al1(a2) Hli(al) 7é 0.

=2
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As aj,as € Og, we have by Gauss’ Lemma
n
Wl < lal [ [ llilo = |Flo < 1forw g T
i=1

Hence, using (4.3.5) we deduce that

1< [l

weT
< WTI)ERTT lalw M

weT
= lalg™ O ) BRI,

Then together with Lemma 4.3.2, we obtain

A2 AT (A D) al s M TR
< |a‘56(n2_1)#5M1/[L:K]R(n—l)/[L:K},

and finally, by (4.3.6)

H*(F*) < (e"(”“)#sla@m/w:m Mz/[uq) (n=1)/(n=2)

]

Remark 4.3.4. The binary form F* depends on the admissible tuple A.
We say that F* is associated with A. By taking the special case A;, = 1 for
1 <1< nweT, we obtain:

Corollary 4.3.5. Let F' € Og[X, Y] be a binary form of degree n with non-
zero discriminant. Then with the same factorization of F' as in Theorem
4.3.3,

(i) if n = 2 and F has no factor in K[X,Y]"™ then F is GL(2,Og)-
equivalent to a binary form F* such that

A (n+1)£85) 12 n/[L:K]
H*(F*) < & ya\s( max \det(li,lj)\w>
o 1<i<j<n
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(ii) ifn =3 and F does have a factor in K[X,Y]%" then F is GL (2, Og)-

equivalent to a binary form F* such that

o\ (n=1)/(n=2)
I n(n+1)#S| .12 n/[L:K]
HY(F*)< (e lalg max | det(l;, 1;)]w :

1<i<j<n
weT

Corollary 4.3.6. Let F' € Og[X,Y] be a binary quadratic form of non-zero
discriminant D(F). Then F' is GL (2, Og)-equivalent to a binary form F*
such that H*(F*) < 579 D(F)|s.

Proof. If F' is irreducible over K, then we may factor as F' = alile with
a € K*l1,lo € LIX,Y]"™ conjugate over K and in this case, n = 2,[L :
K] =2 and D(F) = a?det(ly,15)?. Take Ay, = Ag, = 1 for every w € T.
By Theorem 4.3.3, there exists a binary form F* equivalent to I’ such that

H*(F*) < 75| D(F)s.

However, if F' is reducible over K, then L = K,T = S. We follow
the idea in the proof of Theorem 4.3.3. We may factor ' as F = lils
with I1,lo € K[X, Y] Take A1 = |li]s, A200 = |l2|g, Ay = 1 for
v € S\oo,i = 1,2. Further, take aj,as € (9?9 as in proof of Theorem 4.3.3.

Then one of [1(ay),l2(a;) is non-zero, say, [1(a;) # 0, and we have

1= ][ m@)l

veEMyk

[T n@)L ] 1l

vesS vegS

Mlils T 1l

vegsS

N\

N

= A
Applying Lemma 4.3.2, we get

A < A < 63#S| det(l17l2)|5/|l1l2|5.
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Hence there exists F'* equivalent to F' such that
H*(F*) < 7] deg(ln, 1) [5 = "5 D(F)]s.
m

Corollary 4.3.7. Let F € Og[X,Y]| be a binary cubic form of non-zero
discriminant D(F). Then F is GL (2, Og)-equivalent to a binary form F*
such that

1
(i) if F is irreducible over K, then H*(F*) < el?#5|D(F)|3%;
(ii) if F is reducible over K, then H*(F*) < e*#5|D(F)|s.

Proof. Factor as F' = alilsls. Take A;, = \det(lj,lh)|;1 fori=1,2,3,w €

T with {i,5,h} = {1,2,3}. This gives an admissible tuple. Indeed, for
o€ Gal(L/K),we T and i = 1,2,3, we have

o(i)w — | det(la(j)a la(h))|{;1
= lo(det(l;, )5
= | det(lja lh)|c;ola

= Ai,woa~

By []lalw = |a|[VL:K}, we have
wlv

3
TT T 4w = (JT 1 det(i. ko) det (i, Is) det(is, 1)), “),

weT i=1 ves
and further,

’ det(li, lj)lw -
1513]?;3 AiwAjw = ‘ det(ll, lz) det(lg, lg) det(lg, ll)‘wa

a*(det(ly, lo) det(ly, I3) det(l3, 11))? = D(F).

Now an application of Theorem 4.3.3 gives the desired result. O






Chapter 5

Height estimates in terms of

the discriminant

We are going to prove a generalization of Theorem 1 in the introduction.

Main Theorem. Let K = k(t) and S a finite set of valuations of K con-
taining veo. Let F € Og[X,Y] be a binary form of degree n = 4 with
non-zero discriminant. Then F is GL (2, Og)-equivalent to a binary form
F* such that

20+

HY(F*) < e(nfl)(#S(nJrll)fS) D(F)

We mainly follow the arguments from [9].

5.1 Consequences of the Riemann-Hurwitz

formula

First we deduce some consequences of the Riemann-Hurwitz formula. In
this section, let K be a finite extension of k(t), unless otherwise stated.

Here k is an algebraically closed field of characteristic 0, this implies that

I0)
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all residue degrees are 1. Let L be a finite extension of K. Then by the

Riemann-Hurwitz formula, we have

291, — 2= [L: K1)20, = 2)+ > > (e(VIy) = 1),
veEMgk, Vv
We denote by S; a finite set of valuations of Kj, and by T the set of
valuations of L above Sj. Clearly, we have #T < [L : K;|#5:1. For

v € Mg,, we put Ry, , = > (e(V|v) — 1), where the sum is taken over
Vv
all valuations V' of L lying above v. Then 0 < Ry /g, , < [L: Ki] — 1.

Lemma 5.1.1. 2g;, — 2+ #T = [L: K1](29x, =2+ #S1) + > Rp/k, -
I/¢51

Proof. By the Riemann-Hurwitz formula, we have

29r —2+#T = [L:Ki1](29k, —2) +#T + Z Ri /iy + Z Ri/kyw

l/GSl U€S1

= [L:Ki)(20k, —2) +#T+ Y <Z ) #T+ > Rijrw
veS) Vv VS

= [L:Ki) (20, -2+ Y [L: K+ Y Rpji,s

VES) V€S1

= [L : Kl](29K1 — 2+ #Sl) + Z RL/Kl,IH

veE Sy
as claimed. 0
Consider the compositum L of finite extensions L1, ..., L, of Kj.

,
Lemma 5.1.2. Let v € Mk, . Then & E z/?l”.
Proof. 1t suffices to prove this in the case r = 2. Then the general statement
follows easily by induction.

So assume r = 2. Let w € My with w|v and let V; € My, , Vo € My, be
such that w|Vi,w|Va. We have the diagram
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Ly,
e(wV w Va)

L1y, Ls v,
N
K,

Since all residue degrees are equal to 1, every ramification index is equal

to the extension degree. By general theory of field extensions, we know that
e(wV2) < e(Vi|v), e(w|V1) < e(Va|v) and e(w|v) = e(w|V1)e(Vi|r). On the
other hand, since every ramification index is a positive integer, we deduce

that
(e(w|V2) = 1)(e(w|V1) — 1) =0,

hence

e(w|Va)e(Valy) — e(w|Vh) — e(w|Vh) = 1,

and therefore
e(w[Vi)(e(Vilv) — 1) + e(w[V2)(e(Va|v) — 1) = e(w|v) — 1.

By taking the sum we deduce that

> (e -1) < > (X ewhieti) - 1)

we My Vi€ Mg, we My

wlv Vilv w|Vy
Y (X cwmeval) - D).

V26ML2 w e Mg,

Valv w|Va

Noticing that > e(w|V;) = [L : L;] for i = 1,2, this leads to
w|V;

Rk <L LRy, g, + L L) R, K, 0

which implies the desired result. O
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We deduce some other genus estimates that will be needed later.

Recall K = k(t) Assume that F(1,0) # 0. Then we may assume that

=a H — a;Y),a € K* and that for every o € Gal(K/K), there is

a permutatlon of (1,...,n), also denoted by o, such that for j = 1,...,n
d

we have o(a;) = ay(;). Suppose we have a factorization F' = H F; where
=1

F; € Og[X,Y] is a primitive irreducible binary form of degree n;. Let

«;j,j = 1,...,n; be the zeros of F;(X,1) among aq,...,®,. Then all

terms Ry (a, /K 1 < J < n; are equal. We put Lij; = K(a; ;) for i =
d,g=1,...,n;,and I = {1,...,n}. Then

d n;
ZZ RLZJ/KU ZRLH/KV (5‘1‘1)
i=1 j:1

For such a field L;; and a valuation w of Or,;, lying above the valuation v

of k[t], we have by Lemma 1.2.3

(Do, k) = > _(e(wlv) —1).

wlv

Further, by Lemma 4.1.1, we have Ry, /x, = (Do, /kp) < v(D(F;)) for
v & S, hence

D Rikw <Y _v(D(F) == v(D(F)). (5.1.2)

VS ves ves

For any set of indices J = {i1,...,im} C {1,...,n} weput L; = K(a;,,...,q;,),

and let T’y be the set of valuations of L; above S. For eachi € {1,...,n} we
choose i € {1,...,d} such that ; is a root of F:. Recall that F' = Fj----- Iy,
where F; is an irreducible factor of F'in Og[X, Y] with Fj(a;,1) = 0. Then
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by Lemma 5.1.1 with gx = 0 and Lemma 5.1.2, we have

291, — 2+ #T1y LJ/KV
= (=24 #95)+
[LJ:K} # Z
< —2+#S+ZZ ”“/.K"
ugsteJ ’
- —2+#S+Z ' ZRKQZ/KV
ZGJ ' V¢S
< 24 #5— ZZ degF . (5.1.3)
ieJ ves

Applying this to J = I and combining this with (5.1.1) and (5.1.2), we
obtain for the splitting field L of F' over K,

29L — 2+ #T
[L: K] S (22445 - VGZSZZI degF
d
= (=24 #5) - _v(][Dp(F)
ves =1
< (=24 #8) =) _w(D(F)),
vesS

where the last step follows from (4.1.3).
On the other hand, by Lemma 5.1.2, we have

2q7 — 2 R
qr, _ 94 L/Kv
L : K] S [L: K]
Ry Kk
< -2+ ) ZZ—

vEMK 1= 1] 1

s —2—|— Z ZRLH/KW'

VEMEK =1
Let g; be the genus of L;;,i =1,...,d. Then

2g;—2=—2[La: K]+ Y Rp,kpi=1,....4d

veMg
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SO
290 =2 2+2d:(2 2+ 2n;) (5.1.4)
[LK] ~X — gZ 1)
1=
or,
25 — 2 d
L
T S 2deg I — 2 + ;(291- ~2). (5.1.5)
1=

5.2 A few lemmas

In the proof of Theorem 5 we follow the idea of [9]. We are going to
construct a special admissible tuple A as in definition 4.3.1 with some good
properties.

Let F' € Og[X,Y] be a binary form of degree n > 4. Assume we have a
factorization into linear forms F' = aly ...l, with [; = X — ;Y. Denote by
Aj;j the determinant det(l;, ;). Then

AijAhl + AjhAil + AhiAjl =0. (5.2.1)

We will use this identity and apply Lemma 2.1.1 (Mason’s Theorem) to it.
Let L' be the splitting field L of F' or the field L;jn = K(os, aj, ap, o),
and T” the set of valuations of L’ lying above those in S. The case when
L' = L;jp; is prepared for Theorem 1, whilst the case L' = L is a variation
on Theorem 1, which will be needed as well.

We introduce some auxiliary quantities that will be used in the proof of

Theorem 1. For i =1,...,n, let

&iw = max(|ajlw, 1) for w & T,

Eiw = (H Eiw) " VH#T for w e T,

w'éT



5.2. A few lemmas 81

Then [[ &w=1fori=1,...,n. We also have for w ¢ T,
weM,
fo(i),w = maX(’aa(i)’w> 1)

= max(|a;|y,, 1)

gi,wa-

Hence 550 = iw, for each w € T as well.

Next we put
- | det(li, lj)|w

ve = giwéjw
We have 05, < 1 for w € T, 05() o(j)w = Cijwos for 4,5 € {1,...,n}
with i # j and 0 € Gal(L/K), and

H Oij = 1.

weMr,

UF

Further, let U" C M1, \T’ be the set of valuations w such that |A;; Ay,
|AjnAilw, |AniAjilw are not all equal. Then clearly #U’ < oco.
Note that for 71,72 € L*, we have by the product formula

1/[L:K]
w2y = (T max12)
2 weM, 2

= (IT mextmlorbeke)) ™ = H )

weMy,

Hence by (5.2.1) and Lemma 2.1.1, we have

H (A AR, DA, Apiljy) = H(Ajj Ay, AjpAq)

emaX(QgL/ —24#T'+#U',0)/[L":K]

<
< emax(QgL/ —24#T",0)/[L":K] e#U'/[L':K] . (5'2‘2)

Let U C Mp, be the set of valuations outside 7" such that |A;;Aplw,
|AjnAjtlw, |ARiAjilw are not all equal. Then #U < [L : L'|#U".
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JANY w! .
Put 0}, = % with & = max(|a;lw, 1) for " ¢ 7". Then 6;;,, < 1
and
! / / . / / / / / /
U' C{w &1 min(0;50h100, O Uit s Oicor Osier) < 13-
For w' € U’, the minimum is in fact at most e, so we have
/ 1
#U' <
€ ~ : / / / / / /
ng, min (65, 0hs Opesr Virs Onicor Vi)
1
<
: / / / / / / )

};[T, (03 O O Vit s Onicor Vi)

hence
[T max(|aylw, 1) VLK
#U’/[L/K] < te{lv.]ahJ}
€ p
= w,l;L min (| A Aplwrs [ A Adtler s [ARiAji]wr)
1/|L:K]

[ max(|at]w,1)

o H tE{i,j,h,l}
waT min(|AijAhl|w, |AjhAil|UJ7 |AhiAjl|w)

1 1/[L:K]
_ _ . (523
l_g (mln(eijwehlwa ejhw‘gilwa ehiwejlw>> ( )

w¢
where the first equality comes from the fact [] |z]w = || ([L)L,:L],x el
wlw’

Lemma 5.2.1. We have
(1) Oi1005n0 < max(0;ju0ni, Oinwbji,) for all w € T

(i) 11 max(0ijwbniw, Oinwbjiw, Oitwdjhw)

weT

< emax(2oy —2H#T 0L ( I1 gijwehlw‘gihwejlweilwejhw);
weT

(i) (TT  TI 6ij)YE = |D(F)|S? if F is primitive.

weT 1<i<j<n
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Proof. (i) It is easy to see that (i) is a direct consequence of (5.2.1).
(ii) We have

1/[L:K]
(H max (6 jeoOnico Oinwbijico: 9z’lw9jhw)>

weT
H maX(eiijhlwﬁihwejlwaeilwejhw) V/ILK]

. UJEML
a [I max(0;jwbhiw,Oinwtiic Piteline)
wgT
1/[L:K]
R— .. . . . . 1
= H(Az] Ahl? A]hAzlu Ath]l> ( H max(eijwehlw79ihw9jlw79ilw0jhw))
we&T
) 29, —2+#T' 0)/[L: K
< emax( g —2+#T1",0)/[L":K] X
) H ( | . ) )1/[L:K}
o min (0; o, Oniew 0 jheobiteOinwiw) max (0550 0n1w,0inw 10,0108 jhe)
w
@) 1/[L:K]
< emax(2gu —2+#T.0)/[L"K] (H gijw9hlw9z‘hw9jlw9ﬂw9jhw> ’
weT

where (1) follows from (5.2.2) and (5.2.3), and (2) is deduced from the prod-
uct formula and the simple fact that if a, b, ¢ < 1, then abe < max(a, b, ¢) min(a, b, ¢).
This gives (ii).

(iii) If F' is primitive, we have |a, ﬁ Ciw=1forwegT. So

=1
[T0al [T &) =1.
wgT i=1

which implies that
n
[Tdale T4 =1 (5.2.4)
weT =1
Notice that
D(F)=a*% [ det(ii1)?

1<i<y<n
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ID(F)|r = |D(F)|4*

and .
H H fiwfjw = H H(fiw)nil
weT 1<i<j<n weT i=1
Hence
det(l;, ;)
[T I e - I IT M
weT 1<i<j<n weT 1<i<j<n W
[T [D(F)/a*"2|2
_ weT
— - )
e
H H éz’w
weT =1
= |D(F)|}-
This completes the proof. n
Let

n
M:HHAiwa
w

=1

. |det(li,lj)|w
ft= H 1<IZI'1<an<n AiwAjw ’
weT
o Aiw
@ éiw ’

-

weT 1=1
Let F = aly---l,,n = 3, where [; = X — ;Y. By Theorem 4.3.3, F is

equivalent to a binary form F* such that

A

H* (F*) < (en(nJrl)#S’a|%Rn/[LIK}M2/[L3K})("*1)/(7172)_ (525)

We now state our important proposition.
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Proposition 5.2.2. Suppose F' is primitive. Then there is an admissible
tuple A such that

. det(li1;)] ,
(i) T] max [det(lisly) Ai(A-])| <1,
w€T1<z<3<n watgw

z n-1 _2n-y) N
(ii) (I1 TT Aw)*7 < aly " elBRIGS050-0 D),
i=1weT

Before prove this proposition, we sketch the rough idea behind it.

Without loss of generality, let us assume for the moment that we have

to deal with only one absolute value, simply denoted by |- |. We are aiming
at minimizing M2R" = (A; - -An)Q( max M)n By replacing A;
1<i<j<n 4
by AA; for i = 1,...,n, we may assume max M = 1. So we aim
1<i<j<n i

at minimizing A; - - - A, subject to max [dettl] g,

I<i<j<n i
By taking logarithms this translates into a linear programming problem.
Let x; = log A;, 0;; = log|A;;|. We want to minimize z1 + - - - + z,, subject
to max (0;; —x; — xj) < 0, which is to say, z; + x; = d;; for all 4, j with
1<i<y<n
1<i<j<n.

We also have some conditions
Opg 1 0ij < max(dpi + g, 0pj + 0gi)
for all distinct 4, j, p, ¢ by (5.2.1), and by Mason’s result,
max(d;; + dpg, Oig + 6jp) < 0ij + Opg + Sig + 8jp + dip + 05 + C

for all distinct 7, j, p, q.
We want to estimate x1+- - -+ in terms of >~ §;; because D(F) =
1<i<yj<n
[ AP =ep(2 3 ).
1<i<j<n 1<i<j<n

Our idea is as follows. Fix p,q and let xépq) = %5pq + z(pQ),xép(I) =

%5pq — 2P0 where 2P will be determined later. Then :pl(jp %) + :L‘gp ) _ dpg-
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We need :UZ(-pq) + xi(qu) = dip, xl(pq) + ;Eépq) = diq

So we take x§pq) = max(d;p — x](,pq) dig — épq)) = max(dip — 56pg —
z(pQ),cSiq — %5pq + z(pq)) fori=1,...,n,i#p,q.

Thus 2" +2\" > 6~ 10y 2PD +8jg— 10p0+2P) = 83 +8jg— g >
dij.

Now appropriate choices of z(P?) (I<p<g<n)andw; = n2 > 2P0

(t=1,...,n) will give a nearby solution.
Lemma 5.2.3. If F is primitive, then M"V/IFKl = |q|g MV,

Proof. We deduce that

n

( )1/[LK <111;[ )1/LK (HH&w>1/[L:K].

1=1 wgT

By Gauss’ Lemma, we have

n n
1= |Flo = lalo | [ max(lal, 18l.) = lalo ] ] e
=1

i1=1

for w &€ T, hence

(M’)l/LK (H |a’w)1/[L;K] _ <H ’a‘w>1/[L:K]  lals.

Hence we have H*(F*) < (em(mHD#S ()72 groyl/IL:K])(n=1)/(n=2)

) 0ise .
We can rewrite R as R = H max i Now it is clear that
weT 1<i<yjgn v Hiw

Proposition 5.2.2 is equivalent to the following:

Proposition 5.2.4. Suppose F' is primitive. Then there is an admissible
tuple A" = (A, rweT,i=1,...,n) such that

Oijew
W < 1-
() 11 max a0 S
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2(n—1)

(ii) <ﬁ H A;w) e <€[L:K](#S_1)5(n_1)’l)( ),%O‘F _

i=1weT
We prove (i) first. For the proof of (ii), we need some further prepara-

tions.

Proof of (i). Fix two distinct elements p,q € {1,...,n} and w € T.
Define

—T X
pqw H max phwe Qqhwe )
h#p,q

This function is continuous over the reals R and goes to infinity as = tends
to £0o. Hence, ®p4, assumes a minimum; let zp4, be the smallest real
number at which @4, (z) assumes this minimum.
Put
1
AP(C?JDQ) Opqwe™,
"(pq) _ 3 —x
Ao’ = Opge P,
Ah(f)q) = Opgos max(ephwe*x”q“, Oghwe™™) for h # p,q.
1
Next, put A7 = {]] Aijq }re=D for i = 1,...,n, where the product is

P#q
taken over all distinct pairs (p, ¢) with 1 < p,q < n and p # ¢. Finally, put

A=A i=1...,nweTl).

We claim that this A’ is admissible.

For every o € Gal(L/K),w € T and p,q € {1,...,n},p # q, we have
1Asi )Iw o(Aij)le _ Bijw, _ 4
g wga ga(i)wfa(j)w giwagjwa e

From this, we deduce that

0 <0o(),00)w =

Do(p)o(g)w(®) = H Max(0y(p) o (k) w€ s Oo(g).o(h)wt")
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Therefore, Z4(p) 0 (¢).w = Tpguws-

So we get A:j(?}fi)ja(q)) = A;L(f)z) for h=1,...,n,p,qg € {1,...,n},p # q

and hence A; (o = A;wa. This shows that A’ is admissible. Notice that

epqw = Ap(cgq) Aq(u];q)a
ephw < Ap(on)q)Ah(S,Q)a eqhw < Aq(f,)q)A}f£Q) for h 7é b, q.

Further, by ApgAij = Apidgj — ApjAyi, we have

Opgulij < AED ALD 4 1P0) 4 00,

W Jw

hence
"(pa) 4'(pa)
Oijw < A, Ajw .
By taking the geometric means over all pairs p, ¢ we get 0;5, < AgwA;w for

w € T. This proves (i). O

We proceed to prove (ii). This will be much more involved, and requires
some extra results.

For p,ge {1,....,n},p#q,w €T, set

Ppgew = Pogu(Tpgw), Ppg = H Ppge-

weT
We have
n
AI(PQ) = 0 9_% 0 ~Tpgw () Tpqw
hw - Ypqw pqw max( phw€ y Ughw€ )
h=1 h#p,q
_ﬂ+2
— 2
- 6)pqw Cbpqw
—212
= epqu ¢pqw’
and



5.2. A few lemmas 89

since [’ is primitive by Lemma 5.2.1 (iii).

Hence

o = T4

i=1 weT

- (I

p#qweT h=1

- H H egq§+2¢pqw

p#qwET

n(n—1)
1
n(n—1)

1
n(n—1)

= [ 1DE) T v . (5.2.6)

p#£q

We estimate [] ¢pq. To this end, we need the following notation and a
p7q

lemma.

For a fixed pair {p, ¢} withp,q € {1,...,n},p # ¢, put Wy, = {1,...,n}\{p, ¢}.
For J C Wpq,w € T, define the quantities M, (.J) as follows.

It #J=0,J =0, put M,(J)=1;

If #J=1,J = {j}, put My,(J) = \/Opjub¢jw;

If #J = 2, put

1
Mo(J) = max { [T0me T e 1C Il = §#J} if 47 is even,
hel heJ\I

My(J) = /My (J) May,(J) if #J is odd,

where

Mgy = max{HQphw H Oghes : I C J, #1 = %(#J+ 1)}7

hel heJ\I

Moy(yy = max{Hephw H Ogh : I C J, #1 = %(#J — 1)}.

hel heJ\I
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Finally, put M(J) = [[ Mu(J).

weT

Lemma 5.2.5. ¢,y = M(W,,).

Proof. This is taken from [9], which deals with number fields. But over
function fields, the argument is the same. We repeat it again here.

It suffices to prove ¢pqn = M, (W) for every w € T'.

Take f(z) = log ®pe(x) = >, max(fpn — x, fgn + =) where fp =
hEW g

log ephaw fqh = log eqhw-
We can express f(x) as
f(z) = max{Cy—(n—2)z,C1—(n—2)z, -+ ,Cp_3+(n—4)x, Cp—o+(n—2)x},

where

Cy = max{prh—l— Z fqh:ICqu,#I:n—Q—s}

hel heW,o\I
- logmaX{Hé’phw T[] a1 CWop#tI=n—2- s},
hel heWy\I

fors=0,...,n—2.

Let
I;={zeR:fz)=Cs—(n—2-2s)x}(s=0,...,n—2).

We first show that [, is nonempty.

Clearly, Ip = {z € R : f(z) = Cp — (n — 2)x} # 0, and similarly
In2 #0.

We show that I # () for s € {1,...,n — 3}. Choose I C W), with
#1 =n — 2 — s such that

Os = prh+ Z fqh-

hel heW,\I
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Take i € I,j € Wy, \I and consider the same sum but with I = {j} UI\{i}
instead of /. This sum is at most Cs, and so fp; + f4; = fpj + fqi and hence
fpi = fqi = fpj — fqj- So there exists z € R such that

Hg}}f (fp] qu)\fﬂ mm (fpz fqz)

For this specific z, we have f,; —x = f4 i +2 and f,; — 2 < fy; + 2 for any
1€ 1,5 € I¢ and hence

:pri+zqu_(”—2—28)$=Cs—(n—s—25)x.

icl jele

So indeed, I # ().

Now we may use Lemma 12 of [9] to conclude that
log ¢pg = min{f(z) : v € R} = C%(n—2) = log M, (Wpyq)
when n is even; and similarly

1
log pgw = 5(05(%1) + C%(n73)) = log My, (Wpq)

when n is odd. This completes the proof.
m

Next, we estimate M (J) from above by induction on #.J, and eventually
deduce an upper bound for M(Wp,) = ¢pq-
Put ©,(J) =04(J)=1,D(J)=1if J=0; D(J) =1if #J =1; and

, —
@p(‘]) = H 11 ephun
weT heJ
<@ﬂﬂ21166%m> (5.2.7)
weT heJ
D(J) = H 11 niw
L weT h#le]

if 447 > 2
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For s > 2, let

(s —2)(s—3)
s(s—1)

It is not difficult to show, by a straightforward computation

1+ 4(s —2)d(s)
s(s—1)

c(0) =0,¢(1) =0,¢(s) = c(s —2)+

5
25 — 2

a(s) <1+ g(s —2),b(s) < 3,c(s) <
Take ¢(s) as an example. We have
s(s—1e(s) =(s—2)(s —3)e(s —2) + 1+ 4d(s)(s — 2).

When s is even, we have

s/2
s(s—1e(s) = > 1+4(2h — 2)d(2h)
h=1
s/2
4
= > .6-3)
h=1
5 2
S
- 512
h=1
5_3
2 )

hence c(s) < 52.

When s is odd, we derive ¢(s) < % by a similar computation.
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Lemma 5.2.6. Put Cpyj = X (20155 =24 # Tpais O LiLvais] - We hape

M(T) < CY] ] Opge) (O ()04 (1)) D(1)),

weT

where J C Wyq,s = #J and

1 for s =0,1;

C(J) = c(s)
() ( I1 Cpqij) for s > 2.
i#je]

(5.2.8)

where the notation ] means that the product is taken over all ordered
i#jed

pairs (i,7) with i,j € J and i # j.

Proof. If s = 0, then M(J) = 1, and if s = 1, J = {j}, then M(J) =

[T v/fpjwbqjw- So in these cases, Lemma 5.2.6 is trivial.
weT
Let s > 2 and assume the assertion is true for sets J of cardinality

strictly smaller than s. Let J C Wy, #J = s. Fix i,j € J with ¢ # j, let
Jij = J\{i,j} and fix any w € T'.
We distinguish the cases s even and s odd.

First suppose s is even.

Let I CJ#I=3s>21,9)=[]Ophw- [I Ogheo-
hel heJ\I
Ifiel,je J\I, then since

Mw(Jij> 2 H ephw H Qqhwa
he K\{i} heJ\{IU{j}}

we have
9(1) < Opiwbgjo Mo (Jig)-

Hence
g(]) < maX(Qpiwequ, ij quw)Mw(Jij). (5.2.9)

This is also true if j € I,i € J\I.
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If i, j € I, then pick [ € J\T such that 225 is minimal for all [ € J\I.
Since J\I C J;j, we have
2/s

00
pjwYqlw < H max PJW qhw)
lewequ hEJ\I phw qjw

2/s

0, O
< H maX ep]w eq w )

Take I' = TU {I}\{j}. Then #I' =5,i e I',j € J\I'. From (5.2.9), we
get

0 'we lw
g(l) = F=E2g(I)

Opieolyju
2/s
hi
< maX(Qpinqu,ijweqiw)Mw<Jij) H max pjw q w)
hel, phw qjw
Similarly, we have
2/s
0piOun
g(I) < max(Opicwtqgje, Opjwlgic) Mu(Jij) H max( epweq w)
hel,, phwVqiw
So we get
1/s
< epzweqhw epjweqhw
g(I) < H max( 9 ; eqlw) max(1, m) max(piw0gjw, OpjwOgic) M (Jij)-
hedi; phe phe
If 4,7 € J\I, by interchanging I, J\I and also p, g, we have
1/s
Ol
g(I) < H max( Opnest qlw)max(l, M) max(piw0gjw, OpjwOgic) M (Jij)-

epzw eqhw epjw eqhw

heJ’L]
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This gives altogether

1

My (J) =max g(I) < H max(piwOgjw, OpjwOqiv) M (Jij),

H, = H max ( szweqhw) max (1, M) max (1, —epéweqiﬂ max (1, —ep}f“’equ)

phw eqzw ephw gq Jw epzw eqhw ep jweqhw

If s > 3 is odd, the argument is similar.

Finally, we have
d
MW(J) < Hw(s) maX(Qpiwéqu, epngqiw)Mw(Jij>-

Let H = [] H,. Note that this quantity depends on J;;. We have
weT

M(J) < HC) H max(epiwequa Opjbqico epqwgijw)M<Jij)- (5.2.10)
weT
By Lemma 5.2.1, we have
[T mex(Opgubisi: Opicbasios Opiestaivs) < Crais | [ OpatijitpicstasoOpsisbaieo
weT weT

where Lygi; = K(o, o, ap, og) and Ty is the set of valuations in Lygi;
above those in T.

Using Lemma 5.2.1 again, we obtain

max gpzweqhan gphweqzw)Q max(‘gpjwetha gphwequ>2
W I

2 . . .
heJ;; weT ephw gqhweqlw epzw gq]w ep]w

2
S H CpginC, Jh X
her]

H H < szweqhw phweqzwepqwgzhw) <9pjweqhwephwequepqnghw)2)

2 . . .
hedJ;; weT ephw eqhw eqzw GPW QQJUJHPJUJ

= H ( pqih pq]h) H H pqw qhw phwezhwejhwepiweqiwepjweww>‘

hEJij hEJzJ weT



96 Chapter 5. Height estimates in terms of the discriminant

By substituting these estimates into (5.2.10), we get

d(s)
(H pgih quh) X
hedi;
d(s)
pqw qhwephwezhweyhwepiweqiwgpngﬂw X
heJ” wGT
X Cpgij - (H ‘gpqw92Jw9p2w9q3w9p3w9q1w> M(Ji).

weT

This inequality is valid for each pair i, 5 € J with ¢ # j. By taking the

geometric means over these pairs we get

d(s)
s(s—1)

M(J) < H H oainCpain X

i#j€J hey;

d(s)
s(s—1)

X H H H pqw qhw phwthnghwepzweqzwepjwequ X
i#jeJ hedj weTl

1
s(s—1)

X H Cqu] < H QPQWHZJWHP'LWGQJWHPJWHQZW) (JZ])
i#jed weT

By inserting the upper bound for M(J;;) following from the induction hy-
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pothesis, we get

d(s)
s(s—1)

M(J) < H H ainCpain X

i#j€J hedy;

d(s)
s(s—1)

| | | | | | 4 2 2 ) . ) .
9 pqw qhw phw zhwe hwepzweqzwepjweq]w X
i#jed hedj weT

X ( H Cpgij - (H epqweijwepiwequepjwequ) X

i#jed weT

a(a 1)

LT CODNT o)™ 2 (Op(Ji)04 (Jis) "~ ? D(Ty5) "
i#jed weT

where C'(J;) is defined by (5.2.8) with J;; replacing J.
Put
s(s—1 s(s—1
= ( H C(Jij)> ( H Cpqij)
i#jed i#jed
Then by the previous inequality, we get

2d(s)

M(J) < C/(J)(Hequ) <H H H9qhw phoine ]hw) X

weT i#j heJ;; weT
o D
s(s— 1 s(s—1
<(TL I T o) ™ (o)
i#jeJ weT hed;;
(s—2)d(s)+1

X ( H H Qijw) o ( H H Qpiweqiw‘gpjwequ> o ;

i#jeJ weT 1#j weT
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hence

M) = D] ) (01O (1))* ) x

weTl
2d(s) b(s—2)
¥ s(s—1) s(s—1)
(T L) ™ (LTI T )
i#j heJ;; weT 1#j weT heJy;
TT e(s 1) 9(9 1)
(M) (1T 11 0ae)
i#] i#jeJ wel
(s—4)d(s)+1
T s(s—1)
X H szweqzwep]weq]w

z;ﬁj weT

Now by (5.2.8) with J;; replacing J, we have

( H H Cpth) ( H Opqw) )
i#jeJ h#ledy; i#jed
hence
—2)(5—3)c(s—2)+1+4(s—2)d(s))/(s(s—1))
C/(J) = H Cpqw)

]
= C(J). (5.2.11)

Now combining the just established upper bound for M (.J) with (5.2.7)

and the obvious identities

(H epzweqzwepjwequ) (H H ephw qhw) )

i#] heJ weT

s—2

(ILIT IT oot ™" = (TLTLoontin)

Z;ﬁj weT hEJij weT heJ
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(T IT T tinetsn) ™ = (),

i#j heJ;; weT

QT TT bis)=> = (D),

1#j weT

1 (s=2)(s=3)
(I pern=m =) .
i#]
we deduce that
M () < CUY ] Ooa) " (Op(1)O (1)) D)),
weT
which completes the induction step and the proof of Lemma 5.2.6. O

Proof of (i) of Proposition 5.2.4. Now Lemma 5.2.6 with J = W), and
Lemma 5.2.5 give that

c(n—2)
Ppg = M(Wpq) < ( H Cpqij)
i7#J€Wpq
a(n—2) b(n—2)
< (TLowe)™ (0m)0uWig)) DO
weT

Notice that since F' is primitive, it follows from (5.2.4) that |a|p

n
IT 11 5#, so by an easy computation, we have

1=1weT
IT 11 e = D)2,

p#AqweET

1T (W) ©q(Wig) = | D(F) 30,
DPF#q
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[T oW,) = [D(F) G209,

Thus, we deduce that

H bpg < U(H H Cpqij)c<n_2)7 (5.2.12)

p,q€{l,....,n} PFEQiFJEWpg
PF£q

where U — |D(F)|cjlj(n—?)+(2n—4)b(n—2)+(n—2)(n—3)c(n—2)'

We need to estimate H H Cpgij from above.
PAQIFJEWpq
Denote the field K (ayp,) by Lp. By (5.1.3), we have

20pqij — 1 + #1pqij v(D(Fy))
| S IS S Nt et 22
(Lpaij + K] he{p,q,i,j} veS deg b

so we get

v(D(Fy))
(29pqij —14+#Tpgij ) [L : Lpgij] < [L @ K] (_1+#S_ Z Z degF,i )
he{p,q.i,j} vES h

Hence
Z Z max(29pgij — 2 + #Xpqij, 0)[L = Lpgis]
p#q i#jEWpq
< Z Z (29pqi; — 1 + #quij)[L : quij]
p#q 17#JEWpq
N 2T5) 3D D CEET TR D) gzl
P£q 1,j#p.q he{p.q,i.j} vES o0
i#£]
= [L: K] (n(n —1(n—=2)(n—=3)(#S—-1)
d
a1 —2)(n-8) Y S WD)
i=1 ves
< [L:K] (n(n (- 2)(n —3)(#S — 1)

—4n—1)(n-2n-3)Y u(D(F))).

ves
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Therefore, we have

ves X

LK) (n—1)(n—2)(n—3) (n(#S—1)—4 3 v(D(F)) “* 2
H¢pq < €

p#q
x |D(F)[20— 2+ @n—4bn=2)+(n=D)(n=3)e(n-2)
elLKIn(n=1)(n=2)(n—3)(#5—1)e(n—2) o

« |D(F)|;lj(n—1)(n—Q)(n—3)c(n—2)+a(n—2)+(2n—4)b(n—2)+(n—2)(n_g)c(n_g).

As a(n —2) < 57" —9,6(n—2) <3,¢(n—2) < %—6 we conclude from
(5.2.6) that

oee)
2(n—-1) —%‘f‘?
M= < D) ] v
p#q
< e[L:K](#S_Iﬁ(n_l)|D(F)|;O+%.
This gives Proposition 5.2.4 (ii). O

5.3 Completion of the Proof of the Main The-

orein

Main Theorem. Let F' € Og[X,Y] be a binary form of degree n = 4 with
non-zero discriminant. Then F' is GL (2, Og)-equivalent to a binary form
F* such that

HY(F*) < e(n71)<#S(n+11)75) |D(F)|§O+%.

Proof. When F' is primitive, this follows directly from Proposition 5.2.4 and
Theorem 4.3.3.
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In the general case, write F' = aF such that a € Og and F is primitive.
Then there exists Fy that is GL, (2, Og)-equivalent to F such that

20—|—

Let Fy = aF}. Since F} is a binary form over Og, HS(Fl) < H*(Fy).
Noticing that D(F) = a?"2D(F), we deduce that

Hg(Fi) = |a|lsHs(Fy)
< |a|56(n—1)(#3(n+11 )|D( )|§0+
_ D (#Sm11)- )|D( )|§0+n| ol Gn-DE0+1 /)
< 1) (#5(n+11)— )|D( >’§0+_

By Lemma 4.2.1, there exists v € OF such that H*(uFy) = Hg(Fy). Put
F* = uF) = auFy. Then F* is GL, (2, Og)-equivalent to F' and

as claimed. O]

We need a variation of the Main Theorem. To get this, in the proof of
Lemma 5.2.6 we repeat all computations but with all fields Ly,;; replaced
by L. Then we get Lemma 5.2.6 with C),4;; replaced by emax(291 —2+#T.0)

This gives, instead of (5.2.12),

H prq < emax(2gL72+#T,O)(Z)c(an) %

p£qe{l,...n}
« ‘D(F)‘;(n*2)+(Qn*4)b(”*2)+(n*2)(n73)c(n—2)

< emax(?gL—Z—l—#T,O)( ) c(n—2) |D( ) 11n— 26 (531)
Similarly as before, this leads together with (5.2.6), to the following:

Proposition 5.3.1. Suppose F' is primitive with splitting field L. Then
there is an admissible tuple A" = (Al :w e T,i=1,...,n) such that
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0;
____.<jL
() 11 max i <

2(n—1)

) (H i A;w> . <ei(n—l)max(?gL—2+#T7O)|D(F)127?1

=1 weT

Now with the same idea as in the proof of the Main Theorem, we have

Theorem 5.3.2. Let F' € Og[X,Y] be a binary form of degree n > 4 with
non-zero discriminant. Then F is GL (2, Og)-equivalent to a binary form

F* such that

H*(F*) < exp ((n2 +6n — T)#S + (5n 245[)L(2§’(L 2. ) | D(F )I?

Proof. First, if F' is primitive, this follows from Proposition 5.3.1 and The-
orem 4.3.3 by a direct computation.

If F is not primitive, we assume that F = aF with a« € Og and F
primitive. Then there exists F} that is GL, (2, Og)-equivalent to F such
that

H*(F1) < exp ((n2 +6n — T)#S + (5”;45€L(?§(L]_1)) ID(F)|g .

Let Fy = aFy. Then

Hs(Fy) = |alsHs(F)
5n—5)(2g.—1 .2
< lalsexp (02 + 6n — 1y + o) o g
5n—5)(2g9r,—1) 2L 1-42(n—1
_ exp((n2—|—6n—7)#5+(n24 (ff )]D( )| & Ja]y 2D/
on—>5)(2 1) 2
< oxp ((n2+6n—7)#5+(”24£§§ )yD( )z
By Lemma 4.2.1, there is v € OF such that H*(uFy) = Hg(F1). Take
F* = uF| = auF}, then it is GL, (2, Og)-equivalent to F' = aF and

\_/'—'\_/

—

H*(F*) < exp ((n2 +6n —T)#S + (5n;45[)[(/2%—1)) |D(F)|§
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Remark 5.3.3. This result is weaker than the Main Theorem in the sense
that the constant depends on the splitting field L of F as well; however, it
is apparently stronger because the exponent of |D(F)|s is much smaller and

tends to zero when n goes to infinity.



Chapter 6

Finiteness for the number of

equivalence classes

It is known that if Og is the ring of S-integers in an algebraic number field
K, then there are only finitely many GL (2, Og)-equivalence classes of binary
forms with coefficients in Og of given degree and given discriminant. As
it turns out, the analogous statement over function field is false. However
we shall show that if K = k(t) with k an algebraically closed fields of
characteristic 0 and Og is the ring of S-integers in K, then under certain
conditions the binary forms with coefficients in Og and of given degree and

discriminant lie in finitely many GL (2, K)-equivalence classes.

6.1 GL (2, K)-equivalence classes

Let as usual k be a field with & = k,chark = 0 and K = k(t), S a
finite set of valuations containing oco. Let aq,...,as € k be distinct and
pi=t—a;,i=1,...,s. Let ' € Og[X,Y] and § € Og\{0}. Let L be a
finite extension of K. For two binary forms Fy, Fy € Og[X, Y] we say they
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are GL (2, K)-equivalent if there exists U € GL (2, K') and A € K* such that
F1 = MF2)y, and they are GL (2, L)-equivalent if the same holds when we
replace K by L.

Fix n > 4, and consider the following two conditions:

F € Os[X,Y], D(F) € 60%,

F has splitting field L over K, (6.1.1)
deg F' = n,
F is not GL (2, L)-equivalent to a binary form in k[X,Y]. (6.1.2)

Theorem 6.1.1. There are only finitely many GL (2, K)-equivalence classes
of binary forms satisfying (6.1.1) and (6.1.2).

Proof. We reduce the GL (2, K)-equivalence classes to GL (2, L)-equivalence
classes. We prove first that every GL (2, L)-equivalence class of binary
forms F' with (6.1.1) is a union of finitely many GL (2, K)-equivalence
classes. Then it suffices to prove that there are only finitely many GL (2, L)-
equivalence classes of binary forms F' with (6.1.1) and (6.1.2).

Fix a binary form F satisfying (6.1.1). It has a factorization

n

F= aH(@iX—I—BiY),a c K*
P (6.1.3)

(0(ci),0(Bi)) = (i), Bo(iy) for i=1,...,n,0 € Gal(L/K),

where (0(1),...,0(n)) is a permutation of (1,...,n) depending on F'. For
each 0 € Gal(L/K), there are only finitely many possibilities for the permu-
tation of (1,...,n) associated with 0. So we may subdivide those GL (2, L)-
equivalence classes into subclasses under consideration such that two binary
binary forms belong to the same subclass if and only if they satisfy (6.1.3)
with the same permutation (o(1),...,0(n)) for each ¢ € Gal(L/K).
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Now consider all binary forms in the same subclass. These are all

GL (2, L)-equivalent to one another and satisfy (6.1.3) with the same per-

n
mutation (o(1),...,0(n)). Fix one of such, Fy = ap [[ (a0 X — B0iY). Let
i=1

n
F =a]](a;X +5;Y) be any other binary form in the same subclass. Then
i=1
by definition there exists V = (‘Cl g) € PGL (2, L) such that

Vi : Boi] = oz : Brppl (i =1, n), (6.1.4)

with 7 a permutation of (1,...,n). We divide our subclass into finitely
many smaller subclasses, such that two binary forms in the same smaller
subclass satisfy (6.1.4) with the same permutation 7.

Let Fi, F5 be two binary forms in the same smaller subclass, i.e., they
are GL (2, L)-equivalent and satisfy (6.1.3) with the same permutations
(0(1),...,0(n)) (0 € Gal(L/K)) and (6.1.4) with the same 7. Assume

n
Fi=a H(OéuX + 51Y),
i1

n
Fy=ay H(O%X + BY).
i—1

Then there exists U € PGL (2, L) such that
Ul = Bri) = i B i =1,...,n), (6.1.5)

because (6.1.4) holds true for the same 7. Without loss of generality, we
assume that the U is represented by a matrix one of whose elements equals
L.

Applying each o € Gal(L/K) to (6.1.5), we obtain

o()[o(a1;) : o(b1i)] = [o(ag) 1 0(B2)] (i =1,...,n,0 € Gal(L/K)).
By (6.1.3) and our subdivision we derive that

U(U)[ala(i) : ﬁla(i)] = [a2a(i) : 520(1)] (0 € Gal(L/K),i=1,...,n).
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Hence
0( )[Ozh 511] = [Oézi : 521] (0’ S Gal(L/K),z =1,... ,n). (616)

Now from (8.2.3) and (8.3.3) it follows that the images of [a1; : f1i] (i =
1
n = 3 and one of the entries of U is 1, this implies o(U) = U for any
o € Gal(L/K). Hence U € PGL (2, K'). This means that F;, F» are actually
GL (2, K)-equivalent, which proves the claim.

What remains is to prove that the binary forms with (6.1.1), (6.1.2) and

,...,n) under the projective transformation U and o(U) are equal. Since

(6.1.3) lie in only finitely many GL (2, L)-equivalence classes.
n

Write F' = a [[(a; X + 3;Y") with a € K*. Suppose D(F) € 60g. Let
R = Og[671]. ZI‘_ﬁen D(F) € R’*. Let R} be the integral closure of R’
in L. For 6y,...,0, € L we denote by (01,...,6,) the fractional ideal with
respect to R generated by 61,...,6,. Further, for a given polynomial P
we denote by (P) the ideal of R} generated by the coefficients of P. Then
by Gauss’ Lemma we have

n

(F) = (a) [ J (e, Bo). (6.1.7)

=1

Let Aij = alﬂj — O‘jﬁi- Then

(Ayj) C (eu, Bi)(ay, Bj) for i, 5 = NN (6.1.8)

Now we have

(Aij) ?
W2 1<E<n((aiv5i)<o‘j’ﬁj))
(a2 D(F))

T (a2 ()22

_ (D)
(F)Qn 2

o (1),
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where the last equality is implied by the fact that D(F) € R’ and F €
R'[X,Y]. So we derive that (6.1.8) is actually an equality for every pair
(,7). Define the cross ratio

AjjAp

AipAjp

pijn(F) ==

Then pyjp(F) € R for all distinct 4,7, h,1 € {1,...,n}.

Lemma 6.1.2. Let L be a finite extension of k(t) and Op the integral
closure of k[t] in L. The unit equation x +y = 1 has only finitely many
solutions x,y with x,y € Op\k and all of them can be determined effectively

m principle.

Proof. See Theorem 1 and Theorem 2 of [17]. O

Lemma 6.1.3. Suppose that % lies in k* for all tuples (i,j, h,l) in
{1,...,n} with i, 7, h,l distinct. Then F is GL (2, L)-equivalent to a binary
form in k[X,Y].

n

Proof. Let F = a [[ (X + (;Y). Then there exists U € PGL (2, L) such
i=1

that

1], (6.1.9)

So F is GL (2, L)-equivalent to a binary form of the shape
n
F'=dXY(X+Y)[[(eiX +5Y),
=4

with @’ € L*. Since the cross ratios remain invariant under a projective
transformation, we have p193;(F') =1 — ﬂz € k for i > 4. Hence ’Bl € k and
therefore F' = bP with b € L*, P € k[X, Y}. This proves the assertlon. O
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n

Now consider F' = a [[(a;X + £;Y),a € K*,n > 4 with D(F) € R'*.
i=1

By (6.1.2) and Lemma 6.1.3, we may assume without loss of generality that

P1234 Q k. Since
A12A34 + A14A93 = A13A94,

we have

p1234(F) + pras2(F) = 1.

But p1234(F), p1as2(F) € RILX, hence by Lemma 6.1.2, we know that there

are only finitely many possibilities for p1a34(F'). For each choice A € L\k

of p1234(F), consider all binary forms F' with p1234(F) = A. There exists

U € PGL (2, L) such that (6.1.9) holds. So F' is GL (2, L)-equivalent to
n

XY(X +Y)[[(aiX + BY) with o) # 0 for i = 1,...,n. Since we have
1=4
p123a(F) =1 — g—‘:‘, we deduce that F' is GL (2, L)-equivalent to XY (X +

4
n

VIX+A+1D)Y)ifn=4dor XY(X+Y)(X+AN+1Y)][[(X —~nY)
1=5
if n > 5. When n > 4, observe that for i > 4 we have p23;(F) = 1+ ;
1 — AfL
Yi
since A € k. Hence by applying Lemma 6.1.2 again, we infer that there are

and pi24;(F) = . These quantities cannot lie in k& simultaneously
only finitely possibilities for 7;,7 > 4. It follows that there are only finitely
many GL (2, L)-equivalence classes of binary forms with (6.1.1), (6.1.2) and
(6.1.3). This completes the proof.

0

Remark 6.1.4. The condition (6.1.2) cannot be relaxed to the condition
that F' not be GL (2, K)-equivalent to a binary form in k[X,Y]. Here is
a counter-example: fix b € K\K?, consider all binary forms F = X% +
abX?Y? + v’Y* a € k,a®> # 4. First, notice that the splitting field of
such an F over K is L = K(vb), so F is GL (2, L)-equivalent to G =
X4 4+aX?Y? +Y* € k[X,Y]. However, F is not GL (2, K)-equivalent to a

binary form in k[X, Y], since otherwise F' would split into linear factors in
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K, contradicting the fact that b ¢ K2. Clearly, F, = X* + abX?Y? + p?Y*
and Fy = X* + a’bX?Y? + b2Y* satisfy (6.1.1). Suppose F, and F, are
GL (2, K)-equivalent. Then G, = X* 4+ aX?Y? + Y% and Gy = X* +
a’ X?Y?4Y* are GL (2, L)-equivalent, hence being GL (2, k)-equivalent. Let

c=+Va?—4 € k. Then

Go = (X = MY)(X = LY)(X = A3Y)(X = \Y),

where \; = _2+C,)\2 = —4/ —¢12—|—c7>\3 = 4/ _2_6,/\4 = —4/ —a2—c' The

cross-ratio of A1, \g, A3, A4 is

M=) —Ag) 4

A= = .
()\1 — )\3)(/\4 — )\2) a—+ 2

The cross ratios of the permutations of (A, A2, A3, A\q) are
4 1 a+2
Ca+2 N 47
1_)\:a—27 1 :a—I—Q’
a+2 11—\ a-2
A4 A—1 2-—a
A—1 2-a’ A 4

These are all one-to-one functions of a. Therefore, if Gy is GL (2, L)-
equivalent to G, for some a’ € k, the corresponding cross-ratios remain
the same, so there are at most six choices of a’ such that G, and G, are
GL (2, k)-equivalent. This implies that when a runs through k, there are
infinitely many GL (2, K)-equivalence classes of binary forms of the form
F=X%"+abX?Y? 4+ p?Y*1
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6.2 GL(2,0g)-equivalence classes

Let K = k(t) and S a finite set of valuations of K. We now show that
a GL (2, K)-equivalence class of binary forms with (6.1.1) is in general not

a union of finitely many GL (2, Og)-equivalence classes.

Lemma 6.2.1. Let F' € K[X,Y]| with degree deg F' > 3 and Aut(F) :=
{W € PGL(2,K) : there exists \ € K* such that Fy = AF}. Then
Aut(F) is finite.

Proof. Let W = (24) € PGL(2,K),A € K* such that Fyy = AF and
n . n

F = [[(iX + B;Y) with o;,8; € K. Then Fyy = [] ((aozi +cBi) X +
i=1 i=1

(bov; + dﬁi)Y). So there is a permutation o of (1,...,n) such that [o(«;) :

o(Bi)] = [ai : i)W for i =1,...,n. That is, W maps n > 3 distinct points
in P!(K) to n other distinct points. Hence W depends only on o. Therefore
#Aut(F) < nl. O

Let Uy, Uy € GL (2, K) with entries in Og. If Fyy, and Fy, are GL (2, Og)-
equivalent, then by definition Fy, = eFy,y for some V € GL (2,Og), e € k*.
Then Fy,y -1y, = eF and so (U2V)7'U; € Aut(F), hence Uy = UpVW
for some W € Aut(F), in this case we say Uj is related to Us associated to
W and write Uy = Uy (W).

Lemma 6.2.2. Let F € K[X,Y]| and U € GL (2, K) with entries in Og
and det U = §. Assume Uy, Us are related to U associated to the same W €
Aut(F) with det Uy, det Uz € 005. Then we have U1U2_1 € GL(2,0g).

Proof. By assumption we have

UT'U = Vi(uW), Uy 1U = Va(AaW),
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for V1,V5 € GL(2,05) and A, Ay € K*. Then U U = 3111V, ', But
3§E 5; € OF, hence i—; € O%. Therefore U 'Us € GL(2,Og). This com-
pletes the proof. n

Theorem 6.2.3. Let F' € Og[X,Y] be a binary form of degree n > 3 and

non-zero discriminant. Then there exists D € Og\{0} with the following
property: the binary forms F' € Og|X, Y| with

{ D(F') € DO,

o | (6.2.1)
F' is GL (2, K)-equivalence to F

lie in infinitely many GL (2, Og)-equivalence classes.

Proof. Suppose S = {oo,p1,...,pn} and take T =t if S = {o0} or T' =
h
[ (t—pi) otherwise. Consider all binary forms Fiy where U € GL (2, K) has
i=1
entries in Og and det U = T? — 1. Let D = (T2 — 1)"»~YD(F). Suppose
there are only finitely many GL (2, Og)-equivalence classes of binary forms
in Og[X,Y] with the property (6.2.1). Then for every binary form Fy there
exists U and W € Aut(F) such that V = U (W).
Choose Uy = (“lT blf), Us = (“;T b,lT) with a,b,a’, V' € k satisfying ab =
a' =1,a # a/. Then Uy, Uy have entries in Og and Fy,, Fy, € Og[X,Y].

But we have

-t L abT? -1 T —al
e m o\ yr v a2 —1)

This is not in GL (2, Og) because for each i = 1,... h, t — p; is coprime
with 72 — 1 = (T — 1)(T + 1).

Since k is algebraically closed, k is an infinite field, hence there are
infinitely many matrices of the form U; and Us. So there must be two
matrices V, V' of form Uy,Us and U € GL (2, K),W € Aut(F) such that
V=U(W),V'=U(W). This is a contradiction of the above and Lemma
6.2.2. O






Chapter 7

Lower bounds for resultants

Evertse and Gyo6ry deduced some semi-effective lower bounds of resultants
over number fields in [10], [12]. Apart from two theorems mentioned in the

introduction, they have also established the following:

Theorem (Evertse, Gyory). Let F,G € Z[X,Y] be two binary forms of
degree m > 1,n > 2 such that FG has splitting field L over Q and is
square-free, and F(1,0) = G(1,0) = 1. Then

[R(F,G)| = Clm,n, Lymax(ID(F)|5™ 7, D@ 7).

where C(m,n, L) depends on m,n and L.

The constant C'(m, n, L) cannot be effectively computed from their method
of proof. In this chapter, we deduce effective analogous results over function

fields, with the help of outcome derived before.

7.1 Monic binary forms

Recall that K = k(t) and S is a finite set of valuations of K containing
Voo Let L be a finite extension of K = k(t) of genus gr. Let T be a finite
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set of places of L above those in S. Denote by Or the integral closure of
Og.

A binary form of degree n is called X-monic if the leading coefficient of
X"™is 1. We call two X-monic quadratic forms related if the coefficients of

the term XY are the same, and unrelated if otherwise.

Lemma 7.1.1. Let F,G be two binary quadratic forms over the ring Or
satisfying F'(1,0) = G(1,0) = 1, and suppose that F'G is square-free and

splits into linear forms over L. Then we have
(i) |D(F)|r < #0200 =2)| R(F, Q)7 D(G)|r, if F.G are related;
(ii) |D(F)|p < S#T+max(029:=2))| R(F, G)|3., if F,G are unrelated.

Proof. Put ¢ = max(0,2gy, —2). Since F(1,0) = G(1,0) = 1 and FG splits

into linear factors over L, we may assume that
F(X,)Y)=(X —a1Y)(X — apY),

G(X,Y) = (X = S1Y)(X — BY).

where a1, as, 81, P2 are distinct elements of L.
We actually have aq, a9, 81, 82 € Or, since Op is integrally closed.

Now, we have
D(F) = (a1 — a2)®, D(G) = (1 — B2)*,

R(F,G) = (a1 — B1)(oq — B2) (a2 — B1)(a2 — B2).

If F,G are related, i.e., oy + ag = B1 + P2, then oy — ag = (81 — ag) +
(B2 — ag). Considering the identity (51 — ag) — (f2 — a2) — (1 — B2) = 0,
and applying Corollary 2.2.11, we have

Hy(Br—az, —(f2—az), —(B1—2)) < e#TH9|(B1—as)(B2—a2) (b1 —Ba))|7,
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hence

S|
=
I

a1 — aslr

|51 — ag + B2 — aslp

< T () — aa)(Ba — a2)(B1 — )7
= e TH|(B) — an)(Ba — 042)‘T|D(G)|C%F‘

Similarly, we have

1

ID(F)JE < #7491 (81 — ) (B2 — an) || D(G) .

Hence
ID(F)|r < 2#THD|R(F, G)|7| D(G)] 7.

If F,G are unrelated, i.e., a1 + ag # (1 + P2, then we consider the
identity

(a1 = B1) = (a1 = B2) — (a2 = 1) + (a2 — B2) = 0,
which satisfies the condition of Corollary 2.2.11. We derive that

Hyp(on — Br, a1 — Ba, a9 — B, an — Bo) < SFTH|R(F, G|

Hence
1
ID(F)|} = o1 —aslr
= (a1 = B1) — (a2 = B1)|r
< Hr(og — Br,a1 — Bo, a0 — B1, a2 — Po)
< 63(#T+9')|R(F, )|z,
and

ID(F)|r < SH#T+9)|R(F,G)J3.
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Theorem 7.1.2. Let K be a finite extension of K = k(t), S1 a finite set
of valuations of K1. Let F,G € Og,[X,Y] be binary forms satisfying the

following conditions:

degF=m >2,degG =n = 3,F(1,0) = G(1,0) =1,
FG has splitting field L over K1 and F'G is square-free.

Then we have

mn max(0,2g7 —2)
’R<F7 G)|Sl 2 6*7(#51+W) maX(‘D( )‘6(m 1) ’D( )|6(n 1)).

Proof. Let T C M, be the set of valuations over those in S7. Over L, we

have

)= I - ey )= -8
7=1

=1

Since F,G € Og, [X,Y], we have o, 3j € Op,i=1,...,m,j=1,...,n.
Let

Fpg(X,Y) = (X —apY)(X —agY) (1 <p<g<m),

Gij(X,Y) = (X _51Y)(X_5jy) (1 <1 <] < 77,)

Now fix a pair p < ¢. Let I,; be the collection of pairs ¢ < j such that
Gj is related to Fpq: ap + oy = B; + 5. Then each two pairs in [, are
C . 1
disjoint since F'G' is square-free, and hence #1I,, < [5] < %‘

Put ¢ = max(0,2g;, — 2). By Lemma 7.1.1 we get

|D(qu)|T 6(#T+g) |R(FPQ7GZJ>|T for (i,7) ¢ Ipq
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Hence we have

Dl < (] R Gollr) ™5 (1)
(i) I
6
< 66(#T+g')( |R(qu,Gw)yT>”(”‘” (7.1.2)
(i) s
6
< e6<#T+g’>( |R(qu,Gij)|T)"("” (7.1.3)
1<i<j<n
/ 6
= SHETH|R(Fpy, Q). (7.1.4)
So
IDFYr = ] IPEr
I<p<gsm
6
< e3m<m_1><#T+g'>( I |R(qu,G)|T)"
I<p<gsm
’ 6(m—1)
< e3m(m—1)(#T+g )’R(F, G)‘Tin ‘
Similarly,
, 6(n—1)
1D(G)|r < " VHETHDIR(E,G)
Then it follows from [z|7 = |24 2 € Ky and #T < [L : K\J#51.

O

Remark 7.1.3. If m = n = 2, the results above are not valid. Simply take
K = k(t),S = veo. Let u,v € klt] be a solution of 2% — (t* — 1)y? =1
and put F(X,Y) = X? —u?Y2 G(X,Y) = X% — (1> — 1)v®Y2. Then it is
easy to check that D(F) = 4u?, D(G) = 4v*(t* — 1),R(F,G) = 1 and FG
18 square free with splitting field K(\/ﬁ) However, since u =t,v =1
is a solution of v* — (t> — 1)y? = 1, we can find infinitely many solutions

u,v € k[t] satisfying u+v12 — 1o = (t-+V12 — 1)7 with |u|s goes to infinity.
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7.2 Results for binary cubic forms

Recall that K7 is a finite extension of K = k(t) with genus gg,, S1 a finite
set of valuations on K. Consider two binary forms F,G € K;[X,Y] such
that

3
F(X,Y) = [ J(a:X = BY),

i1

~

3
Gx,Y) = [[iXx =),
=1

where «;, 8;,7;,0; € K1,i,7 = 1,2,3, and F'G is square-free. In this section

we prove
Proposition 7.2.1. With the same setting as above, we have
¢ 3 45
[R(F.G)ls, > e 2o #9)| D(F) D(G)| PG .

Before proving this result we start with some preliminaries and a lemma.
Put Ajj = @idj—Bivj, Fij = aiBj—a;Bi, Gij = 7i0—;d;i fori,j = 1,2,3.

Then by direct calculation

A1 Az Agz
det Agl AQQ A23 = 0.
Asz; Agzy Asz
Put
ur = A11A22A33, us = —A11A23A39,
uz = A12A23A31, ug = —A12A91A33,
us = A13A21Az2, ug = —A13A2A31.
Then

ul + ug + ug + ug + us + ug = 0, (7.2.1)
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UjU3Us = —UU4UE — R(F, G) 75 0. (7.2.2)
Hence u; # 0 fort=1,...,6. Also
3 3
R(F,G) = HHAzj, D(F) = (FiaFasF13)?, D(G) = (G12G23G13)*.
i=1 j=1

Similarly as in [12], we have

(D(F)D(G)? =+RF,G) [ (wp+uy). (7.2.3)
1<p<g<6
p#¢(mod 2)
Hence
up +ug # 0 for 1 <p<qg<6,p#qmod2). (7.2.4)

Put ¢, = elz) (max(2gsc, ~2+#51,0), Analogously to Lemma 5, [12], we have
Lemma 7.2.2. For (uy,...,ug) satisfying (7.2.1), (7.2.2), (7.2.4), we have

[T Hs.(wpug) < SIRE.GIEIFGISS.
1<p<g<6
p#q(mod 2)

Proof. We adapt the idea in the proof of Lemma 5 of [12].

By symmetry, we have to consider only the following four cases:

6

(i) > wu; has no vanishing proper subsum;
=1

(i) w1 4+ usz = 0,uz + ug + us + ug = 0 with no vanishing proper subsum;
(iil) uy + u2 + ug = ug + us + ug = 0 with no vanishing proper subsum;

(iv) w1 + ug + us = ug + ug + ug = 0 with no vanishing proper subsum.
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First, since
|Aijly = |idj—Bivily < max(|ily, |Bily) max(|vilv, [05]y) for v € Mg, ,i,j =1,2,3,

we have
3 3
furly < ] [max(laal, 18:1) [ [ max(iilo. 10510) = PG,
i=1 j=1

and similarly fort=1,...,6
\uil, < |FG|, for v € M, . (7.2.5)

For case (i), by applying Corollary 2.2.11, we get for p < ¢ with p #
g(mod 2) that

Hgl(up,uq) < Hsl(ul, . ,u6)

6
< o5 | [ Iuils, ma (Juil)
=1 V€S1
< o5|R(F,G)|%, PGS,

hence

[T Hsi(wpug) < SR GIEIFGISS.
1<p<g<6
p#q(mod 2)

For case (ii), we apply Corollary 2.2.11 to ug 4+ u4 + us + ug = 0 and
derive that for (p,q) = (2,5), (4,5), (5,6),

HSl (up7 uq) < H51 (u27 Uyg, U5, u6)

< aslugugusugls, | ][ max(fuzly, [ualy, [us]o, |ug],)

vegSh
5
6
< cs ] [ fuils, ma (|uil)
i=1 V€S1

< a|R(F,G)[E|FGIS), (7.2.6)
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where in the penultimate inequality we have used the consequence of the

product formula that |uj|g, | [[ max (Juil,) | = 1 for j = 1,3, while in
Vgsl 1<Z<6

the last inequality we used (7.2.2) and (7.2.5).
For (p7 q) = (17 2)7 (17 4)a (]-7 6)7 (27 3)a (3a 4)7 (37 6)7 we combine uitug =0
with (7.2.2) and get, for example in the case (p, q) = (1,2), using (u?,u3) =

2 (uque, ugus),

Hg,(u1,u2)® = Hg,(ui,u3)
ug
< |—=| Hg,(ua,u2)Hg, (ug, us)
us Sy
u2
< |—| Hs,(u2, ua, us,up)*.
us S,

By Corollary 2.2.11, this is at most

U2

c3lugususugl3, | ] max(|ualv, ualy, [usl, [ug|,)
S Vg,

= GIR(F,G)|% lususls, | [ ] mex(ualy, [ualy, usly, lugl,)
V%Sl
10

< GIR(F, G)[3, [urugusugusue] s, max (|ug,)
) 1<i<6

< BIR(F.G)|§,|FGIGL",

where in the penultimate inequality we have used that |u;]s, [ ] max (luily) | =
I/€S1 S

1 for j =1,3,4,6, and in the last inequality again (7.2.2) and (7.2.5).

This also gives

Hg, (u1,u) < 3| R(F, G)|3,|FG|3).
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In the same way, this inequality holds true for (p, q) = (1,4), (1,6), (2, 3), (3,4), (3,6),

and therefore

[T Hs(upug) < SIR(EQ)IEIFCISP.
1<p<g<6
p#q(mod 2)

For case (iii), first we apply Corollary 2.2.11 to u; + uz + u3 = 0 and

uq + us + ug = 0 and obtain

Hg, (u1,u2)Hg, (u2,u3)Hg, (u4, us) Hg, (us, ug)

< Hg, (u1,u2,uz)*Hs, (ug, us, ug)*

G 4 4
4 2 . .
< 6 H \u1|51 12?33(|UZ|V) 412?§;(|UZ|V)
=1 VQSl V¢S1
4 4 -8

We estimate Hg, (up,uq) for (p,q) = (1,4),(1,6),(3,4),(3,6). When
(p,q) = (1,4), we have by (7.2.2), for instance in the case (p,q) = (1,4),

that (uy,uq) = Rlé}:“é) (—ugug, ugus). Hence by corollary 2.2.11 we have

|U1u4|51 |R(F7 G)|§11HS1 (U'Qa u3)HS1 (u6a U’5)

Hg, (u1,us) <
< Jurugls, |R(F, G)|g! Hs, (u1, ug, us) Hg, (ua, us, ug)

2
-1 2

< Jurualg, |[R(F, G| c3|urugusls, max (Juil,)

vegSh

2

X |ugusugls, &?gﬁﬂuﬂu)
V¢S1
4
2
< glurualg, [R(F, G)ls, max ([uil,)

vgS1
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For (p,q) = (1,6),(3,4), (3,6) we obtain similar estimates. Therefore

Hg, (u1,uq)Hg, (u1,u6) Hs, (u3, us) Hg, (u3, ug)

16
< Blurugugug|§ | R(F, )3, 12?36(’“«2“1/)
veS,
6 20
8 2 4

< &) (H ui51> ’R<F7 G)‘Sl 11252(6(’1%'1/)

i=1 veES)
= ASIR(F,G)[§,|1FGI$™, (7.2.8)

where in the penultimate inequality we have used that |u;|g, ( I1 max (| 1,)) >
veES, S

1 for j =2,5.
We still have to estimate Hg, (uz,us). Since (u2,us) = R(F, G) ™1 (—u3uug, uyuszu?),

we obtain in a similar way, using corollary 2.2.11, that

|R(F,G)|3! Hs, (u2, u1) Hs, (u2, ug) Hg, (us, us) Hg, (us, us)

Hg, (u2,u5) <
< |R(F7 G)|§11H51<u17u27u3>2HS1(u47u57u6)2

4

/N

4 -1 2
SR(F. )5 w3, | T max (laly) |
V&’Sl Xtx

x [ugusugl3, Jnax (|usy)
V€SI Ilx

< GIR(F,G)[§,|IFGISS. (7.2.9)
This leads to

[T Hs(upug) < SIR(F,G)EIFGISE.

1<p<q<6
p#q(mod 2)

Finally, for case (iv), using the same idea we deduce that
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3 ,,3) 2 2
(u3,usy) = R%}%‘é)(—ulu4u6,u2u3u5) and so

HS1 (u17u2)3 = HS1 (uiug)
< IUIUZR(Fa G)_1’S1HS1 (U1, u3)HS1 (U1, U5)H5'1 (U4, uQ)Hsl (u67 uQ)
< |uruaR(F,G) Vs, Hg, (u1, us, us)*Hg, (ug, us, ug)®

< G|R(F,G)|g |urusls, [urusus |3, HmaX(\ullu,\uﬂu,\uslu) X

V¢S1
4
x|ugugugl3, | ] max(|uzly, [wals, [ug|,)
I/€S1
< GluuaR(F, G|, |GG, (7.2.10)

Similar inequalities hold true for the other pairs (p,¢) under considera-

tion. Combining with (7.2.2), we have

I Hs (upug) < BIRF, G5 IFGIGH.
1<p<g<6
p#gq(mod 2)

This finishes our proof. O

Proof of Proposition 7.2.1. This is a combination of (7.2.3) and Lemma
7.2.2, applying the ultra-metric inequality for non-archimedean valuations.
m

Remark 7.2.3. In this section we assumed only F,G € K 1[X,Y]. If we
require F,G € Og,[X,Y], then |FG|g, = 1 and so Proposition 7.2.1 gives

90 3
|R(F,G)ls, > e~ 914450 D(F)D(G)|§.

7.3 Binary forms of arbitrary degree

Again, recall that K is a finite extension of K = k(t) with genus g, , and

S a finite set of valuations on Kj.
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Theorem 7.3.1. Assume F,G € K1[X,Y] are two binary forms such that
deg FF'=m = 3,degG =n = 3, FG is square-free and has splitting field L
over K1. Then

10mn ( 2971,

R F G > 17 LK1]+#‘91 D 17(7”2—1) D 17(n 1) F 1157%” Glii;n
|R(F,G)ls, = e [D(F)|g," " |D(G)]g, [Flg7 1Glg] ) -

In particular, if F, G are irreducible, let L' be the field generated by one root
of F(X,1) and G(Y,1), Then

tomn (UL L))

‘R(Fa G)’S1 e T (L7:K1]

<D D@ (1F15F 161 ).

Lemma 7.3.2 (Castelnuovo’s Inequality). Let F' be a function field of tran-
scendence degree 1 over k. Let Fy, Fy be two finite extensions of k(t) and F

their compositum. Suppose that
(i) F = F1F; is the compositum of Fy and F3,
(ii) [F : F;] = n; and F; has genus g; (i=1,2).
Then the genus g of ' is bounded by

g < nigr +nage + (np — 1)(ng — 1).

Proof. See Theorem 3.11.3 of [23]. O

Proof of Theorem 7.3.1. Let T be the set of valuations in L above those in
m n

S1. Assume F(X,Y) = [[(aX — 5iY),G(X,Y) = [] (X —6;Y). We
i=1 j=1

make a reduction to the case of cubic binary forms. Let
Fopr(X,)Y) = (ap X =BpY ) (g X =Y ) (e X =5, Y) for 1 <p< g <r<m,

Gijh(Xa Y) = (ﬁ/iX — 5Z'Y)(7jX — (SjY)(’}/hX — 5hY) for 1 <1 <7< h<n
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By Proposition 7.2.1, we have
45

3 45
|R(qu7‘7 Gijh)’T >e — 17 (290 —14+4T) | D( qu)D(Gijh”%l‘FPQTGithJ'

Observ that
H quT = F<m;l)7
1<p<g<r<m
n—1
H Gijn = al"2),
1<i<j<h<n

(m=1)(n—1)(m-2)(n—2)
11 Il R Gin) = R(F,G) i :

1<p<g<r<m 1<i<j<h<n

I[I D) =DE)™2

1<p<g<r<m

I DG =Die=

1<i<j<h<n

Hence, by taking the products, we deduce that

IR(F,G)lp > e Comt#0) p(p) 70 () 700 (171161, )

As #T < [L: Ki|#51 and |z|p = |x|S Tforz e K1, we conclude that

IR(F,G)ls, > e " (5T 45 p(p) 70 | D) 577 (17187 1614 )

m n
If F,G are irreducible, write F = a [[(X —%Y),G =b [[ (X — §;Y),

i=1 7=1
then all fields K1 (7;,6;) are isomorphic. Without loss of generality, assume
L = Kl(’)/l,(sl).
Let

Fopr(X)Y) = (X —pY)(X =Y )( X —%Y)for 1<p<g<r<m,

Gijh(X> Y) = (X — 5ZY)(X — 5JY)(X — 5hY) for 1 < <7< h<n
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Let M = K1(vp, Vg, Vr» 0i, 05, 0p,) and T' be the set of valuations of M above
those in S7. Here we omit the subscript because all such field are isomorphic

and all T" have the same cardinality. By Proposition 7.2.1,
3 45
| R(Fpgr, Gijn)lr 2 e ~ 17 Con—L4#T) | D(Fpgr) D(Gijn) |7 | FparGijnly -

Applying Lemma 7.3.2 to L1 = K1 (7vp, dp, V¢, 0¢) and its subfields K1 (7, 3p), K1 (7, 6q)

we obtain

gL, < 2dgp + (d — 1)2,

where

=N
|

[L1 : Ki1(7g, dq)]

(L1 K1 (7p, 0p)]

(L1 K1(p: 0p, vo) )1 (s Ops Yg) = K1 (p, 0p)]
[K1(0p, 0q) = K1(6p)][K1(7p, Vq) = K1(7p)]
(m—1)(n—1)

mn.

NN N

A

Observing that [M : L] < d and [M : Ki(v,,6,)] < d?, and applying
Lemma 7.3.2 to M and its subfields L, Ki(v:, §,) we obtain

gu <M Ki(y,0.)gr + [M : Lilgr, + (d — 1)(d® — 1).

Hence
g < 3[M 2 Ky (v, 0p)lgr + (2d + 1)(d — 1)
3[M'K] 2 Q[M Kl]
o -, 19 et 7}
S .K]9L+ TR
and

90 ( 6gL/+4m n2

T (e +#5) 31 17
|R(Fygr, Gign)ls, = ¢ 7 wmr 59| D (1) D(Gijn) |2 | Fpar G & -
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By taking the products over all triple (p, q,r) and (i, 7, h) we deduce that

IOmn(SgLﬁu"m n

IR S1) 17(m—1 17(n—1 7
IR(F,G)ls, > e Clomar 4 #99| p(p) 50 D@ 57 (1F15F 1617 )

This completes the proof. n

Corollary 7.3.3. Let F,G € Og,[X,Y] be two binary forms such that
deg F=m = 3,degG =n = 3, FG is square-free and has splitting field L
over Ky. Then

10mn ( 29L

R(F,G)|g, > ¢ T @i +#5) | p(F)

‘Sl(m 1)‘D( )‘1777, 1)'

In particular, if F,G are irreducible, let L' be the field generated by one root
of F(X,1) and G(Y, 1) instead, then

_ 10mn ( GgL/ +4m n

|R(F}G)|S1 >e 7 VEED +#51) |D( )|l7(m 1)|D( )lm,

1

Proof. Since F,G € Og,[X,Y], |F|s, = 1,|G|s, = 1. Then apply Theorem
7.3.1. In particular, if F, G are irreducible, then F(1,0),G(1,0) € Og, and

the rest is clear. O]

Remark 7.3.4. Theorem 7.3.1 and Corollary 7.3.3 do not hold if m = 2
orn = 2. For instance, if m = 2,n > 2, take F = X? — (t? = 1)Y?,G =
n
[T(aiX —b;Y) where a;,b; (i = 1,...,n) satisfy a7 — (> — 1)b? = 1. Say,
=1

uj,vj € k[t] are the unique solution of u; +vjVt2 — 1= (t+Vt2-1) (j €
N) and a; = u;,,b; = v, (i =1,...,n) with l; < --- <l,. Then R(F,G) =
1,D(F) =4(t> — 1) and

D@G) = ] (aibj—asbi)

1<i<y<n

- m H ((t + /2 =) (=2 — 1)lizj)2
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It is easy to check deg(u;) = j, hence |D(G)|oo — 00 while max (l;—1;) —
1<i<y<n

0o. This gives a counter-example.

7.4 A result on Thue-Mahler equations

The idea of the following sections comes from [10]. We work out an
analogue for function fields. Let L be a finite extension of K = k(t), and
T C My a finite set of valuations. As in K, for a binary form F with

coefficients ag, . .., a,, put

Hp(F) = | [ max(laole, - lank),
weT

Hi(F) = [ [ max(laols, .- - lanl),
w€eL

H(F) = Hy(F)YIEK]

Lemma 7.4.1. Let F(X,Y) € L[X,Y] be a binary form of degree m > 3
with D(F) #0. Let A > 1 and suppose F splits in L. Then every solution
(z,y) € L? of the Thue-Mahler equation

|\F(z,y)|lr =A (7.4.1)

satisfies

291 —14+#T o [ JHL(F) 3
H < 291t | | m A )
r(z,y) <e V¢T ax(|z]y, [ylv) ( HT(F)>

In particular, if F(X,Y) € Or[X,Y] and (z,y) € O%, then

Hy(z,y) < 20 44T (A Hp(F))>>™.
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m

Proof. Suppose we have a factorization F(X,Y) = [[ (X + £;Y) in L.
i=1
Put Az‘j = o;fj — i fori,j =1,...,m. Then

| Adjlo < max(|ailw, [Bilw) max(|ajlw, [8j|w) for w € M.
Fix an arbitrary triple {r,s,¢} C {1,...,m} and (z,%) € L?, and put
Ay = Age(ap X + 5rY), ar = Ar(z,y)
and similarly for Ag, A¢, as, a;. Then observe that

A +As+ A =0,
(7.4.2)
ar +as+a; = 0.

Applying Corollary 2.2.11 to (7.4.2) , we obtain

HT<(I7», Qs, at) < 6maX(sz_2+#T70)|a7"asat|T H max(lar‘wu ‘as|w7 |at|w> )

wéT
(7.4.3)
where
|arasat|T = |ArsAstAtr|T H |Ofix + 6iy|T7
i€{r,s,t}
[T mes(larku laslu lack) < TT (maxtiole lylo) TT max(laile, 5i1)).
weT wgT i€{r,s,t}
Also,
ArsAst Ay X = AtrﬁsAr - AstﬁrA& (744)

ArsAsiAY = =AprasAp + Agron As.

Then for each solution (z,y) of (7.4.1) and each w € T,

Ars At Al max(fzlo, ylw) < | ] max(lail, 16:10) | max(larly, as]w)-
ie{r,s,t}



7.4. A result on Thue-Mahler equations 133

Hence

ArBadalrBr(ey) < (] Helo ) Hrlara).  (7.45)
ie{r,s,t}
Noticing that Hr(a,, as) = Hr(ar, as, at), combining (7.4.5) with (7.4.3),

we deduce that

HT(xay) < BQQL_H_#T H max(|$|w7 |y|w)2

wéT
< TT (lesw + gigle [T max(lailes 18io) TT max(iol, 181)2).
1e{r,s,t} weT wgT

However, by Gauss’ lemma
m
[ max(laile, [Bilw) = [Fl..
i=1

Then by taking the products over all triples {r,s,t} C {1,...,m} and
(7.4.1), we deduce that

29r, —1+#T 2 H%(l ) 3
Hp(z,y) < e*9e— 1 | | m wi lyl)* [ A , 7.4.6
T(l’ ?/) € o aX(|¢‘”| |y| ) < HT(F)) ( )

if F(X,Y) € Op[X,Y] and (z,y) € O%, then we get Hp(F) > 1, max(|z|y, [ylo) <
1 for w & T, hence

Hy(z,y) < 292" VW#T (AL Hp(F)*™.
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7.5 Lower bounds for resultants in terms of

heights

In this section we estimate the resultants from below in terms of heights.
Again let K = k(t), and let S be a finite set of valuations of M. Further,
let F,G € K[X,Y] be two binary forms of degree m,n respectively. Recall
that for U = (2 %) with det U # 0, define F/(X,Y) = F(aX +bY, cX+dY)
and the same for Gyy. Then

R(FU, GU) = (det U)mnR(F, G)

By the definition of resultant (1.1.1) and the non-archimedean property

of the absolute values | - |, on K, we have
|R(F, G|, < [FPIGI for v e Mk,
and hence
[R(F,G)]s < |FIs|GlS

Theorem 7.5.1. Let m,n > 2 and let F,G be binary forms in Og[X,Y]
such that F'G is square-free and with splitting field L over K. Then there
erists U € GLa(Og) such that

|R(F,G)|s = c(m,n, S, L) Hg(Gy) ™" Hg(Fy) 7,

where

+mn(dm + 4n + 433)%) .

422mn(2gr,—1)
T17[L:K]

c¢(m,n, S, L) =exp (

Lemma 7.5.2. Let F' € Og[X,Y] be a binary form of degree m with non-
zero discriminant. Then there exists U € GLo(Og)such that

m—1

)HS(FU) T

-l (m2+6m77)#5+w
’D(F)’S = e . ( 24[L:K]
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Proof. This follows from Theorem 5.3.2, observing that Hg(F') < H*(F’)
for any F' € Og[X,Y]. O

n

Proof of Theorem 7.5.1. Without loss of generality, assume that [D(F)|g ™" <
D@5
By Lemma 7.5.2, there exists U € GLy(Og) such that

,m; (m +6m— 7)#S+(5m245)(29L 1)) mo1
|D(F)|g > e ( R ) Hg(Fy) o

Combining this with Corollary 7.3.3, we deduce that

|R(F,G)|g > 6*101?"(2[i?§]1+#5)’D( )17<m 7 D(G )m
> 6*101?"(2[9LL:1;]1+#S)’D(F) klg?(mfl)
> CO(L,S)Hs(Fy), (7.5.1)
where C(L, §) = o 15 (ke +48)— 22 (m+6m—T) s+ CmoCar=0 )

On the other hand, let T C M7y, be the set of valuations above those in

S. Assume Fyr, Gy factor in L as

s

Fy(X,Y) = | [(uX + BiY),

1

~.
I

n

II%X+6Y

<.
=

Then
n
R(F,G)|s™ = |R(Fy, Go)l§™ = [R(Fy, Gu)lr = [ [ 1F (85, =)l
j=1
By Lemma 7.4.1, we obtain for j = 1,...,n that

Hr(37,—55) < €T [ a8l g2 (B 05—l Al
s T ) X X I w> w iy —1J 7 1 N\
T\95, =75 j i Uu\95, =Y)IT HT(FU)

w¢T
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Combining this with Gauss’ lemma, we deduce that

Hr(Gy) = | [ Hr(v,65)
j=1

) ) n n Hi (Fpr)2nN 3/m
< en2oL—14#T) HHmax(|5j|w,|7j|w)2(H|FU(5j7_7j)’T%)

we¢T j=1 =1 o
ALY

n(2gr —1+#T) 2 ( )
e 11 1Gul2(18(Fy, Gu)lx Ho(Fp)"

wgT
Therefore

297 —1 H (FU)QR 3/m
Hy(Gp) < " +#9 T |6 ?,(RF,G K—) .
s(Gv) ,,I;IS| ol (1R, G)ls 7 -3

Noticing that Fy7, Gy € Og[X, Y], we obtain
(L1 4 4) 3/m
Hs(Gy) < "8 49 (|R(F,G)|sHs(Fu)") (7.5.2)
Combining (7.5.1) with (7.5.2) we conclude that

Hs(Gp)"Hs(Fy)" < " 0w 9| R(F, Q)3 Hg (Fy)™
< dR(F,Q)ET,

where

c = exp ((421mn + 5n(rg_1)) 2[%[_(]1 + (421mn + 4n(m? + 6m — 7))#5)

< exp (422”&??{%_1) +mn(4m + 4n + 433)#5) :

Therefore,

Hg(Gy)"Hs(Fy)"

< exp (% + mn(4m + 4n + 433)#5’) |R(F, G|
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Corollary 7.5.3. If F,G are irreducible over K, let L1 be an extension of
K generated by a root of F(X,1) and Lo an extension of K by a root of
G(X,1), and suppose that L; has genus g; fori=1,2. Then

|R(F,G)|s > c¢(m,n, S, L, Ly) Y Hg(Gy )77 Hg(Fyr) 77,
where

c(m,n, S, L, Lz) = exp (422mn(m+?;75+2gl+292>+mn(4m+4n+433)#).

Proof. When F, G are irreducible, the claim is a combination of Theorem
7.5.1 and (5.1.5). O






Chapter 8

Distances between algebraic

functions

Let K = k(t). In section 8.1 we give a lower bound for the distance tetween
two roots of a polynomial f € k[t][X], and in section 8.3 we derive such
a lower bound between roots of different polynomials. We follow [9], [10]

where similar results have been derived over number fields.

8.1 Root separation of polynomials

Let K = k(t) and let f € K[X] be a polynomial of degree n > 4 with

n

splitting field L and non-zero discriminant. Assume that f =a [](X — ;)
i=1

with a € K* and v; € L fori =1,...,n. Let S be a finite set of valuations

on K and let T be the set of valuations on L above those in S. For each

v € S fix a prolongation of | - |, to L, also denoted by | - |,. Define

, i — il
A = '
s(f) H 1552%71 max (1, |vi|,) max(1, |v;],)

ves

Since L/K is a Galois extension, this quantity Ag(f) is independent of
the choices of the extensions of |- |, to L. To be specific, by (1.4.3) we have

139



140 Chapter 8. Distances between algebraic functions

for w € A(v) and o € E(w|v) that

. Vi = Yjlw
min
1<i<j<n max(1, |v;|o) max(1, |v;lw)

— ( min lo(vi —75)|w )gy
1<i<j<n max(1, |o(vi)|,) max(1, |o(v5)]v)

o h/a Yo |V 9
1<z<]<n max(1, [v,(; ] ) max(1, [v,()lv)

_ | 7J|V ”
iei<n max(1, |y;],) max(1, [vjl,) )

since 0 € Gal(L/K) acts on 1,...,n as a permutation and g, = [Ly, : K]

is independent of w. Hence

' ’7@ . 'Yj|w 1/[L:K]
Ag(f) = ( > '
s(f) H 15’2%71 max(1, |vi|w) max(1, |[v;|w)

weT

(8.1.1)

Put H(f) = [] |flv- Then clearly H(f) > 1.
veEMyk

-1 11)#S—5
Theorem 8.1.1. Let cy(n) = exp((n )(QZL/SL# )) We have

As(f) = ea(m) T H(f)mH e,
Proof. Homogenize f = agX" + a1 X" ' +--- 4 a, and choose
F(X,Y) =b(aoX" + oy X"V 4 -+ 4+ a,Y")
with b € K* such that
bloo =[£I H(f), [bly = [£1," for v # vee.

The existence of b is guaranteed because [[ |f[,'H(f) = 1. So we get
veEMyk
F e Og[X,Y], |F|ooc = H(f) and hence

H*(F) = max(L,|Flc) = H(J).
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%)

n
Factor F'in L as F = [[(;X 4 ;). Then ~; = b put

=1
;05 — O304
bo = |(|1ing|W|a;aﬁﬁ2]|'Tw weT)
Then
As(f) = [ o™,
weT
Let F*(X,Y) = F(aX 4+ bY,cX +dY) with (2%) € GL(2,Og) be such
n

that F* is reduced. Then F*(X,Y) = [[(afX + B'Y) where (o, 3f) =

10 M4
=1
(i, Bi) (28),i=1,....n.

Now for w € T put fi, := |, Bilw, [, == |a, BF|w and (jw = | —
n n 1 2
;Bilw. Then [ fiw = |Flos [1 f5, = |F*lo and [ Gjw = |D(F)|Y2
=1 1=1

1<i<j<n
By the ultrametric inequality we have ;o < fiw fjw, and

Gijo = lad = bel '} 57 — a5f | < lad = bel ) [, 7,
So
Cijoo < min(fio fjo, lad = be| ' fi, f7,) for 1<i<j<nweT (8.1.2)

We are going to bound ¢, from below for each w € T. Let w € T, and

assume, without loss of generality, that ¢, = ff”f‘; . Then

C12w Cijo _|D(F) e
2 Ft 11 min(fio fjw, lad — belg £, f5)  Aw
1w /2w 1<i<j<n iwjw, | Clw iwd jw w
(4,5)#(1,2)
with Aw = flwaw H min(fiwfjwa ’ad - bC|;1 :;; ;w)'
1<i<j<n
(4,5)#(1,2)
We claim that
Aw < |F || F*[%2|ad — bely, """ 272, (8.1.3)
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Then
_ |D(F)[?|ad — bels" 727

o [Pl F*)572

By the Main Theorem, we have

19 (1—n)((n+11)#5—5)
ID(F)|Y? > H*(F*)»/ (02— s (8.1.4)

Using ad — be € 0%, Hg(F) < H*(F), Hg(F*) = H*(F*) < H*(F) =
H(f), we deduce that

1/[L:K]
\D(F)|Y?|ad — be|n =272
= (H PP

weT
ID(F)[?
Hg(F)Hg(F*)"2

> exp <(n1)((n+11)#55)> ! H*(F*)won2 "2

20+ 1/n H(f)
n— n S — n
> exp <( 1>(§0 . 531# 5>> H(f)~™ 1w, (3.1.5)

Finally, to prove (8.1.3), we have to distinguish two cases. First let
n = 4 be even. Take I = {(1,2),...,(n—1,n)}. Then

n
Aw < Hfzw H |ad_bc‘;1fzzf;w
i=1 1<i<i<n

(4,4)¢1
n n n—2
= TTr(TI6)  lad b7
=1 =1
= |Flu|F*[%2|ad — bl 272,
Next let n = 5 be odd. Take

I={1,2),....(n—2,n—1),(n—2,n),(n—1,n)}.
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Then

n—3
% 1\ 1/2 — *
Aw < Hfuu H (fiwfjwfiwf;wmd_bc‘wl) / H |ad—bc|w1fi2fjw
i=1 n—2<1<y<n 1<i<y<n
(1.0)¢1

— ﬁ fiw ( ﬁ fz‘Z)n_and B bc|;n(n72)/2
=1 i=1

= |F|o|F*|""2|ad — bej," "2,

]

As a direct consequence, we obtain the following result on simultaneous

root separation for various absolute values.
Corollary 8.1.2. We have

. —(n—l)((n+11)#5—5> i1
Slglgil;jlgn h/i - 7j|y Z eXp( 50 >H<f) n P

ve
Proof. Since the denominator of Ag(f) is at least 1, this is a direct conse-
quence of Theorem 8.1.1 and the fact \:L']EQL:K] = |z|p. O
Corollary 8.1.3.

_n—l
100

As(f) = exp ( (5n(n+ 7)#S + %%fﬁ))ﬂ(f)nﬂh’s.

Proof. 1t is similar with proof of Theorem 8.1.1, but replace (8.1.4) by using

Theorem 5.3.2. O

8.2 Two lemmas

We need some preparations for the next section where we consider distances

between algebraic function that are roots of different polynomials.
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Let K = k(t). Let H*(y) = [] max(1,|y]|,)/“.] for any v € L
weMy,
algebraic over K. This is independent of the choice of L.

Let &, n be distinct and algebraic over K. Let L = K(§,n) and T a finite

set of valuations on L. Define

|§ | 1/[L:K]
o— — /r’ w
Ar(&,n) = (g max(1, [{|o) max(1, 77"")) |

Then clearly

1/[L:K]

N B e ) B NOR AU
wéT w

> H(S) T H ).

This is a type of Liouville-type inequality. Recall that for a matrix A =

(aij)ij, we have defined its v-value |A|, = max(|a;j|,) for v € M. In this
i.J

way, we also define

Hs(A) =[] 14l

ves
Lemma 8.2.1. Let F(X,Y) € Og[X,Y] be a binary form of degree n > 3
with non-zero discriminant. Then for any U € GL (2,Og), we have

Hg(F
% < Hg(U) < (Hg(F)Hg(Fy))

Proof. Let T be the set of valuations on the splitting field L lying above the

n
valuations in S, write F'(X,Y) = ap [[(a; X + 3;Y) with ap € K*, o, 5; €
i=1

3/n

n
Or and Fyy(X,Y) = ap [[(ef X + B]Y) with
i=1

(a7, B87) = (i, Bi)U, i =1,...,n.

Let U = (‘;2) Then

{ ac; +cfi = ai

fori=1,... n.
ba + df; = 3}



8.2. Two lemmas 145

From the non-archimedean property, it easily follows that
max(|ajlw, |5 |w) < |Ulw max(|ailw, [Bilw) for w e T,
hence by Gauss’ lemma we have
Hr(Fy) < |U|rHr(F),

which gives

Hg(Fy) < |U|sHg(F).

Take any three indices 7, 7,1 and consider the system of equations

Ax =0, (8.2.1)
where x = (z1,...,27)" and
( @ Bi 0 0 o 0 0 \
0 0 o B B° 0 0
4 aj B 0 0 0 a}‘ 0
0 0 o B 0 57 0
ay Bl 0 0 0 0 Ozzk
0 0 (07 51 0 0 /Bl* )

Put X = (2 #3). Then

—x5(a7, ;) = (ai, Bi) X,
—xg(aj, B7) = (aj, B5) X,
_337(@77 /Bl*) - (O{l, BZ)X

However, D(F') # 0, so X maps three pairwise non-parallel vectors to three
other pairwise non-parallel vectors. Such a matrix X is unique up to a
scalar if it exists. But we already know that X = U with x5 = 24 = 27 =

—1 is a solution, therefore the solution space of (8.2.1) is one-dimensional
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and hence for any solution there exists A such that U = AX. Let Ag be
the determinant of the matrix obtained by removing the s-th column of
A. We claim that (A1, —Ag,..., A7) is a solution of the system of linear
equations. To see this, we make an extra seventh row by copying an row
and thus obtain a square matrix with determinant 0. By Laplace’s formula,
expanding this determinant along the seventh row, we immediately get the
result. So U = )\(_AAl2 _AA34). By the ultrametric inequality and again

Laplace’s formula, it is easy to see that
A < H max(|ag|w, |Bslw) max(|as|w, |Bs|w), w € Mg for r =1,2,3,4.
s=1,5,h
Hence
Ul < [Alw H max(|olw, [Bslw) max(|aslw, [Bslw) (w e My).
s=i,j,h
Therefore, by taking the product over w € My,
11 Wl < T Heles B)HL(a3, 8).
weMr, s=i,j,h

By taking the geometric means over all triples (7, j, h) and going back
from L to K, we obtain that

1w - (I we)™"

VEMK weMp,

< (HK(F)HK(FU))(ngl)/(g)
— (Hx)Hx(R)

Since U € GL(2,0g), we have |U|, = 1 for v ¢ S. Further, F, Fy €
Og[X,Y]. Hence

3/n
Hs(U) < (Hs(F)Hs(Fo))
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Lemma 8.2.2. Let L be a finite extension of K of degree n and T the set of
valuations on L above those in S. For x € L, denote by 0;,1 =1,...,n the

K-embeddings of L into its algebraic closure, with oy the identity. Then for
n

x € K*, there exists o, f € Op such that § = x and for F' = [[(ci(a) X +
i=1

oi(B)Y) we have

_ 291

e Hg(F)

3=
3=

< H*(z) < Hg(F)r.

Proof. First pick o/, 3 € L such that z = %‘—; By Lemma 3.2.3, there is
6 € L* such that

in(r——, o) forw g T

&' 18]

m
A, forw e T,

where A, € eZ,w € T satisfy [] Aw = €29t [] max(|o/]y, |5 |w)-
weT we&T

Let a = 0a/, 8 =0p". Then a, f € Op and so F € Og[X,Y] and = = 3

Also, we have

1 > HmaX(|Oé|w7|ﬁ|w)

wg&T
= H 0. H maX(’O/|wa |5/|w)
wgT wgT
1
= 1 L mextie’ler181)
weT “ wgT
1
Z H—A H maX(‘O/|wa |B/|w>
weT “’ng
_ e_QQL. (822)

Let M be a normal extension of K containing L, and U the set of
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valuations above those in S. By Lemma 1.4.1 we have

1
TT M:K]
H|F|I/ = (““ |F|’u)
vgS wgU
= (TIIImetioit@)le (o)1)
uélU i=1
= (T maxol,. 151,0)
pugU
n[M:L]
TT [M:K]
= (I max(lol I8l
weT
= [ mex(ale Il)- (8.23)
we&T

Combining (8.2.2) with (8.2.3) we derive that

29

By the product formula we have
n
H*(z) — (H H*(Ji(:ﬂ)))
i=1

= (IT IT mostoi@lo410) ™

=1 weMy,

_ ( I1 yF|w)M

weM7y,
1

— H(F)".,

3=
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8.3 A symmetric improvement of the Liouville-

type inequality

Theorem 8.3.1. Suppose &, are algebraic over K. Let L = K(&,n) and

[K(§): K] =3, [K(n) : K] 23, [L: K] = [K(¢) : K|[K(n) : K].

Let S be a finite set of valuations on K, Ty the set of valuations on L lying
above those in S and T C Ty such that

1 1
“ I???[L:K]z':[“ I<3
w|V
weT

Let g1, g2 be the genera of K(£) and K (n) respectively. Then

— * * —1+9
Ar(&m) = CoH(HH(&H ()
where ¥ = % and
s = exp (422(m+”;f7+ 291+292) +(Am-+n+433) B+ (men) (men—5)(1-0) ).

Proof. Assume [K(§) : K] = m, [K(n) : K| = n. Then [L : K] = mn.
Without loss of generality, suppose vy, € S. For if v € S, then adding v
to S does not affect w. Let o1,...,0,, and 71, ..., 7, be the K-isomorphic
embeddings of K(§) and K(n) respectively into M.

By Lemma 8.2.2 there are o, f € K (&) and ~,§ € K(n) that are integral

over Og such that & = %,77 = %, and the corresponding binary forms

F(X,Y) = ﬁl (0:()X +0:(B)Y), G(X,Y) = -ﬁ1 (73(7)X +7,(8)Y) satisfy
i= j=
f?ﬁdﬂi<ﬂ%®<ﬂdﬂ? .
e Hg(G)» < H*(n) < Hg(G)»
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Moreover, the assumption implies that £, 1 are not conjugate over K
and hence F,G are irreducible and F'G is square-free. By Theorem 7.5.1,
there exists U € GL (2, Og) such that

|R(F,G)|s > C"Hg(Gy) ™ Hg(Fy)™, (8.3.2)
where

Notice that

Fy(X,Y) =[] (i) X + 0:(8)Y),

—_

1=

3

Gu(x.Y) =[] ()X +7()Y).
j=1

where
(@, f") = (e, ), (7/,8') = (7,9)U.

Let V € GL (2,Og) be the inverse of U. Then

ad — By = (detV) (/6" — '),
max(|aly, [Ble) < |[V]wmax(|o/|w, |6']),
max(|y|w, [0lw) < [V]wmax(|y]w, [0])-

For w € My, put

o 1€ — 1w
Aw(fvn) T max(l, |§|w) max(l, |77|w)7

|Ck/5/ - ﬁ/7/|w
max(|o/ |y, |B]w) max(|v'., |5/’w)‘

A& n) =
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Then A, (&,n) < 1,Al(¢,n7) < 1. From what we mentioned above we have

’&5 — ﬂ’}/‘w
max(|aly, |8]w) max(|vy|w, [6]w)
|det V|, |a/d" — 'Y,

Aw(ga 77) =

>
~ V2 max(jo]w, [8']w) max(|y']w, [6|)
det V
- AL
w
C [det vl
Wﬁw(ﬁ,ﬁ)-

Since | det V|, < |V|? for any v € My and V € GL (2, Og), we derive that

[Lo: K]
[Tawen = 1111 (|d$“2/‘”)L " [Talen
v weT

weT veSweT
wlv

|det V|V [L:K|w
> [T(Fppe)  Iaken
weT

veS

1 /
= Hy(VLE= H AL (&)

weT

By Lemma 8.2.1 we have

Hs(V) < (Hs(Fo)Hs(Fv))*™

= (Hs(F)Hs(Fy))*™,

and
Hg(V) < (Hs(G)Hs(Gr)) ™",

and from these inequalities we deduce that

1 3[L:K]w ,
[[aen > (Grmmmammmmmmam) 1L

weT weT

By taking € = < 1 and

__ 1
T17(14+3w)

H = Hg(F)"/"Hg(G)/", H' = Hs(Fy)"/""Hs(Gy)"™,
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we conclude that

[Tauen > )y B8=TT (aden'alen°)

weT weT

> (i) e T (Aule ' ALEn)) (833)

w€eTp

However, since [L : K] = [K (&) : K][K(n) : K] we have
1(7.G) = [T T] ((@)7500) = o 8)3) = Nigaead = 5).

This implies that

|R(F,G)|, = H |ad — By|y for v € M.

wlv

n

Similarly to (8.2.3), we have Hg(F) = Hy, (ov, 8) ™K1, Hg(G) = Ho (7, )R
Combining this with (8.3.2) we deduce that

__|R(F.Q)|
H Aw(&ﬁ) - HTO(Oé,ﬁ)HTOS&'%é)

‘R(FvGNS
[L:K]
(Hs(F)/mHs (G )

> exp < _ A22mn(mdn SV 420) (4 4 4+ 433) 2

weTh

(R
3%

) %
Hs(Gy) 717 H(Fyy) 717

[L:K]
(HS(F)l/mHS(G)l/n)
~ exp ( _ 422mn(m-+n—5+2g1+2g2)

(R
3%

ke —mn(dm + 4n + 433) 57

)

(8.3.4)

(HS(GU)EHS(FU)E>ﬁ7
Hg(F)Y™Hg(G)Yn
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Similarly, we have

/ |R(FU7GU)’S
11 206 = o, v
w€eTy
[R(F.G)s
= [L:K]
(HS(FU)I/mHS(GU)l/n)
> exp < B 422mn(m+7;1—75+291+292) — mn(4m + 4n + 433)?7’%_)
(HS(GU)”HS(FU)m) 35
X HS(FU)I/mHS(GU)l/n ( c- )
Substituting (8.3.4) and (8.3.5) into (8.3.3), we conclude that
ymn
H A g 77 HH/) —dmnew Hmn(l’iffZ)l;[ImnE X
weT
X exp ( _ 422mn(m+7;1—75+291+2g2) — mn(dm + 4n + 433)77%_)
— exp ( B 422mn(m—|—7;1—75+291+292) — mn(dm +4n+433)#—‘§) (—1+0)
> e ( - A22mn(m 5120\ 1202) _ (4 + 4 + 13353 x

1 1.\ mn(—1+9)
x(H*(f)H*(n) 2gL(m+n)> )

where the equality is because of the choice of €, which makes the exponent

of H' to be 0, and the last inequality is due to (8.3.1). This implies that

, —1+49
Ar(en) > D7 (' ©OH' @)
where
D = exp (422(m+”;f7+ 200202) | (4 +an-+433) 23 429, (L %)(1_@).

O
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Notice that ¥ < 1 and by (5.1.4),

291, — 2

<m+n—6,
mn

we conclude that D < (5 where

422 —5+2g1+2
C5 = exp ( (mtn 71; gt 92)+(4m+4n+433)#+(m+n)(m—l—n—5)(1—ﬁ)).
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Abstract

Let F' € Z[X,Y] be a binary form, i.e., a homogeneous polynomial in two
variables. We denote the discriminant of I’ by D(F') and its height, i.e.,
the maximum of the absolute values of its coefficients, by H(F'). Two bi-
nary forms F,G € Z[X,Y] are called GL (2,Z)-equivalent if G = +Fy
for some matrix U € GL (2,Z). Here Fyy(X,Y) = F(aX +bY,cX + dY)
for U = (‘g cbl)' Two GL (2, 7Z)-equivalent binary forms have the same dis-
criminant. A binary form F' € Z[X,Y] is called reduced if its height can-
not be made smaller by replacing it by a GL(2,Z)-equivalent form. A
conjecture formulated by Evertse but probably much older asserts that if
F € Z[X,Y] is a reduced binary form of degree n > 2 and non-zero discrim-
inant, then H(F) < ¢1(n)|D(F)|™ where ¢;(n), c2(n) depend on n only.
This conjecture follows from work of Lagrange (1773) and Gauss (1801)
for n = 2 and Hermite (1851) for n = 3, but for n > 4 it is still open.
The best known result towards this conjecture is due to Evertse [9] who
derived a similar inequality but with c¢; depending on n and the splitting
field of F'. This constant ¢; cannot be computed effectively from Evertse’s
method of proof. Further, Evertse and Gy6ry [11] obtained an inequality
H(F) < exp (e (n) [ D(F)] ).

In this thesis, we consider binary forms with coefficients in the polyno-
mial ring k[t], where k is an algebraically closed field of characteristic 0. If
we define an absolute value | - | on k[t] by setting | f| := e®&/ for f € k[t],

we can formulate an analogue of Evertse’s conjecture for binary forms in

159
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E[t][X,Y]. In this thesis, we give a proof of this analogue. To achieve
this, we first generalized Mason’s ABC-theorem using work of Brownawell
and Masser [6], Zannier [26] and J.T.-Y. Wang [25], then we developed an
analogue over function fields of a theorem of Evertse from the geometry of
numbers and subsequently a reduction theory for binary forms over func-
tion fields. As an application, we then derived results on the root separation
problem over function fields, which is another interesting problem from Dio-
phantine approximation. An elementary inequality of Mahler (1964) states
that if f € Z[X] is a polynomial of degree n > 2 of non-zero discriminant,
then for any two distinct roots o, 3 € C of f we have a— S| > c¢(n)H ()"
where ¢(n) > 0 depends on n only. The root separation problem is to prove
a similar inequality with instead of 1 — n a larger exponent. This is still
open. In this thesis, we consider the analogous problem for polynomials in
k[t][X], and in this setting we managed to solve the root separation problem.

This thesis is organized as follows. In Chapter 1, we introduce standard
notation and collect some results needed later. In Chapter 2, we recall Ma-
son’s ABC-theorem and deduce a generalization. Then in Chapter 3, we
develop an analogue of the geometry of numbers over function fields. This
is applied in Chapter 4 to develop a reduction theory for binary forms over
function fields. Combining the results of Chapter 1 —4, we prove in Chapter
5 a function field analogue, in fully effective form, of Evertse’s conjecture
mentioned above. In Chapter 6, we consider the number of equivalence
classes of binary forms of given discriminant, under certain conditions. In
the last two chapters, we derive an effective inequality concerning the resul-
tant of this binary forms and derive an effective lower bound for the distance
between two algebraic functions, where we make a distinction between the

cases that they are conjugate over k(t) or not.



Samenvatting

Een binaire vorm van graad n is een homogeen polynoom in twee variabe-
len van graad n. We bekijken voorlopig binaire vormen van graad n met
geheeltallige coéfficiénten. Een belangrijke invariant van een binaire vorm
is zijn discriminant. Dit is een homogeen polynoom van graad 2n — 2 in de
coéfficiénten van F'. We geven met D(F) de discriminant van zo'n binaire
vorm F' aan, en met H(F') de hoogte, dat wil zeggen het maximum van de ab-
solute waarden van de coéfficiénten van F. Dan is |D(F)| < c(n)H(F)?"—2
waarbij ¢(n) alleen van n afhangt. We zeggen dat twee binaire vormen F'
en (G equivalent zijn, als G = £Fy voor zekere matrix U € GL (2,7Z). Hier
is Fy(X,Y) = F(aX +bY,cX +dY) voor U = (g g). Twee equivalante
binaire vormen hebben dezelfde discriminant. We kunnen de hoogte van
een binaire vorm steeds kleiner proberen te maken door hem te vervangen
door een equivalente binaire vorm. Wanneer de hoogte van een binaire vorm
op die manier niet meer kleiner kan worden gemaakt noemen we hem gere-
duceerd. Een vermoeden geformuleerd door Evertse maar waarschijnlijk al
veel ouder, zegt dat van elke gereduceerde binaire vorm F' € Z[X,Y] van
graad n > 2 met discriminant # 0 de hoogte H(F') kan worden afgeschat
als H(F) < ¢1(n)|D(F)|™ waarbij ¢1(n) en ca(n) alleen van n afhangen.
Dit vermoeden is voor n = 2 en n = 3 bewezen. Voor n = 2 volgt het
uit werk van Lagrange (1773) en Gauss (1801) en voor n = 3 uit werk van
Hermite (1851) maar voor n 2> 4 is het nog open. Evertse bewees in 1993

een zwakkere verse van bovenstaand vermoeden met in plaats van c¢; een
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constante die athangt van zowel n als het splitsingslichaam van F', en die
niet effectief te berekenen is uit het gegeven bewijs. Verder bewezen Evertse
en Gydry in 1991 een andere zwakkere versie van bovenstaand vermoeden,
met een bovengrens voor H(F') van de vorm exp (cl (n)|D(F) |CQ(")), waarbij

c1(n), ca(n) effectief uit het bewijs kunnen worden berekend.

In dit proefschrift bekijken we binaire vormen met coéfficiénten in de
ring C[t] van polynomen met complexe coéfficiénten (of meer algemeen met
coéfficiénten in een algebraisch afgesloten lichaam van karakteristiek 0). De
ring C[t] heeft veel eigenschappen gemeen met Z, bijvoorbeeld eenduidige
priemontbinding. Verder kunnen we op C[t] een absolute waarde definiéren,
namelijk |f| := e#2df yoor f € C[t]. We kunnen nu een analoge versie
van Evertse’s vermoeden formuleren voor binaire vormen in C[t][X,Y]. In
dit proefschrift geven we een bewijs voor die analoge versie, met expliciete
waarden voor ci(n) en cz(n). Om een idee van het proefschrift te geven

gaan we dieper in op twee belangrijke aspecten vsn het bewijs.

Het eerste aspect betreft de meetkunde der getallen. We geven een
idee van die theorie aan de hand van twee voorbeelden. Bekijk een school-
bord met daarop twee coordinaatassen getekend, de x-as en de y-as. Teken
alle roosterpunten op dit bord, dat wil zeggen met z,y € Z, bijvoorbeeld
(0,1),(2,3),(—5,4), etc. Kunnen we vier roosterpunten bedekken met een
stuk papier in de vorm van een cirkel met straal 17 Het is niet moeilijk
te laten zien dat dit inderdaad kan. Kan dit met een driehoekig stuk pa-
pier met oppervlakte 77 Of met een stuk papier van oppervlakte 7 van
een willekeurige vorm? Blichfeldt [3] bewees in 1914 dat je met een stuk
papier van oppervlakte k£, na indien nodig een verschuiving, altijd k + 1
roosterpunten kan bedekken. Bekijk nu een vierkant stuk papier met zijde-
lengte gelijk aan 2, maar speld het middelpunt van de vierkant vast op de
oorsprong (0,0), dat wil zeggen het snijpunt van de codrdinaatassen. Dus
we kunnen dit stuk papier wel draaien maar niet verschuiven. Ligt er altijd

een ander roosterpunt dan (0, 0) onder het stuk papier, ongeacht hoe we het
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draaien? Wat als we in plaats van een vierkant stuk papier een rechthoekig
stuk paper nemen met het middelpunt vastgespeld op (0,0)? Of een el-
lipsvormig stuk papier van oppervlakte 4 met middelpunt, dat wil zeggen
het snijpunt van de korte as en de lange as vastgespeld op (0,0)? Minkowski
bewees in 1896 dat een convexvormig stuk papier van oppervlakte minstens
4, dat spiegelsymmetrisch is ten opzichte van zijn zwaartepunt en waarvan
het zwaartepunt op (0, 0) is vastgespeld, afgezien van (0,0) altijd een ander
roosterpunt bedekt. Dit is de zogenaamde eerste stelling van Minkowski
over convexe gebieden. Deze stelling is in zekere zin kwalitatief. Later,
in 1910, bewees Minkowski zijn tweede stelling over convexe gebieden. In
termen van het stuk papier, kan deze als volgt worden geformuleerd. Neem
weer een convexvormig stuk papier waarvan het zwaartepunt is vastgespeld
op (0,0) en dat spiegelsymmetrisch is ten opzichte van zijn zwaartepunt.
We kunnen dit stuk met een factor A ”vermenigvuldigen” door het in alle
richtingen ten opzichte van (0,0) met een factor A\ uit te rekken (waarbij
een uitrekking met een factor 1/2 op hetzelfde neerkomt als een inkrimping
met een factor 2). Noem A; de kleinste factor waarmee we het stuk papier
moeten vermenigvuldigen opdat het naast (0,0) nog een ander roosterpunt
bedekt. Noem Ao de kleinste factor waarmee we het stuk papier moeten
vermenigvuldigen opdat het naast (0,0) nog twee andere roosterpunten be-
dekt die niet samen met (0,0) op dezelfde lijn liggen. Dan zegt de stelling
van Minkowski voor convexe gebieden dat %< Mo < % Minkowski be-
wees bovengenoemde stellingen niet alleen voor het tweedimensionale geval
dat we boven hebben beschreven, maar ook voor dimensies 3,4,.... Deze
resultaten blijken erg krachtig te zijn, zelfs in het onderzoek van vandaag in
de Diophantische meetkunde. In hoofdstukken 3 en 4 van dit proefschrift
passen we een analoge theorie van de meetkunde der getallen over C[t] toe

en leiden daaruit een reductietheorie voor binaire vormen over Clt] af.

Het tweede aspect van ons bewijs heeft betrekking op het ABC-vermoeden

voor algebraische getallen, en een analoge versie daarvan voor algebraische
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functies, die wel bewezen is. Het ABC-vermoeden gaat over drie positieve
gehele getallen a,b,c met a + b = ¢ zodat a,b en ¢ geen factor gemeen-
schappelijk hebben. Noem d het product van de verschillende priemdelers
van abc. Het ABC-vermoeden zegt ruwweg, dat ¢ niet te groot kan zijn
ten opzichte van d. Dus wanneer a, b deelbaar zijn door hoge machten van
priemgetallen, dan kan ¢ niet deelbaar zijn door hoge machten van priemge-
tallen. Het ABC-vermoeden, dat geformuleerd is door Oesterlé en later op

een preciezere manier door Masser in 1986, zegt het volgende:

ABC-Vermoeden. Voor elke ¢ > 0 zign er maar eindig veel drietallen
a, b, c van positieve gehele getallen, zodat a,b,c geen factor gemeen hebben
en zodat ¢ > d'¢, waarbij d het product is van de priemgetallen die abc

delen.

Dit vermoeden ziet er eenvoudig uit, maar het bleek extreem moeilijk te
zijn. In 1996 beschreef de Amerikaanse wiskundige Goldfeld het als "het
belangrijkste onopgeloste probleem in de Diophantische analyse.” Het ver-
moeden is nog steeds open. De Japanse wiskundige Mochizuki beweerde in
2012 een bewijs voor het ABC-vermoeden gevonden te hebben, maar experts
hebben nog niet kunnen bevestigen of zijn bewijs correct is of niet. Wanneer
het ABC-vermoeden juist is, heeft dit erg veel gevolgen, bijvoorbeeld aller-
lei generalisaties van de laatste stelling van Fermat, verscherpingen van de
Stelling van Roth over hoe goed algebraische getallen door rationale getallen

kunnen worden benaderd, en nog veel meer.

Een analoge versie van het ABC-vermoeden voor polynomen en meer
algemeen algebraische functies is onafhankelijk van elkaar bewezen door
Stothers in 1981 en Mason in 1983. Het bewijs van deze ABC-stelling
voor algebraische functies is niet zo moeilijk. Een eenvoudige versie van
deze stelling is als volgt. Zijn a(t),b(t), c(t) drie polynomen met complexe
coéfficiénten zodat a(t) + b(t) = c(t) en zodat a(t),b(t),c(t) geen gemeen-
schappelijk nulpunt hebben. Zij S het aantal verschillende nulpunten van
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a(t)b(t)c(t). Dan hebben a(t),b(t),c(t) allemaal graad hoogstens S — 1,
tenzij a(t),b(t), c(t) allemaal constant zijn. In hoofdstuk 2 van dit proef-
schift bewijzen we onder meer een veralgemening van de ABC-stelling voor
sommen aj(t) + - + ap(t) = c(t), gebaseerd op werk van Brownawell and
Masser [6], Zannier [26], en J. T-Y. Wang [25], en passen dit resultaat toe
in hoofdstuk 7.

Een ander probleem dat in dit proefschrift wordt bekeken is hoever
nulpunten van een polynoom van elkaar af kunnen liggen. Een elemen-
taire ongelijkheid van Mahler (1964) zegt het volgende: zij f € Z[X]; dan
geldt voor alle nulpunten «, 8 van f dat | — 3| > c(n)H(f)' ™", waarbij
c(n) een getal > 0 is dat alleen van n athangt. Hier is H(f) de hoogte van f,
dat wil zeggen het maximum van de absolute waarden van de coéfficiénten
van f. Het probleem is om een soortgelijke ongelijkheid te bewijzen met in
plaats van 1 — n een grotere exponent. En wat is de grootst mogelijke ex-
ponent? Hierbij spelen de bovengenoemde afschattingen voor gereduceerde
binaire vormen een belangrijke rol. Voor polynomen met coéfficiénten in Z
is dit nog open. In dit proefschrift hebben we het analoge probleem bekeken
voor polynomen met coéfficiénten in C[t], en bewezen dat voor polynomen
f(X) € C[t][X] van graad n > 4 in X de exponent 1 — n inderdaad kan
worden verbeterd.

Het bovenstaande probleem ligt in het verlengde van de Stelling van
Roth uit 1955 die gaat over de benadering van een vast algebraisch getal
~ door rationale getallen die we vrij laten variéren. De stelling zegt dat er
voor elke ¢ > 0 een getal c(y,e) > 0 zodat |y — p/q| > c(v,€)qg 2% voor
alle gehele getallen p en ¢ met ¢ > 0. Voor deze stelling kreeg Roth de
Fieldsmedaille.

In het symmetrische approximatieprobleem kijken we naar twee alge-
braische getallen o en [ die we vrij laten variéren. Neem aan dat «,
nulpunten zijn van respectievelijk de polynomen f,g € Z[X]. We vragen

naar afschattingen | — 8| = cH(f) 9H(g)™" met zo klein mogelijke waar-
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den voor J en 7 in termen van de hoogtes van f en g, waarbij c alleen athangt
van het getallenlichaam dat door o en § wordt voortgebracht. In dit proef-
schrift bewijzen we een stelling over het analoge probleem voor algebraische
functies in plaats van algebraische getallen, met effectieve constanten c,
en 1.

De opzet van dit proefschrift is als volgt. In hoofdstuk 1 introduceren we
de benodigde notatie, en verzamelem we enkele hulpresultaten die later wor-
den gebruikt. In hoofdstuk 2 noemen we de ABC-stelling voor algebraische
functies van Mason en een generalisatie daarvan van Brownawell en Masser,
en leiden een verdere generalisatie af. Vervolgens leiden we in hoofdstuk 3
een analogon voor algebraische functies af van een stelling van Evertse in
de meetkunde der getallen die een toepassing is van de tweede stelling van
Minkowski voor convexe gebieden. Dit gebruiken we in hoofdstuk 4 om een
reductietheorie voor binaire vormen over C[t] af te leiden. In hoofdstuk 5
bewijzen we het analogon van Evertse’s vermoeden voor gereduceerde bi-
naire vormen over C[t] door de resultaten uit de eerdere hoofdstukken te
combineren. in hoofdstuk 6 kijken we naar het aantal equivalentieklassen
van binair vormen over C[t] van gegeven discriminant. In de laatste twee
hoofdstukken bekijken we de (goed gedefinieerde) afstand tussen twee al-
gebraische functies « en 3 en leiden hiervoor een effectieve ondergrens af,
eerst in het geval dat a en 8 geconjugeerd zijn over C(t), en daarna wanneer

ze niet geconjugeerd zijn over C(t).
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