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Chapter 1

Stochastic Processes

1.1 Introduction

Loosely speaking, a stochastic process is a phenomenon that can be thought of as evolving
in time in a random manner. Common examples are the location of a particle in a physical
system, the price of stock in a financial market, interest rates, mobile phone networks, internet
traffic, etcetc.

A basic example is the erratic movement of pollen grains suspended in water, so-called
Brownian motion. This motion was named after the English botanist R. Brown, who first
observed it in 1827. The movement of pollen grain is thought to be due to the impacts of
water molecules that surround it. Einstein was the first to develop a model for studying the
erratic movement of pollen grains in in an article in 1926. We will give a sketch of how this
model was derived. It is more heuristically than mathematically sound.

The basic assumptions for this model (in dimension 1) are the following:

1) the motion is continuous.

Moreover, in a time-interval [t, t+ τ ], τ small,

2) particle movements in two non-overlapping time intervals of length τ are mutually inde-
pendent;

3) the relative proportion of particles experiencing a displacement of size between δ and δ+dδ
is approximately φτ (δ) with

• the probability of some displacement is 1:
∫∞
−∞ φτ (δ)dδ = 1;

• the average displacement is 0:
∫∞
−∞ δφτ (δ)dδ = 0;

• the variation in displacement is linear in the length of the time interval:∫∞
−∞ δ

2φτ (δ)dδ = Dτ , where D ≥ 0 is called the diffusion coefficient.

Denote by f(x, t) the density of particles at position x, at time t. Under differentiability
assumptions, we get by a first order Taylor expansion that

f(x, t+ τ) ≈ f(x, t) + τ
∂f

∂t
(x, t).

1



2 CHAPTER 1. STOCHASTIC PROCESSES

On the other hand, by a second order expansion

f(x, t+ τ) =

∫ ∞
−∞

f(x− δ, t)φτ (δ)dδ

≈
∫ ∞
−∞

[f(x, t)− δ ∂f
∂x

(x, t) + 1
2δ

2∂
2f

∂x2
(x, t)]φτ (δ)dδ

≈ f(x, t) + 1
2Dτ

∂2f

∂x2
(x, t).

Equating gives rise to the heat equation in one dimension:

∂f

∂t
= 1

2D
∂2f

∂x2
,

which has the solution

f(x, t) =
#particles√

4πDt
· e−x2/4Dt.

So f(x, t) is the density of a N (0, 4Dt)-distributed random variable multiplied by the number
of particles.

Side remark. In section 1.5 we will see that under these assumptions paths of pollen
grain through liquid are non-differentiable. However, from physics we know that the velocity
of a particle is the derivative (to time) of its location. Hence pollen grain paths must be
differentiable. We have a conflict between the properties of the physical model and the
mathematical model. What is wrong with the assumptions? Already in 1926 editor R. Fürth
doubted the validity of the independence assumption (2). Recent investigation seems to have
confirmed this doubt.

Brownian motion will be one of our objects of study during this course. We will now turn
to a mathematical definition.

Definition 1.1.1 Let T be a set and (E, E) a measurable space. A stochastic process indexed
by T , with values in (E, E), is a collection X = (Xt)t∈T of measurable maps from a (joint)
probability space (Ω,F ,P) to (E, E). Xt is called a random element as a generalisation of the
concept of a random variable (where (E, E) = (R,B)). The space (E, E) is called the state
space of the process.

Review BN §1

The index t is a time parameter, and we view the index set T as the set of all observation
instants of the process. In these notes we will usually have T = Z+ = {0, 1, . . .} or T =
R+ = [0,∞) (or T is a sub-interval of one these sets). In the former case, we say that time is
discrete, in the latter that time is continuous. Clearly a discrete-time process can always be
viewed as a continuous-time process that is constant on time-intervals [n, n+ 1).

The state space (E, E) will generally be a Euclidian space Rd, endowed with its Borel
σ-algebra B(Rd). If E is the state space of the process, we call the process E-valued.

For every fixed observation instant t ∈ T , the stochastic process X gives us an E-valued
random element Xt on (Ω,F ,P). We can also fix ω ∈ Ω and consider the map t→ Xt(ω) on
T . These maps are called the trajectories or sample paths of the process. The sample paths
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are functions from T to E and so they are elements of the function space ET . Hence, we can
view the process X as an ET -valued random element.

Quite often, the sample paths belong to a nice subset of this space, e.g. the continuous
or right-continuous functions, alternatively called the path space. For instance, a discrete-
time process viewed as the continuous-time process described earlier, is a process with right-
continuous sample paths.

Clearly we need to put an appropriate σ-algebra on the path space ET . For consistency
purposes it is convenient that the marginal distribution of Xt be a probability measure on
the path space. This is achieved by ensuring that the projection x → xt, where t ∈ T ,
is measurable. The σ-algebra ET , described in BN §2, is the minimal σ-algebra with this
property.

Review BN §2

We will next introduce the formal requirements for the stochastic processes that are called
Brownian motion and Poisson process respectively. First, we introduce processes with inde-
pendent increments.

Definition 1.1.2 Let E be a separable Banach space, and E the Borel-σ-algebra of subsets
of E. Let T = [0, τ ] ⊂ R+. Let X = {Xt}t∈T be an (E, E)-valued stochastic process, defined
on an underlying probability space (Ω,F ,P).

i) X is called a process with independent increments, if σ(Xt − Xs) and σ(Xu, u ≤ s), are
independent for all s ≤ t ≤ τ .

ii) X is called a process with stationary, independent increments, if, in addition, Xt −Xs
d
=

Xt−s −X0, for s ≤ t ≤ τ .

The mathematical model of the physical Brownian motion is a stochastic process that is
defined as follows.

Definition 1.1.3 The stochastic process W = (Wt)t≥0 is called a (standard) Brownian mo-
tion or Wiener process, if

i) W0 = 0, a.s.;

ii) W is a stochastic process with stationary, independent increments;

iii) Wt −Ws
d
= N (0, t− s);

iv) almost all sample paths are continuous.

In these notes we will abbreviate ‘Brownian motion’ as BM. Property (i) tells that
standard BM starts at 0. A stochastic process with property (iv) is called a continuous
process. Similarly, a stochastic process is said to be right-continuous if almost all of
its sample paths are right-continuous functions. Finally, the acronym cadlag (continu à
droite, limites à gauche) is used for processes with right-continuous sample paths having
finite left-hand limits at every time instant.

Simultaneously with Brownian motion we will discuss another fundamental process: the Pois-
son process.
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Definition 1.1.4 A real-valued stochastic process N = (Nt)t≥0 is called a Poisson process if

i) N is a counting process, i.o.w.

a) Nt takes only values in (Z+, 2
Z+), t ≥ 0;

b) t 7→ Nt is increasing, i.o.w. Ns ≤ Nt, t ≥ s.
c) (no two occurrences can occur simultaneously) lims↓tNs ≤ lims↑tNs+1, for all t ≥ 0.

ii) N0 = 0, a.s.;

iii) N is a stochastic process with stationary, independent increments.

Note: so far we do not know yet whether a BM process and a Poisson process exist at all!
The Poisson process can be constructed quite easily and we will do so first before delving into
more complex issues.

Construction of the Poisson process The construction of a Poisson process is simpler
than the construction of Brownian motion. It is illustrative to do this first.

Let a probability space (Ω,F ,P) be given. We construct a sequence of i.i.d. (R+,B(R+))-

measurable random variables Xn, n = 1, . . ., on this space, such that Xn
d
= exp(λ). This

means that
P{Xn > t} = e−λt, t ≥ 0.

Put S0 = 0, and Sn =
∑n

i=1Xi. Clearly Sn, n = 0, . . . are in increasing sequence of random
variables. Since Xn are all F/B(R+)-measurable, so are Sn. Next define

Nt = max{n |Sn ≤ t}.

We will show that this is a Poisson process. First note that Nt can be described alternatively
as

Nt =

∞∑
n=1

1{Sn≤t}.

Nt maybe infinite, but we will show that it is finite with probability 1 for all t. Moreover,
no two points Sn and Sn+1 are equal. Denote by E the σ-algebra generated by the one-point
sets of Z+.

Lemma 1.1.5 Nt is F/2Z+-measurable. There exists a set Ω∗ ∈ F with P{Ω∗} = 1, such
that Nt(ω) <∞ for all t ≥ 0, ω ∈ Ω∗, and Sn(ω) < Sn+1(ω), n = 0, . . ..

Proof. From the law of large numbers we find a set Ω′, P{Ω′} = 1, such that Nt(ω) <∞ for
all t ≥ 0, ω ∈ Ω′. It easily follows that there exists a subset Ω∗ ⊂ Ω′, P{Ω∗} = 1, meeting the
requirements of the lemma. Measurability follows from the fact that 1{Sn≤t} is measurable.
Hence a finite sum of these terms is measurable. The infinite sum is then measurable as well,
being the monotone limit of measurable functions. QED

Since Ω∗ ∈ F , we may restrict to this smaller space without further ado. Denote the restricted
probability space again by (Ω,F ,P).

Theorem 1.1.6 For the constructed process N on (Ω,F ,P) the following hold.
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i) N is a (Z+, E)-measurable stochastic process that has properties (i,...,iv) from Defini-
tion 1.1.4. Moreover, Nt is F/E-measurable, it has a Poisson distribution with pa-
rameter λt and Sn has a Gamma distribution with parameters (n, λ). In particular
ENt = λt, and EN2

t = λt+ (λt)2.

ii) All paths of N are cadlag.

Proof. The second statement is true by construction, as well as are properties (i,ii). The fact
that Nt has a Poisson distribution with parameter λt, and that Sn has Γ(n, λ) distribution is
standard.

We will prove property (iv). It suffices to show for t ≥ s that Nt − Ns has a Poisson
(λ(t− s)) distribution. Clearly

P{Nt −Ns = j} =
∑
i≥0

P{Ns = i,Nt −Ns = j}

=
∑
i≥0

P{Si ≤ s, Si+1 > s, Si+j ≤ t, Si+j+1 > t}. (1.1.1)

First let i, j > 1. Recall the density fn,λ of the Γ(n, λ) distribution:

fn,λ(x) =
λnxn−1e−λx

Γ(n)
, n 6= 1

where Γ(n) = (n−1)!. Then, with a change of variable u = s2−(s−s1) in the third equation,

P{Nt −Ns = j,Ns = i} = P{Si ≤ s, Si+1 > s, Si+j ≤ t, Si+j+1 > t}

=

∫ s

0

∫ t−s1

s−s1

∫ t−s2−s1

0
e−λ(t−s3−s2−s1)fj−1,λ(s3)ds3λe

−λs2ds2fi,λ(s1)ds1

=

∫ s

0

∫ t−s

0

∫ t−s−u

0
e−λ(t−s−u−s3)fj−1,λ(s3)ds3λe

−λudu · e−λ(s−s1)fi,λ(s1)ds1

= P{Sj ≤ t− s, Sj+1 > t− s} · P{Si ≤ s, Si+1 > s}
= P{Nt−s = j}P{Ns = i}. (1.1.2)

For i = 0, 1, j = 1, we get the same conclusion. (1.1.1) then implies that P{Nt −Ns = j} =
P{Nt−s = j}, for j > 0. By summing over j > 0 and substracting from 1, we get the relation
for j = 0 and so we have proved property (iv).

Finally, we will prove property (iii). Let us first consider σ(Nu, u ≤ s). This is the smallest
σ-algebra that makes all maps ω 7→ Nu(ω), u ≤ s, measurable. Section 2 of BN studies its
structure. It follows that (see Exercise 1.1) the collection I, with

I =
{
A ∈ F | ∃n ∈ Z+, t0 ≤ t1 < t2 < · · · < tn, tl ∈ [0, s], il ∈ Z+, l = 0, . . . , n,

such that A = {Ntl = il, l = 0, . . . , n}
}

a π-system for this σ-algebra.
To show independence property (iii), it therefore suffices show for each n, for each sequence

0 ≤ t0 < · · · < tn, and i0, . . . , in, i that

P{Ntl = il, l = 0, . . . , n,Nt −Ns = i} = P{Ntl = il, l = 0, . . . , n} · P{Nt −Ns = i}.
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This is analogous to the proof of (1.1.2). QED

A final observation. We have constructed a mapping N : Ω → Ω′ ⊂ Z
[0,∞)
+ , with Z

[0,∞)
+ the

space of all integer-valued functions. The space Ω′ consists of all integer valued paths ω′, that
are right-continuous and non-decreasing, and have the property that ω′t ≤ lims↑t ω

′
s + 1.

It is desirable to consider Ω′ as the underlying space. One can then construct a Poisson
process directly on this space, by taking the identity map. This will be called the canonical
process. The σ-algebra to consider, is then the minimal σ-algebra F ′ that makes all maps
ω′ 7→ ω′t measurable, t ≥ 0. It is precisely F ′ = E [0,∞) ∩ Ω′.

Then ω 7→ N(ω) is measurable as a map Ω → Ω′. On (Ω′,F ′) we now put the induced
probability measure P′ by P′{A} = P{ω |N(ω) ∈ A}.

In order to construct BM, we will next discuss a procedure to construct a stochastic process,
with given marginal distributions.

1.2 Finite-dimensional distributions

In this section we will recall Kolmogorov’s theorem on the existence of stochastic processes
with prescribed finite-dimensional distributions. We will use the version that is based on the
fact hat T is ordered. It allows to prove the existence of a process with properties (i,ii,iii) of
Definition 1.1.3.

Definition 1.2.1 Let X = (Xt)t∈T be a stochastic process. The distributions of the finite-
dimensional vectors of the form (Xt1 , Xt2 , . . . , Xtn), t1 < t2 < · · · < tn, are called the finite-
dimensional distributions (fdd’s) of the process.

It is easily verified that the fdd’s of a stochastic process form a consistent system of measures
in the sense of the following definition.

Definition 1.2.2 Let T ⊂ R and let (E, E) be a measurable space. For all n ∈ Z+ and all
t1 < · · · < tn, ti ∈ T , i = 1, . . . , n, let µt1,...,tn be a probability measure on (En, En). This
collection of measures is called consistent if it has the property that

µt1,...,ti−1,ti+1,...,tn(A1×· · ·×Ai−1×Ai+1×· · ·×An) = µt1,...,tn(A1×· · ·×Ai−1×E×Ai+1×· · ·×An),

for all A1, . . . , Ai−1, Ai+1, . . . , An ∈ E .

The Kolmogorov consistency theorem states that, conversely, under mild regularity conditions,
every consistent family of measures is in fact the family of fdd’s of some stochastic process.

Some assumptions are needed on the state space (E, E). We will assume that E is a
Polish space. This is a topological space, on which we can define a metric that consistent
with the topology, and which makes the space complete and separable. As E we take the
Borel-σ-algebra, i.e. the σ-algebra generated by the open sets. Clearly, the Euclidian spaces
(Rn,B(Rn)) fit in this framework.

Theorem 1.2.3 (Kolmogorov’s consistency theorem) Suppose that E is a Polish space
and E its Borel-σ-algebra. Let T ⊂ R and for all n ∈ Z+, t1 < . . . < tn ∈ T , let µt1,...,tn
be a probability measure on (En, En). If the measures µt1,...,tn form a consistent system, then
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there exists a probability measure P on ET , such that the canonical (or co-ordinate variable)
process (Xt)t on (Ω = ET ,F = ET ,P), defined by

X(ω) = ω, Xt(ω) = ωt,

has fdd’s µt1,...,tn.

The proof can for instance be found in Billingsley (1995). Before discussing this theorem, we
will discuss its implications for the existence of BM.

Review BN §4 on multivariate normal distributions

Corollary 1.2.4 There exists a probability measure P on the space (Ω = R[0,∞),F = B(R)[0,∞)),
such that the co-ordinate process W = (Wt)t≥0 on (Ω = R[0,∞),F = B(R)[0,∞),P) has prop-
erties (i,ii,iii) of Definition 1.1.3.

Proof. The proof could contain the following ingredients.
(1) Show that for 0 ≤ t0 < t1 < · · · < tn, there exist multivariate normal distributions with
covariance matrices

|Σ =


t0 0 . . . . . . 0
0 t1 − t0 0 . . . 0

0 0 t2 − t1
. . . 0

...
...

. . .
. . . 0

0 0 0 . . . tn − tn−1

 ,

and

|Σt0,...,tn =


t0 t0 . . . . . . t0
t0 t1 t1 . . . t1
t0 t1 t2 . . . t2
...

...
...

. . .
...

t0 t1 t2 . . . tn

 .

(2) Show that a stochastic process W has properties (i,ii,iii) if and only if for all n ∈ Z,

0 ≤ t0 < . . . < tn the vector (Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1)
d
= N(0, |Σ).

(3) Show that for a stochastic process W the (a) and (b) below are equivalent:

a) for all n ∈ Z, 0 ≤ t0 < . . . < tn the vector (Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1)
d
= N(0, |Σ) ;

b) for all n ∈ Z, 0 ≤ t0 < . . . < tn the vector (Wt0 ,Wt1 , . . . ,Wtn)
d
= N(0, |Σt0,...,tn).

QED

The drawback of Kolmogorov’s Consistency Theorem is, that in principle all functions on the
positive real line are possible sample paths. Our aim is the show that we may restrict to the
subset of continuous paths in the Brownian motion case.

However, the set of continuous paths is not even a measurable subset of B(R)[0,∞), and so
the probability that the process W has continuous paths is not well defined. The next section
discussed how to get around the problem concerning continuous paths.
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1.3 Kolmogorov’s continuity criterion

Why do we really insist on Brownian motion to have continuous paths? First of all, the
connection with the physical process. Secondly, without regularity properies like continuity,
or weaker right-continuity, events of interest are not ensured to measurable sets. An example
is: {supt≥0Wt ≤ x}, inf{t ≥ 0 |Wt = x}.

The idea to address this problem, is to try to modify the constructed process W in such a
way that the resulting process, W̃ say, has continuous paths and satisfies properties (i,ii,iii),
in other words, it has the same fdd’s as W . To make this idea precise, we need the following
notions.

Definition 1.3.1 Let X and Y be two stochastic processes, indexed by the same set T
and with the same state space (E, E), defined on probability spaces (Ω,F ,P) and (Ω′,F ′,P′)
respectively. The processes are called versions of each other, if they have the same fdd’s. In
other words, if for all n ∈ Z+, t1, . . . , tn ∈ T and B1, . . . , Bn ∈ E

P{Xt1 ∈ B1, Xt2 ∈ B2, . . . , Xtn ∈ Bn} = P′{Yt1 ∈ B1, Yt2 ∈ B2, . . . , Ytn ∈ Bn}.

X and Y are both (E, E)-valued stochastic processes. They can be viewed as random
elements with values in the measurable path space (ET , ET ). X induces a probability
measure PX on the path space with PX{A} = P{X−1(A)}. In the same way Y induces
a probability PY on the path space. Since X and Y have the same fdds, it follows for
each n ∈ Z+ and t1 < · · · < tn, t1, . . . , tn ∈ T , and A1, . . . , An ∈ E that

PX{A} = PY {A},

for A = {x ∈ ET |xti ∈ Ai, i = 1, . . . , n}. The collection of sets B of this form are a
π-system generating ET (cf. remark after BN Lemma 2.1), hence PX = PY on (ET , ET )
by virtue of BN Lemma 1.2(i).

Definition 1.3.2 Let X and Y be two stochastic processes, indexed by the same set T and
with the same state space (E, E), defined on the same probability space (Ω,F ,P).

i) The processes are called modifications of each other, if for every t ∈ T

Xt = Yt, a.s.

ii) The processes are called indistinguishable, if there exists a set Ω∗ ∈ F , with P{Ω∗} = 1,
such that for every ω ∈ Ω∗ the paths t→ Xt(ω) and t→ Yt(ω) are equal.

The third notion is stronger than the second notion, which in turn is clearly stronger
than the first one: if processes are indistinguishable, then they are modifications of
each other. If they are modifications of each other, then they certainly are versions of
each other. The reverse is not true in general (cf. Exercises 1.3, 1.6). The following
theorem gives a sufficient condition for a process to have a continuous modification.
This condition (1.3.1) is known as Kolmogorov’s continuity condition.

Denote by Cd[0, T ] the collection of Rd-valued continuous functions on [0, T ].
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Theorem 1.3.3 (Kolmogorov’s continuity criterion) Let X = (Xt)t∈[0,T ] be an (Rd,Bd)-
valued stochastic process on a probability space (Ω,F ,P). Suppose that there exist constants
α, β,K > 0 such that

E||Xt −Xs||α ≤ K|t− s|1+β, (1.3.1)

for all s, t ∈ [0, T ]. Then there exists a (everywhere!) continuous modification X̂ of X, i.o.w.
X̂(ω) is a continuous function on [0, T ] for each ω ∈ Ω. Thus the map X̂ : (Ω,F ,P) →
(Cd[0, T ], Cd[0, T ] ∩ B(Rd)[0,T ]) is an F/Cd[0, T ] ∩ B(Rd)[0,T ]-measurable map.

Note: β > 0 is needed for the continuous modification to exist. See Exercise 1.5.

Proof. The proof consists of the following steps:

1 (1.3.1) implies that Xt is continuous in probability on [0, T ];

2 Xt is a.s. uniformly continuous on a countable, dense subset D ⊂ [0, T ];

3 ‘Extend’ X to a continuous process Y on all of [0, T ].

4 Show that Y is a well-defined stochastic process, and a continuous modification of X.

Without loss of generality we may assume that T = 1.

Step 1 Apply Chebychev’s inequality to the r.v. Z = ||Xt−Xs|| and the function φ : R→ R+

given by

φ(x) =

{
0, x ≤ 0
xα, x > 0.

Since φ is non-decreasing, non-negative and Eφ(Z) <∞, it follows for every ε > 0 that

P{||Xt −Xs|| > ε} ≤
E||Xt −Xs||α

εα
≤ K|t− s|1+β

εα
. (1.3.2)

Let t, t1, . . . ∈ [0, 1] with tn → t as n→∞. By the above,

lim
n→∞

P{||Xt −Xtn || > ε} = 0,

for any ε > 0. Hence Xtn
P→ Xt, n→∞. In other words, Xt is continuous in probability.

Step 2 As the set D we choose the dyadic rationals. Let Dn = {k/2n | k = 0, . . . , 2n}. Then
Dn is an increasing sequence of sets. Put D = ∪nDn = limn→∞Dn. Clearly D̄ = [0, 1], i.e.
D is dense in [0, 1].

Fix γ ∈ (0, β/α). Apply Chebychev’s inequality (1.3.2) to obtain

P{||Xk/2n −X(k−1)/2n || > 2−γn} ≤ K2−n(1+β)

2−γnα
= K2−n(1+β−αγ).

It follows that

P{ max
1≤k≤2n

||Xk/2n −X(k−1)/2n || > 2−γn} ≤
2n∑
k=1

P{||Xk/2n −X(k−1)/2n > 2−γn||}

≤ 2nK2−n(1+β−αγ) = K2−n(β−αγ).
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Define the set An = {max1≤k≤2n ||Xk/2n −X(k−1)/2n || > 2−γn}. Then

∑
n

P{An} ≤
∑
n

K2−n(β−αγ) = K
1

1− 2−(β−αγ <∞,

since β−αγ > 0. By virtue of the first Borel-Cantelli Lemma this implies that P{lim supmAm} =
P{∩∞m=1 ∪∞n=m An} = 0. Hence there exists a set Ω∗ ⊂ Ω, Ω∗ ∈ F , with P{Ω∗} = 1, such that
for each ω ∈ Ω∗ there exists Nω, for which ω 6∈ ∪n≥NωAn, in other words

max
1≤k≤2n

||Xk/2n(ω)−X(k−1)/2n(ω)|| ≤ 2−γn, n ≥ Nω. (1.3.3)

Fix ω ∈ Ω∗. We will show the existence of a constant K ′, such that

||Xt(ω)−Xs(ω)|| ≤ K ′|t− s|γ , ∀s, t ∈ D, 0 < t− s < 2−Nω . (1.3.4)

Indeed, this implies uniform continuity of Xt(ω) for t ∈ D, for ω ∈ Ω∗. Step 2 will then be
proved.

Let s, t satisfy 0 < t− s < 2−Nω . Hence, there exists n ≥ Nω, such that 2−(n+1) ≤ t− s <
2−n.

Fix n ≥ Nω. For the moment, we restrict to the set of s, t ∈ ∪m≥n+1Dm, with 0 < t− s <
2−n. By induction to m ≥ n+ 1 we will first show that

||Xt(ω)−Xs(ω)|| ≤ 2

m∑
k=n+1

2−γk, (1.3.5)

if s, t ∈ Dm.

Suppose that s, t ∈ Dn+1. Then t − s = 2−(n+1). Thus s, t are neighbouring points in
Dn+1, i.e. there exists k ∈ {0, . . . , 2n+1 − 1}, such that t = k/2n+1 and s = (k + 1)/2n+1.
(1.3.5) with m = n + 1 follows directly from (1.3.3). Assume that the claim holds true upto
m ≥ n+ 1. We will show its validity for m+ 1.

Put s′ = min{u ∈ Dm |u ≥ s} and t′ = max{u ∈ Dm |u ≤ t}. By construction s ≤ s′ ≤
t′ ≤ t, and s′ − s, t − t′ ≤ 2−(m+1). Then 0 < t′ − s′ ≤ t − s < 2−n. Since s′, t′ ∈ Dm, they
satisfy the induction hypothesis. We may now apply the triangle inequality, (1.3.3) and the
induction hypothesis to obtain

||Xt(ω)−Xs(ω)|| ≤ ||Xt(ω)−Xt′(ω)|| + ||Xt′(ω)−Xs′(ω)|| + ||Xs′(ω)−Xs(ω)||

≤ 2−γ(m+1) + 2
m∑

k=n+1

2−γk + 2−γ(m+1) = 2
m+1∑
k=n+1

2−γk.

This shows the validity of (1.3.5). We prove (1.3.4). To this end, let s, t ∈ D with 0 < t− s <
2−Nω . As noted before, there exists n > Nω, such that 2−(n+1) ≤ t − s < 2−n. Then there
exists m ≥ n+ 1 such that t, s ∈ Dm. Apply (1.3.5) to obtain

||Xt(ω)−Xs(ω)|| ≤ 2

m∑
k=n+1

2−γk ≤ 2

1− 2−γ
2−γ(n+1) ≤ 2

1− 2−γ
|t− s|γ .
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Consequently (1.3.4) holds with constant K ′ = 2/(1− 2−γ).
Step 3 Define a new stochastic process Y = (Yt)t∈[0,1] on (Ω,F ,P) as follows: for ω 6∈ Ω∗, we
put Yt = 0 for all t ∈ [0, 1]; for ω ∈ Ω∗ we define

Yt(ω) =


Xt(ω), if t ∈ D,
lim
tn→t
tn∈D

Xtn(ω), if t 6∈ D.

For each ω ∈ Ω∗, t → Xt(ω) is uniformly continuous on the dense subset D of [0, 1]. It is a
theorem from Analysis, that t → Xt(ω) can be uniquely extended as a continuous function
on [0, 1]. This is the function t→ Yt(ω), t ∈ [0, 1].
Step 4 Uniform continuity of X implies that Y is a well-defined stochastic process. Since X
is continuous in probability, it follows that Y is a modification of X (Exercise 1.4). See BN
§5 for a useful characterisation of convergence in probability. QED

The fact that Kolmogorov’s continuity criterion requires K|t − s|1+β for some β >
0, guarantees uniform continuity of a.a. paths X(ω) when restricted to the dyadic
rationals, whilst it does not so for β = 0 (see Exercise 1.5). This uniform continuity
property is precisely the basis of the proof of the Criterion.

Corollary 1.3.4 Brownian motion exists.

Proof. By Corollary 1.2.4 there exists a process W = (Wt)t≥0 that has properties (i,ii,iii)
of Definition 1.1.3. By property (iii) the increment Wt −Ws has a N(0, t − s)-distribution
for all s ≤ t. This implies that E(Wt −Ws)

4 = (t − s)2EZ4, with Z a standard normally
distributed random variable. This means the Kolmogorov’s continuity condition (1.3.1) is
satisfied with α = 4 and β = 1. So for every T ≥ 0, there exists a continuous modification
W T = (W T

t )t∈[0,T ] of the process (Wt)t∈[0,T ]. Now define the process X = (Xt)t≥0 by

Xt =

∞∑
n=1

Wn
t 1{[n−1,n)}(t).

In Exercise 1.7 you are asked to show that X is a Brownian motion process. QED

Remarks on the canonical process Lemma 1.3.5 below allows us to restrict to continuous
paths. There are two possibilities now to define Brownian motion as a canonical stochastic
process with everywhere continuous paths.

The first one is to ‘kick out’ the discontinuous paths from the underlying space. This is
allowed by means of the outer measure.
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Let (Ω,F ,P) be a probability space. Define the outer measure

P∗{A} = inf
B∈F ,B⊃A

P{B}.

Lemma 1.3.5 Suppose that A is a subset of Ω with P∗{A} = 1. Then for any F ∈ F ,
one has P∗{F} = P{F}. Moreover, (A,A,P∗) is a probability space, where A = {A ∩
F |F ∈ F}.

Kolmogorov’s continuity criterion applied to canonical BM implies that the outer measure
of the set C[0,∞) of continuous paths equals 1. The BM process after modification is the
canonical process on the restricted space (R[0,∞) ∩ C[0,∞),B[0,∞) ∩ C[0,∞),P∗), with P∗ the
outer measure associated with P.

The second possibility is the construction mentioned at the end of section 1.1, described
in more generality below. Given any (E, E)-valued stochastic process X on an underlying
probability space (Ω,F ,P). Then X : (Ω,F) → (ET , ET ) is a measurable map inducing a
probability measure PX on the path space (ET , ET ). The canonical map on (ET , ET ,PX) now
has the same distribution as X by construction. Hence, we can always associate a canonical
stochastic process with a given stochastic process.

Suppose now that there exists a subset Γ ⊂ ET , such that X : Ω → Γ ∩ ET . That is,
the paths of X have a certain structure. Then X is F/Γ ∩ ET -measurable, and induces a
probability measure PX on (Γ,Γ∩ ET ). Again, we may consider the canonical process on this
restricted probability space (Γ,Γ ∩ ET ,PX).

1.4 Gaussian processes

Brownian motion is an example of a so-called Gaussian process. The general definition is as
follows.

Definition 1.4.1 A real-valued stochastic process is called Gaussian of all its fdd’s are Gaus-
sian, in other words, if they are multivariate normal distributions.

Let X be a Gaussian process indexed by the set T . Then m(t) = EXt, t ∈ T , is the
mean function of the process. The function r(s, t) = cov(Xs, Xt), (s, t) ∈ T × T , is the
covariance function. By virtue of the following uniqueness lemma, fdd’s of Gaussian
processes are determined by their mean and covariance functions.

Lemma 1.4.2 Two Gaussian processes with the same mean and covariance functions are
versions of each other.

Proof. See Exercise 1.8. QED

Brownian motion is a special case of a Gaussian process. In particular it has m(t) = 0 for
all t ≥ 0 and r(s, t) = s ∧ t, for all s ≤ t. Any other Gaussian process with the same mean
and covariance function has the same fdd’s as BM itself. Hence, it has properties (i,ii,iii) of
Definition 1.1.3. We have the following result.
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Lemma 1.4.3 A continuous or a.s. continuous Gaussian process X = (Xt)t≥0 is a BM pro-
cess if and only if it has the same mean function m(t) = EXt = 0 and covariance function
r(s, t) = EXsXt = s ∧ t.

The lemma looks almost trivial, but provides us with a number extremely useful scaling and
symmetry properties of BM!

Remark that a.s. continuity means that the collection of discontinuous paths is contained
in a null-set. By continuity we mean that all paths are continuous.

Theorem 1.4.4 Let W be a BM process on (Ω,F ,P). Then the following are BM processes
as well:

i) time-homogeneity for every s ≥ 0 the shifted process W (s) = (Wt+s −Ws)t≥0;

ii) symmetry the process −W = (−Wt)t≥0;

iii) scaling for every a > 0, the process W a defined by W a
t = a−1/2Wat;

iv) time inversion the process X = (Xt)t≥0 with X0 = 0 and Xt = tW1/t, t > 0.

If W has (a.s.) continuous paths then W (s), −W and W a have (a.s.) continuous paths and
X has a.s. continuous paths. There exists a set Ω∗ ∈ F , such that X has continuous paths
on (Ω∗,F ∩ Ω∗,P).

Proof. We would like to apply Lemma 1.4.3. To this end we have to check that (i) the defined
processes are Gaussian; (ii) that (almost all) sample paths are continuous and (iii) that they
have the same mean and covariance functions as BM. In Exercise 1.9 you are asked to show
this for the processes in (i,ii,iii). We will give an outline of the proof (iv).

The most interesting step is to show that almost all sample paths of X are continuous.
The remainder is analogous to the proofs of (i,ii,iii).

So let us show that almost all sample paths of X are continuous. By time inversion, it is
immediate that (Xt)t>0 (a.s.) has continuous sample paths if W has. We only need show a.s.
continuity at t = 0, that is, we need to show that limt↓0Xt = 0, a.s.

Let Ω∗ = {ω ∈ Ω | (Wt(ω))t≥0 continuous,W0(ω) = 0}. By assumption Ω\Ω∗ is contained
in a P-null set. Further, (Xt)t>0 has continuous paths on Ω∗.

Then limt↓0Xt(ω) = 0 iff for all ε > 0 there exists δω > 0 such that |Xt(ω)| < ε for all
t ≤ δω. This is true if and only if for all integers m ≥ 1, there exists an integer nω, such that
|Xq(ω)| < 1/m for all q ∈ Q with q < 1/nω, because of continuity of Xt(ω), t > 0. Check
that this implies

{ω : lim
t↓0

Xt(ω) = 0} ∩ Ω∗ =

∞⋂
m=1

∞⋃
n=1

⋂
q∈(0,1/n]∩Q

{ω : |Xq(ω)| < 1/m} ∩ Ω∗.

The fdd’s of X and W are equal. Hence (cf. Exercise 1.10)

P{
∞⋂
m=1

∞⋃
n=1

⋂
q∈(0,1/n]∩Q

{ω : |Xq(ω)| < 1/m}} = P{
∞⋂
m=1

∞⋃
n=1

⋂
q∈(0,1/n]∩Q

{ω : |Wq(ω)| < 1/m}}.

It follows that (cf. Exercise 1.10) the probability of the latter equals 1. As a consequence
P{ω : limt↓0Xt(ω) = 0} = 1.
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QED

These scaling and symmetry properties can be used to show a number of properties of Brow-
nian motion. The first is that Brownian motion sample paths oscillate between +∞ and −∞.

Corollary 1.4.5 Let W be a BM with the property that all paths are continuous. Then

P{sup
t≥0

Wt =∞, inf
t≥0

Wt = −∞} = 1.

Proof. It is sufficient to show that

P{sup
t≥0

Wt =∞} = 1. (1.4.1)

Indeed, the symmetry property implies

sup
t≥0

Wt
d
= sup

t≥0
(−Wt) = − inf

t≥0
Wt.

Hence (1.4.1) implies that P{inft≥0Wt = −∞} = 1. As a consequence, the probability of the
intersection equals 1 (why?).

First of all, notice that suptWt is well-defined. We need to show that suptWt is a measur-
able function. This is true (cf. BN Lemma 1.3) if {suptWt ≤ x} is measurable for all x ∈ R.
(Q is sufficient of course).

This follows from
{sup

t
Wt ≤ x} =

⋂
q∈Q
{Wq ≤ x}.

Here we use that all paths are continuous. We cannot make any assertions on measurability
of {Wq ≤ x} restricted to the set of discontinuous paths, unless F is P-complete.

By the scaling property we have for all a > 0

sup
t
Wt

d
= sup

t

1√
a
Wat =

1√
a

sup
t
Wt.

It follows for n ∈ Z+ that

P{sup
t
Wt ≤ n} = P{n2 sup

t
Wt ≤ n} = P{sup

t
Wt ≤ 1/n}.

By letting n tend to infinity, we see that

P{sup
t
Wt <∞} = P{sup

t
Wt ≤ 0}.

Thus, for (1.4.1) it is sufficient to show that P{suptWt ≤ 0} = 0. We have

P{sup
t
Wt ≤ 0} ≤ P{W1 ≤ 0, sup

t≥1
Wt ≤ 0}

≤ P{W1 ≤ 0, sup
t≥1

Wt −W1 <∞}

= P{W1 ≤ 0}P{sup
t≥1

Wt −W1 <∞},
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by the independence of Brownian motion increments. By the time-homogeneity of BM, the
latter probability equals the probability that the supremum of BM is finite. We have just
showed that this equals P{supWt ≤ 0}. And so we find

P{sup
t
Wt ≤ 0} ≤ 1

2P{sup
t
Wt ≤ 0}.

This shows that P{suptWt ≤ 0} = 0 and so we have shown (1.4.1). QED

Since BM has a.s. continuous sample paths, this implies that almost every path visits every
point of R. This property is called recurrence. With probability 1 it even visits every point
infinitely often. However, we will not further pursue this at the moment and merely mention
the following statement.

Corollary 1.4.6 BM is recurrent.

An interesting consequence of the time inversion property is the following strong law of large
numbers for BM.

Corollary 1.4.7 Let W be a BM. Then

Wt

t

a.s.→ 0, t→∞.

Proof. Let X be as in part (iv) of Theorem 1.4.4. Then

P{Wt

t
→ 0, t→∞} = P{X1/t → 0, t→∞} = 1.

QED

1.5 Non-differentiability of the Brownian sample paths

We have already seen that the sample paths of W are continuous functions that oscillate
between +∞ and −∞. Figure 1.1 suggests that the sample paths are very rough. The
following theorem shows that this is indeed the case.

Theorem 1.5.1 Let W be a BM defined on the space (Ω,F ,P). There is a set Ω∗ with
P{Ω∗} = 1, such that the sample path t→W(ω) is nowhere differentiable, for any ω ∈ Ω∗.

Proof. Let W be a BM. Consider the upper and lower right-hand derivatives

DW (t, ω) = lim sup
h↓0

Wt+h(ω)−Wt(ω)

h

DW (t, ω) = lim inf
h↓0

Wt+h(ω)−Wt(ω)

h
.

Let

A = {ω | there exists t ≥ 0 such that DW (t, ω) and DW (t, ω) are finite }.
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Note that A is not necessarily a measurable set. We will therefore show that A is contained
in a measurable set B with P{B} = 0. In other words, A has outer measure 0.

To define the set B, first consider for k, n ∈ Z+ the random variable

Xn,k = max
{
|W(k+1)/2n −Wk/2n |, |W(k+2)/2n −W(k+1)/2n |, |W(k+3)/2n −W(k+2)/2n |

}
.

Define for n ∈ Z+

Yn = min
k≤n2n

Xn,k.

A the set B we choose

B =

∞⋃
n=1

∞⋂
k=n

{Yk ≤ k2−k}.

We claim that A ⊆ B and P{B} = 0.

To prove the inclusion, let ω ∈ A. Then there exists t = tω, such that DW (t, ω), DW (t, ω)
are finite. Hence, there exists K = Kω, such that

−K < DW (t, ω) ≤ DW (t, ω) < K.

As a consequence, there exists δ = δω, such that

|Ws(ω)−Wt(ω)| ≤ K · |s− t|, s ∈ [t, t+ δ]. (1.5.1)

Now take n = nω ∈ Z+ so large that

4

2n
< δ, 8K < n, t < n. (1.5.2)

Next choose k ∈ Z+, such that
k − 1

2n
≤ t < k

2n
. (1.5.3)

By the first relation in (1.5.2) we have that∣∣∣∣k + 3

2n
− t
∣∣∣∣ ≤ ∣∣∣∣k + 3

2n
− k − 1

2n

∣∣∣∣ ≤ 4

2n
< δ,

so that k/2n, (k+ 1)/2n, (k+ 2)/2n, (k+ 3)/2n ∈ [t, t+ δ]. By (1.5.1) and the second relation
in (1.5.2) we have our choice of n and k that

Xn,k(ω) ≤ max
{
|W(k+1)/2n −Wt|+ |Wt −Wk/2n |, |W(k+2)/2n −Wt|+ |Wt −W(k+1)/2n |,

|W(k+3)/2n −Wt|+ |Wt −W(k+2)/2n |
}

≤ 2K
4

2n
<

n

2n
.

The third relation in (1.5.2) and (1.5.3) it holds that k−1 ≤ t2n < n2n. This implies k ≤ n2n

and so Yn(ω) ≤ Xn,k(ω) ≤ n/2n, for our choice of n.

Summarising, ω ∈ A implies that Yn(ω) ≤ n/2n for all sufficiently large n. This implies
ω ∈ B. We have proved that A ⊆ B.
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In order to complete the proof, we have to show that P{B} = 0. Note that |W(k+1)/2n −
Wk/2n |, |W(k+2)/2n −W(k+1)/2n | and |W(k+3)/2n −W(k+2)/2n | are i.i.d. random variables. We
have for any ε > 0 and k = 0, . . . , n2n that

P{Xn,k ≤ ε} ≤ P{|W(k+i)/2n −W(k+i−1)/2n | ≤ ε, i = 1, 2, 3}

≤ (P{|W(k+1)/2n −W(k+2)/2n | ≤ ε})
3 = (P{|W1/2n | ≤ ε})

3

= (P{|W1| ≤ 2n/2ε})3 ≤ (2 · 2n/2ε)3 = 23n/2+1ε3.

We have used time-homogeneity in the third step, the time-scaling property in the fourth and
the fact that the density of a standard normal random variable is bounded by 1 in the last
equality. Next,

P{Yn ≤ ε} = P{∪n2n

k=1{Xn,l > ε, l = 0, . . . , k − 1, Xn,k ≤ ε}}

≤
n2n∑
k=1

P{Xn,k ≤ ε} ≤ n2n · 23n/2+1ε3 = n25n/2+1ε3.

Choose ε = n/2n, we see that P{Yn ≤ n/2n} → 0, as n → ∞. This implies that P{B} =
P{lim infn→∞{Yn ≤ n/2n}} ≤ lim infn→∞ P{Yn ≤ n/2n} = 0. We have used Fatou’s lemma
in the last inequality. QED

1.6 Filtrations and stopping times

If W is a BM, the increment Wt+h −Wt is independent of ‘what happened up to time t’. In
this section we introduce the concept of a filtration to formalise the notion of ‘information
that we have up to time t’. The probability space (Ω,F ,P) is fixed again and we suppose that
T is a subinterval of Z+ or R+.

Definition 1.6.1 A collection (Ft)t∈T of sub-σ-algebras is called a filtration if Fs ⊂ Ft for all
s ≤ t. A stochastic process X defined on (Ω,F ,P) and indexed by T is called adapted to the
filtration if for every t ∈ T , the random variable Xt is Ft-measurable. Then (Ω,F , (Ft)t∈T ,P)
is a filtered probability space.

We can think of a filtration as a flow of information. The σ-algebra Ft contains the events
that can happen ‘upto time t’. An adapted process is a process that ‘does not look into the
future’. If X is a stochastic process, then we can consider the filtration (FXt )t∈T generated
by X:

FXt = σ(Xs, s ≤ t).
We call this the filtration generated by X, or the natural filtration of X. It is the ‘smallest’
filtration, to which X is adapted. Intuitively, the natural filtration of a process keeps track of
the ‘history’ of the process. A stochastic process is always adapted to its natural filtration.

Canonical process and filtration If X is a canonical process on (Γ,Γ∩ ET ) with Γ ⊂ ET ,
then FXt = Γ ∩ E [0,t].

As has been pointed out in Section 1.3, with a stochastic process X one can associate a
canonical process with the same distribution.

Indeed, suppose that X : Ω → Γ ∩ ET . The canonical process on Γ ∩ ET is adapted to
the filtration (E [0,t]∩T ∩ Γ)t.
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Review BN §2, the paragraph on σ-algebra generated by a random variable or a stochas-
tic process.

If (Ft)t∈T is a filtration, then for t ∈ T we may define the σ-algebra

Ft+ =
∞⋂
n=1

Ft+1/n.

This is the σ-algebra Ft, augmented with the events that ‘happen immediately after time t’.
The collection (Ft+)t∈T is again a filtration (see Exercise 1.16). Cases in which it coincides
with the original filtration are of special interest.

Definition 1.6.2 We call a filtration (Ft)t∈T right-continuous if Ft+ = Ft for all t ∈ T .

Intuitively, right-continuity of a filtration means that ‘nothing can happen in an infinitesimal
small time-interval’ after the observed time instant. Note that for every filtration (Ft), the
corresponding filtration (Ft+) is always right-continuous.

In addition to right-continuity it is often assumed that F0 contains all events in F∞ that
have probability 0, where

F∞ = σ(Ft, t ≥ 0).

As a consequence, every Ft then also contains these events.

Definition 1.6.3 A filtration (Ft)∈T on a probability space (Ω,F ,P) is said to satisfy the
usual conditions if it is right-continuous and F0 contains all P-negligible events of F∞.

Stopping times We now introduce a very important class of ‘random times’ that can be
associated with a filtration.

Definition 1.6.4 An [0,∞]-valued random variable τ is called a stopping time with respect
to the filtration (Ft) if for every t ∈ T it holds that the event {τ ≤ t} is Ft-measurable. If
τ < ∞, we call τ a finite stopping time, and if P{τ < ∞} = 1, then we call τ a.s. finite.
Similarly, if there exists a constant K such that τ(ω) ≤ K, then τ is said to be bounded, and
if P{τ ≤ K} = 1 τ is a.s. bounded.

Loosely speaking, τ is a stopping time if for every t ∈ T we can determine whether τ has
occurred before time t on basis of the information that we have upto time t. Note that τ is
F/B([0,∞])-measurable.

With a stopping time τ we can associate the the σ-algebra στ generated by τ . However,
this σ-algebra only contains the information about when τ occurred. If τ is associated with
an adapted process X, then στ contains no further information on the history of the process
upto the stopping time. For this reason we associate with τ the (generally) larger σ-algebra
Fτ defined by

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ∈ T}.

(see Exercise 1.17). This should be viewed as the collection of all events that happen prior to
the stopping time τ . Note that the notation is unambiguous, since a deterministic time t ∈ T
is clearly a stopping time and its associated σ-algebra is simply the σ-algebra Ft.

Our loose description of stopping times and stopped σ-algebra can made more rigorous,
when we consider the canonical process with natural filtration.
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Lemma 1.6.5 Let Ω ⊂ ET have the property that for each t ∈ T and ω ∈ Ω there exists
ω ∈ Ω such that ωs = ωs∧t for all s ∈ T . Let F = ET ∩ Ω. Let X be the canonical process on
(Ω,F). Define FX∞ = σ(Xt, t ∈ T ). The following assertions are true.

a) Let A ⊂ Ω. Then A ∈ FXt if and only if (i) A ∈ FX∞ and (ii) ω ∈ A and Xs(ω) = Xs(ω
′)

for all s ∈ T with s ≤ t imply that ω′ ∈ A.

b) Galmarino test τ is an FXt -stopping time if and only τ is FX∞-measurable and τ(ω) ≤ t,
Xs(ω) = Xs(ω

′) for s ∈ T , s ≤ t implies τ(ω′) ≤ t, for all t ∈ T , and ω, ω′ ∈ Ω.

c) Let τ be an FXt -stopping time. Let A ⊂ Ω. Then A ∈ FXτ if and only if (i) A ∈ FX∞ and
(ii) ω ∈ A and Xs(ω) = Xs(ω

′) for all s ≤ τ(ω) imply that ω′ ∈ A.

Proof. See Exercise 1.24. QED

If the filtration (Ft) is right-continuous, then τ is a stopping time if and only if {τ < t} ∈ Ft
for all t ∈ T (see Exercise 1.23). The latter defines another type of random time called
optional time.

Definition 1.6.6 A [0,∞]-valued random variable τ is called an optional time with respect
to the filtration (Ft) if for every t ∈ T it holds that {τ < t} ∈ Ft. If τ <∞ almost surely, we
call the optional time finite.

Check that τ is an optional time if and only if τ + t is a stopping time for each t ∈ T , t > 0.

Lemma 1.6.7 τ is an (Ft)t-optional time if and only if it is a (Ft+)t-stopping time with
respect to (Ft+). Every (Ft)t-stopping time is a (Ft)t-optional time.

Proof. See Exercise 1.25. QED

The associated σ-algebra Fτ+ is defined to be

Fτ+ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft+ , t ≥ 0}.

For an {Ft}t-optional time τ it holds (cf. Exercise 1.34) that Fτ+ is a σ-algebra, with respect
to which τ is measurable. Moreover Fτ+ = {A ∈ F∞ : A ∩ {τ < t} ∈ Ft, t ≥ 0}.

Special stopping and optional times The so-called hitting and first entrance times form
an important class of stopping times and optional times. They are related to the first time
that the process visits a set B.

Definition 1.6.8 Let X = (Xt)t≥0) an (E, E)-valued stochastic process defined on the un-
derlying probability space (Ω,F , P rob). Let B ∈ E . The first entrance time of B is defined
by

σB = inf{t ≥ 0 |Xt ∈ B}.
The first hitting time of B is defined by

τB = inf{t > 0 |Xt ∈ B}.

Lemma 1.6.9 Let (E, d) be a metric space and let B(E) be the Borel-σ-algebra of open sets
compatible with the metric d. Suppose that X = (Xt)t≥0 is a continuous, (E,B(E))-valued
stochastic process and that B is closed in E. Then σB is an (FXt )-stopping time.1

1As is usual, we define inf ∅ =∞.
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Proof. Denote the distance of a point x ∈ E to the set B by d(x,B). In other words

d(x,B) = inf{d(x, y) | y ∈ B}.

First note that x→ d(x,B) is a continuous function. Hence it is B(E)-measurable. It follows
that Yt = d(Xt, B) is (FXt )-measurable as a composition of measurable maps. Since Xt is
continuous, the real-valued process (Yt)t is continuous as well. Moreover, since B is closed,
it holds that Xt ∈ B if and only if Yt = 0. By continuity of Yt, it follows that σB > t if and
only if Ys > 0 for all s ≤ t. This means that

{σB > t} = {Ys > 0, 0 ≤ s ≤ t} =
∞⋃
n=1

⋂
q∈Qt

{Yq > 1
n} =

∞⋃
n=1

⋂
q∈Qt

{d(Xq, B) > 1
n} ∈ F

X
t ,

where Qt = {tq | q ∈ Q ∩ [0, 1]}. QED

Lemma 1.6.10 Let (E, d) be a metric space and let B(E) be the Borel-σ-algebra of open sets
compatible with the metric d. Suppose that X = (Xt)t≥0 is a right-continuous, (E,B(E))-
valued stochastic process and that B is an open set in E. Then, τB is an (FXt )-optional
time.

Proof. By right-continuity of X and the fact that B is open, τB(ω) < t if and only if there
exists a rational number 0 < qω < t such that Xqω(ω) ∈ B. Hence

{τB < t} = ∪q∈(0,t∩Q{Xq ∈ B}.

The latter set is FXt -measurable, and so is the first. QED

Example 1.6.1 Let W be a BM with continuous paths and, for x > 0, consider the random
variable

τx = inf{t > 0 |Wt = x}.

Since x > 0, W is continuous and W0 = 0 a.s., τx can a.s. be written as

τx = inf{t ≥ 0 |Wt = x}.

By Lemma 1.6.9 this is an (FWt )-stopping time. Next we will show that P{τx <∞} = 1.
Note that {τx <∞} = ∪∞n=1{τx ≤ n} is a measurable set. Consider A = {ω : supt≥0Wt =

∞, inft≥0Wt = −∞}. By Corollary 1.4.5 this set has probability 1.
Let T > |x|. For each ω ∈ A, there exist Tω, T

′
ω, such that WTω ≥ T , WT ′ω ≤ −T . By

continuity of paths, there exists tω ∈ (Tω ∧ T ′ω, Tω ∨ T ′ω), such that Wtω = x. It follows that
A ⊂ {τx <∞}. Hence P{τx <∞} = 1. QED

An important question is whether the first entrance time of a closed set is a stopping time for
more general stochastic processes than the continuous ones. The answer in general is that this
is not true unless the filtration is suitably augmented with null sets (cf. BN §10). Without
augmentation we can derive the two following results. Define Xt− = lim infs↑tXs.



1.6. FILTRATIONS AND STOPPING TIMES 21

Lemma 1.6.11 Let (E, d) be a metric space and let B(E) be the Borel-σ-algebra of open sets
compatible with the metric d. Suppose that X = (Xt)t≥0 is a (everywhere) cadlag, (E,B(E))-
valued stochastic process and that B is a closed set in E. Then

γB = inf{t > 0 |Xt ∈ B, or Xt− ∈ B},

is an (FXt )-stopping time.

Lemma 1.6.12 Let (E, d) be a metric space and let B(E) be the Borel-σ-algebra of open sets
compatible with the metric d. Suppose that X = (Xt)t≥0 is a right-continuous, (E,B(E))-
valued stochastic process and that B is closed in B(E). Let X be defined on the underlying
probability space (Ω,F ,P).

Suppose further that there exist F-measurable random times 0 < τ1 < τ2 < · · ·, such that
the discontinuities of X are contained in the set {τ1, τ2, . . .}. Then

a) τ1, τ2, . . . are (FXt )-stopping times;

b) σB is an (FXt )-stopping time.

Proof. We prove (a) and check that {τ1 ≤ t} ∈ FXt . Define for Qt = {qt | q ∈ [0, 1] ∩ Q}

G =
⋃
m≥1

⋂
n≥1

⋃
u,s∈Qt

{|u− s| ≤ 1

n
, d(Xu, Xs) >

1

m
}.

Claim: G = {τ1 ≤ t}.
Let ω ∈ G. Then there exists mω such that for each n there exists a pair (un,ω, sn,ω) with
|un,ω − sn,ω| < 1/n for which d(Xun,ω , Xsn,ω) > 1/mω.

If ω 6∈ {τ1 ≤ t}, then τ1(ω) > t, and s → Xs(ω) would be continuous on [0, t], hence
uniformly continuous. As a consequence, for each formω there exists nω for which d(Xs, Xu) <
1/mω for |u− s| < 1/nω. This contradicts the above, and hence ω ∈ {τ1 ≤ t}.

To prove the converse, assume that ω ∈ {τ1 ≤ t}, i.o.w. s = τ1(ω) ≤ t. By right-
continuity this implies that there exists a sequence tl ↑ s, along which Xtl(ω) 6→ Xs(ω).
Hence there exists m, such that for each n there exists tl(n) with |s− tl(n)| < 1/n, for which
d(Xtl(n)(ω), Xs(ω)) > 1/m.

By right-continuity, for each n one can find qn ≥ tl(n) and q ≥ s, qn, q ∈ Qt, such that
|q − qn| < 1/n and d(Xq(n)(ω), Xq(ω)) > 1/2m. It follows that

ω ∈
⋂
n≥1

∪q,q(n)∈Qt{|q − q(n)| < 1/n, d(Xq(n), Xq) > 1/2m}.

Hence ω ∈ G.
To show that τ2 is a stopping time, we add the requirement u, s ≥ τ1 in the definition of

the analogon of the set G, etc.
Next we prove (b). We will consider only the case that {τk(ω)}k does not have an ac-

cumulation point in [0, t] for any ω ∈ Ω. Figure out yourself what to do in the case of an
accumulation point! We have to cut out small intervals to the left of jumps. On the remainder
we can separate the path Xs(ω), s ≤ t and the set B, if σB(ω) > t. To this end define

Ik,n = {u | τk −
1

n
≤ u < τk ≤ t}.
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For each ω ∈ Ω this is a subset of [0, t]. Now, given u ∈ [0, t],

{ω | Ik,n(ω) 3 u} = {ω |u < τk(ω) ≤ t ∧ (u+
1

n
)} ∈ FXt .

Check that

{σB > t} =
⋂
n≥1

⋃
m≥1

⋂
q∈Qt

[
⋂
k

{q 6∈ Ik,n} ∩ {d(Xq, B) >
1

m
}].

QED

Measurability of Xτ for τ an adapted stopping time We often would like to consider
the stochastic process X evaluated at a finite stopping time τ . However, it is not a priori clear
that the map ω → Xτ(ω)(ω) is measurable. In other words, that Xτ is a random variable. We
need measurability of X in both parameters t and ω. This motivates the following definition.

Definition 1.6.13 An (E, E)-valued stochastic process is called progressively measurable with
respect to the filtration (Ft) if for every t ∈ T the map (s, ω) → Xs(ω) is measurable as a
map from ([0, t]× Ω,B([0, t])×Ft) to (E, E).

Lemma 1.6.14 Let (E, d) be a metric space and B(E) the Borel-σ-algebra of open sets com-
patible with d. Every adapted right-continuous, (E,B(E))-valued stochastic process X is pro-
gressively measurable.

Proof. Fix t ≥ 0. We have to check that

{(s, ω) |Xs(ω) ∈ A, s ≤ t} ∈ B([0, t])×Ft, ∀A ∈ B(E).

For n ∈ Z+ define the process

Xn
s =

n−1∑
k=0

X(k+1)t/n1{(kt/n,(k+1)t/n]}(s) +X01{0}(s).

This is a measurable process, since

{(s, ω) |Xn
s (ω) ∈ A, s ≤ t} =

n−1⋃
k=0

({s ∈ (kt/n, (k + 1)t/n]} × {ω |X(k+1)t/n(ω) ∈ A})
⋃

({0} × {ω |X0(ω) ∈ A}).

Clearly, Xn
s (ω) → Xs(ω), n → ∞, for all (s, ω) ∈ [0, t] × Ω, pointwise. By BN Lemma 6.1,

the limit is measurable. QED

Review BN §6 containing an example of a non-progressively measurable stochastic pro-
cess and a stopping time τ with Xτ not Fτ -measurable.

Lemma 1.6.15 Suppose that X is a progressively measurable process. Let τ be a stopping
time. Then 1{τ<∞}Xτ is an Fτ -measurable random element.
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Proof. We have to show that {1{τ<∞}Xτ ∈ B} ∩ {τ ≤ t} = {Xτ ∈ B} ∩ {τ ≤ t} ∈ Ft, for
every B ∈ E and every t ≥ 0. Now note that

{Xτ∧t ∈ B} = {Xτ ∈ B, τ ≤ t} ∪ {Xt ∈ B, τ > t}.

Clearly {Xt ∈ B, τ > t} ∈ Ft. If we can show that {Xτ∧t ∈ B} ∈ Ft, it easily follows
that {Xτ ∈ B, τ ≤ t} ∈ Ft. Hence, it suffices to show that the map ω → Xτ(ω)∧t(ω) is
Ft-measurable.

To this end consider the map φ : ([0, t]×Ω,B([0, t])×Ft))→ ([0, t]×Ω,B([0, t])×Ft)) given
by φ(s, ω) = (τ(ω) ∧ s, ω) is measurable (this is almost trivial, see Exercise 1.26). Using that
X is progressively measurable, it follows that the composition map (s, ω) → X(φ(s, ω)) =
Xτ(ω)∧s(ω) is measurable.

By Fubini’s theorem the section map ω → Xτ(ω)∧t(ω) is Ft-measurable. QED

Very often problems of interest consider a stochastic process upto a given stopping time τ .
To this end we define the stopped process Xτ by

Xτ
t = Xτ∧t =

{
Xt, t < τ,
Xτ , t ≥ τ.

Using Lemma 1.6.15, and the arguments in the proof, as well as Exercises 1.18 and 1.20, we
have the following result.

Lemma 1.6.16 Let X be progressively measurable with respect to (Ft) and τ an (Ft)-stopping
time. The following are true.

1. The stopped pocess Xτ is progressively measurable with respect to the filtrations (Fτ∧t)t
and (Ft)t.

2. (Fτ+t)t is a filtration, and the shifted process {Xτ+t}t is progressively measurable with
respect to this shifted filtration.

The proof is left as an exercise. The Lemma is important lateron, when we consider processes
shifted by a stopping time.

In the subsequent chapters we repeatedly need the following technical lemma. It states
that every stopping time is the decreasing limit of a sequence of stopping times that take only
countably many values.

Lemma 1.6.17 Let τ be a stopping time. Then there exist stopping times τn that only take
either finitely or countably many values and such τn ↓ τ .

Proof. Define

τn =
n2n−1∑
k=1

k

2n
1{τ∈[(k−1)/2n,k/2n)} +∞1{τ>n},

to obtain an approximating stopping time taking only finitely many values. Or

τn =
∞∑
k=1

k

2n
1{[(k−1)/2n,k/2n)} +∞ · 1{τ=∞},

for an approximating stopping time taking countable many values. Then τn is a stopping
time and τn ↓ τ (see Exercise 1.27). QED
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Optional times Similarly, for a progressively measurable process X, and τ an adapted
optional time, it holds that Xτ is Fτ+-measurable. This follows directly from Lemma 1.6.7.
We can further approximate τ by a non-decreasing sequence of stopping times: take the
sequence from the preceding lemma. Then τn ≥ τn+1 ≥ τ for n ≥ 1. By virtue of the
preceding lemma τn is an (Ft)t-stopping time for all n with limn→∞ τn = τ . Moreover, for all
A ∈ Fτ+ it holds that A∩{τn = k/2n} ∈ Fk/2n , n, k ≥ 1. Furthermore, if σ is a (Ft)t-stopping
time with τ ≤ σ and τ < σ on {τ <∞}, then Fτ+ ⊂ Fσ (cf. Exercise 1.35).

Finally... Using the notion of filtrations, we can extend the definition of BM as follows.

Definition 1.6.18 Suppose that on a probabillity space (Ω,F ,P) we have a filtration (Ft)t≥0

and an adapted stochastic process W = (Wt)t≥0. Then W is called a (standard) Brownian
motion (or a Wiener process) with respect to the filtration (Ft)t if

i) W0 = 0;

ii) (independence of increments) Wt −Ws is independent of Fs for all s ≤ t;

iii) (stationarity of increments) Wt −Ws
d
= N (0, t− s) distribution;

iv) all sample paths of W are continuous.

Clearly, process W that is a BM in the sense of the ‘old’ Definition 1.1.2 is a BM with respect
to its natural filtration. If in the sequel we do not mention the filtration of a BM explicitly, we
mean the natural filtration. However, we will see that it is sometimes necessary to consider
Brownian motions with larger filtrations as well.
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1.7 Exercises

Exercise 1.1 Show the claim in the proof of Theorem 1.1.6 that the system I described
there is a π-system for the σ-algebra σ(Nu, u ≤ s).

Exercise 1.2 Complete the proof of Corollary 1.2.4. Give full details.

Exercise 1.3 Give an example of two processes that are versions of each other, but not
modifications.

Exercise 1.4 Prove that the process Y defined in the proof of Theorem 1.3.3 is indeed a
modification of the process X. See remark in Step 4 of the proof of this theorem.

Exercise 1.5 An example of a right-continuous but not continuous stochastic process X is
the following. Let Ω = [0, 1], F = B([0, 1]) and P = λ is the Lebesgue measure on [0, 1]. Let
Y be the identity map on Ω, i.e. Y (ω) = ω. Define a stochastic process X = (Xt)t∈[0,1] by
Xt = 1{Y≤t}. Hence, Xt(ω) = 1{Y (ω)≤t} = 1{[0,t]}(ω).

The process X does not satisfy the conditions of Kolmogorov’s Continuity Criterion, but
it does satisfy the condition

E|Xt −Xs|α ≤ K|t− s|,

for any α > 0 and K = 1. Show this.

Prove that X has no continuous modification. Hint: suppose that X has a continuous
modification, X ′ say. Enumerate the elements of Q ∩ [0, 1] by q1, q2, . . .. Define Ωn = {ω :
Xqn(ω) = X ′qn(ω)}. Let Ω∗ = ∩n≥1Ωn. Show that P{Ω∗} = 1. Then conclude that a
continuous modification cannot exist.

Exercise 1.6 Suppose that X and Y are modifications of each other with values in a Polish
space (E, E), and for both X and Y all sample paths are either left or right continuous. Let
T be an interval in R. Show that

P{Xt = Yt, for all t ∈ T} = 1.

Exercise 1.7 Prove that the process X in the proof of Corollary 1.3.4 is a BM process. To
this end, you have to show that X has the correct fdd’s, and that X has a.s. continuous
sample paths.

Exercise 1.8 Prove Lemma 1.4.2.

Exercise 1.9 Prove parts (i,ii,iii) of Theorem 1.4.4.

Exercise 1.10 Consider the proof of the time-inversion property of Theorem 1.4.4. Prove
that

P{
∞⋂
m=1

∞⋃
n=1

⋂
q∈(0,1/n]∩Q

{ω : |Xq(ω)| < 1/m}} = P{
∞⋂
m=1

∞⋃
n=1

⋂
q∈(0,1/n]∩Q

{ω : |Wq(ω)| < 1/m}} = 1.
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Exercise 1.11 Let W be a BM and define Xt = W1−t−W1 for t ∈ [0, 1]. Show that (Xt)t∈[0,1]

is a BM as well.

Exercise 1.12 Let W be a BM and fix t > 0. Define the process B by

Bs = Ws∧t − (Ws −Ws∧t) =

{
Ws, s ≤ t
2Wt −Ws, s > t.

Draw a picture of the processes W and B and show that B is again a BM. We will see another
version of this so-called reflection principle in Chapter 3.

Exercise 1.13 i) Let W be a BM and define the process Xt = Wt−tW1, t ∈ [0, 1]. Determine
the mean and covariance functions of X.

ii) The process X of part (i) is called the (standard) Brownian bridge on [0, 1], and so is
every other continuous Gaussian process indexed by the interval [0, 1] that has the
same mean and covariance function. Show that the processes Y and Z defined by
Yt = (1 − t)Wt/(1−t), t ∈ [0, 1), and Y1 = 0 and Z0 = 0, Zt = tW(1/t)−1, t ∈ (0, 1] are
standard Brownian bridges.

Exercise 1.14 Let H ∈ (0, 1) be given. A continuous, zero-mean Gaussian process X with
covariance function 2EXsXt = (t2H + s2H − |t− s|2H) is called a fractional Brownian motion
(fBM) with Hurst index H. Show that the fBM with Hurst index 1/2 is simply the BM. Show
that if X is a fBM with Hurst index H, then for all a > 0 the process a−HXat is a fBM with
Hurst index H as well.

Exercise 1.15 Let W be a Brownian motion and fix t > 0. For n ∈ Z+, let πn be a partition
of [0, t] given by 0 = tn0 < tn1 < · · · < tnkn = t and suppose that the mesh ||πn|| = maxk |tnk−tnk−1

tends to zero as n→∞. Show that∑
k

(Wtnk
−Wtnk−1

)2 L2

→ t,

as n→∞. Hint: show that the expectation of the sum tends to t and the variance to 0.

Exercise 1.16 Show that if (Ft) is a filtration, then (Ft+) is a filtration as well.

Exercise 1.17 Prove that the collection Fτ associated with a stopping time τ is a σ-algebra.

Exercise 1.18 Show that if σ, τ are stopping times with σ ≤ τ , then Fσ ⊆ Fτ .

Exercise 1.19 Let σ and τ be two (Ft)-stopping times. Show that {σ ≤ τ} ⊂ Fσ ∩ Fτ .

Exercise 1.20 If σ and τ are stopping times w.r.t. the filtration (Ft), show that σ ∧ τ and
σ ∨ τ are stopping times as well. Determine the associated σ-algebras. Hint: show that
A ∈ Fσ∨τ implies A ∩ {σ ≤ τ} ∈ Fτ .

Exercise 1.21 If σ and τ are stopping times w.r.t. the filtration (Ft), show that σ + τ is a
stopping time as well. Hint: for t > 0 write

{σ + τ > t} = {τ = 0, σ > t} ∪ {0 < τ < t, σ + τ > t} ∪ {τ > t, σ = 0} ∪ {τ ≥ t, σ > 0}.

Only for the second event on the right-hand side it is non-trivial to prove that it belongs to
Ft. Now observe that if τ > 0, then σ+ τ > t if and only if there exists a positive q ∈ Q, such
that q < τ and σ + q > t.
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Exercise 1.22 Show that if σ and τ are stopping times w.r.t. the filtration (Ft) and X is
an integrable random variable, then 1{τ=σ}E(X | Fτ )

a.s.
= 1{τ=σ}E(X | Fσ). Hint: show that

1{τ=σ}E(X | Fτ ) = 1{τ=σ}E(X | Fτ ∩ Fσ).

Exercise 1.23 Show that if the filtration (Ft) is right-continuous, then τ is an (Ft)-stopping
time if and only if {τ < t} ∈ Ft for all t ∈ T .

Exercise 1.24 Prove Lemma 1.6.5. Hint for (a): use BN Lemma 3.10.

Exercise 1.25 Prove Lemma 1.6.7.

Exercise 1.26 Show that the map ω → (τ(ω) ∧ t, ω) in the proof of Lemma 1.6.15 is mea-
surable as a map from (Ω,Ft) to ([0, t]× Ω,B([0, t])×Ft)).

Exercise 1.27 Show that τn in the proof of Lemma 1.6.17 are indeed stopping times and
that they converge to τ .

Exercise 1.28 Translate the definitions of §1.6 to the special case that time is discrete, i.e.
T = Z+.

Exercise 1.29 Let W be a BM and let Z = {t ≥ 0 |Wt = 0} be its zero set. Show that with
probability 1 the set Z has Lebesgue measure 0, is closed and unbounded.

Exercise 1.30 We define the last exit time of x:

Lx = sup{t > 0 : Wt = x},

where sup{∅} = 0.

i) Show that τ0 is measurable (τ0 is defined in Definition 1.6.8).

ii) Show that Lx is measurable for all x. Derive first that {Lx < t} = ∩n>t{|Ws−x| > 0, t ≤
s ≤ n}. I had mistakenly and in a hurry changed it, but it was correct as it was!!!.

iii) Show that Lx =∞ a.s. for all x, by considering the set {supt≥0Wt =∞, inft≥0Wt = −∞}
as in the proof of Example 1.6.1.

iv) Show that for almost all ω ∈ Ω there exists a strictly decreasing sequence {tn(ω)}n,
limn tn(ω) = 0, such that W (tn)(ω) = 0 for all n. Hint: time-inversion + (iii). Hence
t = 0 is a.s. an accumulation point of zeroes of W and so τ0 = 0 a.s.

Exercise 1.31 Consider Brownian motion W with continuous paths, defined on a probability
space (Ω,F ,P). Let Z(ω) = {t ≥ 0,Wt(ω) = 0} be its zero set. In Problem 1.30 you have
been asked to show that t = 0 is an accumulation point of Z(ω) for almost all ω ∈ Ω.

Let λ denote the Lebesgue measure on [0,∞). Show (by interchanging the order of inte-
gration) that ∫

Ω
λ(Z(ω))dP(ω) = 0,

and argue from this that Z a.s. has Lebesgue measure 0, i.e. λ(Z(ω)) = 0 for a.a. ω ∈ Ω.
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Exercise 1.32 Let W be a BM (with continuous paths) with respect to its natural filtration
(FWt )t. Define for a > 0

Sa = inf{t ≥ 0 : Wt > a}.

i) Is Sa an optional time? Justify your answer.

Let now σa = inf{t ≥ 0 : Wt = a} be the first entrance time of a and let

Ma = sup{t ≥ 0 : Wt = at},

be the last time that Wt equals at.

ii) Is Ma a stopping time? Justify your answer. Show that Ma <∞ with probability 1 (you
could use time-inversion for BM).

iii) Show that Ma has the same distribution as 1/σa.

Exercise 1.33 Let X = (Xt)t≥0 be a Gaussian, zero-mean stochastic process starting from
0, i.e. X0 = 0. Moreover, assume that the process has stationary increments, meaning that
for all t1 ≥ s1, t2 ≥ s2, . . . , tn ≥ sn, the distribution of the vector (Xt1 −Xs1 , . . . , Xtn −Xsn)
only depends on the time points through the differences t1 − s1, . . . , tn − sn.

a) Show that for all s, t ≥ 0

EXsXt = 1
2(v(s) + v(t)− v(|t− s|)),

where the function v is given by v(t) = EX2
t .

In addition to stationarity of the increments we now assume that X is H-self similar for some
parameter H > 0. Recall that this means that for every a > 0, the process (Xat)t has the
same finite dimensional distributions as (aHXt)t.

b) Show that the variance function v(t) = EX2
t must be of the form v(t) = Ct2H for some

constant C ≥ 0.

In view of the (a,b) we now assume that X is a zero-mean Gaussian process with covariance
function

EXsXt = 1
2(s2H + t2H − |t− s|2H),

or some H > 0.

c) Show that we must have H ≤ 1. (Hint: you may use that by Cauchy-Schwartz, the
(semi-)metric d(s, t) =

√
E(Xs −Xt)2 on [0,∞) satisfies the triangle inequality).

d) Show that for H = 1, we have Xt = tZ a.s., for a standard normal random variable Z not
depending on t.

e) Show that for every value of the parameter H ∈ (0, 1], the process X has a continuous
modification.

Exercise 1.34 Let τ be an {Ft}t-optional time. Show that Fτ+ is a σ-algebra, with respect
to which τ is measurable. Show Fτ+ = {A ∈ F : A ∩ {τ < t} ∈ Ft, t ≥ 0}. Let σ, τ be
{F}t-optional times. Prove that F(σ∧τ)+ = Fσ+ ∩ Fτ+ . If additionally σ ≤ τ everywhere,
then finally show that Fσ+ ⊂ Fτ+ .

Exercise 1.35 Show the validity of the assertion in the paragraph on optional times below
Lemma 1.6.17.



Chapter 2

Martingales

2.1 Definition and examples

In this chapter we introduce and study a very important class of stochastic processes: the so-
called martingales. Martingales arise naturally in many branches of the theory of stochastic
processes. In particular, they are very helpful tools in the study of BM. In this section, the
index set T is an arbitrary interval of Z+ and R+.

Definition 2.1.1 An (Ft)-adapted, real-valued processM is called a martingale (with respect
to the filtration (Ft)) if

i) E|Mt| <∞ for all t ∈ T ;

ii) E(Mt | Fs)
a.s.
= Ms for all s ≤ t.

If property (ii) holds with ‘≥’ (resp. ‘≤’) instead of ’=’, then M is called a submartingale
(resp. supermartingale).

Intuitively, a martingale is a process that is ‘constant on average’. Given all information up to
time s, the best guess for the value of the process at time t ≥ s is smply the current value Ms.
In particular, property (ii) implies that EMt = EM0 for all t ∈ T . Likewise, a submartingale
is a process that increases on average, and a supermartingale decreases on average. Clearly,
M is a submartingale if and only if −M is a supermartingale and M is a martingale if it is
both a submartingale and a supermartingale. The basic properties of conditional expectations
give us the following result and examples.

Review BN §7 Conditional expectations.
N.B. Let T = Z+. The tower property implies that (sub-, super-)martingale property
(ii) is implied by (ii’) E{Mn+1 | Fn} = Mn(≥,≤) a.s. for n ∈ Z+.

Example 2.1.1 Let Xn, n = 1, . . ., be a sequence of i.i.d. real-valued integrable random
variables. Take e.g. the filtration Fn = σ(X1, . . . , Xn). Then Mn =

∑n
k=1Xk is a martingale

if EX1 = 0, a submartingale if EX1 > 0 and a supermartingale if EX1 < 0. The process
M = (Mn)n can be viewed as a random walk on the real line.

If EX1 = 0, but X1 is square integrable, M ′n = M2
n − nEX2

1 is a martingale.

29
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Example 2.1.2 (Doob martingale) Suppose that X is an integrable random variable and
(Ft)t∈T a filtration. For t ∈ T , define Mt = E(X | Ft), or, more precisely, let Mt be a version
of E(X | Ft). Then M = (Mt)t∈T is an (Ft)-martingale and M is uniformly integrable (see
Exercise 2.1).

Review BN §8 Uniform integrability.

Example 2.1.3 Suppose that M is a martingale and that φ is a convex function such that
E|φ(Mt)| < ∞ for t ∈ T . Then the process φ(M) is a submartingale. The same is true if M
is a submartingale and φ is an increasing, convex function (see Exercise 2.2).

BM generates many examples of martingales. The most important ones are given in the
following example.

Example 2.1.4 Let W be a BM. Then the following processes are martingales with respect
to the same filtration:

i) W itself;

ii) W 2
t − t;

iii) for every a ∈ R the process exp{aWt − a2t/2};

You are asked to prove this in Exercise 2.3.

Example 2.1.5 Let N be a Poisson process with rate λ. Then {N(t)−λt}t is a martingale.

In the next section we first develop the theory for discrete-time martingales. The generalisa-
tion to continuous time is discussed in section 2.3. In section 2.4 we continue our study of
BM.

2.2 Discrete-time martingales

In this section we restrict ourselves to martingales (and filtrations) that are indexed by (a
subinterval of) Z+. We will assume the underlying filtered probability space (Ω,F , (Fn)n,P)
to be fixed. Note that as a consequence, it only makes sense to consider Z+-valued stopping
times. In discrete time, τ is a stopping time with respect to the filtration (Fn)n∈Z+ , if
{τ ≤ n} ∈ Fn for all n ∈ Z+.

2.2.1 Martingale transforms

If the value of a process at time n is already known at time n−1, we call a process predictable.
The precise definition is as follows.

Definition 2.2.1 We call a discrete-time process X predictable with respect to the filtration
(Fn)n if Xn is Fn−1-measurable for every n.

In the following definition we introduce discrete-time ‘integrals’. This is a useful tool in
martingale theory.
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Definition 2.2.2 Let M and X be two discrete-time processes. We define the process X ·M
by (X ·M)0 = 0 and for n ≥ 1

(X ·M)n =
n∑
k=1

Xk(Mk −Mk−1).

We call X ·M the discrete integral of X with respect to M . If M is a (sub-, super-)martingale,
it is often called the martingale transform of M by X.

One can view martingale transforms as a discrete version of the Ito integral. The
predictability plays a crucial role in the construction of the Ito integral.

The following lemma explains why these ‘integrals’ are so useful: the integral of a predictable
process with respect to a martingale is again a martingale.

Lemma 2.2.3 Let X be a predictable process, such that for all n there exists a constant Kn

such that |X1|, . . . , |Xn| ≤ Kn. If M is an martingale, then X ·M is a martingale. If M be a
submartingale (resp. a supermartingale) and X is non-negative then X ·M is a submartingale
(resp. supermartingale) as well.

Proof. Put Y = X ·M . Clearly Y is adapted. Since X is bounded, say |Xn| ≤ K a.s., for all
n, we have E|Yn| ≤ 2Kn

∑
k≤n E|Mk| <∞. Now suppose first that M is a submartingale and

X is non-negative. Then a.s.

E(Yn | Fn−1) = E(Yn−1 +Xn(Mn −Mn−1) | Fn−1)

= Yn−1 +XnE(Mn −Mn−1 | Fn−1) ≥ Yn−1, a.s.

Consequently, Y is a submartingale. If M is a martingale, the last inequality is an equality,
irrespective of the sign of Xn. This implies that then Y is a martingale as well. QED

Using this lemma, it is easy to see that a stopped (sub-, super-)martingale is again a (sub-,
super-)martingale.

Theorem 2.2.4 Let M be a (Fn)n (sub-, super-)martingale and τ an (Fn)n-stopping time.
Then the stopped process M τ is an (Fn)n (sub-, super-)martingale as well.

Proof. Define the process X by Xn = 1{τ≥n}. Verify that M τ = M0 + X ·M . Since τ is
a stopping time, we have that {τ ≥ n} = {τ ≤ n − 1}c ∈ Fn−1. Hence the process X is
predictable. It is also a bounded process, and so the statement follows from the preceding
lemma.

We will also give a direct proof. First note that E|M τ
t | = E|Mt∧τ | ≤

∑t
n=0 E|Mn| < ∞

for t ∈ T . Write

M τ
t = Mt∧τ =

( t−1∑
n=0

1{τ=n} + 1{τ≥t}

)
Mt∧τ

=

t−1∑
n=0

Mn1{τ=n} +Mt1{τ≥t}.
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Taking conditional expectations yields

E(M τ
t | Ft−1) =

t−1∑
n=0

Mn1{τ=n} + 1{τ≥t}E(Mt | Ft−1),

since {τ ≥ t} ∈ Ft−1. The rest follows immediately. QED

The following result can be viewed as a first version of the so-called optional sampling theorem.
The general version will be discussed in section 2.2.5.

Theorem 2.2.5 Let M be a (sub)martingale and let σ, τ be two stopping times such that
σ ≤ τ ≤ K, for some constant K > 0. Then

E(Mτ | Fσ)(≥) = Mσ, a.s. (2.2.1)

An adapted integrable process M is a martingale if and only if

EMτ = EMσ,

for any pairs of bounded stopping times σ ≤ τ .

Proof. Suppose first that M is a martingale. Define the predictable process Xn = 1{τ≥n} −
1{σ≥n}. Note that Xn ≥ 0 a.s.! Hence, X ·M = M τ −Mσ. By Lemma 2.2.3 the process
X ·M is a martingale, hence E(M τ

n −Mσ
n ) = E(X ·M)n = 0 for all n. Since σ ≤ τ ≤ K a.s.,

it follows that
EMτ = EM τ

K = EMσ
K = EMσ.

Now we take A ∈ Fσ and we define the ‘truncated’ random times

σA = σ1{A} +K1{Ac}, τA = τ1{A} +K1{Ac}. (2.2.2)

By definition of Fσ it holds for every n that

{σA ≤ n} = (A ∩ {σ ≤ n}) ∪ (Ac ∩ {K ≤ n}) ∈ Fn,

and so σA is a stopping time. Similarly, τA is a stopping time and clearly σA ≤ τA ≤ K a.s.
By the first part of the proof, it follows that EMσA = EMτA , in other words∫

A
MσdP+

∫
Ac
MKdP=

∫
A
MτdP+

∫
Ac
MKdP, (2.2.3)

by which
∫
AMσdP =

∫
AMτdP. Since A ∈ Fσ is arbitrary, E(Mτ | Fσ) = Mσ a.s. (recall that

Mσ is Fσ-measurable, cf. Lemma 1.6.15).
Let M be an adapted process with EMσ = EMτ for each bounded pair σ ≤ τ of stopping

times. Take σ = n− 1 and τ = n in the preceding and use truncated stopping times σA and
τA as in (2.2.2) for A ∈ Fn−1. Then (2.2.3) for A ∈ Fn−1 and stopping times σA and τA

implies that E(Mn | Fn−1) = Mn−1 a.s. In other words, M is a martingale.
If M is a submartingale, the same reasoning applies, but with inequalities instead of

equalities.
As in the previous lemma, we will also give a direct proof of (2.2.1). First note that

E(MK | Fn) ≥Mn a.s. ⇐⇒ EMK1{F} ≥ EMn1{F}, ∀F ∈ Fn, (2.2.4)
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(this follows from Exercise 2.7 (a)). We will first show that

E(MK | Fσ) ≥Mσ a.s. (2.2.5)

Similarly to (2.2.4) it is sufficient to show that E1{F}Mσ ≤ E1{F}MK for all F ∈ Fσ. Now,

E1{F}Mσ = E1{F}

( K∑
n=0

1{σ=n} + 1{σ>K}

)
Mσ

=
K∑
n=0

E1{F∩{σ=n}}Mn

≤
K∑
n=0

E1{F∩{σ=n}}MK

= E1{F}

( K∑
n=0

1{σ=n} + 1{σ>K}

)
MK = E1{F}MK .

In the second and fourth equalities we have used that E1{σ>K}Mσ = E1{σ>K}MK = 0, since
P{σ > K} = 0. In the third inequality, we have used (2.2.4) and the fact that F∩{σ = n} ∈ Fn
(why?). This shows the validity of (2.2.5).

Apply (2.2.5) to the stopped process M τ . This yields

E(M τ
K | Fσ) ≥M τ

σ .

Now, note that M τ
K = Mτ a.s. and M τ

σ = Mσ a.s. (why?). This shows (2.2.1). QED

Note that we may in fact allow that σ ≤ τ ≤ K a.s. Lateron we need σ ≤ τ everywhere.

2.2.2 Inequalities

Markov’s inequality implies that if M is a discrete time process, then

λP{Mn ≥ λ} ≤ E|Mn|

for all n ∈ Z+ and λ > 0. Doob’s classical submartingale inequality states that for submartin-
gales we have a much stronger result.

Theorem 2.2.6 (Doob’s submartingale inequality) Let M be a submartingale. For all
λ > 0 and n ∈ N

λP{max
k≤n

Mk ≥ λ} ≤ EMn1{maxk≤nMk≥λ} ≤ E|Mn|.

Proof. Define τ = n∧ inf{k |Mk ≥ λ}. This is a stopping time (see Lemma 1.6.9) with τ ≤ n.
By Theorem 2.2.5, we have EMn ≥ EMτ . It follows that

EMn ≥ EMτ1{maxk≤nMk≥λ} + EMτ1{maxk≤nMk<λ}

≥ λP{max
k≤n

Mk ≥ λ}+ EMn1{maxk≤nMk<λ}.

This yields the first inequality. The second one is obvious. QED
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Theorem 2.2.7 (Doob’s Lp inequality) If M is a martingale or a non-negative submartin-
gale and p > 1, then for all n ∈ N

E
(

max
k≤n
|Mn|p

)
≤
( p

1− p

)p
E|Mn|p,

provided M is in Lp.

Proof. Define M∗ = maxk≤n |Mk|. Assume that M is defined on an underlying probability
space (Ω,F ,P). We have for any m ∈ N

E(M∗ ∧m)p =

∫
ω
(M∗(ω) ∧m)pdP(ω)

=

∫
ω

∫ M∗(ω)∧m

0
pxp−1dxdP(ω)

=

∫
ω

∫ m

0
pxp−11{M∗(ω)≥x}dxdP(ω)

=

∫ m

0
pxp−1P{M∗ ≥ x}dx, (2.2.6)

where we have used Fubini’s theorem in the last equality (non-negative integrand!). By condi-
tional Jensen’s inequality, |M | is a submartingale, and so we can apply Doob’s submartingale
inequality to estimate P{M∗ ≥ x}. Thus

P{M∗ ≥ x} ≤
E(|Mn|1{M∗≥x})

x
.

Insert this in (2.2.6), then

E(M∗ ∧m)p ≤
∫ m

0
pxp−2E(|Mn|1{M∗≥x})dx

=

∫ m

0
pxp−2

∫
ω:M∗(ω)≥x

|Mn(ω)|dP(ω)dx

= p

∫
ω
|Mn(ω)|

∫ M∗(ω)∧m

0
xp−2dx dP(ω)

=
p

p− 1
E(|Mn|(M∗ ∧m)p−1).

By Hölder’s inequality, it follows that with p−1 + q−1 = 1

E|M∗ ∧m|p ≤ p

p− 1
(E|Mn|p)1/p(E|M∗ ∧m|(p−1)q)1/q.

Since p > 1 we have q = p/(p− 1), so that

E|M∗ ∧m|p ≤ p

p− 1
(E|Mn|p)1/p(E|M∗ ∧m|p)(p−1)/p.

Now take pth power of both sides and cancel common factors. Then

E|M∗ ∧m|p ≤
( p

p− 1

)p
E|Mn|p.

The proof is completed by letting m tend to infinity. QED
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2.2.3 Doob decomposition

An adapted, integrable process X can always be written as a sum of a martingale and a
predictable process. This is called the Doob decomposition of the process X.

Theorem 2.2.8 Let X be an adapted, integrable process. There exists a martingale M and
a predictable process A, such that A0 = M0 = 0 and X = X0 +M +A. The processes M and
A are a.s. unique. The process X is a submartingale if and only if A is a.s. increasing (i.e.
P{An ≤ An+1} = 1).

Proof. Suppose first that there exist a martingale M and a predictable process A such that
A0 = M0 = 0 and X = X0 +M + A. The martingale property of M and predictability of A
show that a.s.

E(Xn −Xn−1 | Fn−1) = An −An−1 a.s. (2.2.7)

Since A0 = 0 it follows that

An =

n∑
k=1

E(Xk −Xk−1 | Fk−1), (2.2.8)

for n ≥ 1 and hence Mn = Xn −An −X0. This shows that M and A are a.s. unique.
Conversely, given a process X, (2.2.8) defines a predictable process A. It is easily seen

that the process M defined by M = X − A −X0 is a martingale. This proves the existence
of the decomposition.

Equation (2.2.7) shows that X is a submartingale if and only if A is increasing. QED

An important application of the Doob decomposition is the following.

Corollary 2.2.9 Let M be a martingale with EM2
n < ∞ for all n. Then there exists an

a.s. unique predictable, increasing process A with A0 = 0 such that M2 − A is a martingale.
Moreover the random variable An+1−An is a version of the conditional variance of Mn given
Fn−1, i.e.

An −An−1 = E
(

(Mn − E(Mn | Fn−1))2 | Fn−1

)
= E

(
(Mn −Mn−1)2 | Fn−1

)
a.s.

It follows that Pythagoras’ theorem holds for square integrable martingales

EM2
n = EM2

0 +
n∑
k=1

E(Mk −Mk−1)2.

The process A is called the predictable quadratic variation process of M and is often denoted
by 〈M〉.

Proof. By conditional Jensen, it follows that M2 is a submartingale. Hence Theorem 2.2.8
applies. The only thing left to prove is the statement about conditional variance. Since M is
a martingale, we have a.s.

E((Mn −Mn−1)2 | Fn−1) = E(M2
n − 2MnMn−1 +M2

n−1 | Fn−1)

= E(M2
n | Fn−1)− 2Mn−1E(Mn | Fn−1) +M2

n−1

= E(M2
n | Fn−1)−M2

n−1

= E(M2
n −M2

n−1 | Fn−1) = An −An−1.

QED
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Using the Doob decomposition in combination with the submartingale inequality yields the
following result.

Theorem 2.2.10 Let X be a sub- or supermartingale. For all λ > 0 and n ∈ Z+

λP{max
k≤n
|Xk| ≥ 3λ} ≤ 4E|X0|+ 3E|Xn|.

Proof. Suppose that X is a submartingale. By the Doob decomposition theorem there exist
a martingale M and an increasing, predictable process A such that M0 = A0 = 0 and
X = X0 +M +A. By the triangle inequality and the fact that A is increasing

P{max
k≤n
|Xk| ≥ 3λ} ≤ P{|X0| ≥ λ}+ P{max

k≤n
|Mk| ≥ λ}+ P{An ≥ λ}.

Hence, by Markov’s inequality and the submartingale inequality (|Mn| is a submartingale!)

λP{max
k≤n
|Xk| ≥ 3λ} ≤ E|X0|+ E|Mn|+ EAn.

Since Mn = Xn −X0 − An, the right-hand side is bounded by 2E|X0| + E|Xn| + 2EAn. We
know that An is given by (2.2.7). Taking expectations in the latter expression shows that
EAn = EXn − EX0 ≤ E|Xn|+ E|X0|. This completes the proof. QED

2.2.4 Convergence theorems

Let M be a supermartingale and consider a compact interval [a, b] ⊂ R. The number of
upcrossings of [a, b] that the process makes upto time n is the number of time that the process
passes from a level below a to a level above b. The precise definition is as follows.

Definition 2.2.11 The number Un[a, b] is the largest value k ∈ Z+, such that there exis
0 ≤ s1 < t1 < s2 < · · · < sk < tk ≤ n with Msi < a and Mti > b, i = 1, . . . , k.

First we define the “limit σ-algebra

F∞ = σ
(⋃

n

Fn
)
.

Lemma 2.2.12 (Doob’s upcrossing lemma) Let M be a supermartingale. Then for all
a < b, the number of upcrossings Un[a, b] of the interval [a, b] by M upto time n is an Fn-
measurable random variable and satisfies

(b− a)EUn[a, b] ≤ E(Mn − a)−.

The total number of upcrossings U∞[a, b] is F∞-measurable.

Proof. Check yourself that Un[a, b] is Fn-measurable and that U∞[a, b] is F∞-measurable.
Consider the bounded, predictable process X given by X0 = 1{M0<a} and

Xn = 1{Xn−1=1}1{Mn−1≤b} + 1{Xn−1=0}1{Mn−1<a}, n ∈ Z+.
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Define Y = X ·M . The process X equals 0, until M drops below level a, then stays until M
gets above b etc. So every completed upcrossing of [a, b] increases the value of Y by at least
b − a. If the last upcrossing has not yet been completed at time n, then this may reduce Y
by at most (Mn − a)−. Hence

Yn ≥ (b− a)Un[a, b]− (Mn − a)−. (2.2.9)

By Lemma 2.2.3, the process Y = X ·M is a supermartingale. In particular EYn ≤ EY0 = 0.
The proof is completed by taking expectations in both sides of (2.23). QED

Observe that the upcrossing lemma implies for a supermartingale M that is bounded in L1

(i.e. supn E|Mn| < ∞) that EU∞[a, b] < ∞ for all a ≤ b. In particular, the total number
U∞[a, b] of upcrossings of the interval [a, b] is almost surely finite. The proof of the classical
martingale convergence theorem is now straightforward.

Theorem 2.2.13 (Doob’s martingale convergence theorem) If M is a supermartin-
gale that is bounded in L1, then Mn converges a.s. to a finite F∞-measurable limit M∞
as n→∞, with E|M∞| <∞.

Proof. Assume that M is defined on the underlying probability space (Ω,F ,P). Suppose that
M(ω) does not converge to a limit in [−∞,∞]. Then there exist two rationals a < b such
that lim inf Mn(ω) < a < b < lim supMn(ω). In particular, we must have U∞[a, b](ω) = ∞.
By Doob’s upcrossing lemma P{U∞[a, b] =∞} = 0. Now note that

A := {ω |M(ω) does not converge to a limit in [−∞,∞]} ⊂
⋃

a,b∈Q:
a<b

{ω |U∞[a, b](ω) =∞}.

Hence P{A} ≤
∑

a,b∈Q:
a<b

P{U∞[a, b] = ∞} = 0. This implies that Mn a.s. converges to a limit

M∞ in [−∞,∞]. Moreover, in view of Fatou’s lemma

E|M∞| = E(lim inf |Mn|) ≤ lim inf E|Mn| ≤ supE|Mn| <∞.

It follows that M∞ is a.s. finite and it is integrable. Note that Mn is Fn-measurable, hence
it is F∞-measurable. Since M∞ = limn→∞Mn is the limit of F∞-measurable maps, it is
F∞-measurable as well (see MTP-lecture notes). QED

If the supermartingale M is not only bounded in L1 but also uniformly integrable, the in
addition to a.s. convergence we have convergence in L1. Moreover, in the case, the whole
sequence M1, . . . ,M∞ is a supermartingale.

Theorem 2.2.14 Let M be a supermartingale that is bounded in L1. Then Mn
L1→ M∞,

n → ∞, if and only if {Mn |n ∈ Z+} is uniformly integrable, where M∞ is integrable and
F∞-measurable. In that case

E(M∞ | Fn) ≤Mn, a.s. (2.2.10)

If in addition M is a martingale, then there is equality in (2.2.10), in other words, M is a
Doob martingale.
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Proof. By virtue of Theorem 2.2.13 Mn → M∞ a.s., for a finite random variable M∞.
BN Theorem 8.5 implies the first statement. To prove the second statement, suppose that

Mn
L1→M∞. Since M is a supermartingale, we have

E1{A}Mm ≤ E1{A}Mn, A ∈ Fn,m ≥ n. (2.2.11)

Since |1{A}Mm − 1{A}M∞| ≤ 1{A}|Mm − M∞| ≤ |Mm − M∞|, it follows directly that

1{A}Mm
L1→ 1{A}M∞. Taking the limit m→∞ in (2.2.11) yields

E1{A}M∞ ≤ E1{A}Mn, A ∈ Fn.

This implies (see BN Exercise 2.7(a)) that E(M∞ | Fn) ≤Mn a.s. QED

Hence uniformly integrable martingales that are bounded in L1, are Doob martingales. On
the other hand, let X be an F-measurable, integrable random variable and let (Fn)n be a
filtration. Then (Example 2.1.2) E(X | Fn) is a uniformly integrable Doob martingale. By
uniform integrability, it is bounded in L1. For Doob martingales, we can identify the limit
explicitly in terms of the limit σ-algebra F∞.

Theorem 2.2.15 (Lévy’s upward theorem) Let X be an integrable random variable, de-
fined on a probability space (Ω,F ,P), and let (Fn)n be a filtration, Fn ⊂ F , for all n. Then
as n→∞

E(X | Fn)→ E(X | F∞),

a.s. and in L1.

Proof. The process Mn = E(X | Fn) is uniformly integrable (see Example 2.1.2), hence
bounded in L1 (explain!). By Theorem 2.2.14 Mn →M∞ a.s. and in L1, as n→∞ with M∞
integrable and F∞-measurable. It remains to show that M∞ = E(X | F∞) a.s. Note that

E1{A}M∞ = E1{A}Mn = E1{A}X, A ∈ Fn, (2.2.12)

where we have used Theorem 2.2.14 for the first equality and the definition of Mn for the
second. First assume that X ≥ 0, then Mn = E(X | Fn) ≥ 0 a.s. (see BN Lemma 7.2 (iv)),
hence M∞ ≥ 0 a.s.

As in the construction of the conditional expectation we will associate measures with X
and M∞ and show that they agree on a π-system for F∞. Define measures Q1 and Q2 on
(Ω,F∞) by

Q1(A) = E1{A}X, Q2(A) = E1{A}M∞.

(Check that these are indeed measures). By virtue of (2.2.12)Q1 andQ2 agree on the π-system
(algebra) ∪nFn. Moreover, Q1(Ω) = Q2(Ω)(= EX) since Ω ∈ Fn. By virtue of BN Lemma
1.1, Q1 and Q2 agree on σ(∪nFn). This implies by definition of conditional expectation that
M∞ = E(X | F∞) a.s.

Finally we consider the case of general F-measurable X. Then X = X+ − X−, is the
difference of two non-negative F-measurable functions X+ and X−. Use the linearity of
conditional expectation. QED
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The message here is that one cannot know more than what one can observe. We will also
need the corresponding result for decreasing families of σ-algebras. If we have a filtration of
the form (Fn)n∈−Z+ , i.e. a collection of σ-algebras such that F−(n+1) ⊆ F−n, then we define

F−∞ =
⋂
n

F−n.

Theorem 2.2.16 (Lévy-Doob downward theorem) Let (F−n |n ∈ Z+) be a collection
of σ-algebras, such that F−(n+1) ⊆ F−n for every n, and let M = (· · · ,M−2,M−1) be a
supermartingale, i.e.

E(M−m | F−n) ≤M−n a.s., for all − n ≤ −m ≤ −1.

If supEM−n <∞, then the process M is uniformly integrable and the limit

M−∞ = lim
n→∞

M−n

exists a.s. and in L1. Moreover,

E(M−n | F−∞) ≤M−∞ a.s. (2.2.13)

If M is a martingale, we have equality in (2.2.13) and in particular M−∞ = E(M−1 | F−∞).

Proof. For every n ∈ Z+ the upcrossing inequality applied to the supermartingale

(M−n,M−(n−1), . . . ,M−1)

yields (b− a)EUn[a, b] ≤ E(M−1− a)− for every a < b. By a similar reasoning as in the proof
of Theorem 2.2.13, we see that the limit M−∞ = limn→−∞M−n exists and is finite almost
surely.

Next, we would like to show uniform integrability. For all K > 0 and n ∈ −Z+ we have∫
|M−n|>K

|M−n|dP= EM−n −
∫
M−n≤K

M−ndP−
∫
M−n<−K

M−ndP.

The sequence EM−n is non-decreasing in n→ −∞, and bounded. Hence the limit limn→∞ EM−n
exists (as a finite number). For arbitrary ε > 0, there exists m ∈ Z+, such that EM−n ≤
EM−m + ε, n ≥ m. Together with the supermartingale property this implies for all n ≥ m∫

|M−n|>K
|M−n|dP ≤ EM−m + ε−

∫
M−n≤K

M−mdP−
∫
M−n<−K

M−mdP

≤
∫
|M−n|>K

|M−m|dP+ ε.

Hence to prove uniform integrability, in view of BN Lemma 8.1 it is sufficient to show that we
can make P{|M−n| > K} arbitrarily small for all n simultaneously. By Chebychev’s inequality,
it suffices to show that supn E|M−n| <∞.

To this end, consider the process M− = max{−M, 0}. With g : R → R given by g(x) =
max{x, 0}, one has M− = g(−M). The function g is a non-decreasing, convex function.
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Since −M is a submartingale, it follows that M− is a submartingale (see Example 2.1.3). In
particular, EM−−n ≤ EM−−1 for all n ∈ Z+. It follows that

E|M−n| = EM−n + 2EM−−n ≤ supEM−n + 2E|M−1|.

Consequently

P{|M−n| > K} ≤ 1

K
( sup

n
EM−n + 2E|M−1|).

Indeed, M is uniformly integrable. The limit M−∞ therefore exists in L1 as well.
Suppose that M is a martingale. Then M−n = E(M−1 | F−n) a.s. The rest follows in a

similar manner as the proof of the Lévy upward theorem. QED

Note that the downward theorem includes the “downward version” of Theorem 2.2.15 as a
special case. Indeed, if X is an integrable random variable and F1 ⊇ F2 ⊇ · · · ⊇ ∩nFn = F∞
is a decreasing sequence of σ-algebras, then

E(X | Fn)→ E(X | F∞), n→∞

a.s. and in L1. This is generalised in the following corollary to Theorems 2.2.15 and 2.2.16.
It will be useful in the sequel.

Corollary 2.2.17 Suppose that Xn → X a.s., and that |Xn| ≤ Y a.s. for all n, where Y is
an integrable random variable. Moreover, suppose that F1 ⊆ F2 ⊆ · · · (resp. F1 ⊇ F2 ⊇ · · ·)
is an increasing (resp. decreasing) sequence of σ-algebras. Then E(Xn | Fn) → E(X | F∞)
a.s., where F∞ = σ(∪nFn) (resp. F∞ = ∩nFn).

In case of an increasing sequence of σ-algebras, the corollary is known as Hunt’s lemma.

Proof. For m ∈ Z+, put Um infn≥mXn and Vm = supn≥mXn. Since Xm → X a.s., necessarily
Vm − Um → 0 a.s., as m → ∞. Furthermore |Vm − Um| ≤ 2Y . Dominated convergence
then implies that E(Vm − Um) → 0, as m → ∞. Fix ε > 0 and choose m so large that
E(Vm − Um) < ε. For n ≥ m we have

Um ≤ Xn ≤ Vm a.s. (2.2.14)

Consequently E(Um | Fn) ≤ E(Xn | Fn) ≤ E(Vm | Fn) a.s. The processes on the left and right
are martingales that satisfy the conditions of the upward (resp. downward) theorem. Letting
n tend to ∞ we obtain

E(Um | F∞) ≤ lim inf E(Xn | Fn) ≤ lim supE(Xn | Fn) ≤ E(Vm | F∞) a.s. (2.2.15)

It follows that

0 ≤ E
(

lim supE(Xn | Fn)− lim inf E(Xn | Fn)
)
≤ E

(
E(Vm | F∞)− E(Um | F∞)

)
≤ E(Vm − Um) < ε.

Letting ε ↓ 0 yields that lim supE(Xn | Fn) = lim inf E(Xn | Fn) a.s. and so E(Xn | Fn)
converges a.s. We wish to identify the limit. Let n → ∞ in (2.2.14). Then Um ≤ X ≤ Vm
a.s. Hence

E(Um | F∞) ≤ E(X | F∞) ≤ E(Vm | F∞) a.s. (2.2.16)
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Equations (2.2.15) and (2.2.16) impy that both limE(Xn | Fn) and E(X | F∞) are a.s.between
Vm and Um. Consequently

E| limE(Xn | Fn)− E(X | F∞)| ≤ E(Vm − Um) < ε.

By letting ε ↓ 0 we obtain that limn E(Xn | Fn) = E(X | F∞) a.s. QED

2.2.5 Optional sampling theorems

Theorem 2.2.5 implies for a martingale M and two bounded stopping times σ ≤ τ that
E(Mτ | Fσ) = Mσ. The following theorem extends this result.

Theorem 2.2.18 (Optional sampling theorem) Let M be a uniformly integrable (su-
per)martingale. Then the family of random variables {Mτ | τ is a finite stopping time} is
uniformly integrable and for all stopping times σ ≤ τ we have

E(Mτ | Fσ) = (≤)Mσ a.s.

Proof. We will only prove the martingale statement. For the proof in case of a supermartingale
see Exercise 2.14.

By Theorem 2.2.14, M∞ = limn→∞Mn exists a.s. and in L1 and E(M∞ | Fn) = Mn a.s.
Now let τ be an arbitrary stopping time and n ∈ Z+. Since τ ∧ n ≤ n, Fτ∧n ⊆ Fn. By the
tower property, it follows for every n that

E(M∞ | Fτ∧n) = E(E(M∞ | Fn) | Fτ∧n) = E(Mn | Fτ∧n) a.s.

By Theorem 2.2.5 we a.s. have

E(M∞ | Fτ∧n) = Mτ∧n.

Now let n tend to infinity. Then the right-hand side converges a.s. to Mτ . By the Levy
upward convergence theorem, the left-hand side converges a.s. and in L1 to E(M∞ | G), where

G = σ
(⋃

n

Fτ∧n
)
.

Therefore

E(M∞ | G) = Mτ a.s. (2.2.17)

We have to show that G can be replaced by Fτ . Take A ∈ Fτ . Then

E1{A}M∞ = E1{A∩{τ<∞}}M∞ + E1{A∩{τ=∞}}M∞.

By virtue of Exercise 2.6, relation (2.2.17) implies that

E1{A∩{τ<∞}}M∞ = E1{A∩{τ<∞}}Mτ .

Trivially

E1{A∩{τ=∞}}M∞ = E1{A∩{τ=∞}}Mτ .
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Combination yields

E1{A}M∞ = E1{A}Mτ , A ∈ Fτ .

We conclude hat E(M∞ | Fτ ) = Mτ a.s. The first statement of the theorem follows from BN
Lemma 8.4. The second statement follows from the tower property and the fact that Fσ ⊆ Fτ .
QED

For the equality E(Mτ | Fσ) = Mσ a.s. in the preceding theorem to hold, it is necessary
that M is uniformly integrable. There exist (positive) martingales that are bounded in L1

but not uniformly integrable, for which the equality fails in general (see Exercise 2.27)! For
nonnegative supermartingales without additional integrability properties we only have an
inequality.

Theorem 2.2.19 Let M be a nonnegative supermartingale and let σ ≤ τ be stopping times.
Then

E(Mτ | Fσ) ≤Mσ a.s.

Proof. First note that M is bounded in L1 and so it converges a.s. Fix n ∈ Z+. The stopped
supermartingale M τ∧n is a supermartingale again (cf. Theorem 2.2.4). Check that it is
uniformly integrable. Precisely as in the proof of the preceding theorem we find that

E(Mτ∧n | Fσ) = E(M τ∧n
∞ | Fσ) ≤M τ∧n

σ = Mσ∧n a.s.

Since the limit exists, we have Mτ1{τ=∞} = M∞1{τ=∞}. By conditional Fatou

E(Mτ | Fσ) ≤ E(lim inf Mτ∧n | Fσ)

≤ lim inf E(Mτ∧n | Fσ)

≤ lim inf Mσ∧n = Mσ, a.s.

This proves the result. QED

2.2.6 Law of Large numbers

We have already pointed out that martingales are a generalisation of sums of i.i.d. random
variables with zero expectation. For such sums, we can derive the Law of Large Numbers,
Central Limit Theorem, and law of Iterated Logarithm. The question is then: do these Laws
also apply to martingales? If yes, what sort of conditions do we need to require.

Here we discuss a simplest version. To this end we need some preparations.

Theorem 2.2.20 Let S = (Sn =
∑n

k=1Xk)n=1,2,... be a martingale with respect to the filtra-
tion (Fn)n=1,2,.... Assume that ESn = 0 and that ES2

n <∞ for all n. Then Sn converges a.s.
on the set {

∑∞
k=1 E(X2

k | Fk−1) <∞}.

Proof. Let F0 be the trivial σ-algebra. Fix K > 0 and let τ = min{n |
∑n+1

k=1 E(X2
k | Fk−1) >

K}, if such n exists. Otherwise let τ = ∞. Clearly τ is a stopping time (check yourself).
Then Sτ is a martingale.
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Note that Sτn = Sτ∧n =
∑n

k=1 1{τ≥k}Xk. Using the martingale property and the fact that
{τ ≥ k} ∈ Fk−1, we obtain

ES2
τ∧n = E

( n∑
k=1

1{τ≥k}X
2
k

)
= E

( n∑
k=1

E(1{τ≥k}X
2
k | Fk−1)

)
= E

( n∑
k=1

1{τ≥k}E(X2
k | Fk−1)

)
= E

( τ∧n∑
k=1

E(X2
k | Fk−1

)
≤ K.

By Jensen’s inequality (E|Sτn|)2 ≤ E(Sτn)2 ≤ K2. As a consequence Sτ is a martingale that
is bounded in L1. By the martingale convergence theorem, it converges a.s. to an integrable
limit S∞, say. Thus Sn converges a.s. on the event τ = ∞, in other words, on the event∑∞

k=1 E(X2
k | Fk−1) ≤ K}. Let K ↑ ∞. QED

Without proof we will now recall a simple but effective lemma.

Lemma 2.2.21 (Kronecker Lemma) Let {xn}n≥1 be a sequence of real numbers such that∑
n xn converges. Le {bn}n be a non-decreasing sequence of positive constants with bn ↑ ∞ as

n→∞. Then b−1
n

∑n
k=1 bkxk → 0, as n→∞.

This allows to formulate the following version of a martingale Law of Large Numbers.

Theorem 2.2.22 Let (Sn =
∑n

k=1Xk)n≥1 be a martingale with respect to the filtration
(Fn)n≥1. Then

∑n
k=1Xk/k converges a.s. on the set {

∑∞
k=1 k

−2E(X2
k | Fk−1) < ∞}. Hence

Sn/n→ 0 a.s. on the set {
∑∞

k=1 k
−2E(X2

k | Fk−1) <∞}.

Proof. Combine Theorem 2.2.6 and Lemma 2.2.21.

2.3 Continuous-time martingales

In this section we consider general martingales indexed by a subset T of R+. If the martingale
M = (Mt)t≥0 has ‘nice’ sample paths, for instance they are right-continuous, then M can be
‘approximated’ accurately by a discrete-time martingale. Simply choose a countable dense
subset {tn} of the index set T and compare the continuous-times martingale M with the
discrete-time martingale (Mtn)n. This simple idea allows to transfer many of the discrete-
time results to the continuous-time setting.

2.3.1 Upcrossings in continuous time

For a continuous-time process X we define the number of upcrossings of the interval [a, b] in
the bounded set of time points T ⊂ R+ as follows. For a finite set F = {t1, . . . , tn} ⊆ T we
define UF [a, b] as the number of upcrossings of [a, b] of the discrete-time process (Xti)i=1,...,n

(see Definition 2.2.11). We put

UT [a, b] = sup{UF [a, b] |F ⊆ T, F finite }.
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Doob’s upcrossing lemma has the following extension.

Lemma 2.3.1 Let M be a supermartingale and let T ⊆ R+ be a countable, bounded set.
Then for all a < b, the number of upcrossings UT [a, b] of the interval [a, b] by M satisfies

(b− a)EUT [a, b] ≤ sup
t∈T

E(Mt − a)−.

Proof. Let Tn be a nested sequence of finite sets, such that UT [a, b] = limn→∞ UTn [a, b]. For
every n, the discrete-time upcrossing inequality states that

(b− a)EUTn [a, b] ≤ E(Mtn − a)−,

where tn is the largest element of Tn. By the conditional version of Jensen’s inequality
the process (M − a)− is a submartingale (see Example 2.1.3). In particular, the function
t→ E(Mt − a)− is increasing, so

E(Mtn − a)− = sup
t∈Tn

E(Mt − a)−.

So, for every n we have the inequality

(b− a)EUTn [a, b] ≤ sup
t∈Tn

E(Mt − a)−.

The proof is completed by letting n tend to infinity. QED

Hence UT [a, b] is a.s. finite! By Doob’s upcrossing Lemma 2.2.12 UT [a, b] is Ft-measurable if
t = sup{s | s ∈ T}.

2.3.2 Regularisation

We always consider the processes under consideration to be defined on an underlying filtered
probability space (Ω,F , (F)t)t∈T ,P). Remind that F∞ = σ(Ft, t ∈ T ). We will assume that
T = R+. For shorthand notation, if we write limq↓(↑)t, we mean the limit along non-increasing
(non-decreasing) rational sequences converging to t. The same holds for lim sup / lim inf.

Theorem 2.3.2 Let M be a supermartingale. Then there exists a set Ω∗s ∈ Fs of probability
1, such that for all ω ∈ Ω∗s the limits

lim
q↑t

Mq(ω) and lim
q↓t

Mq(ω)

exist and are finite for every t ∈ (0, s] and t ∈ [0, s) respectively, for any s ≤ ∞.

Is the set of discontinuities of each path M(ω) = (Mt(ω))t∈R+ , ω ∈ Ω∗, at most count-
able? This is not (yet) clear.

Proof. We give the proof for s = ∞. Fix n ∈ Z+. Let a < b, a, b ∈ Q. By virtue of
Lemma 2.3.1 there exists a set Ωn,a,b ∈ Fn, of probability 1, such that

U[0,n]∩Q[a, b](ω) <∞, for all ω ∈ Ωn,a,b.
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Put
Ωn =

⋂
a<b, a,b∈Q

Ωn,a,b.

Then Ωn ∈ Fn. Let now t < n and suppose that

lim
q↓t

Mq(ω)

does not exist for some ω ∈ Ωn. Then there exists a < b, a, b ∈ Q, such that

lim inf
q↓t

Mq(ω) < a < b < lim sup
q↓t

Mq(ω).

Hence U[0,n]∩Q[a, b](ω) =∞, a contradiction. It follows that limq↓tMq(ω) exists for all ω ∈ Ωn

and all t ∈ [0, n).
A similar argument holds for the left limits: limq↑tMq(ω) exists for all ω ∈ Ωn for all

t ∈ (0, n]. It follows that on Ω′ = ∩nΩn these limits exist in [−∞,∞] for all t > 0 in case of
left limits and for all t ≥ 0 in case of right limits. Note that Ω′ ∈ F∞ and P{Ω′} = 1.

We still have to show that the limits are in fact finite. Fix t ∈ T , n > t. Let Qn =
[0, n] ∩ Q and let Qm,n be a nested sequence of finitely many rational numbers increasing to
Qn, all containing 0 and n. Then (Ms)s∈Qm,n is a discrete-time supermartingale. By virtue
of Theorem 2.2.10

λP{ max
s∈Qm,n

|Ms| > 3λ} ≤ 4E|M0|+ 3E|Mn|.

Letting m→∞ and then λ→∞, by virtue of the monotone convergence theorem for sets

sup
s∈Qn

|Ms| <∞, a.s.

This implies that the limits are finite.
Put Ω′′n = {ω | sups∈Qn |Ms|(ω) < ∞}. By the above, Ω′′n ∈ Fn and P{Ω′′n} = 1. Hence,

Ω′′ := ∩nΩ′′n is a set of probability 1, belonging to F∞. Finally, set Ω∗ = Ω′′ ∩ Ω′. This is a
set of probability 1, belonging to F∞. QED

Corollary 2.3.3 There exists an F∞-measurable set Ω∗, P{Ω∗} = 1, such that every sample
path of a right-continuous supermartingale is cadlag on Ω∗.

Proof. See Exercise 2.22. QED

Our aim is now to construct a modification of a supermartingale that is a supermartin-
gale with a.s. cadlag sample paths itself, under suitable conditions. To this end read
LN §1.6, definitions 1.6.2 (right-continuity of a filtration) and 1.6.3 (usual conditions)

Given a supermartingale M , define for every t ≥ 0

Mt+(ω) =

{
limq↓t,q∈QMq(ω), if this limit exists and is finite
0, otherwise.

The random variables Mt+ are well-defined by Theorem 2.3.2. By inspection of the proof of
this theorem, one can check that Mt+ is Ft+-measurable.

We have the following result concerning the process (Mt+)t≥0.
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Lemma 2.3.4 Let M be a supermartingale.

i) Then E|Mt+ | <∞ for every t and

E(Mt+ | Ft) ≤Mt, a.s.

If in addition t→ EMt is right-continuous, then this inequality is an equality.

ii) The process (Mt+)t≥0 is a supermartingale with respect to the filtration (Ft+)t≥0 and it is
a martingale if M is a martingale.

Proof. Fix t ≥ 0. Let qn ↓ t be a sequence of rational numbers decreasing to t. Then the pro-
cess (Mqn)n is a backward discrete-time supermartingale like we considered in Theorem 2.2.16,

with supn EMqn ≤ EMt < ∞. By that theorem, Mt+ is integrable, and Mqn
L1→ Mt+ . As in

the proof of Theorem 2.2.14, L1-convergence allows to take the limit n→∞ in the inequality

E(Mqn | Ft) ≤Mt a.s.

yielding
E(Mt+ | Ft) ≤Mt a.s.

L1 convergence also implies that EMqn → EMt+ . So, if s → EMs is right-continuous, then
EMt+ = limn→∞ EMqn = EMt. But this implies (cf. Exercise 2.7 b) that EMt+ | Ft) = Mt

a.s.
To prove the final statement, let s < t and let q′n ≤ t be a sequence of rational numbers

decreasing to s. Then

E(Mt+ | Fq′n) = E(E(Mt+ | Ft)|Fq′n) ≤ E(Mt | Fq′n) ≤Mq′n a.s.

with equality if M is a martingale. The right-hand side of inequality converges to Ms+ as
n → ∞. The process E(Mt+ | Fq′n) is a backward martingale satisfying the conditions of
Theorem 2.2.16. Hence, E(Mt+ | Fq′n) converges to E(Mt+ | Fs+) a.s. QED

We can now prove the main regularisation theorem for supermartingales with respect to
filtrations satisfying the usual conditions.

The idea is the following. In essence we want ensure that all sample paths are cadlag a
priori (that the cadlag paths are a measurable set w.r.t to each σ-algebra Ft). In view of
Corollary 2.3.3 this requires to complete F0 with all P-null sets in F∞. On the other hand, we
want to make out of (Mt+)t a cadlag modification of M . This is guaranteed if the filtration
involved is right-continuous.

Can one enlarge a given filtration to obtain a filtration satisfying the usual conditions? If
yes, can this procedure destroy properties of interest - like the supermartingale property,
independence properties? For some details on this issue see BN §9.

Theorem 2.3.5 (Doob’s regularity theorem) Let M be a supermartingale with respect
to the filtration (Ft)t≥0 satisfying the usual conditions. Then M has a cadlag modification

M̃ (such that {Mt − M̃t 6= 0}is a null set contained in F0) if and only if t → EMt is right-

continuous. In that case M̃ is a supermartingale with respect to (Ft)t≥0 as well. If M is a

martingale then M̃ is a martingale.
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Proof. ‘⇐’ By Theorem 2.3.2 and the fact that (Ft) satisfies the usual conditions, there exists
an event Ω∗ ∈ F0 (!) of probability 1, on which the limits

Mt− = lim
q↑t

Mq, Mt+ = lim
q↓t

Mq

exist for every t. Define the process M̃ by M̃t(ω) = Mt+(ω)1{Ω∗}(ω) for t ≥ 0. Then

M̃t = Mt+ a.s. and they differ at most on a null-set contained in F0. Since Mt+ is Ft+-
measurable, we have that M̃t is Ft+-measurable. It follows that M̃t = E(Mt+ | Ft+) a.s. By
right-continuity of the filtration, right-continuity of the map t → EMt and the preceding

lemma, we get that a.s. M̃t = E(Mt+ | Ft+) = E(Mt+ | Ft) = Mt a.s. In other words, M̃ is

a modification of M . Right-continuity of the filtration implies further that M̃ is adapted to
(Ft). The process M̃ is cadlag as well as a supermartingale (see Exercise 2.23).

‘⇒’ see Exercise 2.24. QED

Corollary 2.3.6 A martingale with respect to a filtration that satisfies the usual conditions
has a cadlag modification, which is a martingale w.r.t the same filtration.

We will next give two example showing what can go wrong without right-continuity of the
filtration, or without continuity of the expectation as a function of time.

Example
Let Ω = {−1, 1}, Ft = {Ω, ∅} for t ≤ 1 and Ft = {Ω, ∅, {1}, {−1}} for t > 1. Let P({1}) =
P({−1}) = 1/2.

Note that Ft is not right-continuous, since F1 6= F1+ ! Define

Yt(ω) =

{
0, t ≤ 1
ω, t > 1

, Xt(ω) =

{
0, t < 1
ω, t ≥ 1

.

Now, Y = (Yt)t is a martingale, but it is not right-continuous, whereas X = (Xt)t is a
right-continuous process. One does have that EYt = 0 is a right-continuous function of t.

Moreover, Yt+ = Xt and P{X1 = Y1} = 0. Hence X is not a cadlag modification of Y ,
and in particular Y cannot have a cadlag modification.

By Lemma 2.3.4 it follows that E(Xt |Ft) = Yt, so that X cannot be a martingale w.r.t
the filtration (Ft)t. By the same lemma, X is a right-continuous martingale, w.r.t to (Ft+)t.
On the other hand, Y is not a martingale w.r.t. to (Ft+)t!

Example
Let Ω = {−1, 1}, Ft = {Ω, ∅} for t < 1 and Ft = {Ω, ∅, {1}, {−1}} for t ≥ 1. Let P({1}) =
P({−1}) = 1/2. Define

Yt(ω) =


0, t ≤ 1
1− t, ω = 1, t > 1
−1, ω = −1, t > 1

, Xt(ω) =


0, t < 1
1− t, ω = 1, t ≥ 1
−1, ω = −1, t ≥ 1

.

In this case the filtration (Ft)t is right-continuous and Y and X are both supermartingales
w.r.t (Ft)t. Furthermore Xt = limq↓t Yq for t ≥ 0, but P{X1 = Y1} = 0 and hence X is not a
modification of Y .
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2.3.3 Convergence theorems

In view of the results of the previous section, we will only consider everywhere right-continuous
martingales from this point on. Under this assumption, many of the discrete-time theorems
can be generalised to continuous time.

Theorem 2.3.7 Let M be a right-continuous supermartingale that is bounded in L1. Then
Mt converges a.s. to a finite F∞-measurable limit M∞, as t→∞, with E|M∞| <∞.

Proof. The first step to show is that we can restrict to take a limit along rational time-
sequences. In other words, that Mt →M∞ a.s. as t→∞ if and only if

lim
q→∞

Mq = M∞ a.s. (2.3.1)

To prove the non-trivial implication in this assertion, assume that (2.3.1) holds. Fix ε > 0
and ω ∈ Ω for which Mq(ω) → M∞(ω). Then there exists a number a = aω,ε > 0 such that
|Mq(ω)−M∞(ω)| < ε for all q > a. Now let t > a be arbitrary. Since M is right-continuous,
there exists q′ > t such that |Mq′(ω) −Mt(ω)| < ε. By the triangle inequality, it follows
that |Mt(ω) − M∞(ω)| ≤ |Mq′(ω) − M∞(ω)| + |Mt(ω) − Mq′(ω)| < 2ε. This proves that
Mt(ω)→M∞(ω), t→∞.

To prove convergence to a finite F∞-measurable, integrable limit, we may assume that M
is indexed by the countable set Q+. The proof can now be finished by arguing as in the proof of
Theorem 2.2.13, replacing Doob’s discrete-time upcrossing inequality by Lemma 2.3.1. QED

Corollary 2.3.8 A non-negative, right-continuous supermartingale M converges a.s. as t→
∞, to a finite, integrable, F∞-measurable random variable.

Proof. Simple consequence of Theorem 2.3.7. QED

The following continuous-time extension of Theorem 2.2.14 can be derived by reasoning
as in discrete-time. The only slight difference is that for a continuous-time process X
L1-convergence of Xt as t→∞ need not imply that X is UI.

Theorem 2.3.9 Let M be a right-continuous supermartingale that is bounded in L1.

i) If M is uniformly integrable, then Mt →M∞ a.s. and in L1, and

E(M∞ | Ft) ≤Mt a.s.

with equality if M is a martingale.

ii) If M is a martingale and Mt →M∞ in L1 as t→∞, then M is uniformly integrable.

Proof. See Exercise 2.25. QED
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2.3.4 Inequalities

Dobb’s submartingale inequality and Lp-inequality are very easily extended to the setting of
general right-continuous martingales.

Theorem 2.3.10 (Doob’s submartingale inequality) Let M be a right-continuous sub-
martingale. Then for all λ > 0 and t ≥ 0

P{sup
s≤t

Ms ≥ λ} ≤ 1
λE|Mt|.

Proof. Let T be a countable, dense subset of [0, t] and choose an increasing sequence of finite
subsets Tn ⊆ T , 0, t ∈ Tn for every n and Tn ↑ T as n → ∞. By right-continuity of M we
have that

sup
n

max
s∈Tn

Ms = sup
s∈T

Ms = sup
s∈[0,t]

Ms.

This implies that {maxs∈TnMs > c} ↑ {sups∈T Ms > c} and so by monotone convergence of
sets P{maxs∈TnMs > c} ↑ P{sups∈T Ms > c}. By the discrete-time version of the submartin-
gale inequality for each m > 0 sufficiently large

P{ sup
s∈[0,t]

Ms > λ− 1
m} = P{sup

s∈T
Ms > λ− 1

m}

= lim
n→∞

P{max
s∈Tn

Ms > λ− 1
m}

≤ 1
λ−1/mE|Mt|.

Let m tend to infinity. QED

By exactly the same reasoning, we can generalise the Lp-inequality to continuous time.

Theorem 2.3.11 (Doob’s Lp-inequality) Let M be a right-continuous martingale or a
right-continuous, nonnegative submartingale. Then for all p > 1 and t ≥ 0

E
(

sup
s≤t
|Ms|p

)
≤
( p

p− 1

)p
E|Mt|p.

2.3.5 Optional sampling

We will now discuss the continuous-time version of the optional stopping theorem.

Theorem 2.3.12 (Optional sampling theorem) Let M be a right-continuous, uniformly
integrable supermartingale. Then for all stopping times σ ≤ τ we have that Mτ and Mσ are
integrable and

E(Mτ | Fσ) ≤Mσ a.s..

with equality if M is martingale.
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Proof. By Lemma 1.6.17 there exist stopping times σn and τn taking only finitely many
values, such that σn ≤ τn, and σn ↓ σ, τn ↓ τ .

By the discrete-time optional sampling theorem applied to the supermartingale (Mk/2n)k∈Z+

(it is uniformly integrable!)
E(Mτn | Fσn) ≤Mσn a.s.

Since σ ≤ σn it holds that Fσ ⊆ Fσn . It follows that

E(Mτn | Fσ) = E
(
E(Mτn | Fσn) | Fσ

)
≤ E(Mσn | Fσ) a.s. (2.3.2)

Similarly
E(Mτn | Fτn+1) ≤Mτn+1 a.s.

Hence, (Mτn)n is a ‘backward’ supermartingale in the sense of the Lévy-Doob downward
theorem 2.2.16. Since supn EMτn ≤ EM0, this theorem implies that (Mτn)n is uniformly
integrable and it converges a.s. and in L1. By right-continuity Mτn → Mτ a.s. Hence
Mτn →Mτ in L1. Similarly Mσn →Mσ in L1. Now take A ∈ Fσ. By equation (2.3.2) it holds
that ∫

A
MτndP≤

∫
A
MσndP.

By L1-convergence, this yields ∫
A
MτdP≤

∫
A
MσdP,

if we let n tend to infinity. This completes the proof. QED

So far we have not yet addressed the question whether stopped (sub-, super-) martingales are
(sub-, super-) martingales. The next theorem prepares the way to prove this.

Theorem 2.3.13 A right-continuous, adapted process M is a supermartingale (resp. a mar-
tingale) if and only if for all bounded stopping times τ , σ with σ ≤ τ , the random variables
Mτ and Mσ are integrable and EMτ ≤ EMσ (resp. EMτ = EMσ).

Proof. Suppose that M is a supermartingale. Since τ is bounded, there exists a constant
K > 0 such that τ ≤ K a.s.

As in the construction in the proof of Lemma 1.6.17 there exist stopping times τn ↓ τ and
σn ↓ σ that are bounded by K and take finitely many values. In particular τn, σn ∈ Dn =
{K · k · 2−n, k = 0, 1, . . . , 2n}. Note that (Dn)n is an increasing sequence of sets.

By bounded optional stopping for discrete-time martingales, we have that E(Mτn | Fτn+1) ≤
Mτn+1 , a.s. (consider M restricted to the discrete time points {k · 2−(n+1)), k ∈ Z+}. We
can apply the Lévy-Doob downward theorem 2.2.16, to obtain that (Mτn)n is a uniformly
integrable supermartingale, converging a.s. and in L1 to an integrable limit as in the proof of
the previous theorem. By right-continuity the limit is Mτ . Analogously, we obtain that Mσ

is integrable.
Bounded optional stopping for discrete-time supermartingales similarly yields that

E(Mτn |Mσn) ≤Mσn a.s. Taking expectations and using L1-convergence proves that
EMτ ≤ EMσ.

The reverse statement is proved by arguing as in the proof of Theorem 2.2.5. Let s ≤ t
and let A ∈ Fs. Choose stopping times σ = s and τ = 1{A}t+ 1{Ac}s. QED
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Corollary 2.3.14 If M is a right-continuous (super)martingale and τ is an (Ft)t stopping
time, then the stopped process is a (super)martingale as well.

Proof. Note that M τ is right-continuous. By Lemmas 1.6.14 and 1.6.16 it is adapted.

Let σ ≤ ξ be bounded stopping times. By applying the previous theorem to the super-
martingale M , and using that σ ∧ τ , ξ ∧ τ are bounded stopping times, we find that

EM τ
σ = EMτ∧σ ≤ EMτ∧ξ = EM τ

ξ .

Since σ and ξ were arbitrary bounded stopping times, another application of the previous
theorem yields the desired result. QED

Just as in discrete time the assumption of uniform integrability is crucial for the optional
sampling theorem. If this condition is dropped, we only have an inequality in general. The-
orem 2.2.19 carries over to continuous time by using the same arguments as in the proof of
Theorem 2.3.12.

Theorem 2.3.15 Let M be a right-continuous non-negative supermartingale and let σ ≤ τ
be stopping times. Then

E(Mτ | Fσ) ≤Mσ, a.s.

A consequence of this result is that non-negative right-continuous supermartingales stay at
zero once they have hit it.

Corollary 2.3.16 Let M be a non-negative, right-continuous supermartingale and define
τ = inf{t |Mt = 0 or Mt− = 0}. Then P{Mτ+t1{τ<∞} = 0, t ≥ 0} = 1, where Mt− =
lim sups↑tMs.

Proof. Positive supermartingales are bounded in L1. By Theorem 2.3.7, M converges a.s. to
an integrable limit M∞ say.

Note that lim sups↑tMs = 0 implies that lims↑tMs exists and equals 0. Hence by right-
continuity τ(ω) ≤ t if and only if inf{Mq(ω) | q ∈ Q ∩ [0, t]} = 0 or Mt(ω) = 0. Hence τ is a
stopping time. Define

τn = inf{t |Mt < n−1}.

Then τn is a stopping time with τn ≤ τ . Furthermore, for all q ∈ Q+, we have that τ + q is a
stopping time. Then by the foregoing theorem

EMτ+q ≤ EMτn ≤ 1
nP{τn <∞}+ EM∞1{τn=∞}.

On the other hand, since τn =∞ implies τ + q =∞ we have

EM∞1{τn=∞} ≤ EM∞1{τ+q=∞}.

Combination yields for all n ∈ Z+ and all q ∈ Q+

EMτ+q1{τ+q<∞} = EMτ+q − EM∞1{τ+q=∞}

≤ 1
nP{τn <∞}.
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Taking the limit n→∞ yields EMτ+q1{τ+q<∞} = 0 for all q ∈ Q+. By non-negativity of M
we get that Mτ+q1{τ+q<∞} = 0 a.s. for all q ∈ Q+. But then also P{∩q{Mτ+q = 0} ∪ {τ <
∞}} = 1. By right continuity

∩q{Mτ+q = 0} ∩ {τ <∞} = {Mτ+t = 0, τ <∞, t ≥ 0}.

Note that the set where Mτ+t = 0 belongs to F∞! QED

2.4 Applications to Brownian motion

In this section we apply the developed theory to the study of Brownian motion.

2.4.1 Quadratic variation

The following result extends the result of Exercise 1.15 of Chapter 1.

Theorem 2.4.1 Let W be a Brownian motion and fix t > 0. For n ∈ Z+, let πn be a partition
of [0, t] given by 0 = tn0 ≤ tn1 ≤ · · · ≤ tnkn = t and suppose that the mesh ||πn|| = maxk |tnk−tnk−1|
tends to zero as n→∞. Then∑

k

(Wtnk
−Wn

k−1
)2 L2→ t, t→∞.

If the partitions are nested we have∑
k

(Wtnk
−Wtnk−1

)2 a.s.→ t, t→∞.

Proof. For the first statement see Exercise 1.15 in Chapter 1. To prove the second one, denote
the sum by Xn and put Fn = σ(Xn, Xn+1, . . .). Then Fn+1 ⊂ Fn for every n ∈ Z+. Now
suppose that we can show that E(Xn | Fn+1) = Xn+1 a.s. Then, since supEXn < ∞, the
Lévy-Doob downward theorem 2.2.16 implies that Xn converges a.s. to a finite limit X∞. By
the first statement of the theorem the Xn converge in probability to t. Hence, we must have
X∞ = t a.s.

So it remains to prove that E(Xn | Fn+1) = Xn+1 a.s. Without loss of generality, we
assume that the number of elements of the partition πn equals n. In that case, there exists a
sequence tn such that the partition πn has the numbers t1, . . . , tn as its division points: the
point tn is added to πn−1 to form the next partition πn. Now fix n and consider the process
W ′ defined by

W ′s = Ws∧tn+1 − (Ws −Ws∧tn+1).

By Exercise 1.12 of Chapter 1, W ′ is again a BM. For W ′, denote the analogous sums Xk

by X ′k. Then it is easily seen for k ≥ n + 1 that X ′k = Xk. Moreover, it holds that X ′n −
X ′n+1 = Xn+1−Xn (check!). Since both W and W ′ are BM’s, the sequences (X1, X2, . . .) and
(X ′1, X

′
2, . . .) have the same distribution. It follows that a.s.

E(Xn −Xn+1 | Fn+1) = E(X ′n −X ′n+1 |X ′n+1, X
′
n+2, . . .)

= E(X ′n −X ′n+1 |Xn+1, Xn+2, . . .)

= E(Xn+1 −Xn |Xn+1, Xn+2, . . .)

= −E(Xn+1 −Xn | Fn+1).
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This implies that E(Xn −Xn+1 | Fn+1) = 0 a.s. QED

A real-valued function f is said to be of finite variation on an interval [a, b], if there exists
a finite number K > 0, such that for every finite partition a = t0 < · · · < tn = b of [a, b] it
holds that ∑

k

|f(tk)− f(tk−1)| < K.

Roughly speaking, this means that the graph of the function f on [a, b] has finite length.
Theorem 2.4.1 shows that the sample paths of BM have positive, finite quadratic variation.
This has the following consequence.

Corollary 2.4.2 Almost every sample path of BM has unbounded variation on every interval.

Proof. Fix t > 0. Let πn be nested partitions of [0, t] given by 0 = tn0 ≤ tn1 ≤ · · · ≤ tnkn = t.
Suppose that the mesh ||πn|| = maxk |tnk − tnk−1| → 0 as n→∞. Then∑

k

(Wtnk
−Wtnk−1

)2 ≤ max
k
|Wtnk

−Wtnk−1
| ·
∑
k

|Wtnk
−Wtnk−1

|.

By uniform continuity of Brownian sample paths, the first factor on the right-hand side
converges to zero a.s., as n→∞. Hence, if the Brownian motion would have finite variation
on [0, t] with positive probability, then

∑
k(Wtnk

−Wtnk−1
)2 would converge to 0 with positive

probability. This contradicts Theorem 2.4.1. QED

2.4.2 Exponential inequality

Let W be a Brownian motion. We have the following exponential inequality for the tail
properties of the running maximum of the Brownian motion.

Theorem 2.4.3 For every t ≥ 0 and λ > 0

P
{

sup
s≤t

Ws ≥ λ
}
≤ e−λ2/2t

and

P
{

sup
s≤t
|Ws| ≥ λ

}
≤ 2e−λ

2/2t

Proof. For a > 0 consider the exponential martingale M defined by Mt = exp{aWt − a2t/2}
(see Example 2.1.4). Observe that

P{sup
s≤t

Ws ≥ λ} ≤ P
{

sup
s≤t

Ms ≥ eaλ−a
2t/2
}
.

By the submartingale inequality, the probability on the right-hand side is bounded by

ea
2t/2−aλEMt = ea

2t/2−aλEM0 = ea
2t/2−aλ.
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The proof of the first inequality is completed by minimising the latter expression in a > 0.
To prove the second one, note that

P
{

sup
s≤t
|Ws| ≥ λ

}
≤ P{sup

s≤t
Ws ≥ λ}+ P{inf

s≤t
Ws ≤ −λ}

= P{sup
s≤t

Ws ≥ λ}+ P{sup
s≤t
−Ws ≥ λ}.

The proof is completed by applying the first inequality to the BM’s W and −W . QED

The exponential inequality also follows from the fact that sups≤tWs
d
= |Wt| for every fixed t.

We will prove this equality in distribution in the next chapter.

2.4.3 The law of the iterated logarithm

The law of the iterated logarithm describes how BM oscillates near zero and infinity. In the
proof we will need the following simple lemma.

Lemma 2.4.4 For every a > 0∫ ∞
a

e−x
2/2dx ≥ a

1 + a2
e−a

2/2.

Proof. The proof starts from the inequality∫ ∞
a

1

x2
e−x

2/2dx ≤ 1

a2

∫ ∞
a

e−x
2/2dx.

Integration by parts shows that the left-hand side equals

−
∫ ∞
a

e−x
2/2d(

1

x
) =

1

a
e−a

2/2 +

∫ ∞
a

1

x
d(e−x

2/2)

=
1

a
e−a

2/2 −
∫ ∞
a

e−x
2/2dx.

Hence we find that (
1 +

1

a2

)∫ ∞
a

e−x
2/2dx ≥ 1

a
e−a

2/2.

Thid finishes the proof. QED

Theorem 2.4.5 (Law of the iterated logarithm) It almost surely holds that

lim sup
t↓0

Wt√
2t log log 1/t

= 1, lim inf
t↓0

Wt√
2t log log 1/t

= −1,

lim sup
t→∞

Wt√
2t log log t

= 1, lim inf
t→∞

Wt√
2t log log t

= −1.
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Proof. It suffices to prove the first statement. The second follows by applying the first to the
BM −W . The third and fourth statements follow by applying the first two to the BM tW1/t

(cf. Theorem 1.4.4).
Put h(t) =

√
2t log log 1/t. We will first prove that lim sups↓0W (s)/h(s) ≤ 1. Choose

two numbers θ, δ ∈ (0, 1). We put

αn = (1 + δ)θ−nh(θn), βn = h(θn)/2.

Use the submartingale inequality applied to the exponential martingale Ms = exp{αnWs −
α2
ns/2}:

P{sup
s≤1

(Ws − αns/2) ≥ βn} = P{sup
s≤1

Ms ≥ eαnβn}

≤ e−αnβnEM1 = e−αnβn

≤ Kθn
−(1+δ),

for some constant Kθ > 0 that depends on θ but not on n. Applying the Borel-Cantelli lemma
yields the existence of a set Ω∗θ,δ ∈ F∞, P{Ω∗θ,δ} = 1, such that for each ω ∈ Ω∗θ,δ there exists
nω such that

sup
s≤1

(Ws(ω)− αns/2) ≤ βn,

for n ≥ nω.
One can verify that h is increasing for t ∈ (0, e−c] with c satisfying c = e1/c. Hence, for

n ≥ nω and s ∈ [θn, θn−1]

Ws(ω) ≤ αns

2
+ βn ≤

αnθ
n−1

2
+ βn =

(1 + δ

2θ
+

1

2

)
h(θn) ≤

(1 + δ

2θ
+

1

2

)
h(s).

It follows that for all n ≥ nω ∨ −c/ log θ

sup
θn≤s≤θn−1

Ws(ω)

h(s)
≤
(1 + δ

2θ
+

1

2

)
.

It follows that lim sups↓0Ws(ω)/h(s) ≤
(

1+δ
2θ + 1

2

)
, for ω ∈ Ω∗θ,δ. Write Ω∗m = Ω∗θ=1−1/m,δ=1/m

and put Ω∗ = ∩mΩ∗m. Then lim sups↓0Ws(ω)/h(s) ≤ 1 for ω ∈ Ω∗.
To prove the reverse inequality, choose θ ∈ (0, 1) and consider the events

An = {Wθn −Wθn+1 ≥ (1−
√
θ)h(θn)}.

By the independence of the incements of BM, the events An are independent. Note that

Wθn −Wθn+1√
θn − θn+1

d
= N(0, 1).

Hence,

P{An} = P
{Wθn −Wθn+1√

θn − θn+1
≥ (1−

√
θ)h(θn)√

θn − θn+1

}
=

1√
2π

∫ ∞
a

e−x
2/2dx,
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with

a =
(1−

√
θ)h(θn)√

θn − θn+1
= (1−

√
θ)

√
2 log log θ−n

1− θ
.

By Lemma 2.4.4 it follows that
√

2πP{An} ≥
a

1 + a2
e−a

2/2.

It is easily seen that the right-hand side is of order

n−
(1−
√
θ)2

1−θ = n−α,

with α < 1. It follows that
∑

n P{An} = ∞ and so by the 2d Borel-Cantelli Lemma there
exists a set Ωθ ∈ F∞, P{Ωθ} = 1, such that

Wθn(ω) ≥ (1−
√
θ)h(θn) +Wθn+1(ω)

for infinitely many n, for all ω ∈ Ωθ. Since −W is also a BM, the first part of the proof implies
the existence of a set Ω0 ∈ F∞, P{Ω0} = 1, such that for each ω ∈ Ω0 there exists nω with

−Wθn+1(ω) ≤ 2h(θn+1), n ≥ nω.

Note that for n ≥ 2/ log θ−1

log θ−(n+1) = (n+ 1) log θ−1 ≤ 2n log θ−1 ≤ n2(log θ−1)2 = (log θ−n)2.

Hence
log log θ−(n+1) ≤ log(log θ−n)2 ≤ 2 log log θ−n.

and so we find that

h(θn+1) ≤
√

2θ(n+1)/2
√

2 log log θ−n ≤ 2
√
θh(θn).

Combining this with the preceding inequality yields for ω ∈ Ω0 ∩ Ωθ that

Wθn(ω) ≥ (1−
√
θ)h(θn)− 2h(θn+1) ≥ h(θn)(1− 5

√
θ),

for inifinitely many n. Hence

lim sup
t↓0

Wt(ω)

h(t)
≥ 1− 5

√
θ, ω ∈ Ω0 ∩ Ωθ.

Finally put Ω∗ = Ω0 ∩ ∩k≥1Ω1/k. Clearly P{Ω∗} = 1 and lim supt↓0
Wt(ω)
h(t) ≥ limk→∞(1 −

5/
√
k) = 1. QED

As a corollary we have the following result regarding the zero set of the BM that was considered
in Exercise 1.28 of Chapter 1.

Corollary 2.4.6 The point 0 is an accumulation point of the zero set of the BM, i.e. for
every ε > 0, the BM visits 0 infinitely often in the time interval [0, ε).

Proof. By the law of the iterated logarithm, there exist sequences tn and sn converging
monotonically to 0, such that

Wtn√
2tn log log 1/tn

→ 1,
Wsn√

2sn log log 1/sn
→ −1, n→∞.

The corollary follows from the continuity of Brownian motion paths. QED



2.4. APPLICATIONS TO BROWNIAN MOTION 57

2.4.4 Distribution of hitting times

Let W be a standard Brownian motion and, for a > 0, let τa be the (a.s. finite) hitting time
of level a (cf. Example 1.6.9).

Theorem 2.4.7 For a > 0 the Laplace transform of the hitting time τa is given by

Ee−λτa = e−a
√

2λ, λ ≥ 0.

Proof. For b ≥ 0, consider the exponential martingales Mt = exp(bWt − b2t/2) (see Ex-
ample 2.1.4. The stopped process M τa is again a martingale (see Corollary 2.3.14) and is
bounded by exp(ab). A bounded martingale is uniformly integrable. Hence, by the optional
stopping theorem

EMτa = EM τa
∞ = EM τa

0 = EM0 = 1.

Since Wτa = a, it follows that

Eeba−b
2τa/2 = 1.

The expression for the Laplace transform now follows by substituting b2 = 2λ. QED

We will later see that τa has the density

x→ ae−a
2/2x

√
2πx3

1{x≥0}.

This can be shown by inverting the Laplace transform of τa.

A formula for the inversion of Laplace transforms are given in BN§4.

We will however use an alternative method in the next chapter. At this point we only prove
that although the hitting times τa are a.s. finite, we have Eτa =∞ for every a > 0. A process
with this property is called null recurrent.

Corollary 2.4.8 For every a > 0 it holds that Eτa =∞.

Proof. Denote the distribution function of τa by F . By integration by parts we have for every
λ > 0

Ee−λτa =

∫ ∞
0

e−λxdF (x) = e−λxF (x)
∣∣∣∞
0
−
∫ ∞

0
F (x)d(e−λx) = −

∫ ∞
0

F (x)d(e−λx).

Combination with the fact that

−1 =

∫ ∞
0

d(e−λx)

it follows that

1− Ee−λτa

λ
= − 1

λ

∫ ∞
0

(1− F (x))d(e−λx) =

∫ ∞
0

(1− F (x))e−λxdx.

Now suppose that Eτa < ∞. Then by dominated convergence the right-hand side converges
to Eτa as λ→ 0. In particular

lim
λ↓0

1− Ee−λτa

λ

is finite. However, the preceding theorem shows that this is not the case. QED
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2.5 Poisson process and the PASTA property

Let N be a right continuous Poisson process with parameter µ on (Ω,F ,P). Here the space Ω
are right-continuous, non-decreasing integer valued paths, such that for each path ω one has
ω0 = 0 as well as ωt ≤ lims↑t ωs + 1, for all t > 0 (cf. construction in Chapter 1.1). The path
properties imply all paths in Ω to have at most finitely many discontinuities in each bounded
time interval. The σ-algebra F is the associated σ-algebra that makes the projections on the
t-coordinate measurable.

As we have seen in Example 2.1.5 , {Nt − µt}t is a martingale. This implies that Nt has
a decomposition as the sum of a martingale and an increasing process, called Doob-Meyer
decomposition.

Lemma 2.5.1
Nt

t

a.s.→ µ, t→∞.

Proof. See Exercise 2.34. QED

The structure of Poisson paths implies that each path can be viewed as to represent the
‘distribution function’ of a counting measure, that gives measure 1 to each point where N(ω)
has a discontinuity. In fact, the measure νω, with νω([0, t]) = Nt(ω) is a Lebesgue-Stieltjes
measure generated by the trajectory N(ω), and νω(A) ‘counts’ the number of jumps of N(ω)
occurring in A ∈ B[0,∞).

Denote these successive jumps by Sn(ω), n = 1, . . .. Let f : [0, t]→ R be any bounded or
non-negative measurable function. Then for each ω ∈ Ω, t ≥ 0, we define∫ t

0
f(s)dNs(ω) =

Nt(ω)∑
n=0

f(Sn(ω)) =
∞∑
n=0

f(Sn(ω))1{Sn(ω)≤t,Nt(ω)<∞}. (2.5.1)

This can be derived using the ‘standard machinery’.

The PASTA property Let us now consider some (E, E)-valued stochastic process X on
(Ω,F , (Ft)t,P), where (E, E) is some measure space. Let B ∈ E .

The aim is to compare the fraction of time that X-process spends in set B, with the
fraction of time points generated by the Poisson process that the X-process is in B. We need
to introduce some notation: Ut = 1{Xt∈B}, and, as usual, λ stands for the Lebesgue measure
on (R+,B(R+)).

Assumption A U has ladcag paths, i.o.w. all paths of U are left continuous and have right
limits.

We further define

U t =
1

t

∫ t

0
Usdλ(s)

At =

∫ t

0
UsdNs

Āt =
At
Nt

1{Nt>0}

Ft = σ(Us, s ≤ t,Ns, s ≤ t).
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Here U t stands for the fraction of time during (0, t] that X spends in set B; At is the amount
of Poisson time points before t at which X is in set B, and At is the fraction of Poisson time
points upto time t at which X is in B.

Assumption B Lack of anticipation property σ(Nt+u−Nt, u ≥ 0) and Ft are independent
for all t ≥ 0.

Theorem 2.5.2 Under assumptions A and B, there exists a finite random variable U∞ such
that U t

a.s.→ U∞, iff there exists a finite random variable Ā∞ such that Āt
a.s.→ Ā∞ and then

Ā∞
a.s.
= U∞.

The proof requires a number of steps.

Lemma 2.5.3 Suppose that assumptions A and B hold.
Then EAt = λtEU t = λE

∫ t
0 Usdλ(s).

Proof. In view of (2.5.1) and the sample properties of N , this implies that we can approximate
At by

An,t =
n−1∑
k=0

Ukt
n

[N (k+1)t
n

−Nkt
n

].

In other words, An,t
a.s.→ At. Now, evidently 0 ≤ An,t ≤ Nt. Since E|Nt| = ENt < ∞, we can

apply the dominated convergence theorem and Assumption B to obtain that

EAt = lim
n→∞

EAn,t = lim
n→∞

µt

n

n−1∑
k=0

EUtk
n
. (2.5.2)

Similarly, one can derive that

µt

n

n−1∑
k=0

EUtk
n

a.s.→ µ

∫ t

0
Usdλ(s), n→∞.

Using that

0 ≤ µt

n

n−1∑
k=0

EUtk
n
≤ µt,

we can apply the dominated convergence theorem to obtain, that

E lim
n→∞

µt

n

n−1∑
k=0

Utk
n

= µE

∫ t

0
Usdλ(s). (2.5.3)

Combining (2.5.2) and (2.5.3) yields

EAt = µE

∫ t

0
Usdλ(s).

QED
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Corollary 2.5.4 Suppose that assumptions A and B hold. E(At−As | Fs) = µE(
∫ t
s Uvdλ(v) | Fs)

a.s.

Proof. The lemma implies that E(At −As) = µE
∫ t
s Uvdλ(v). Define

An,s,t =
∑

ns/t≤k≤n−1

Ukt
n

[N(k+1)t
n

−Nkt
n

].

Then, analogously to the above proof, An,s,t
a.s.→ At −As =

∫ t
s UvdNv.

We use conditional dominated convergence (BN Theorem 7.2 (vii)). This implies that
E(An,s,t | Fs)→ E(At −As | Fs) a.s. On the other hand

E(An,s,t | Fs) = E(µtn

∑
ns/t≤k≤n−1

Ukt
n
| Fs).

By another application of conditional dominated convergence, using boundedness of the func-
tion involved, the right-hand side converges a.s. to E(µ

∫ t
s Uvdv | Fs). QED

Next define Rt = At−µtU t. By virtue of Corollary 2.5.4 {Rt}t is an (Ft)t-adapted martingale.

Lemma 2.5.5 Suppose that assumptions A and B hold. Then Rt/t
a.s.→ 0.

Proof. Note that {Rnh}n is an (Fnh)n-adapted discrete time martingale for any h > 0. By
virtue of Theorem 2.2.22

Rnh
n
→0,

on the set

A = {
∞∑
k=1

1

k2
E((R(k+1)h −Rkh)2 | Fkh) <∞}.

Note that
|Rt −Rs| ≤ Nt −Ns + µ(t− s). (2.5.4)

It follows that

E(Rt −Rs)2 ≤ E(Nt −Ns)
2 + 3µ2(t− s)2 = 4µ2(t− s)2 + µ(t− s). (2.5.5)

Consider the random variables Yn =
∑n

k=1
1
k2
E((R(k+1)h−Rkh)2 | Fkh), n = 1, . . .. By (2.5.5),

E|Yn| = EYn ≤
∞∑
k=1

(4µ2h2 + µh)
1

k2
<∞,

for all n, hence {Yn}n is bounded in L1. Yn is an increasing sequence that converges to a limit
Y∞, that is possibly not finite everywhere. By monotone convergence and L1-boundednes
EYn → EY∞ <∞. As a consequence Y∞ must be a.s. finite. In other words, P{A} = 1. That
is R(nh)/n

a.s.→ 0.
Let Ω∗ be the intersection of A and the set where Nt/t→ µ. By Lemma 2.5.1 P{Ω∗} = 1.

The lemma is proved if we show that Rt/t → 0 on the set Ω∗. Let ω ∈ Ω∗. Fix t and let nt
be such that t ∈ [nth, (nt + 1)h). By virtue of(2.5.4)

|Rt(ω)−Rnth(ω)| ≤ Nt(ω)−Nnth(ω) + µh.
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By another application of Lemma 2.5.1

Rt(ω)

t
≤ nth

t
· Rnth(ω) +N(t, ω)−Nnth)(ω) + µh

nth
→ 0,→∞.

QED

Now we can finish the proof of the theorem. It follows from the relation

Rt
t

=
At
Nt

Nt

t
1{Nt>0} − µU t,

whilst noting that (Nt/t)1{Nt>0} → µ on Ω∗.
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2.6 Exercises

Discrete-time martingales

Exercise 2.1 Prove the assertion in Example 2.1.2.

Exercise 2.2 Prove the assertion in Example 2.1.3.

Exercise 2.3 Show that the processes defined in Example 2.1.4 are indeed martingales.

Exercise 2.4 (Kolmogorov 0-1 Law) Let X1, X2, . . . be i.i.d. random variables and con-
sider the tail σ-algebra defined by

T =
∞⋂
n=1

σ(Xn, Xn−1, . . .).

a) Show that for every n, T is independent of the σ-algebra σ(X1, . . . , Xn) and conclude that
for every A ∈ T

P{A} = E(1{A} |X1, . . . , Xn), a.s.

b) Give a “martingale proof” of Kolmogorov’s 0 − 1 law: for every A ∈ T , P{A} = 0 or
P{A} = 1.

c) Give an example of an event A ∈ T .

Exercise 2.5 (Law of large Numbers) In this exercise we present a “martingale proof”
of the law of large numbers. Let X1, X2, . . . be random variables with E|X1| < ∞. Define
Sn =

∑n
i=1Xi and Fn = σ(Sn, Sn+1, . . .).

a) Note that for i = 1, . . . , n, the distribution of the pair (Xi, Sn) is independent of i. From
this fact, deduce that E(Xn | Fn) = Sn/n, and that consequently

E( 1
nSn | Fn) = 1

n+1Sn+1, a.s.

ii) Show that Sn/n converges almost surely to a finite limit.

iv) Derive from Kolmogorov’s 0− 1 law that the limit must be a constant and determine its
value.

Exercise 2.6 Consider the proof of Theorem 2.2.18. Prove that for the stopping time τ and
the event A ∈ Fτ it holds that A ∩ {τ <∞} ∈ G.

Exercise 2.7 Let X,Y be two integrable random variables defined on the same space Ω. Let
F be a σ-algebra on Ω.

a) Suppose that X,Y are both F-measurable. Show that X ≥ Y a.s. if and only if E1{A}X ≥
E1{A}Y for all A ∈ F .

b) Suppose that Y is F-measurable. Show that E(X | F) ≤ Y a.s. together with EX = EY
implies E(X | F) = Y a.s.



2.6. EXERCISES 63

Exercise 2.8 Let M be a martingale such that {Mn+1 −Mn}n≥1 is a bounded process. Let
Y be a bounded predictable process. Let X = Y ·M . Show that EXτ = 0 for τ a finite
stopping time with Eτ <∞.

Exercise 2.9 Let X1, X2, . . . be an i.i.d. sequence of Bernouilli random variables with prob-
ability of success equal to p. Put Fn = σ(X1, . . . , Xn), n ≥ 1. Let M be a martingale adapted
to the generated filtration. Show that the Martingale Representation Property holds: there
exists a constant m and a predictable process Y such that Mn = m+ (Y · S)n, n ≥ 1, where
Sn =

∑n
k=1(Xk − p).

Exercise 2.10 Let X1, . . . be a sequence of independent random variables with σ2
n = EX2

n <
∞ and EXn = 0 for all n ≥ 1. Consider the filtration generated by X and define the
martingale M by Mn =

∑n
i=1Xi. Determine 〈M〉.

Exercise 2.11 Let M be a martingale with EM2
n < ∞ for every n. Let C be a bounded

predictable process and define X = C · M . Show that EX2
n < ∞ for every n and that

〈X〉 = C2 · 〈M〉.

Exercise 2.12 Let M be a martingale with EM2
n < ∞ for every n and let τ be a stopping

time. We know that the stopped process is a martingale as well. Show that E(M τ
n)2 <∞ for

all n and that 〈M τ 〉n = 〈M〉n∧τ .

Exercise 2.13 Let (Cn)n be a predictable sequence of random variables with EC2
n < ∞ for

all n. Let (εn)n be a sequence with Eεn = 0, Eε2n = 1 and εn independent of Fn−1 for all
n. Let Mn =

∑
i≤nCiεi, n ≥ 0. Compute the conditional variance process A of M . Take

p > 1/2 and consider Nn =
∑

i≤nCiεi/(1 + Ai)
p. Show that there exists a random variable

N∞ such that Nn → N∞ a.s. Show (use Kronecker’s lemma) that Mn/(1 + An)p has an a.s.
finite limit.

Exercise 2.14 i) Show that the following generalisation of the optional stopping Theo-
rem 2.2.18 holds. Let M be a uniformly integrable supermartingale. Then the family
of random variables {Mτ | τ is a finite stopping time} is UI and E(Mτ | Fσ) ≤ Mσ, a.s.
for stopping times σ ≤ τ . Hint: use Doob decomposition.

ii) Give an example of a non-negative martingale for which {Mτ | τ stopping time} is not UI.

Exercise 2.14* Show for a non-negative supermartingale M that for all λ > 0

λP{sup
n
Mn ≥ λ} ≤ E(M0).

Exercise 2.15 Consider the unit interval I = [0, 1] equipped with the Borel-σ-algebra B([0, 1])
and the Lebesgue measure. Let f be an integrable function on I. Let for n = 1, 2, . . .

fn(x) = 2n
∫ k2−n

(k−1)2−n
f(y)dy, (k − 1)2−n ≤ x < k2−n,

and define fn(1) = 1 (the value fn(1) is not important). Finally, we define Fn as the σ-algebra
generated by intervals of the form [(k − 1)2−n, k2−n), 1 ≤ k ≤ 2n.
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i) Argue that Fn is an increasing sequence of σ-algebras.

ii) Show that (fn)n is a martingale.

iii) Use Lévy’s Upward Theorem to prove that fn → f , a.s. and in L1, as n→∞.

Exercise 2.16 (Martingale formulation of Bellman’s optimality principle) Suppose
your winning per unit stake on game n are εn, where the εn are i.i.d. r.v.s with

P{εn = 1} = p = 1− P{εn = −1},

with p > 1/2. Your bet αn on game n must lie between 0 and Zn−1, your capital at time n−1.
Your object is to maximise your ‘interest rate’ E log(ZN/Z0), where N =length of the game
is finite and Z0 is a given constant. Let Fn = σ(ε1, . . . , εn) be your ‘history’ upto time n. Let
{αn}n be an admissible strategy, i.o.w. a predictable sequence. Show that log(Zn)− nα is a
supermartingale with α the entropy given by

α = p log p+ (1− p) log(1− p) + log 2.

Hence E log(Zn/Z0) ≤ nα. Show also that for some strategy log(Zn) − nα is a martingale.
What is the best strategy?

Exercise 2.17 Consider a monkey typing one of the numbers 0, 1, . . . , 9 at random at each
of times 1, 2, . . . Ui denotes the i-th number that the monkey types. The sequence of numbers
U1, U2, . . ., form an i.i.d. sequence uniformly drawn from the 10 possible numbers.

We would like to know how long it takes till the first time T that the monkey types the
sequence 1231231231. More formally,

T = min{n |n ≥ 10, Un−9Un−8 · · ·Un = 1231231231}.

First we need to check that T is an a.s. finite, integrable r.v. There are many ways to do this.

a) Show that T is an a.s. finite, integrable r.v. A possibility for showing this, is to first
show that the number of consecutive 10–number words typed till the first occurrence of
1231231231 is a.s. finite, with finite expectation.

In order to actually compute ET , we will associate a gambling problem with it.
Just before each time t = 1, 2, 3, . . ., a new gambler arrives into the scene, carrying D1 in

his pocket. He bets D1 that the next number (i.e. the t-th number) will be 1. If he loses, he
leaves; if he wins his receives 10 times his bet, and so he will have a total capital of D10. He
next bets all of his capital on the event that the (t + 1)-th number will be 2. If he loses, he
leaves; if he wins, he will have a capital of D102. This is repeated throughout the sequence
1231231231. So, if the gambler wins the second time, his third bet is on the number 3, and
so on, till the moment that either he loses, or the monkey has typed the desired sequence.
Note that any gambler entering the game after the monkey typed the desired sequence, cannot
play anymore, he merely keeps his initial capital intact.

b) Define a martingale {X1
n − 1}n=0,..., such that X1

n is the total capital of the first gambler
after his n-th game and hence X1

n − 1 his total gain. Similarly associate with the k-th
gambler (who enters the game at time k) a martingale Xk

n − 1, where Xk
n is his capital

after the n-th number that the monkey typed. Write Mn =
∑n

k=1X
k
n. Then argue that

(Mn − n)n is a bounded martingale associated with the total gain of all gamblers that
entered the game at time n latest.
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c) Argue now that ET = 1010 + 107 + 104 + 10.

Exercise 2.18 Let Xi, 0 = 1, 2 . . ., be independent, integer valued random variables, with
X1, . . . identically distributed. Assume that E|X1|, EX2

1 < ∞. Let a < b, a, b ∈ Z, and
assume that Xi 6≡ 0. Consider the stochastic process S = (Sn)n∈N, with Sn =

∑n
i=0Xi the

(n+ 1)-th partial sum.
We desire to show the intuitively clear assertion that the process leaves (a, b) in finite

expected time, given that it starts in (a, b). Define τa,b = min{n |Sn 6∈ (a, b)} and

f(x) = P{Si ∈ (a, b), i = 0, 1, 2, . . . |S0 = x}.

Note that f(x) = 0 whenever x 6∈ (a, b)! Let now S0 ≡ x0 ∈ (a, b).

a) Show that (f(Sn∧τa,b))n is a martingale.

b) Show that this implies that τa,b is a.s. finite. Hint: consider the maximum of f on (a, b)
and suppose that it is strictly positive. Derive a contradiction.

Fix x0 ∈ (a, b), let S0 ≡ x0, and assume that X1 is bounded.

c) Show that τa,b is an a.s. finite and integrable r.v. Hint: you may consider the processes
(Sn − nEX1)n∈N, and, if EX1 = 0, (S2

n − nEX2
1 )n∈N.

d) Show that τa,b is a.s. finite and integrable also if X1 is not bounded.

e) Derive an expression for Eτa,b (in terms of x0, a and b) in the special case that P{X1 =
1} = P{X1 = −1} = 1/2.

f) Now assume that EX1 ≤ 0. Let τa = min{n ≥ 0 |Sn ≤ a}. Show that τa is a.s. finite.
Hint: consider τa,n and let n tend to ∞.

Exercise 2.18’ Another approach of the first part of Exercise 2.18. Let Xi, i = 0, . . ., all be
defined on the same underlying probability space (Ω,F ,P). Let

f = 1{Si∈(a,b),i=0,...}.

a’) The stochastic process Mn = E(f |S0, . . . , Sn) is a martingale that converges a.s. and in
L1 to M∞ = E{f |S0, . . .}. Argue that

E{f |S0 = x0, . . . , Sn = xn} = E{f |S0 = xn},

for all x0, . . . , xn−1 ∈ (a, b).

Use this to show for all x ∈ (a, b) that

ax =
∑
y

P{X1 = y}ax+y,

where ax = E{f |S0 = x} (note: ax is a real number!).

b’) Show that this implies that ax = 0 for all x ∈ (a, b). Hint: consider the point x∗ =
{x ∈ (a, b) | ax = maxy∈(a,b) ay}. Let now S0 = x0 ∈ (a, b) be given. Conclude from the
previous that τa,b is a.s. finite.
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Exercise 2.19 (Galton-Watson process) This is a simple model for population growth,
growth of the number of cells, etc.

A population of cells evolves as follows. In every time step, every cell splits into 2 cells
with probability p or it dies with probability 1 − p, independently of the other cells and of
the population history. Let Nt denote the number of cells at time t, t = 0, 1, 2, . . .. Initially,
there is only 1 cell, i.e. N0 = 1.

We can describe this model formally by defining Znt , n = 1, . . . , Nt, t = 0, 1, . . ., to be
i.i.d. random variables with

P{Znt = 2} = p = 1− P{Znt = 0},

and then Nt+1 =
∑Nt

n=1 Z
n
t . Let {Ft}t=0,1,... be the natural filtration generated by {Nt}t=0,1,....

i) Argue or prove that

P{1{Nt+1=2y} | Ft} = E{1{Nt+1=2y} | Ft}

= E{1{Nt+1=2y} |Nt} = P{Nt+1 = 2y |Nt} =

(
Nt

y

)
py(1− p)Nt−y.

Hence, conditional on Ft, Nt+1/2 has a binomial distribution with parameters Nt and
p.

ii) Let µ = E{N1}. Show that Nt/µ
t is a martingale with respect to {Ft}, bounded in L1.

iii) Assume that µ < 1. Show that ENt = µt and that the population dies out a.s. in the
long run.

iv) Assume again that µ < 1. Show that Mt = αNt1{Nt>0} is a contracting supermartingale
for some α > 1, i.e. there exist α > 1 and 0 < β < 1 such that

E(Mt+1 | Ft) ≤ βMt, t = 1, 2, . . . .

v) Show that this implies that E(T ) <∞ with T = min{t ≥ 1 |Nt = 0} the extinction time.

Exercise 2.20 (Continuation of Exercise 2.19) From now on, assume the critical case
µ = 1, and so Nt is itself a martingale. Define τ0,N = min{t |Nt = 0 or Nt ≥ N}. Further
define

Mt = Nt · 1{N1,...,Nt∈{1,...,N−1}}.

i) Argue that Mt is a supermartingale and that there exists a constant α < 1 (depending on
N) such that

EMt+N ≤ αENt.

Show that this implies that P{τ0,N =∞} = 0.

ii) Show that P{Nτ0,N ≥ N} ≤ 1/N . Show that this implies the population to die out with
probability 1.

iii) Is {Nt}t UI in the case of µ < 1? And if µ = 1?
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Exercise 2.21 Let Xi, i = 0, . . . be independent Z-valued random variables, with E|Xi| <∞.
We assume that X1, X2, . . . are identically distributed with values in {−1, 0, 1}, that all have
positive probability. Then Sn =

∑n
i=0Xi is a discrete time Markov chain taking values in Z.

Suppose that X0 has distribution ν = δx, with x ∈ (a, b) ⊂ Z+. Define τy = min{n > 0 :
Sn = y} and let τ = τa ∧ τb. We want to compute P{τb < τa} and E{τ} (recall that S0 ≡ x!).
Let first EX1 6= 0.

i) Show that τ is a stopping time w.r.t. a suitable filtration. Show that τ is finite a.s. Hint:
use the law of large numbers.

ii) We want to define a function f : Z→ R, such that {f(Sn)}n is a discrete-time martingale.
It turns out that we can take f(z) = eαz, z ∈ R, for suitably chosen α.

Show that there exists α 6= 0, such that eαSn is a martingale. Use this martingale to
show that

P{τb < τa} =
eαx − eαa

eαb − eαa
.

If P{Xi = 1} = p = 1− P{Xi = −1} (that is: Xi takes only values ±1), then

eα =
1− p
p

or α = log(1− p)− log p.

Show this.

iii) Show that Sn − nEX1 is martingale. Show that

E{τ} =
(eαx − eαb)(x− a) + (eαx − eαa)(b− x)

(eαb − eαa)EX1
.

iv) Let now EX1 = 0. Show that τ < ∞ a.s. (hint: use the Central Limit Theorem). Show
for x ∈ (a, b) that

P{τa < τb} =
b− x
b− a

and

E{τ} =
(x− a)(b− x)

EX2
1

,

by constructing suitable martingales.

Continuous-time martingales

Exercise 2.22 Prove Corollary 2.3.3. Hint: we know from Theorem 2.3.2 that the left limits
exist for all t on an F∞-measurable subset Ω∗of probability 1, along rational sequences. You
now have to consider arbitrary sequences.

Exercise 2.23 Show that the process constructed in the proof of Theorem 2.3.5 is cadlag
and a supermartingale, if M is a supermartingale.

Exercise 2.24 Prove the ‘only if’ part of Theorem 2.3.5.
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Exercise 2.25 Prove Theorem 2.3.9 from LN. You may use Theorem 2.3.7.

Exercise 2.26 Show that for every a 6= 0, the exponential martingale of Example 2.1.4
converges to 0 a.s, as t → ∞. (Hint: use for instance the recurrence of Brownian motion)
Conclude that these martingales are not uniformly integrable.

Exercise 2.27 Give an example of two stopping times σ ≤ τ and a martingale M that is
bounded in L1 but not uniformly integrable, for which the equality E(Mτ | Fσ) = Mσ a.s.
fails. (Hint: see Exercise 2.26).

Exercise 2.28 Let M be a positive, continuous martingale that converges a.s. to zero as t
tends to infinity.

a) Prove that for every x > 0

P{sup
t≥0

Mt > x | F0} = 1 ∧ M0
x a.s.

(Hint: stop the martingale when it gets to above the level x).

b) Let W be a standard BM. Using the exponential martingales of Example 2.1.4, show that
for every a > 0 the random variable

sup
t≥0

(Wt − 1
2at)

has an exponential distribution with parameter a.

Exercise 2.29 Let W be a BM and for a ∈ R let τa be the first time that W hits a. Suppose
that a > 0 > b. By considering the stopped martingale W τa∧τb , show that

P{τa < τb) =
−b
a− b

.

Exercise 2.30 Consider the setup of the preceding exercise. By stopping the martingale
W 2
t − t at an appropriate stopping time, show that E(τa ∧ τb) = −ab. Deduce that Eτa =∞.

Exercise 2.31 Let W be a BM and for a > 0, let τ̃a be the first time that |W | hit the level
a.

a) Show that for every b > 0, the process Mt = cosh(b|Wt|) exp{b2t/2) is a martingale.

b) Find the Laplace transform of the stopping time τ̃a.

c) Calculate Eτ̃a.

Exercise 2.32 (Emperical distributions) Let X1, . . . , Xn be i.i.d. random variables, each
with the uniform distribution on [0, 1]. For 0 ≤ t < 1 define

Gn(t) =
1

n
#{k ≤ n |Xk ≤ t} =

1

n

n∑
k=1

1{Xk≤t}.

In words, Gn(t) is the fraction of Xk that have value at most t. Denote

Fn(t) = σ(1{X1≤s}, . . . ,1{Xn≤s}, s ≤ t}

and Gn(t) = σ(Gn(s), s ≤ t).
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i) Prove that for 0 ≤ t ≤ u < 1 we have

E{Gn(u) | Fn(t)} = Gn(t) + (1−Gn(t))
u− t
1− t

.

Show that this implies that

E{Gn(u) | Gn(t)} = Gn(t) + (1−Gn(t))
u− t
1− t

.

ii) Show that the stochastic process Mn = (Mn(t))t∈[0,1) defined by

Mn(t) =
Gn(t)− t

1− t

is a continuous-time martingale w.r.t Gn(t), t ∈ [0, 1).

iii) Is Mn UI? Hint: compute limt↑1Mn(t).

iv) We extend the process Mn to [0,∞), by putting Mn(t) = 1 and Gn(t) = σ(X1, . . . , Xn), for
t ≥ 1. Show that (Mn(t))t∈[0,∞) is an L1-bounded submartingale relative to (Gn(t))t∈[0,∞),
that converges in L1, but is not UI.

Exercise 2.33 Let (Wt)t be a standard Brownian motion, and define

Xt = Wt + ct,

for some constant c. The process Xt is called Brownian motion with drift. Fix some λ > 0.

i) Show that
Mt := eθXt−λt

is a martingale (with respect to the natural filtration) if and only if θ =
√
c2 + 2λ − c

or θ = −
√
c2 + 2λ− c.

Next, let Hx = inf{t > 0 |Xt = x}.

ii) Argue for x 6= 0 that Hx is a stopping time.

iii) Show that

E(e−λHx) =

{
e−x(

√
c2+2λ−c), x > 0

e−x(−
√
c2+2λ−c), x < 0.

iv) Use the result from (iii) to prove that for x > 0

P{Hx <∞} =

{
1, c ≥ 0

e−2|c|x, c < 0.

v) Explain why this result is reasonable.

Exercise 2.34 Let N = {N(t)}t≥0 be a Poisson process (see Definition in Ch1.1). Show
that {N(t)−λt}t≥0 is a martingale. Then prove Lemma 2.5.1. Hint: use the martingale LLN
given in Section 2.2.6.



Chapter 3

Markov Processes

3.1 Basic definitions: a mystification?

Notational issues To motivate the conditions used lateron to define a Markov process, we
will recall the definition of a discrete-time and discrete-space Markov chain.

Let E be a discrete space, and E the σ-algebra generated by the one-point sets: E =
σ{{x} |x ∈ E}. Let X = {Xn}n=0,1,... be an (E, E)-valued stochastic process defined on some
underlying probability space (Ω,F ,P). In Markov chain theory, it is preferred not to fix the
distribution of X0, i.e. the initial distribution. In our notation we will therefore incorporate
the dependence on the initial distribution.

The initial distribution of the process is always denoted by ν in these notes. The
associated probability law of X and corresponding expectation operator will be denoted
by Pν and Eν , to make the dependence on initial distribution visible in the notation.
If X0 = x a.s. then we write ν = δx and use the shorthand notation Px and Ex (instead
of Pδx and Eδx). E is called the state space.

Assume hence that X is a stochastic process on (Ω,F ,Pν). Then X is called a Markov chain
with initial distribution ν, if there exists an E × E stochastic matrix P 1, such that

i) Pν{X0 ∈ B} = ν(B) for all B ∈ E ;

ii) The Markov property holds, i.e. for all n = 0, 1, . . ., x0, . . . , xn, xn+1 ∈ E

Pν{Xn+1 = xn+1 |X0 = x0, . . . , Xn = xn} = Pν{Xn+1 = xn+1 |Xn = xn} = P (xn , xn+1).

Recall that
Pν{Xn+1 = xn+1 |σ(Xn)} = Eν{1{xn+1}(Xn+1) |σ(Xn)}

is a function of Xn. In the Markov case this is P (Xn, xn+1). Then Pν{Xn+1 = xn+1 |Xn =
xn} = P (xn, xn+1) is simply the evaluation of that function at the point Xn = xn. These
conditional probabilities can be computed by

Pν{Xn+1 = xn+1 |Xn = xn} =


Pν{Xn+1 = xn+1, Xn = xn}

P{Xn = xn}
, if Pν{Xn = xn} > 0

anything you like if Pν{Xn = xn} = 0

1The E × E matrix P is stochastic if it is a non-negative matrix with row sums equal to 1.

70
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We can now rephrase the Markov property as follows: for all n ∈ Z+ and y ∈ E

Pν{Xn+1 = y | FXn } = Pν{Xn+1 = y |σ(Xn)} = P (Xn, y), a.s. (3.1.1)

It is a straightforward computation that

Pν{Xn+m = y | FXn } = Pm(Xn, y),

is the (Xn, y)-th element of the m-th power of P . Indeed, for m = 2

Pν{Xn+2 = y | FXn } = Eν(1{y}(Xn+2) | FXn )

= Eν(Eν1{y}(Xn+2) | FXn+1) | FXn )

= Eν(P (Xn+1, y) | FXn ) (3.1.2)

= Eν(
∑
x∈E

1{x}(Xn+1) · P (Xn+1, y) | FXn )

=
∑
x∈E

P (x, y)Eν(1{x}(Xn+1) | FXn )

=
∑
x∈E

P (x, y)P (Xn, x) = P 2(Xn, y).

In steps (3.1.2) and after, we use discreteness of the state space as well linearity of conditional
expectations. In fact we have proved a more general version of the Markov property to hold.
To formulate it, we need some more notation. But first we will move on to Markov chains on
a general measurable space.

Discrete time Markov chains on a general state space The one point sets need not
be measurable in general space. The notion of a stochastic matrix generalises to the notion
of a transition kernel.

Definition 3.1.1 Let (E, E) be a measurable space. A transition kernel on E is a map
P : E × E → [0, 1] such that

i) for every x ∈ E, the map B 7→ P (x,B) is a probability measure on (E, E),

ii) for every B ∈ E , the map x 7→ P (x,B) is E/B-measurable.

Let X be an (E, E) valued stochastic process defined on some underlying probability space
(Ω,F ,Pν). Then X is a Markov chain with initial distribution ν if (i) Pν{X0 ∈ B} = ν(B) for
all B ∈ E ; (ii) if there exists a transition kernel P such that the Markov property holds:

Pν{Xn+1 ∈ B | FXn } = Pν{Xn+1 ∈ B |σ(Xn)} = P (Xn, B), B ∈ E , n = 0, 1, 2 . . . . (3.1.3)

Remark If E is a discrete space, and E is the σ-algebra generated by the one-point sets,
then for each set {y}, y ∈ E we write P (x, y) instead of P (x, {y}). Moreover, P (x,B) =∑

y∈B P (x, y), and so the transition kernel is completely specified by P (x, y), x, y ∈ E.

As in the above, we would like to infer that

Pν{Xn+m ∈ B | FXn } = Pm(Xn, B), B ∈ E , n = 0, 1, 2 . . . , (3.1.4)
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where Pm is defined inductively by

Pm(x,B) =

∫
P (y,B)Pm−1(x, dy),m = 2, 3, . . . .

For m = 2 we get (cf.(3.1.2))

Pν{Xn+2 ∈ B | FXn } = Eν(Eν(1{B}(Xn+2) | FXn+1) | FXn } = Eν(P (Xn+1, B) | FXn ).

Our definition of the Markov property does not allow to infer (3.1.4) for m = 2 directly, which
we do expect to hold. However, we can prove that it does. In fact, more general relations
hold. Let us introduce some notation.

Notation Integrals of the form
∫
fdν are often written in operator notation as νf . A similar

notation for transition kernels is as follows. If P (x, dy) is a transition kernel on measurable
space (E, E) and f is a non-negative (or bounded), measurable function on E, we define the
function Pf by

Pf(x) =

∫
f(y)P (x, dy).

Then P (x,B) =
∫

1{B}P (x, dy) = P1{B}(x). For notational convenience, write bE for the
space of bounded, measurable functions f : E → R and mE for the measurable functions
f : E → R.

Note that Pf is bounded, for f ∈ bE . Since P is a transition kernel, P1{B} ∈ bE .
Applying the standard machinery yields that Pf ∈ bE for all f ∈ bE , in particular Pf
is E/E-measurable. In other words P is a linear operator mapping bE to bE .

Look up in BN section 3 Measurability what we mean by the ‘standard machinery’.

The Markov property (3.1.3) can now be reformulated as

E(1{B}(Xn+1) | FXn ) = P1{B}(Xn), B ∈ E , n = 0, 1, . . .

Applying the standard machinery once more, yields

E(f(Xn+1) | FXn ) = Pf(Xn), f ∈ bE , n = 0, 1, . . . .

This has two consequences. The first is that now

P{Xn+2 ∈ B | FXn } = E(E(1{B}(Xn+2) | FXn+1) | FXn } = E(P1{B}(Xn+1) | FXn ) = P (P1{B})(Xn).

If Xn = x, the latter equals∫
E
P1{B}(y)P (x, dy) =

∫
E
P (y,B)P (x, dy) = P 2(x,B).

It follows that P{Xn+2 ∈ B | FXn } = P 2(Xn, B). Secondly, it makes sense to define the Markov
property straightaway for bounded, measurable functions!
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Continuous time Markov processes on a general state space Let us now go to the
continuous time case. Then we cannot define one stochastic matrix determining the whole
probabilistic evolution of the stochastic process considered. Instead, we have a collection of
transition kernels (Pt)t∈T that should be related through the so-called Chapman-Kolmogorov
equation to allow the Markov property to hold.

Definition 3.1.2 Let (E, E) be a measurable space. A collection of transition kernels (Pt)t≥0

is called a (homogeneous) transition function if for all s, t ≥ 0, x ∈ E and B ∈ E

Pt+s(x,B) =

∫
Ps(x, dy)Pt(y,B).

This relation is known as the Chapman-Kolmogorov relation.

Translated to operator notation, the Chapman-Kolmogorov equation states that for a transi-
tion function (Pt)t≥0 it holds that for every non-negative (or bounded) measurable function
f and s, t ≥ 0 we have

Pt+sf = Pt(Psf) = Ps(Ptf).

In other words, the linear operators (Pt)t≥0 form a semigroup of operators on the space
of non-negative (or bounded) functions on E. In the sequel we will not distinguish
between this semigroup and the corresponding (homogeneous) transition function on
(E, E), since there is a one-to-one relation between the two concepts.

Further notation Some further notation is enlightening. Let f, g, h be bounded (non-
negative) measurable functions on E. As argued before, Ptf is bounded, E/E-measurable.
Hence multiplying by g gives gPtf , which is bounded, measurable. Here

gPtf(x) = g(x) · Ptf(x) = g(x)

∫
y
f(y)Pt(x, dy).

Then we can apply Ps to this function, yielding the bounded, measurable function PsgPtf ,
with

PsgPtf(x) =

∫
y
g(y)Ptf(y)Ps(x, dy) =

∫
y
g(y)

∫
z
f(z)Pt(y, dz)Ps(x, dy).

hPsgPtf is again bounded, measurable and we can integrate over the probability distribution
ν on (E, E):

νhPsgPtf =

∫
x
h(x)PsgPtf(x)ν(dx)

=

∫
x
h(x)

∫
y
g(y)

∫
z
f(z)Pt(y, dz)Ps(x, dy)ν(dx).

To summarise, we get the following alternative notation for Markov processes that will be
interchangedly used.
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Put ν = δx, then

Px{Xs ∈ A} = Ex1{A}(Xs) = ExEx(1{A}(Xs+0) | F0)

= ExPs1{A}(X0) = Ps1{A}(x)

=

∫
y∈E

1{A}(y)Ps(x, dy) = Ps(x,A). (3.1.5)

This can be generalised to: for f ∈ bE

Exf(Xt) =

∫
f(y)Pt(x, dy) = Ptf(x),

and

Eνf(Xt) =

∫
x

∫
y
f(y)Pt(x, dy)ν(dx) =

∫
x
Ptf(x)ν(dx) = νPtf.

Note that by the ‘standard machinery’, we may replace bounded f by non-negative f
in the definition.

We can also let the initial distribution be given by the value Xs for some s ≥ 0. This
results in the following notation. For f ∈ bE

EXsf(Xt) =

∫
f(y)Pt(Xs, dy) = Ptf(Xs),

which we understand as being equal to Exf(Xt) = Ptf(x) on the event {Xs = x}.

We can now give the definition of a Markov process.

Definition 3.1.3 Let (E, E) be a measurable space and let X be an (E, E)-valued stochastic
process that is adapted to some underlying filtered space (Ω,F , (Ft)t,Pν). X is a Markov
process with initial distribution ν, if

i) Pν{X0 ∈ B} = ν(B) for every B ∈ E ;

ii)(Markov property) there exists a transition function (Pt)t, such that for all s, t ≥ 0 and
f ∈ bE

Eν(f(Xt+s) | Fs) = Ptf(Xs)(= EXsf(Xt)!) Pν − a.s. (3.1.6)

Definition 3.1.4 Let (E, E) be a measurable space and let X : (Ω,F) → (ER+ , ER+) be a
map that is adapted to the filtration (Ft)t, with Ft ⊂ F , t ≥ 0. X is a Markov process, if
there exists a transition function (Pt)t, such that for each distribution ν on (E, E) there exists
a probability distribution Pν on (Ω,F) with

i) Pν{X0 ∈ B} = ν(B) for every B ∈ E ;

ii)(Markov property) for all s, t ≥ 0 and f ∈ bE

Eν(f(Xt+s) | Fs) = Ptf(Xs)(= EXsf(Xt)), Pν − a.s. (3.1.7)



3.1. BASIC DEFINITIONS: A MYSTIFICATION? 75

A main question is whether such processes exist, and whether sufficiently regular versions of
these processes exist. As in the first chapter we will address this question by first showing
that the fdd’s of a Markov process (provided it exists) are determined by transition function
and initial distribution. You have to realise further that a stochastic process with a transition
function (Pt)t need not be Markov in general. The Markov property really is a property of
the underlying stochastic process (cf. Example 3.1.1).

Lemma 3.1.5 Let X be an (E, E)-valued stochastic process with transition function (Pt)t≥0,
adapted to the filtration (Ft)t. Let ν be a distribution on (E, E).

If X is Markov with initial distribution ν, then for all 0 = t0 < t1 < · · · < tn, and all
functions f0, . . . , fn ∈ bE, n ∈ Z+,

Eν

n∏
i=0

fi(Xti) = νf0Pt1−t0f1 · · ·Ptn−tn−1fn. (3.1.8)

Vice versa, suppose that (3.1.8) holds for all 0 = t0 < t1 < · · · < tn, and all functions
f0, . . . , fn ∈ bE, n ∈ Z+. Then X is Markov with respect to the natural filtration (FXt )t.

In either case, (3.1.8) also holds for non-negative functions f0, . . . , fn ∈ mE.

Remark: the proof of the Lemma shows that is it sufficient to check (3.1.8) for indicator
functions.

Proof. Let X be a Markov process with initial distribution ν. Then

Eν

n∏
i=0

fi(Xti) = EνEν(
n∏
i=0

fi(Xti) | Ftn−1)

= Eν

n−1∏
i=0

fi(Xti)Eν(f(Xtn) | Ftn−1)

= Eν

n−1∏
i=0

fi(Xti)Ptn−tn−1
fn(Xtn−1).

Now, Ptn−tn−1
fn ∈ bE , and so one has

Eν

n−1∏
i=0

fi(Xti)Ptn−tn−1
fn(Xtn−1) = Eν

n−2∏
i=0

fi(Xti)Eν(fn−1(Xtn−1)Ptn−tn−1
fn(Xtn−1) | Ftn−2)

= Eν

n−2∏
i=0

fi(Xti)Ptn−1−tn−2
fn−1Ptn−tn−1

fn(Xtn−2).

Iterating this yields

Eν

n∏
i=0

fi(Xti) = Eνf0(Xt0)Pt1−t0f1Pt2−t1f1 · · · Ptn−tn−1
fn(X0)

= νf0Pt1−t0f1Pt2−t1f1 · · · Ptn−tn−1
fn.

Conversely, assume that (3.1.8) holds for all 0 = t0 < t1 < · · · < tn, all functions f0, . . . , fn ∈
bE . We have to show that (i) Pν {X0 ∈ B} = ν(B) for all B ∈ E , and that (ii) for any s, t ≥ 0,
all sets A ∈ FXs

Eν1{A}f(Xt+s) = Eν1{A}Ptf(Xs). (3.1.9)
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Let B ∈ E , put n = 0, f0 = 1{B}. (i) immediately follows.

We will show (ii). To derive (3.1.9), it is sufficient to check this for a π-system containing
Ω and generating FXs . As the π-system we take{

A = {Xt0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An} | t0 = 0 < t1 < · · · < tn ≤ s,

Ai ∈ E , i = 0, . . . , n, n = 0, . . .
}

Let fi = 1{Ai}, then
∏n
i=0 fi(Xti) = 1{Xt0∈A0,...,Xtn∈An} and so, assuming that tn < s

Eν

n∏
i=0

1{Ai}(Xti)1{E}(Xs)f(Xt+s)

= ν1{A0}Pt1−t01{A1}Pt2−t−1 · · · Ptn−tn−1
1{An}Pt+s−tnf

= ν1{A0}Pt1−t01{A1} · · · Ps−tn(Ptf)

= Eν

n∏
i=0

1{Ai}(Xti)(Ptf)(Xs),

which we wanted to prove. The reasoning is similar if tn = s.

This implies that (3.1.9) holds for all sets A in a π-system generating FXs , hence it holds
for FXs . Consequently, Eν(f(Xt+s) | FXs ) = Ptf(Xs), a.s. QED

Example 3.1.1 (Not a Markov process) Consider the following space

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1)},

with σ-algebra S = 2S . Putting P{x} = 1/9 defines a probability measure on this space.

Define a sequence of i.i.d. random vectors Zk = (X3k, X3k+1, X3k+2), k = 0, . . . on
(S,S,P). Then the sequence {Xn}n is an (E = {1, 2, 3}, E = 2E)-valued stochastic pro-
cess on {S,S,P} in discrete time. Then P{Xn+1 = j |σ(Xn)} = 1/3 for each j ∈ {1, 2, 3} and
n, meaning that the motion is determined by the 3 × 3 stochastic matrix with all elements
equal to 1/3.

Let {FXn = σ(Xk, k ≤ n)}n be the natural filtration generated by {Xn}n. {Xn}n is not a
Markov chain w.r.t {FXn }n, since P{X2 = 1 |σ(X0, X1)} = f(X0, X1) with

f(X0, X1) =

{
1, (X0, X1) ∈ {(1, 1), (2, 3), (3, 2)}
0, otherwise.

Hence f(1, 1) 6= f(2, 1), thus showing that the Markov property lacks.

Example 3.1.2 (A (BM process)) Let W be a standard BM on an underlying probability
space (Ω,F ,P). Let X0 be a measurable random variable with distribution ν = δx, for some
x ∈ R, independent of W . Define Xt = X0 +Wt, t ≥ 0. Then X = (Xt)t is a Markov process
with initial distribution ν with respect to its natural filtration. Note that Xt−Xs = Wt−Ws

is independent of FXs .
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To see that X is a Markov process, let f be a bounded, measurable function (on R). Write

Yt = Wt+s −Ws. Then Yt
d
= N(0, t) is independent of FXs and so with BN Lemma 7.5

Eν(f(Xt+s) | FXs ) = Eν

(
f(Yt +Ws + x) | FXs ) = g(Xs)

for the function g given by

g(z) =

∫
y

1√
2πt

f(y + z)e−y
2/2tdy

=

∫
y

1√
2πt

f(y)e−(y−z)2/2tdy

= Ptf(z)

with Pt defined by

Ptf(z) =

∫
f(y)p(t, z, y)dy,

where

p(t, z, y) =
1√
2πt

e−(y−z)2/2t.

Hence

E(f(Xt+s) | FXs ) = g(Xs) = Ptf(Xs) a.s.

It is easily shown that Pt is a transition function. Fix t ≥ 0. Measurability of Pt(x,B) in x
for each set B = (−∞, b), b ∈ R, follows from continuity arguments. Together with R, these
sets form a π-system for B. Then apply the d-system recipe to the set S = {B ∈ B |x 7→
Pt(x,B)is E/B[0, 1]-measurable}.

Example 3.1.3 ((B) Ornstein-Uhlenbeck process) Let W be a standard Brownian mo-
tion. Let α, σ2 > 0 and let X0 be a R-valued random variable with distribution ν that is
independent of σ(Wt, t ≥ 0). Define the scaled Brownian motion by

Xt = e−αt(X0 +Wσ2(exp{2αt}−1)/2α).

If ν = δx, X = (Xt)t a Markov process with the Pν distribution of Xt a normal distribution

with mean exp{−αt}x and variance σ2(1− e−2αt)/2α. Note that Xt
D→ N(0, σ2/2α).

If X0
d
= N(0, σ2/2α) then Xt is a Gaussian, Markov process with mean m(t) = 0 and

covariance function r(s, t) = σ2 exp{−α|t− s|}/2α. See Exercise 3.1.

Example 3.1.4 ((C) Geometric Brownian motion) Let W be a standard BM on an
underlying probability space (Ω,F ,P). Let X0 be a measurable positive random variable
with distribution ν, independent of W . Let µ ∈ R and σ2 ∈ (0,∞) and define Xt =
X0e

(µ−σ2/2)t+σWt , t ≥ 0. Then X is a Markov process. Depending on the value µ it is
a (super/sub) martingale. Geometric Brownian motion is used in financial mathematics to
model stock prices.

Example 3.1.5 (Poisson process) Let N be a Poisson process on an underlying probabil-
ity space (Ω,F ,P). Let X0 be a measurable random variable with distribution ν = δx, for
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some x ∈ Z+, independent of N . Define Xt = X0 +Nt, t ≥ 0. Then X = (Xt)t≥0 is a Markov
process with initial distribution ν, w.r.t. the natural filtration.

This can be shown in precisely the same manner as for BM (example 3.1.2A). In this case
the transition function Pt is a stochastic matrix, t ≥ 0, with

Pt(x, y) = P{Nt = y − x}, y ≥ x.

(cf. Exercise 3.8).

In general it is not true that a function of a Markov process with state space (E, E) is a
Markov process. The following lemma gives a sufficient condition under which this is the
case.

Lemma 3.1.4 Let X be a Markov process with state space (E, E), initial distribution ν and
transition function (Pt)t, defined on an underlying filtered probability space (Ω,F , (Ft)t≥0,Pν).
Suppose that (E′, E ′) is a measurable space and let φ : E → E′ be measurable and onto. If
(Qt)t is a collection of transition kernels such that

Pt(f ◦ φ) = (Qtf) ◦ φ

for all bounded, measurable functions f on E′, then Y = φ(X) is a Markov process with
respect to (Ft)t≥0, with state space (E′, E ′), initial measure ν ′, with ν ′(B′) = ν(φ−1(B′)),
B′ ∈ E ′, and transition function (Qt).

Proof. Let f be a bounded, measurable function on E′. By assumption and the semi-group
property of (Pt),

(QtQsf) ◦ φ = Pt((Qsf) ◦ φ) = PtPs(f ◦ φ) = Pt+s(f ◦ φ) = (Qt+sf) ◦ φ.

Since φ is onto, this implies that (Qt)t is a semigroup. It is easily verified that Y has the
Markov property (see Exercise 3.3). QED

Example 3.1.6 (W 2
t is a Markov process) We apply Lemma 3.1.6. In our example one

has the function φ : E = R → E′ = R+ given by φ(x) = x2. The corresponding σ-algebras
are simply the Borel-σ-algebras on the respective spaces.

If we can find a transition kernel Qt, t ≥ 0, such that

Pt(f ◦ φ)(x) = (Qtf) ◦ φ(x), x ∈ R (3.1.10)

for all bounded, measurable functions f on E′ = R+, then φ(Wt) = W 2
t , t ≥ 0, is a Markov

process (w.r.t. its natural filtration).
Let f be a bounded, measurable function on R+. Then for x ∈ R

Pt(f ◦ φ)(x) =

∫ ∞
−∞

p(t, x, y)f(y2)dy

=

∫ ∞
0

(p(t, x, y) + p(t, x,−y))f(y2)dy

u=y2⇒y=
√
u,dy=du/2

√
u

=

∫ ∞
0

(p(t, x,
√
u+ p(t, x,−

√
u)

1

2
√
u
f(u)du. (3.1.11)
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Define for y ∈ R+, B ∈ E ′ = B(R+)

Qt(y,B) =

∫
B

(p(t,
√
y,
√
u) + p(t,

√
y,−
√
u))

1

2
√
u
du.

One can check that (Qt)t≥0, is a transition kernel. Moreover, from (3.1.11) it follows for
x ∈ R+ that

(Qtf) ◦ φ(x) = (Qtf)(x2) = Pt(f ◦ φ)(x).

For x < 0 one has p(t, x, y) + p(t, x,−y) = p(t,−x, y) + p(t,−x,−y) and so Pt(f ◦ φ)(x) =
Pt(f ◦φ)(−x). Since (Qtf)◦φ(x) = (Qtf)(x2) = (Qtf)◦φ(−x), the validity of (3.1.10) follows
immediately.

3.2 Existence of a canonical version

The question is whether we can construct processes satisfying definition 3.1.3. In this section
we show that this is indeed the case. In other words, for a given transition function (Pt)t and
probability measure ν on a measurable space (E, E), we can construct a so-called canonical
Markov process X which has initial distribution ν and transition function (Pt)t. We go back
to the construction in Chapter 1. Note that, although we consider processes in continuous
time, the results are valid as well for discrete time processes.

Recall that an E-valued process can be viewed as a random element of the space ER+ of E-
valued functions f on R+, or of a subspace Γ ⊂ ER+ ifX is known to have more structure. The
σ-algebra Γ ∩ ER+ is the smallest σ-algebra that makes all projections f → f(t) measurable.

As in Chapter 1, let Ω = Γ and F = Γ ∩ ER+ . Consider the process X = (Xt)t≥0 defined
as the identity map

X(ω) = ω,

so that Xt(ω) = ωt is projection on the t-th coordinate. By construction X : (Ω,F)→ (Ω,F)
and Xt : (Ω,F) → (E, E) are measurable maps. The latter implies that X is a stochastic
process in the sense of Definition 1.1.1. X is adapted to the natural filtration (FXt = Γ∩E [0,t])t.
In a practical context, the path space, or a subspace, is the natural space to consider as it
represents the process itself evolving in time.

Note that we have not yet defined a probability measure on (Ω,F). The Kolmogorov
consistency theorem 1.2.3 validates the existence of a process on (Ω,F) with given fdds.
Hence, we have to specify appropriate fdds based on the given transition function (Pt)t and
initial distribution ν.

In order to apply this theorem, from this point on we will assume that (E, E) is a Polish
space, endowed with its Borel σ-algebra.

Corollary 3.2.2 (to the Kolmogorov consistency theorem) Let (Pt)t be a transition
function and let ν be a probability measure on (E, E). Then there exists a unique proba-
bility measure Pν on (Ω,F) such that under Pν the canonical process X is a Markov process
with initial distribution ν and transition function (Pt)t with respect to its natural filtration
(FXt )t.
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Proof. For any n and all 0 = t0 < t1 < · · · < tn we define a probability measure on
(En+1, En+1) (see Exercise 3.6) by

µt0...,tn(A0 ×A1 × · · · ×An) = ν1{A0}Pt1−t01{A1} · · ·Ptn−tn−11{An}, A0, . . . , An ∈ E ,

and on (En, En) by

µt1,...,tn(A1 × · · · ×An) = ν1{E}Pt1−t01{A1} · · ·Ptn−tn−11{An}, A1, . . . , An ∈ E .

By the Chapman-Kolmogorov equation these probability measures form a consistent system
(see Exercise 3.6). Hence by Kolmogorov’s consistency theorem there exists a probability
measure Pν on (Ω,F), such that under Pν the measures µt1,...,tn are precisely the fdd’s of the
canonical process X.

In particular, for any n, 0 = t0 < t1 < · · · < tn, and A0, . . . , An ∈ E

P{Xt0 ∈ A0, . . . , Xtn ∈ An} = ν1{A0}Pt1−t0 · · ·Ptn−tn−11{An}.

By virtue of the remark following Lemma 3.1.5 this implies that X is Markov w.r.t. its natural
filtration. QED

As the initial measure ν we can choose the Dirac measure δx at x ∈ E. By the above there
exists a measure Px on (Ω,F), such that the canonical process X has distribution Px. This
distributions has all mass on paths ω starting at x: ω0 = x. In words, we say that under Px
the process X starts at point x. Note that (cf. (3.1.5))

Px{Xt ∈ A} = Pt(x,A) =

∫
Pt(y,A)δx(dy)

is a measurable function in x. In particular, since any distribution ν can be obtained as a
convex combination of Dirac measures, we get

Pν{Xt ∈ A} =

∫
Pt(y,A)ν(dy) =

∫
Py{Xt ∈ A}ν(dy).

Similarly, the fdd’s of X under Pν can be written as convex combination of the fdd’s of X
under Px, x ∈ E. The next lemma shows that this applies to certain functions of X as well.

Lemma 3.2.3 Let Z be an FX∞-measurable random variable, that is either non-negative or
bounded. Then the map x→ ExZ is E/B-measurable and for every initial distribution ν

EνZ =

∫
x
ExZ ν(dx).

Review BN §3 on monotone class theorems

Proof. Consider the collection of sets

S = {Γ ∈ FX∞ |x→ Ex1{Γ} is measurable and Eν1{Γ} =

∫
Ex1{Γ}ν(dx)}.
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It is easily checked that this is a d-system. The collection of sets

G = {{Xt1 ∈ A1, . . . , Xtn ∈ An} |A1 . . . , An ∈ E , 0 ≤ t1 < · · · < tn, n ∈ Z+}

is a π-system for FX∞ = ER+ . So if we can show that G ⊂ S, then by BN Lemma 3.8 FX∞ ⊂ S.
But this follows from Lemma 3.1.5.

It follows that the statement of the lemma is true for Z = 1{Γ}, Γ ∈ FX∞. Apply the

standard machinery to obtain the validity of the lemma for FX∞-measurable bounded or non-
negative random variables Z. See also Exercise 3.7. QED

This lemma allows to formulate a more general version of the Markov property. For any t ≥ 0
we define the translation or shift operator θt : ER+ → ER+ by

(θtω)s = ωt+s, s ≥ 0, ω ∈ ER+ .

So θt just cuts off the part of ω before time t and shifts the remainder to the origin. Clearly
θt ◦ θs = θt+s.

Let Γ ⊂ ER+ be such that θt(Γ) ⊂ Γ for each t ≥ 0. Assume that X is a canonical
Markov process on (Ω = ER+ ,F = ER+ ∩Γ). In other words, for each distribution ν on
(E, E), there exists a probability distribution Pν on (Ω,F), such that X is the canonical
Markov process on (Ω,F ,Pν) with initial distribution ν.
Note that FXt = E [0,t] ∩ Γ and θt is F-measurable for every t ≥ 0 (why?).

Theorem 3.2.4 (Generalised Markov property for canonical process) Assume that X
is a canonical Markov process with respect to a filtration (Ft)t. Let Z be an FX∞-measurable
random variable, non-negative or bounded. Then for every t > 0 and any initial distribution
ν

Eν(Z ◦ θt | Ft) = EXtZ, Pν − a.s. (3.2.1)

Before turning to the proof, note that we introduced new notation: EXtZ is a random
variable with value ExZ on the event {Xt = x}. By Lemma 3.2.3 this is a measurable
function of Xt.

Proof. Fix an initial probability measure ν. We will first show that (3.2.1) holds for all
Z = 1{B}, B ∈ FX∞. Let

S = {B ∈ FX∞ |Eν(1{B} ◦ θt | Ft) = EXt1{B}, Pν − a.s.}.

Then S is a d-system, since (i) Ω ∈ S, (ii)B,B′ ∈ S, B ⊆ B′, implies B′ \ B ∈ S, and (iii)
for Bn, n = 1, . . . ,∈ FX∞ a non-decreasing sequence of sets with Bn ∈ S, n = 1, 2, . . ., one has
∪nBn ∈ S. Indeed, (ii) and (iii) follow from linearity of integrals and monotone convergence.

Recall that collection of all finite-dimensional rectangles, A say, is a π-system generating
FX∞. Note that B ∈ A whenever there exist n ∈ Z+, 0 = s0 < s1 < · · · < sm, B0, . . . , Bm ∈ E ,
n ∈ Z+, such that B = {Xs0 ∈ B0, . . . , Xsm ∈ Am}. If we can show that A ⊂ S, then by BN
Lemma 3.4 it follows that σ(A) = FX∞ ⊆ S.
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Take a finite-dimensional rectangle B = {Xs1 ∈ B1, . . . , Xsm ∈ Bm}, where 0 ≤ s1 <
· · · < sm, Bi ∈ E , i = 1, . . . ,m. Using Lemma 3.1.5, it follows that

Eν(1{B} ◦ θt | Ft) = Eν(
m∏
i=1

1{Bi}(Xsi) ◦ θt | Ft)

= Eν(
m∏
i=1

1{Bi}(Xt+si) | Ft)

= Eν(1{B1}Ps2−s11{B2} · · ·Psm−1−sm−21{Bm−1}Psm−sm−11{Bm}(Xt+s1) | Ft)
= Ps11{B2}Ps2−s1 · · ·Psm−1−sm−21{Bm−1}Psm−sm−11{Bm}(Xt)

= EXt

m∏
i=1

1{Bi}(Xsi),

where we have consecutively conditioned on the σ-algebras Ft+sm−1 , . . . ,Ft+s1 , and used the
Markov property. For the last equality we have used (3.1.8).

This results in having proved (3.2.1) for indicator functions Z. Apply the standard ma-
chinery to prove it for step functions (by linearity of integrals), non-negative functions, and
bounded functions Z. QED

We end this section with an example of a Markov process with a countable state space.

Example 3.2.1 (Markov jump process) Let E be a countable state space with σ-algebra
E = 2E generated by the one-point sets. Let P be an E×E stochastic matrix. We define the
transition function (Pt)t as follows:

Pt(x, y) =
∞∑
n=0

e−λt
(λt)n

n!
P (n)(x, y), x, y ∈ E

where P (n) = (P )n is the n-th power of P , and P (0) = I is the identity matrix.
By virtue of Corollary 3.2.2 the canonical processX on (ER+ , ER+) with initial distribution

ν is a Markov process with respect to its natural filtration.
The construction is as follows. Construct independently of X0, a Poisson process N

(cf. Chapter 1), starting at 0 and, independently, a discrete-time Markov chain Y with
transition matrix P , with initial distribution δx. If Nt = n, then Xt = Yn. Formally Xt =∑∞

n=0 1{Nt=n}Yn. By construction Xt has right-continuous paths.

3.3 Strong Markov property

3.3.1 Strong Markov property

Let X be an (E, E)-valued Markov process on (Ω,F), adapted to the filtration (Ft)t and
transition function (Pt)t. Assume that X has everywhere right-continuous paths, and that E
is a Polish space, with E the Borel-σ-algebra.

Definition 3.3.1 X is said to have the strong Markov property if for every function
f ∈ bE , any adapted stopping time σ and any initial distribution ν and any t ≥ 0

1{σ<∞}Eν(f(Xσ+t) | Fσ) = 1{σ<∞}EXσf(Xt), Pν a.s. (3.3.1)
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Note that we have to exclude the event {σ =∞}, since Xt maybe not have a limit as t→∞
and hence it may not be possible to define the value X∞ appropriately.

Lemma 3.3.2 Let X be an (E, E)-valued Markov process. Then (3.3.1) holds for any function
f ∈ bE, any initial distribution ν and any stopping time σ, for which there exists a countable
subset S ⊂ [0,∞) such that σ ∈ S ∪ {∞}.

Proof. Any stopping time is optional, and so by the fact that σ is countably valued, it is
easily checked that A ∈ Fσ if and only if A ∩ {σ = s} ∈ Fs for each s ∈ S.

It is directly checked that 1{σ<∞}Xσ is Fσ-measurable. Use Lemma 3.2.3 to derive that
the map ω 7→ 1{σ(ω)<∞}EXσ(ω)f(Xt) is Fσ/B-measurable as a composition of measurable
maps. The next step is to show that

Eν1{A}1{σ<∞}f(Xσ+t) = Eν1{A}1{σ<∞}EXσf(Xt), A ∈ Fσ.

If A ∈ Fσ with A ⊂ {σ = s} for some s ∈ S, then A ∈ Fs. By the Markov property
Theorem 3.2.4

Eν1{A}1{σ<∞}f(Xσ+t) = Eν1{A}f(Xs+t) = Eν1{A}EXsf(Xt) = Eν1{A}1{σ<∞}EXσf(Xt).

Let A ∈ Fσ be arbitrary. By the previous A ∩ {σ = s} ∈ Fσ. Use that A ∩ {σ < ∞} =
∪s∈S(A ∩ {σ = s}) and linearity of expectations. QED

Corollary 3.3.3 Any discrete time Markov chain has the strong Markov property.

Theorem 3.3.4 Let X be a an (E, E)-valued Markov process adapted to the filtration (Ft)t
with E a Polish space and E the Borel-σ-algebra, and with right-continuous paths. Suppose
that x 7→ Exf(Xs) = Psf(x) is continuous, or, more generally, that t 7→ EXtf(Xs) is right-
continuous (everywhere) for each bounded continuous function f . Then the strong Markov
property holds.

Proof. Let σ be an (Ft)t-stopping time. We will first show the strong Markov property
for f ∈ bE , continuous. Then for indicator functions 1{B}, B ∈ E , with B closed, by an
approximation argument. Since the closed sets form a π-system for E , the d-system recipe
provides us the strong Markov property for all of E . The standard machinery finally provides
us the result for f ∈ bE .

Let first f be a bounded and continuous function, let t ≥ 0. Fσ-measurability of 1{σ<∞}Xσ

and 1{σ<∞}EXσf(Xt) can be checked analogously to the previous lemma.
Consider

σm =
∞∑
k=1

k

2m
· 1{ k−1

2m
<σ≤ k

2m
} +∞ · 1{σ=∞}.

Then σm takes countably many different values and σm ↓ σ. By virtue of Lemma 3.3.2 for all
A ∈ Fσm

Eν1{A}1{σm<∞}f(Xσm+t) = Eν1{A}1{σm<∞}EXσmf(Xt).

Next, use that if A ∈ Fσ, then A ∈ Fσm . Moreover,

1{A}1{σm<∞}f(Xσm+t)→ 1{A}1{σ<∞}f(Xσ+t)
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and
1{A}1{σm<∞}EXσmf(Xt)→ 1{A}1{σ<∞}EXσf(Xt), m→∞.

Apply dominated convergence.
Next we will show that the strong Markov property holds for 1{B}, B ∈ E . Let B ∈ E be

a closed set and let fm be given by

fm(x) = 1−m · (m−1 ∧ d(x,B)), m = 1, . . . ,

where d is a metric on E, consistent with the topology. Then fm ∈ bE is continuous and by
the previous

E1{A}1{σ<∞}f
m(Xt) ◦ θσ = E1{A}1{σ<∞}EXσf

m(Xt), A ∈ Fσ.

The random variable on the left-hand side converges pointwise to 1{A}1{σ<∞}1{B}◦θσ, the one
on right-hand side converges pointwise to 1{A}1{σ<∞}EXσ1{B}. Use monotone convergence.
QED

Corollary 3.3.5 Assume that X is a right-continuous process with a countable state space
E, equipped with the discrete topology, and E = 2E. Then X has the strong Markov property.

The corollary implies that the Poisson process has the strong Markov property, as well as the
right-continuous Markov jump process.

Corollary 3.3.6 BM, the Ornstein-Uhlenbeck process, and geometric BM have the strong
Markov property.

Without the required continuity properties, the strong Markov property may fail, as illustrated
in Example 3.4.1. We discuss some other aspects of the strong Markov property in connection
with optional times.

3.3.2 Intermezzo on optional times: Markov property and strong Markov
property

Sometimes (eg. the book by Karatzas and Shreve) the strong Markov property is defined
through optional times. In other words, the strong Markov property is defined to hold if for
every function f ∈ bE , any adapted optional time σ and any initial distribution ν and any
t ≥ 0

1{σ<∞}Eν(f(Xσ+t) | Fσ+) = 1{σ<∞}EXσf(Xt), Pν a.s. (3.3.2)

The conditions under which this alternative strong Markov property holds, are analogous to
the conditions guaranteeing the strong Markov property (3.3.1) to hold by Lemma 1.6.7 (see
Chapter 1 the new observation on the σ-algebra Fτ+ and its characterisations in Exercises 1.34
and 1.35). In this case, you have to replace Fσ etc. by Fσ+ in the above statements. However,
one needs to show that the Markov property holds with respect to the filtration (Ft+)t. This
holds true under the conditions of Theorem 3.3.4.

Corollary 3.3.7 Assume the conditions of Theorem 3.3.4.

i) Then X is Markov with respect to (Ft+)t.
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ii) Let τ be an (Ft)t-optional time. Then (3.3.2) holds for any function f ∈ bE.

iii) Let τ be a finite adapted optional time. Let Y be a bounded Fτ+-measurable random
variable. Then

EνY f(Xτ+t) = Eν(Y EXτ f(Xt)).

Proof. See Exercise 3.10. QED

An interesting consequence is the following.

Lemma 3.3.8 Assume the conditions of Theorem 3.3.4.

i) Blumenthal’s 0-1 Law If A ∈ FX0+ then Px(A) = 0 or 1 for all x ∈ E.

ii) If τ is an (FXt )t-optional time, then Px{τ = 0} = 0 or 1, for all x ∈ E.

Proof. See Exercise 3.10. QED

The generalised Markov property w.r.t. (FXt+)t is now an immediate consequence of The-
orem 3.2.4, and the strong Markov property w.r.t. the same filtration is a consequence of
Theorem 3.3.4.

3.3.3 Generalised strong Markov property for right-continuous canonical
Markov processes

We are now interested in the question under what conditions the analogon of Theorem 3.2.4
hold. In order to formulate this analogon properly, we need introduce the concept of a random
time shift. However, the use of time shifts restricts us to canonical processes.

Let X be a canonical Markov process w.r.t the filtration (Ft)t≥0, where we again assume
the set-up described in the section 3.2, prior to Corollary 3.2.2 and Theorem 3.2.4. Suppose
that X has everywhere right-continuous sample paths.

For a random time τ we now define θτ as the operator that maps the path s 7→ ωs to the
path s 7→ ωτ(ω)+s. If τ equals the deterministic time t, then τ(ω) = t for all ω and so θτ
equals the old operator θt.

Since the canonical process X is just the identity on the space Ω, we have for instance that
(Xt ◦ θτ )(ω) = Xt(θτ (ω)) = (θτ )(ω))t = ωτ(ω)+t = Xτ(ω)+t(ω), in other words Xt ◦ θτ = Xτ+t.
So the operators θτ can still be viewed as time shifts.

The first results deals with countably valued stopping times.

Lemma 3.3.9 Let X be a canonical Markov process. Then

1{σ<∞}Eν(Z ◦ θσ | FXσ ) = 1{σ<∞}EXσZ Pν a.s.. (3.3.3)

for any bounded or non-negative FX∞-measurable random variable Z, any initial distribution
ν and any stopping time σ, for which there exists a countable subset S ⊂ [0,∞) such that
σ ∈ S ∪ {∞}.
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Proof. The map 1{σ<∞}EXσZ is FXσ -measurable if

{1{σ<∞}EXσZ ∈ B} ∩ {σ = t} = {EXtZ ∈ B} ∩ {σ = t} ∈ FXt

for all B ∈ B, t ≥ 0. This follows from Lemma 3.2.3.

The next step is to show that

Eν1{A}1{σ<∞}Z ◦ θσ = Eν1{A}1{σ<∞}EXσZ, A ∈ FXσ .

This follows analogously to the similar assertion in the proof of Lemma 3.3.2, but with Z ◦ θσ
replacing f(Xσ+t). QED

As is the case with the strong Markov property, for general stopping times we need additional
conditions.

Theorem 3.3.10 Let X be a an (E, E)-valued canonical Markov process with E a Polish space
and E the Borel-σ-algebra, and with right-continuous paths. Suppose that x 7→ Exf(Xs) =
Psf(x) is continuous, or, more generally, t 7→ EXtf(Xs) is right-continuous everywhere for
each bounded continuous function f . Then (3.3.3) holds for any bounded or non-negative
FX∞-measurable random variable Z, any initial distribution ν and any stopping time σ.

Proof. Let σ be an (Ft)t-adapted stopping time and ν an initial distribution. We will first
prove the result for Z =

∏n
i=1 1{Ai}(Xti), with n ∈ Z+, t1 < · · · < tn, A1, . . . , An ∈ E by an

induction argument. For n = 1 the result follows from Theorem 3.3.4. For n = 2

Eν(1{A1}(Xt1)1{A2}(Xt2) ◦ θσ | Fσ) = Eν(1{A1}(Xσ+t1)1{A2}(Xσ+t2) | Fσ)

= Eν(1{A1}(Xσ+t1)Eν(1{A2}(Xσ+t2) | Fσ+t1) | Fσ)

= Eν(1{A1}(Xσ+t1)Eν(1{A2}(Xt2−t1) ◦ θσ+t1 | Fσ+t1) | Fσ)

= Eν(1{A1}(Xσ+t1)EXσ+t11{A2}(Xt2−t1) | Fσ)

= EXσg(Xt1),

where on the event Xt1 = x

g(Xt1) = g(x) = 1{A1}(x)Ex1{A2}(Xt2−t1) = 1{A1}Pt2−t11{A2}(x),

so that g(Xt1) = 1{A1}Pt2−t11{A2}(Xt1). Further, on the event Xσ = y

EXσg(Xt1) = Ey1{A1}Pt2−t11{A2}(Xt1)

= Pt11{A1}Pt2−t11{A2}(Xt1)(y)

= Ey1{A1}(Xt1)1{A2}(Xt2).

This yields

EXσg(Xt1) = EXσ1{A1}(Xt1)1{A2}(Xt2),

which gives us the desired relation for n = 2. The general induction step follows similarly.

Finally, we apply the d-system recipe to show that the strong Markov property holds for
Z = 1{B} with B ∈ FX∞. Then use the standard machinery. QED
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The strong Markov property has interesting consequences for right-continuous canonical
Markov processes X with so-called stationary and independent increments. This means that
Xt −Xs is independent of Fs for s ≤ t, and for each initial distribution ν, the Pν-distribution
of Xt − Xs only depends on the difference t − s, and is independent of ν. In other words:
the Pν-distribution of Xt − Xs and the Pµ distribution Xt−s − X0 are equal for all initial
distributions ν and µ, provided that E is an Abelian group.

The Lévy processes are a class of processes with this property of which canonical BM and
the canonical Poisson process are well-known examples. In fact, one can prove that if X is
a stochastic process satisfying the conditions of the lemma below, for E = R, then X is a
Gaussian process!

Lemma 3.3.11 Let E be a Banach space. Let X be a right-continuous process with val-
ues in (E,B(E)), defined on (Ω,F , (Ft)t,P). Suppose that X has stationary, independent
increments.

i) X is a Markov process with initial distribution P{X0 ∈ ·}.

ii) Let τ be a finite (Ft)t-stopping time. Then the process X(τ) = (Xτ+t−Xτ )t≥0 is indepen-
dent of Fτ . It is a Markov process, adapted to the filtration (Fτ+t)t. The distribution
Pτ of X(τ) is the same as the distribution of X −X0 under P0.

Proof. See Exercise 3.11. We give some hints for the proof of part (ii). Put Yt = Xτ+t −Xτ ,
t ≥ 0. For t1 < · · · < tn and functions f1, . . . , fn ∈ bE we have

Eν

(∏
k

fk(Ytk) | Fτ
)

= Eν

(∏
k

fk(Xτ+tk −Xτ ) | Fτ
)

= EXτ

∏
k

fk(Xtk −X0), Pν − a.s.,

by the strong Markov property. As a consequence, the proof is complete once we have shown
that for arbitrary x ∈ E

Ex

n∏
k=1

fk(Xtk −X0) = Pt1f1 · · ·Ptn−tn−1fn(0),

(cf. Characterisation Lemma 3.1.5). Prove this by induction on n. QED

The following lemma is often useful in connection with the strong Markov property.

Lemma 3.3.12 Let Ω = Γ,F = ET ∩Γ with Γ ⊂ ET such that ω ∈ Γ implies (i) ω′ = θs(ω) ∈
Γ for all s ∈ T and (ii) for all t ∈ T ω′ = (ωs∧t)s ∈ Γ. Let X be the canonical process, adapted
to the filtration (FXt )t.

i) If σ and τ are finite (FXt )t-stopping times, then σ + τ ◦ θσ is also a finite (FXt )t-stopping
time.

ii) If σ and τ are finite (F+
t )t-optional times, then σ + τ ◦ θσ is also a finite (F+

t )t-optional
time.
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Proof. We will prove (i). By Lemma 1.6.5 (b) Galmarino test we have to show that (i)
(σ + τ ◦ θσ) is FX∞-measurable and (ii) for all t ≥ 0, σ(ω) + τ(σ(ω)) ≤ t and ωs = ω′s, s ≤ t,
implies that σ(ω′) + τ(σ(ω′)) ≤ t.

The first statement is simply proved, for instance by a similar reasoning to Exercise 3.14.
Let us consider the second statement.

For t = 0, σ(ω)+τ(σ(ω)) ≤ 0 then σ(ω), τ(ω) ≤ 0. Let ω′0 = ω0. Since σ is a stopping time,
the Galmarino test applied to σ and τ implies that σ(ω′), τ(ω′) ≤ 0, hence σ(ω′)+τ(σ(ω′)) ≤ 0.

Next let t > 0. Let ω′ satisfy ω′s = ωs, s ≤ t. Then σ(ω) ≤ t, and by the above and the
Galmarino test, σ(ω′) ≤ t.

Is het possible that σ(ω) < σ(ω′)? Suppose this is the case. Then there exists s < t
such that σ(ω) ≤ s < σ(ω′). But by the Galmarino test, σ(ω′) ≤ s. A contradiction. Hence
σ(ω′) ≤ σ(ω). A repetition of the same argument with the roles of ω and ω′ interchanged,
yields that in fact σ(ω) = σ(ω′).

But then τ(σ(ω)) = τ(σ(ω′)). Hence t ≥ σ(ω) + τ(σ(ω)) = σ(ω′) + τ(σ(ω′)). This is what
we had to prove.

The proof of (ii) is Exercise 3.14. QED

3.4 Applications to Brownian Motion

3.4.1 Reflection principle

The first example that we give, is the so-called reflection principle (compare with Ch.1, Ex-
ercise 1.12). First note that Lemma 3.3.11 implies that (Wτ+t−Wτ )t is BM, provided τ is an
everywhere finite stopping time.

Recall that we denote the hitting time of x ∈ R by τx. This is an a.s. finite stopping time
with respect to the natural filtration of the BM (see Example 1.6.1). The problem is that τx
is not necessarily finite everywhere and hence we cannot conclude that (Wτx+t −Wτ )t is a
BM, since it need not be defined everywhere.

The solution is to restrict to a smaller underlying space, but this trick might cause prob-
lems, if we need consider different initial distributions (a null-set under one initial distribution
need not necessarily be a null-set under different initial distribution...). The simplest approach
is via approximations: (Wτx∧n+t −Wτx∧n)t is a BM, for each n ≥ 0.

Theorem 3.4.1 (Reflection principle) Let W be a Brownian motion with continuous paths.
Let x ∈ R be given. Define the process W ′ by

W ′t =

{
Wt, t ≤ τx ≤ ∞
2x−Wt, t > τx.

Then W ′ is a standard BM with continuous paths.

Proof. If x = 0, τ0 = 0, and so the assertion is equivalent to symmetry of BM.

Let x 6= 0. Define processes Y n and Zn by Y = W τx∧n and Znt = Wτx∧n+t−Wτx∧n, t ≥ 0.
By Theorem 3.3.11 the processes Y n and Zn are independent and Zn is a standard BM. By
symmetry of BM, it follows that −Zn is also a BM that is independent of Y n, and so the two
pairs (Y n, Zn) and (Y n,−Zn) have the same distribution (i.e. the fdd’s are equal).
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Now, for t ≥ 0
Wt = Y n

t + Znt−τx∧n1{t>τx∧n}.

Define for t ≥ 0
W ′,nt = Y n

t − Znt−τx∧n1{t>τx∧n}.

The W ′,n is W reflected about the value Wτx∧n. By the continuity of Brownian motion paths,
W ′,nt →W ′t , n→∞ a.s., for all t ≥ 0.

Write C0[0,∞) = {ω ∈ C[0,∞) |ω0 = 0}. We have W = φn(Y n, Zn) and W ′,n =
φn(Y n,−Zn), where φn : C[0,∞)× C0[0,∞)→ C[0,∞) is given by

φn(y, z)(t) = y(t) + z(t− ψn(y))1{t>ψ(y)},

where ψn : C[0,∞) → [0,∞] is defined by ψn(y) = n ∧ inf{t > 0 | y(t) = x}. Consider the
induced σ-algebra on C[0,∞) and C0[0,∞) inherited from the σ-algebra B[0,∞) on R[0,∞).
It is easily verified that ψn is a Borel-measurable map, and that φn is measurable as the

composition of measurable maps (cf. Exercise 3.17). Since (Y n, Zn)
d
= (Y n,−Zn), it follows

that W = φn(Y n, Zn)
d
= φn(Y n,−Zn) = W ′,n.

On the time-interval [0, n] clearly W ′,m and W ′ have equal paths for m > n, and so
they have the same fdd on [0, n]. This implies that the fdd of W ′ are multivariate Gaussian
with the right mean and covariance functions. Since W ′ has continuous paths, we can invoke
Lemma 1.4.3 to conclude that W ′ is BM with everywhere continuous paths. Note that the
constructed process is not canonical). QED

The reflection principle allows us to calculate the distributions of certain functionals related
to the hitting times of BM. We first consider the joint distribution of Wt and the running
maximum

St = sup
s≤t

Ws.

Corollary 3.4.2 Let W be a standard BM and S its running maximum. Then

P{Wt ≤ x, St ≥ y} = P{Wt ≤ x− 2y}, x ≤ y.

The pair (Wt, St) has joint density

(x, y) 7→ (2y − x)e−(2y−x)2/2t√
πt3/2

1{x≤y},

with respect to the Lebesgue measure.

Proof. Let first y > 0. Let W ′ be the process obtained by reflecting W at the hitting time
τy. Observe that St ≥ y if and only if t ≥ τy. Hence, the probability of interest equals
P{Wt ≤ x, t ≥ τy}. On the event {t ≥ τy} we have Wt = 2y−W ′t , and so we have to calculate
P{W ′t ≥ 2y − x, t ≥ τy}. Since x ≤ y, we have 2y − x ≥ y. hence {W ′t ≥ 2y − x} ⊆ {W ′t ≥
y} ⊆ {t ≥ τy}. It follows that P{W ′t ≥ 2y − x, t ≥ τy} = P{W ′t ≥ 2y − x}. By the reflection
principle and symmetry of BM this proves the first statement for y > 0.

For y = 0, we have τy = 0, and W ′′t = −Wt, showing the first statement directly.
The second statement follows from Exercise 3.18. QED
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It follows from the preceding corollary that for all x > 0 and t ≥ 0,

P{St ≥ x} = P{τx ≤ t} = 2P{Wt ≥ x} = P{|Wt| ≥ x}

(see Exercise 3.18). This shows in particular that St
d
= |Wt| for every t ≥ 0. This allows to

construct an example of a Markov process that lacks the strong Markov property.

Example 3.4.1 (Strong Markov property fails (Yushkevich)) Consider Example 3.1.2
(A). Instead of the canonical process X:

Xt = X0 +Wt,

with X0
d
= ν, independent of W , we consider

X̃t = X0 + 1{X0 6=0}Wt = 1{X0 6=0}Xt.

For initial distribution ν = δx, x 6= 0, the underlying distributions of X and X̃ are equal.
X̃ is a Markov process with respect to the same filtration and with transition function

P̃t(x,B) =


∫
B

1√
2πt

e−(y−x)2/2tdy, x 6= 0

δx{B}, x = 0.

Suppose that X̃ has the strong Markov property. Let τ = inf{t ≥ 0 | X̃t = 0} = inf{t ≥
0|Xt = 0}. It is a stopping time for both X̃ and X. Consider the function f = 1{R\{0}}.

Clearly f(X1) = f(X̃1) on 1{X0 6=0}. Then,

1{τ<∞}EX̃τ f(X̃1) = 0, (3.4.1)

by definition. Take initial distribution ν = δx for some x > 0, and choose A = 1{τ≤1}. Then,
A ∈ Fτ and τ <∞ on A. By (3.4.1), Ex1{A}EX̃τ f(X1) = 0. However,

Ex1{A}f(X̃τ+1) = E1{A}f(Xτ+1) = Ex1{A}EXτ f(X1)

= Ex1{τ≤1}P0{X1 6= 0} = Px{τ ≤ 1} = P{|W1| ≥ x} > 0,

a contradiction with the strong Markov property. The details have to be worked out in
Exercise 3.16.

3.4.2 Ratio limit result

In this subsection W is the canonical BM on (Ω = C[0,∞),F = C(0,∞]∩BR+) with associated
Markov process X (cf. Example 3.1.2). Since BM has stationary, independent increments,
Corollary 3.3.11 implies that for every (Ft)t-stopping time τ , the proces (Xτ+t − Xτ )t is a
BM. This can be used to prove an interesting ratio limit result (originally derived by Cyrus
Derman 1954).

To this end, let A ∈ B be a bounded set. Define µ(A, τ) = λ{t ≤ τ : Xt ∈ A}, where
λ is the Lebesgue measure (on (R,B) and τ a finite (Ft)t-stopping time, w.r.t P0. Denote
τ1 = inf{t > 0 |Xt = 1}, and (by abuse of previously introduced notation) τ0 = inf{t > 0 | t ≥
τ1, Xt = 0}.
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Lemma 3.4.3 i) µ(A, τ1) is a measurable function on (Ω,F).

ii) µ(A) := E0µ(A, τ1) = 2
∫ 0
−∞ 1{A}(x)dλ(x) + 2

∫ 1
0 (1− x)1{A}(x)dλ(x).

iii) µ′(A) := E0µ(A, τ0) = 2λ(A).

Proof. See exercise 3.15. For the proof of (i), it is sufficient to show that (explain)

(s, ω) 7→ 1{A}(Xs(ω))1{[0,τ(ω)]}(s)

is B[0,∞] × F/B-measurable. To this end, show that (Ys(ω) = 1{[0,τ(ω)]}(s))s≥0 is an F/B-
progressively measurable stochastic process.

For the proof of (ii), note that

E0µ(A, τ1) = E0

∫ ∞
0

1{A}(Xt)1{[t,∞)}(τ1)dλ(t) =

∫
Ω

∫ ∞
0

1{A}(Xt)1{[t,∞)}(τ1)dt dP0

=

∫ ∞
0

∫
Ω

1{A}(Xt)1{(t,∞)}(τ1)dP0 dt

=

∫ ∞
0

P0{Xt ∈ A, t < τ1}dt

=

∫ ∞
0

∫
A
w(t, x)dλ(x)dt

=

∫
A

∫ ∞
0

w(t, x)dtdλ(x),

where

w(t, x) =

{
1√
2πt

(
e−x

2/2t − e−(x−2)2/2t
)
, x ≤ 1

0, x > 1.

This follows from

P0{Xt ∈ A ∩ [−∞, 1], τ1 < t} = P2{Xt ∈ A ∩ [−∞, 1)}.

Why is this true? (ii) can then be shown by writing

w(t, x) = −1{(−∞,1)}(x)

∫ x

x−2

u

t3/2
√

2π
e−u

2/2tdu,

applying Fubini, and doing a substitution s = t−1/2. Distinguish the cases that x ≤ 0 and
0 < x ≤ 1. QED

Let f, g : R→ R be Lebesgue measurable, integrable functions with
∫

R g(x)dλ(x) 6= 0.

Theorem 3.4.4

lim
T→∞

∫ T
0 f(Wt)dt∫ T
0 g(Ws)ds

=

∫
R f(x)dλ(x)∫
R g(x)dλ(x)

, a.s.
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Proof. Put τ1
0 = τ0 and τ1

1 = τ1. Inductively define for n ≥ 2: τn0 = inf{t ≥ τn1 |Xt = 0}, and
τn1 = inf{t ≥ τn−1

0 |Xt = 1}. By virtue of the standard machinery, one has

E0

∫ τ10

0
f(Xt)dt = 2

∫
R
f(x)dx.

Now, for any T ≥ 0 define
K(T ) = max{n | τn0 ≤ T}.

Then limT→∞
∫ T

0 f(Xt)dt/K(T ) = 2
∫

R f(x)dx, P0-a.s. The result then follows. QED

3.4.3 Hitting time distribution

We also may derive an explicit expression for the density of the hitting time τx. It is easily
seen from this expression that Eτx =∞, as was proved by martingale methods in Exercise 2.30
of Chapter 2.

Corollary 3.4.5 The first time τx that the standard BM hits the level x > 0 has density

t 7→ xe−x
2/2t

√
2πt3

1{t≥0},

with respect to the Lebesgue measure.

Proof. See Exercise 3.19. QED

We have seen in the first two Chapters that the zero set of standard BM is a.s. closed,
unbounded, has Lebesgue measure zero and that 0 is an accumulation point of the set, i.e. 0
is not an isolated point. Using the strong Markov property we can prove that in fact the zero
set contains no isolated point at all.

Corollary 3.4.6 The zero set Z = {t ≥ 0 |Wt = 0} of standard BM is a.s. closed, unbounded,
contains no isolated points and has Lebesgue measure 0.

Proof. In view of Exercise 1.29, we only have to prove that Z contains no isolated points.
For rational q ≥ 0, define σq = q + τ0 ◦ θq. Hence, σq is the first time after (or at) time
q that BM visits 0. By Lemma 3.3.12 the random time σq is an optional time. The strong
Markov property implies that Wσq+t−Wσq is a BM w.r.t (FXt+)t. By Corollary 2.4.6 it follows
that σq a.s. is an accumulation point of Z. Hence, with probability 1 it holds that for every
rational q ≥ 0, σq is an accumulation point of Z. Now take an arbitrary point t ∈ Z and
choose rational points qn such that qn ↑ t. Since qn ≤ σqn ≤ t, we have σqn → t. The limit of
accumulation points is an accumulation point. This completes the proof. QED

3.4.4 Embedding a random variable in Brownian motion

This subsection discusses the set-up of a result by Skorokhod, that a discrete martingale M =
(Mn)n=0,... with independent increments can be ‘embedded’ in Brownian motion. Dubins2

derived a more general result with an elegant proof, part of which we will discuss next.

2L.E. Dubins, On a Theorem by Skorohod, Ann. Math. Stat. 39, 2094–2097, 1968. Together with L.J.
Savage author of the famous book ‘How to Gamble if you must’
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We consider standard BM. The filtration to be considered is the natural filtration (FWt )t
generated by BM itself.

Let X be an integrable random variable (with values in (R,B)) on an underlying proba-
bility space. Let µ denote the induced distribution of X on (R,B). Denote EX = m.

Our aim construct an (FWt )t-stopping time τ , such that m + Wτ has distribution µ, i.e.

m+Wτ
d
= X. The method is based on constructing a suitable Doob martingale with limiting

distribution µ and then duplicate the same construction within BM.

The martingale that does the trick Put G0 = {Ω, ∅}, partition G0 = {R} of R and let
S0 = {m} = E(X | G0)(Ω) = S0.

We construct a filtration and martingale iteratively as follows. We are going to associate
a Doob martingale M = (Mn)n=0,1,... with X as follows. At time n construct inductively

• a partition of R denoted Gn;

• the σ-algebra Gn = σ(X−1(A), A ∈ Gn);

• Sn =
{

E1{X−1(A)}X

P{X−1(A)} | A ∈ Gn
}

.

Note that
E1{X−1(A)}X

P{X−1(A)}
=

∫
A xdPX(x)

PX(A)
,

where PX is the induced probability distribution of X on (R,B).
Given Gn, the construction of Gn and the finite collection of points Sn is immediate. We

therefore have to prescribe the initial values, and the iterative construction of the partitions.
For n = 0: G0 = {R}, G0 = {∅,Ω}, S0 = {m}. The partition Gn+1 has the following

properties. For all A ∈ Gn, let xA = Sn ∩A.

• If P{X−1({xA})} = P{X−1(A)} then A ∈ Gn+1;

• if P{X−1({xA})} < P{X−1(A)} then A ∩ (−∞, xA], A ∩ (xA,∞) ∈ Gn+1.

This construction defines a filtration (Gn)n ⊂ F and a Doob martingale (Mn = E(X | Gn))n.
By the Levy upward theorem 2.2.15 E(X | Gn)→ E(X | G∞) a.s. and in L1.

Lemma 3.4.7 X
D
= E(X | G∞).

For the proof, see the additional exercise.
As a consequence, the constructed Doob martingale determines the distribution of a ran-

dom variable uniquely. By interpreting the sequence of realised values as a branching process,
built up through a binary tree, it becomes easier to understand the embedding construction.

Binary tree The root of the tree is chosen to be a node with value m. In the construction
of G1, with each interval associated with m, we put an out-arrow and a node at level 1. With
the out-arrow we associate the corresponding interval, and with the node, the corresponding
value of E(X | G1). Repeat this construction.

Note that if An ∈ Gn is an interval associated with the in-arrow of a vertex in level n with
value sn, then all values associated with vertices in the binary tree rooted at sn are contained
in An.
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Furthermore the values µ(An), An ∈ Gn, n = 0, . . ., can be iteratively reconstructed
from the binary tree, since no two vertices have the same value. Indeed, suppose An is
associated with the arrow from the vertex with value sn−1 to the vertex with value sn. Either
sn = sn−1 in which case An = An−1, the interval associated with the in-arrow of sn−1, and
so µ(An) = µ(An−1). Or, sn−1 has a second out-arrow, associated with An−1 \An, leading to
a vertex with value s′n say. Since X−1(An−1) ∈ Gn−1 ⊂ Gn,

sn−1 · µ(An−1) = E1{X−1(An−1)}E(X | Gn−1) = E1{X−1(An−1)}X

= E1{X−1(An−1)}E(X | Gn+1)

= sn · µ(An) + s′n · µ(An−1 \An).

Calculation yields µ(An) = µ(An−1)(sn−1−s′n)
sn−s′n

.

Let µ∞ denote the distribution of E(X | G∞). By the construction of the binary tree, it
follows immediately that (check!)

X−1(A) = M−1
n (A), A ∈ Gn, m ≥ n, (3.4.2)

so that µ(A) = P{X ∈ A} = P{M∞ ∈ A} = µ∞(A), A ∈ ∪nGn. A final remark is that
Gn = σ(E(X | Gn)), since E(X | Gn) is constant on the sets X−1(An), An ∈ Gn. Next define

Tn = (E(X | G0), . . . ,E(X | Gn)(R),

the (finite) collection of realisations of the martingale (Mk)k upto time n, or alternatively the
values along all paths of the root m to level n.

Corollary 3.4.8 Let Y be a random variable with distribution π. Define an associated Doob
martingale in the same manner, and a collection T Yn of realisations upto time n, n = 0, . . . ,.
Then µ = π, iff Tn = T Yn for all n, i.o.w. iff the associated binary trees are equal.

Embedding of X For ω ∈ Ω let

τ(ω) = inf{t ≥ 0 | ∀n = 0, 1, 2, . . .∃t0 = 0 ≤ · · · ≤ tn ≤ t, s. t. (Wt0(ω), . . . ,Wtn(ω)) ∈ Tn−m},

where Tn −m means that m is substracted from the values along the binary tree, we called
these the ‘reduced’ values. In the binary tree, (Wt0(ω), . . . ,Wtn(ω)) is a sequence of reduced
values along paths in the binary tree from the root m with end-points in level n. We further
define random times τn iteratively by putting τ0 = 0 and

τn+1(ω) = inf{t ≥ τn(ω) |Wτn+1(ω)(ω) ∈ Sn+1 −m}.

It is easily verified that τn, n ≥ 0 and τ are a.s. finite stopping times and that {τn}n is a
non-decreasing sequence converging to a.s. to τ (if τn(ω) = ∞, we put τm(ω) = ∞, for all
m ≥ n). Use unboundedness properties of BM paths, the continuity and, when viewing BM

as a canonical process with the natural filtration, the Galmarino test. Note that τ0 = 0! As
a consequence, Wτn →Wτ , a.s.

Next, let sun = max{x | ∈ Sn} and sln = min{x |x ∈ Sn}. Then τn ≤ τsln+1−m
∧τsun+1−m, the

latter having finite expectation. As a consequence W τn = (Wt∧τn)t is a bounded martingale.
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Hence it is UI. By virtue of Theorem 2.2.14, EWτn = EW0 = 0. Applying the optional
sampling theorem 2.3.12 with stopping times τn and ∞ to W τn+1 yields

E(W τn+1
∞ | Fτn) = W τn+1

τn , a.s.

i.o.w.
E(Wτn+1 | Fτn) = Wτn , a.s.

By the tower property, it follows that E(Wτn+1 | Fn) = Wτn , for Fn = σ(Wτn). By continuity
of BM paths, Wτn(ω) and Wτn+1(ω) have subsequent values along a path in the binary tree at
levels n and n+ 1. This implies that Fn ⊂ Fn+1. Therefore, {(Wτn)n is an (Fn)n-martingale.

Theorem 3.4.9 i) {{Wτn}n,Wτ} is an (Fn)n-martingale with Wτn
a.s.→ Wτ .

ii) m+Wτ
d
= X.

iii) Eτ = EX2.

Under the assumption that X has finite variance, the theorem is known as Skorokhod’s first
embedding theorem. The present proof does not require this.

Proof. We first assume that X ≥ 0 and show EWτ = 0. By a.s. unboundedness of BM paths,
Wτn → Wτ a.s. Since {Wτn}n is a martingale bounded below by −m, with E|m + Wτn | =
E(m+Wτn) = m, it is bounded in L1 and so Wτ is integrable.

Let sun = max{x |x ∈ Sn}. If supn s
u
n < ∞, then {Wτn}n is a bounded martingale, hence

UI. It follows that Wτ can be appended to the martingale sequence, and EWτ = 0.
Suppose that supn s

u
n = ∞. Let su−n = max{x 6= sun |x ∈ Sn}, be the next largest

value of Sn. From the binary tree we may infer for ω with Wτn(ω)(ω) ≤ su−n − m, that
Wτm(ω)(ω) ≤ sun−1 −m for all m ≥ n.

Consider the process Yl = Wτl1{(−m,su−n −m]}(Wτn), l ≥ n. This is an (Fl)l≥n bounded
martingale. Indeed,

E(Yl+1 | Fl) = 1{(−m,su−n −m]}(Wτn)E(Wτl+1
| Fl) = 1{(−m,su−n −m]}(Wτn)Wτl .

Hence, {Yl}l≥n converges a.s. and in L1 to 1{(−m,su−n −m]}(Wτn)Wτ , and

E(1{(−m,su−n −m]}(Wτn)Wτ | Fn) = 1{(−m,su−n −m]}(Wτn)Wτn .

Taking expectations on both sides

EWτ = −(sun −m)P{Wτn = sun −m}+ E1{(su−n −m,∞}(Wτn)Wτ . (3.4.3)

Note that {Wτn}n being a martingale implies P{Wτn = x} = P{X ∈ An}, where x ∈ Sn ∩
An −m, for some An ∈ Gn. This yields

(sun −m)P{Wτn = sun −m} = E{(X −m)1{[sun−1,∞)}} → 0, as n→∞. (3.4.4)

Furthermore, from the binary tree

E1{(su−n −m,∞)}(Wτn)Wτ = E1{(su−n −m,∞)}(Wτ )Wτ → 0, n→∞. (3.4.5)
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Combining (3.4.3), (3.4.4) and (3.4.5) yields EWτ = 0.
By Theorem 2.3.15 Wτ can be appended to {Wτn}n to yield a supermartingale. That

is, E(Wτ | Fn) ≤ Wτn . Taking expectations yields equality, hence the extended sequence is a
martingale, in particular a Doob martingale. In other words Wτn = E(Wτ | Fn). The general
case that X is not necessarily non-negative follows simply (see Exercise 3.20). This completes
the proof of (i).

It then follows that the binary tree generated by m + Wτ is equal to the binary tree

generated by X. Hence X
d
=m+Wτ , thus proving (ii).

The proof of (iii) is an exercise (Exercise 3.20). QED

Note that for (i,ii) we have not used that the embedding process is BM. It is sufficient that it
is a continuous time martingale with continuous paths that are unbounded above and below.
However, essentially such a martingale is a Gaussian process, so the result is not as general as
it looks.. We will finally state a simple version of the second Skorokhod embedding theorem.

Theorem 3.4.10 Let {Xn}n be a sequence of i.i.d. integrable random variables. Put Sn =∑n
k=1Xk. Then there exists a non-decreasing sequence {τn}n of a.s. finite stopping times,

such that for all n

i) (Wτ1 ,Wτ2 , . . . ,Wτn}
d
= (S1, S2, . . . , Sn);

ii) τ1, τ2 − τ1, τ3 − τ3, . . . , τn − τn−1 are i.i.d. random variables with mean EX2
1 .

Proof. see Exercise 3.21. QED

This theorem can be e.g. used for an alternative proof of the Central Limit Theorem, and for
deriving the distribution of max1≤k≤n Sk.
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3.5 Exercises

Exercise 3.1 Consider the Ornstein Uhlenbeck process in example 3.1.2(B). Show that the
defined process is a Markov process which converges in distribution to an N(0, σ2/2α) dis-

tributed random variable. If X0
d
= N(0, σ2/2α), show that Xt

d
= N(0, σ2/2α) (in other words:

the N(0, σ2/2α) distribution is an invariant distribution for the Markov process). Show that
Xt is a Gaussian process with the given mean and covariance functions.

Exercise 3.2 Consider geometric BM in example 3.1.2(C). Show that it is a Markov process.
Characterise the values of µ for which it is a super- a sub- or a mere martingale. Compute
the transition function.

Exercise 3.3 Complete the proof of Lemma 3.1.4.

Exercise 3.4 Let W be a BM. Show that the reflected Brownian motion defined by X =
|X0 +W | is a Markov process with respect to its natural filtration and compute its transition
function. (Hint: calculate the conditional probability Pν{Xt ∈ B | FXs ) by conditioning further
on FWs ).

Exercise 3.5 Let X be a Markov process with state space E and transition function (Pt)t≥0.
Show that for every bounded, measurable function f on E and for all t ≥ 0, the process
(Pt−sf(Xs))s∈[0,t] is a martingale.

Exercise 3.6 Prove that µt1,...,tn defined in the proof of Corollary 3.2.2 are probability mea-
sures that form a consistent system. Hint: for showing that they are probability measures,
look at the proof of the Fubini theorem.

Exercise 3.7 Work out the details of the proof of Lemma 3.2.3.

Exercise 3.8 Show for the Poisson process X with initial distribution ν = δx in Exam-
ple 3.1.5, that X is a Markov process w.r.t. the natural filtration, with the transition function
specified in the example.

Exercise 3.9 Show Corollary 3.3.6 that canonical Brownian motion has the strong Markov
property.

Exercise 3.10 Prove Corollary 3.3.7 and Lemma 3.3.8.

Exercise 3.11 Prove Lemma 3.3.11. See hint in the ‘proof’.

Exercise 3.12 Let X be a canonical, right-continuous Markov process with values in a Polish
state space E, equipped with Borel-σ-algebra E . Assume t 7→ EXtf(Xs) right-continuous
everywhere for each bounded continuous function f : E → R. For x ∈ E consider the random
time σx = inf{t > 0 |Xt 6= x}.

i) Is σx a stopping time or an optional time? Using the Markov property, show that for every
x ∈ E

Px{σx > t+ s} = Px{σx > t}Px{σx > s},

for all s, t ≥ 0.
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ii) Conclude that there exists an a ∈ [0,∞], possibly depending on x, such that

Px(σx > t) = e−at.

Remark: this leads to a classification of the points in the state space of a right-continuous
canonical Markov process. A point for which a = 0 is called an absorption point or a trap. If
a ∈ (0,∞), the point is called a holding point. Points for which a =∞ are called regular.

iii) Determine a for the Markov jump process (in terms of λ and the stochastic matrix P )
(cf. Example 3.2.1) and for the Poisson process. Hint: compute Exσx.

iv) Given that the process starts in state x, what is the probability that the new state is y
after time σx for Markov jump process?

Exercise 3.13 Consider the situation of Exercise 3.12. Suppose that x ∈ E is a holding
point, i.e. a point for which a ∈ (0,∞).

i) Observe that σx <∞, Px-a.s. and that {Xσx = x, σx <∞} ⊆ {σx ◦ θσx = 0, σx <∞}.

ii) Using the strong Markov property, show that

Px{Xσx = x, σx <∞} = Px{Xσx = x, σx <∞}Px{σx = 0}.

iii) Conclude that Px{Xσx = x, σx < ∞} = 0, i.e. a canonical Markov process with right-
continuous paths, satisfying the strong Markov property can only leave a holding point
by a jump.

Exercise 3.14 Prove Lemma 3.3.12 (ii). Hint: suppose that Z is an FXt -measurable random
variable and σ an (FXt )t-optional time. Show that Z ◦ θσ is FX(σ+t)+-measurable. First show
this for Z an indicator, then use the appropriate monotone class argument.

Exercise 3.15 Prove Lemma 3.4.3 and Theorem 3.4.4.

Exercise 3.16 Show for Example 3.4.1 that X is a Markov process, and show the validity
of the assertions stated. Explain which condition of Theorem 3.3.4 fails in this example.

Exercise 3.17 Show that the maps φ and ψ in the proof of Theorem 3.4.1 are Borel mea-
surable.

Exercise 3.18 i) Derive the expression for the joint density of BM and its running maximum
given in Corollary 3.4.2.

ii) Let W be a standard BM and St its running maximum. Show that for all t ≥ 0 and x > 0

P{St ≥ x} = P{τx ≤ t} = 2P{Wt ≥ x} = P{|Wt| ≥ x}.

Exercise 3.19 Prove Corollary 3.4.5.

Exercise 3.20 Consider the construction of the binary tree in §3.4.4. Construct the binary
tree for a random variable X, that has a uniform distribution on [0, 1].

Consider Theorem 3.4.9. Show how the validity of statements (i,ii) follow for a general
integrable random variable given that these statements are true for non-negative or non-
positive integrable random variables. Show (iii).

Exercise 3.21 Prove Theorem 3.4.10.



Chapter 4

Generator of a Markov process with
countable state space

4.1 The generator

In the case of a discrete Markov chain, the transition kernel with t = 1 (which is a stochastic
matrix) completely determines the finite dimensional distribution of the process and hence
the distribution of the process. The question arises whether the situation for continuous time
processes is analogous: is the distribution of the process determined by one operator? In
general the answer is no, but under certain conditions it will be yes.

A clue to the answer to this problem lies in the results discussed in Exercises 3.12, 3.13.
Let X be a canonical, right-continuous Markov process with values in a Polish state space
E, equipped with Borel-σ-algebra E . Assume t 7→ EXtf(Xs) right-continuous everywhere for
each bounded continuous function f : E → R. For x ∈ E there exists qx ∈ [0,∞] such that

Px(σx > t) = e−qxt,

with σx = inf{t ≥ 0 |Xt 6= x} is the holding or sojourn time at x. A point x with qx =∞ is
called regular, a non-regular point x, i.e. qx <∞, is called stable. If x is stable, then Xσx 6= x
a.s.

Definition 4.1.1 X is stable if x is stable for all x ∈ E.

It would seem that a stable Markov process X is completely determined by qx and the dis-
tribution of Xσx . Is this true? How can one obtain qx and the distribution of Xσx from the
transition function (Pt)t?

We will study this problem first in the case that E is a countable space, equipped with the
discrete topology, and E = 2E the σ-algebra generated by the one-point sets. The transition
kernel Pt is an E × E matrix with elements denoted by Pt(x, y), x, y ∈ E, t ≥ 0, where now
Pt(x,B) =

∑
y∈B Pt(x, y).

Each real-valued function is continuous, and the Markov process is trivially strong Markov.
There are counter-examples to the counterintuitive result that X need not be stable. We quote
some definitions and results.

Definition 4.1.2 X is called standard if limt≥0 Pt(x, y) = 1{x}(y).

The following result is stated without proof.

99
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Lemma 4.1.3 Let X be standard and stable. Then t 7→ Pt(x, y) is continuously differentiable.
Define Q = P ′t |t=0 to be the generator of X. Then Q = (qxy)x,y∈E satisfies

i) qxx = −qx;

ii) 0 ≤ qxy <∞ for y 6= x;

iii)
∑

y qxy ≤ 0.

iv)
∑

y P
′
t(x, y) = 0.

This gives us the parameters of the holding times of the Markov process. (i) can be proved
by an application of Exercise 3.12. Notice that necessarily qxy ≥ 0 if y 6= 0.

It makes sense to require that
∑

y qxy = (d/dt)
∑

y Pt(x, y)
∣∣∣
t=0

= 0 (i.o.w. we may

interchange sum and limit). If this is the case, then X is called conservative.

From now on assume that X is standard, conservative, stable and has right-continuous
paths.

Continuation of Example 3.1.5 Poisson process The transition kernel of the Poisson
process with parameter λ is given by Pt(x, y) = P{Nt = y − x} = e−λt(λt)y−x/(y − x)!, for
y ≥ x, x, y ∈ Z+. t 7→ Pt(x, y) is a continuously differentiable function. Differentiation yields

qx,y =


−λ, y = x
λ, x+ 1
0, otherwise.

Hence the Poisson process is standard, stable and conservative.
In general the situation is quite complicated, even for countable state space. First we will

restrict to the case of bounded rates.

4.2 Bounded rates: supx qx <∞.

Lemma 4.2.1 The Kolmogorov forward and backward equations hold: P ′t = PtQ = QPt.

Proof. Use the Fatou lemma on

Pt+h(x, y)− Pt(x, y)

h
=
∑
k 6=x

Ph(x, k)

h
Pt(k, y)− 1− Ph(x, x)

h
Pt(x, y)

and
Pt+h(x, y)− Pt(x, y)

h
=
∑
k 6=x

Pt(x, k)
Ph(k, y)

h
− Pt(x, y)

1− Ph(x, y)

h
.

This gives that P ′t(x, y) ≥
∑

k qxkPt(k, y) and P ′t(x, y) ≥
∑

k Pt(x, k)qky. Taking the summa-
tion over all states in the first equation gives

0 ≤
∑
y

(P ′t(x, y)−
∑
k

qxkPt(k, y))
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=
∑
y

(P ′t(x, y)− qxxPt(x, y)−
∑
k 6=x

qxkPt(x, y))

= 0− qx
∑
y

Pt(x, y)−
∑
k 6=x

qxk
∑
y

Pt(x, y)

= 0−
∑
k

qxk = 0,

hence P ′t(x, y) =
∑

k qxkPt(k, y). In the one-but-last inequality we have used Fubini ’s theorem
and Lemma 4.1.3 (iv). This yields the backward equation. The forward equation is more
problematic: we have to deal with the term

∑
y

∑
k Pt(x, k)qky. However, since 0 ≤ qky ≤

qk ≤ supk qk <∞, the rates are bounded. Hence
∑

y

∑
k Pt(x, k)|qky| <∞ and so by Fubini’s

theorem we may interchange the order of summation. QED

The Kolmogorov forward equation implies that the following integral equation holds:

Ex1{y}(Xt) = Pt(x, y) = 1{x}(y) +

∫ t

0

∑
k

Pt(x, k)qkyds

= 1{x}(y) +

∫ t

0
Pt(Q1{y})(x)ds

= 1{x}(y) + Ex

∫ t

0
Q1{y}(Xs)ds,

where we have used boundedness of the function x 7→ Q1{y}(x) and Fubini’s theorem to allow
for the interchange of integral and summation. Using Fubini’s theorem in the same manner,
one can prove analogously for each bounded function f that

Exf(Xt) = f(x) + Ex

∫ t

0
Qf(Xs)ds. (4.2.1)

Lemma 4.2.2 Let X be defined on (Ω,F , (Ft)t). For every bounded function f : E → R and
initial measure ν, the process

Mt = f(Xt)− f(X0)−
∫ t

0
Qf(Xs)ds, t ≥ 0

is a Pν-martingale.

Proof. Exercise 4.1. QED

As a consequence the celebrated Dynkin’s formula holds.

Corollary 4.2.3 Dynkin’s formula Under the conditions of Lemma 4.2.2, for any (Ft)t-
stopping time with Exτ <∞, it holds that

Exf(Xτ ) = f(x) + Ex

∫ τ

0
Qf(Xs)ds.
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Proof. For τ ∧ n the optional sampling theorem applies, hence

Exf(Xτ∧n) = f(x) + Ex

∫ τ∧n

0
Qf(Xs)ds.

Since Xτ∧n → Xτ , by dominated convergence the left-hand side converges to Exf(Xτ ). For
the right-hand side, note that

|
∫ τ∧n

0
Qf(Xs)ds| ≤ τ ·max

y
|Qf(y)| <∞.

Use dominated convergence to complete the proof. QED

This can be applied to compute the distribution of Xσx . If qx = 0 then x is an absorbing
state, and σx = ∞, and so Xσx = x. Suppose that qx > 0, then σx is a. a.s. finite optional
time with Ex = q−1

x , hence it is a stopping time w.r.t. (Ft+)t. Since X is also Markov w.r.t.
(Ft+)t, (Mt)t is an (Ft+)t-martingale. One has for y 6= x

Ex1{y}(Xσx) = 1{y}(x) + Ex

∫ σx

0
1{y}(Xs)ds = Ex

∫ σx

0
qXsyds = Exσx · qxy =

qxy
qx
.

In Exercise 3.12 you have in fact been asked to compute the generator Q of a Markov jump
process (cf. Example 3.2.1).

4.3 Construction of Markov processes with given generator Q

It is convenient to define jump times of the Markov process, before discussing how to construct
a Markov process from the generator. To this end, let J0 = 0, and define recursively

Jn+1 = inf{t ≥ Jn |Xt 6= lim
s↑t

Xs},

where Jn+1 =∞ if XJn is an absorbing state.
For the construction, we are given an E × E matrix Q, with the properties

i) qxx ∈ (−∞, 0] for all x (i.e. Q is stable);

ii) qxy ≥ 0, y 6= x for all x;

iii)
∑

y qxy = 0 for all x (i.e. Q is conservative).

First, check for T an exp(1) distributed random variable, that T/c has an exp(c) distribution,
for any constant c ∈ [0,∞).

Let Tn, n = 0, . . ., be a sequence of i.i.d. exp(1) distributed random variables, and,
independently, let Y be a discrete time Markov chain with transition matrix PJ , defined by
PJ(x, y) = qxy/qx, y 6= x, all defined on the same space (Ω,F ,P). The consecutive jump times
are equal to: J0 = 0 and

Jn =
n−1∑
k=0

Tk/qYk , n ≥ 1.

Then
Xt = x ⇐⇒ Yn = x, and Jn ≤ t < Jn+1, (4.3.1)
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where
∑−1

k=0 · · · = 0. I.o.w. X resides an exp(qY0) amount of time in Y0, then jumps to state
Y1 with probability qY0Y1/qY0 , etc.

The construction of the Markov chain Y can be included in the construction of X, in the
following way. First, we need the following fact.

Lemma 4.3.1 If Z1, . . . , Zn are independent random variables, with exponential distributions
with successive parameters c1, . . . , cn. Then min(Z1, . . . , Zn) has an exp(

∑n
1 ci) distribution

and P{Zi = min(Z1, . . . , Zn)} = ci/
∑n

k=1 ck.

Let now be given {Tn,z}n=0,1,...,z∈E be i.i.d. exp(1) distributed random variables, and inde-
pendently an E-valued random variable Y0. Let

J1 = min {T0,z

qY0z
|z ∈ E, qY0z > 0}

Y1 = y if
T0,y

qY0y
= min {T0,z

qY0z
|z ∈ E, qY0z > 0}.

Iteratively, let

Jn+1 = Jn + min {Tn,z
qYnz
|z ∈ E, qYnz > 0}

Yn+1 = y if
Tn,y
qYny

= min {Tn,z
qYnz
|z ∈ E, qYnz > 0}.

In view of Lemma 4.3.1, we have guaranteed that Y is a Markov chain with transition matrix
PJ . Define Xt now as in (4.3.1).

It is by no means guaranteed that it is a stochastic process! In fact X can be substochastic,
so that probability mass is ‘lost’. However, one can check that X is Markov, i.o.w. there exists
a possibly substochastic transition function {ft}t determining the fdd’s of X, and X has the
Markov property (follows from the construction). Note that we can make a substochastic
transition function stochastic, by extending E with an absorbing coffin state to which all
disappearing probability mass is directed.

The transition function of the constructed Markov process can be obtained by the proce-
dure described below. Let

f
(n)
t (x, y) =

{
1{x}(y)e−qxt, n = 0

f
(0)
t (x, y) +

∫ t
0 e
−qxs∑

k 6=x qxkf
(n−1)
t−s (k, y)ds, n ≥ 1.

(4.3.2)

f
(n)
t (x, y) can be interpreted as the probability that the process X, given that it starts in

x, is in state y at time t, after having made at most n jumps. The sequence {f (n)
t (x, y)}n

is monotonically non-decreasing, it is bounded by 1, and therefore has a limit {ft(x, y)}x,y.
We have that

∑
y ft(x, y) ≤ 1. The transition function of the constructed process is equal to

(ft)t≥0. Precisely this transition function defines the so-called minimal process.

Definition 4.3.2 X is said to be the minimal process, if the transition function of X is (ft)t.

Theorem 4.3.3 {(ft = (ft(x, y))x,y}t is the minimal solution to the Kolmogorov forward and
backward equations, in the sense that if (Pt)t is a solution to either the Kolmogorov forward
or the Kolmogorov backward equations, then Pt(x, y) ≥ ft(x, y), x, y ∈ E, t ≥ 0. It is the
unique solution if

∑
y ft(x, y) = 1 for all t ≥ 0. In the latter case, the generator Q uniquely

defines the transition function for which Q is the derivative at time 0.
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Lemma 4.3.4
∑

y ft(x, y) = 1, for x ∈ E and t ≥ 0.

This allows to derive a specifically bounded jump related expression for the transition function
(Pt)t.

Corollary 4.3.5 Let τ ≥ supx qx. Let P = I +Q/τ . Then

Pt = e−τt
∑
n≥0

(τt)n

n!
Pn, t ≥ 0,

I.o.w. X is a Markov jump process (see Example 3.2.1).

Proof. Show that P ′t |t=0 = Q. QED

Proof of Theorem 4.3.3. We give a partial proof. By taking the (monotonic) limit in (4.3.2),
we get the following integral equation for ft (where we interchanged t− s and s)

ft(x, y) = 1{x}(y)e−qxt +

∫ t

0
e−qx(t−s)

∑
k 6=x

qxkfs(k, y)ds, x, y ∈ E, t ≥ 0. (4.3.3)

By boundedness of the integrand, it directly follows that t 7→ ft(x, y) is continuous. The dom-
inated convergence theorem and the fact that ft(x, y) ≤ 1 imply that t 7→

∑
k 6=x qxkft(k, y)

is continuous. Hence, we can differentiate the right hand-side with respect to t, and get that
(ft)t solves the Kolmogorov backward equation.

Instead of considering the time of the first jump before t, we can also consider the time
of the last jump. Then we get the following recursive sequence: F 0

t (x, y) = 1{x}(y)e−qxt,

Fn+1
t (x, y) = F 0

t (x, y) +

∫ t

0

∑
k 6=x

Fnt−s(x, k)qkye
−qysds.

(Fnt )t converges monotonically to a limit (Ft)t, which satisfies the forward integral equation

Ft(x, y) = 1{x}(y)e−qxt +

∫ t

0

∑
k 6=x

Ft−s(x, z)qkye
−qysds.

Clearly f0
t = F 0

t for t ≥ 0. One can inductively prove that fnt = Fnt , t ≥ 0. By differentiation
(check that this is possible) we get that (ft)t is a solution to the forward equations.

Suppose that (Pt)t is another solution to the Kolmogorov backward equations. Then
P ′t(x, y) + qxPt(x, y) =

∑
k 6=x qxkPt(k, y). Multiply both sides with the integrating factor eqxt.

Then we find

(eqxtPt(x, y))′ = eqxtP ′t(x, y) + qxe
qxtPt(x, y) = eqxt

∑
k 6=x

qxkPt(k, y).

Integrating both sides yields (4.3.2) with ft replaced by Pt. Now we will iteratively prove that
Pt(x, y) ≥ fnt (x, y) for n = 0, . . .. First, note that Pt(x, y) ≥ 1{x}(y

−qxt
e = f0

t (x, y). Hence for
all x, y ∈ E and t ≥ 0

Pt(x, y) = 1{x}(y)e−qxt +

∫ t

0
e−qx(t−s)

∑
k 6=x

qxkPs(k, y)ds

≥ 1{x}(y)e−qxt +

∫ t

0
e−qx(t−s)

∑
k 6=x

qxkf
0
t (k, y)ds = f1

t (x, y).
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Iterating, yields Pt(x, y) ≥ ft(x, y) for x, y ∈ E and t ≥ 0.
A similar argument applies if (Pt)t solves the forward equations. QED

Proof of Lemma 4.3.4. Next we show that (ft)t is stochastic. Notice that
∑

y f
n
t (x, y) =

Px{Jn+1 > t}. {Jn}n is a non-decreasing sequence, and so it has a limit, J∞ say. The event
{Jn+1 > t} = ∪nk=0{Jk ≤ t}. Hence {J∞ > t} = limn→∞{Jn+1 > t} = ∪∞n=0{Jk ≤ t}, this
is the event that there are only finitely many jumps in [0, t]. By the monotone convergence
theorem, taking the limit n→∞, yields

∑
u ft(x, y) = Px{J∞ > t}. Consequently

1−
∑
y

ft(x, y) = Px{J∞ ≤ t}.

Next, by the boundedness of jump rates, there exists a constant c, such that qx ≤ c for all
x ∈ E. Therefore

Jn+1 =
T0

qY0
+ · · ·+ Tn

qYn
≥ 1

c

n∑
k=0

Tk →∞, a.s.

by the Law of Large Numbers, since ETn = 1.
It follows that ft = Pt for all t ≥ 0, and so (ft)t is a solution to the Kolmogorov forward

equations. QED

This allows to show the validity of (4.2.1) for a larger class of functions.

Lemma 4.3.6 Suppose that f : E → R satisfies Pt|f | < ∞ for all t ≥ 0. Then f satisfies
(4.2.1).

Proof. See Exercise 4.2. QED

The validity of Dynkin’s lemma is more involved, since one needs to bound the integrand in
a suitable manner.

4.4 Unbounded rates

We next assume that supx qx =∞.
In this case the proof of Lemma 4.3.4 breaks down, as the following example shows.

Example 4.4.1 Suppose Q is a Z+ × Z+ matrix with elements

qx,x+1 = 2x = −qx,x, x ∈ Z+,

all other elements are zero. As in the previous paragraph, we can construct the minimal
process X from this. Given that X0 = 0, Jn+1 − Jn has an exp(2n) distribution. Hence
EJn+1 =

∑n
k=0 2−k ≤ 2 for all n. Since J∞ is the a.s. limit, and {Jn}n is a non-decreasing,

non-negative sequence of random variables, the monotone convergence theorem yields EJ∞ ≤
2, and so J∞ <∞, a.s. This process is said to explode in finite time.

Recall that 1 −
∑

y ft(x, y) = Px{J∞ ≤ t}. It is immediate that
∑

y ft(x, y) < 1 for all t
sufficiently large. This results in non-unicity of transition functions with a given generator Q.

Constructively, one can add a coffin state to the state space, say ∆. We say that XJ∞ = ∆.
From ∆ we lead the process immediately back into the original state space (hence σ∆ = 0),
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and with probability the next state is x with probability px,
∑

x px = 1. The probability
distribution {px}x can be chosen arbitrarily. However, for every choice, we obtain the same
generator (restricted to the state of the space E) and a solution to the Kolmogorov backward
equations.

Another problem arises as well. In the proof of Theorem 4.3.3 we did not use the as-
sumption that supx qx < ∞. Hence (ft)t is a solution to the Kolmogorov forward equations.
However, (4.2.1) does not hold in general for bounded functions. Take f(x) = 1 for all x and
suppose that (4.2.1) holds. Then

1 >
∑
y

ft(x, y) = Ef(Xt) = f(x) + Ex

∫ t

0
Qf(Xs)ds = 1 + 0,

since Qf = 0. A contradiction.
This turns out to be generic: explosiveness strongly limits the class of functions for which

the Kolmogorov forward integral equations (4.2.1) hold. A class of functions for which it is
guaranteed to hold, can be obtained through a criterion described below.

What does hold? It turns out that the result of Theorem 4.3.3 is still valid. Let us properly
define explosiveness.

Definition 4.4.1 X is said to be explosive if for J∞ = limn→∞ Jn it holds that

Px{J∞ <∞} > 0, for some x ∈ E.

If X is non-explosive, then
∑

y ft(x, y) = 1 for all x ∈ E and t ≥ 0, where (ft)t is obtained as
a limit of (fnt )t. This follows by inspection of the proof of Lemma 4.3.4. We summarise this
below.

Theorem 4.4.2 Let X be a stable, conservative, standard Markov process. If X is non-
explosive, then (Pt)t is the unique solution to the Kolmogorov forward and backward equations.
In particular, X is the minimal process, and Pt = ft, t ≥ 0, and Q uniquely defines (Pt)t.

An important question now become: how can one check whether X is non-explosive? The
second question is: for what functions is the Kolmogorov forward integral equation valid?

For the answer to the first question we need to introduce the concept of a moment function.

Definition 4.4.3 V : E → R+ is called a moment function, if there exists an increasing
sequence {Kn}n ⊂ E if finite sets with limn→∞Kn = E, such that limn→∞ inf{V (x) |x 6∈
Kn} =∞.

The following result holds.

Lemma 4.4.4 The three following statements are equivalent for a minimal, stable, standard,
conservative Markov process.

i) X is non-explosive;

ii) there exist a moment function V and a constant c such that QV (x) ≤ cV (x) for all x ∈ E,
i.o.w. QV ≤ cV ;
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iii) there is no bounded function f ∈ bE and λ > 0, such that Qf = λf .

The sufficiency has been known a long time. The necessity has been recently proved by the
lecturer. The following result is also recent.

Theorem 4.4.5 Under the conditions of Theorem 4.4.2 the Kolmogorov forward integral
equation (4.2.1) for any bounded function f : E → R for which Ex|(Qf)(Xs)|ds < ∞,
x ∈ E, t ≥ 0. For the latter condition to be satisfied it is sufficient that there exists a function
f : E → (0,∞) and a constant c such that∑

y

qxyf(y) + qx ≤ cf(x), x ∈ E.

What can one do for unbounded functions? Also here the condition QV ≤ cV plays a
crucial role.

4.4.1 V -transformation

Suppose that QV ≤ cV , for some constant c ≥ 0, where V : E → (0,∞). We extend append
a state ∆ to E and obtain E∆ = E ∪ {∆}. Define a new conservative and stable generator
QV , which is a transformation of Q, as follows

qVxy =


qxyV (y)
V (x) y 6= x, y, x ∈ E
−c− qxx, x ∈ E
c−

∑
z∈E

qxzV (z)
V (x) , y = ∆

0, x = ∆, y ∈ E∆.

The state ∆ has been appended to make QV conservative. It has been absorbing, so as not
to interfere with the transitions between the states in E. If X is non-explosive, it is a the
minimal process. Suppose that the minimal process XV , obtained by construction from QV ,
is non-explosive as well. Then, by using the fact that we can obtain their respective transition
functions by a limiting procedure, it is now difficult to obtain that

Pt(x, y)V (y)

V (x)
= ectP Vt (x, y), x, y ∈ E, (4.4.1)

where now (P Vt )t is the transition function of XV . Non-explosiveness of XV can be checked
directly on Q by virtue of Lemma 4.4.4. The existence of a moment function W for QV , is
equivalent to the existence of a function F : E → (0,∞) and an increasing sequence {Kn}n ⊂
E of finite sets, with limn→∞Kn = E, such that limn→∞ inf{F (x)/V (x) |x 6∈ Kn} = ∞.
Such a function F will be called a V -moment function.

Theorem 4.4.5 can then applied to the transformed chain XV . Using (4.4.1), the following
result can be deduced.

Theorem 4.4.6 Assume the conditions of Theorem 4.4.2. Suppose that QV ≤ cV for some
function V : E → (0,∞) and c > 0. Suppose that there exists a V -moment function
F : E → (0,∞). Then (4.2.1) applies to any function f , with supx |f(x)|/V (x) < ∞ and
Ex
∫
|Qf(Xs)|ds <∞, x ∈ E, t ≥ 0. The latter condition is satisfied, if there exists a function

F : E → (0,∞) such that ∑
y

qxyF (y) + qxV (x) ≤ cF (x),

for some constant c.
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4.5 Exercises

Exercise 4.1 Prove Lemma 4.2.2.

Exercise 4.2 Prove Lemma 4.3.6. First consider f ≥ 0. Then show first t 7→ Ptf(x) is
continuous for each x. Proceed to show that (Ptf)t satisfies the Kolmogorov backward integral
by separating negative and positive terms. Then finish the proof.

Exercise 4.3 Branching model in continuous time Let E = Z+ = {0, 1, 2, . . .} be
equipped with the discrete topology and let E = 2E be the collection of all subsets of E. Let
λ, µ > 0.

Cells in a certain population either split or die (independently of other cells in the pop-
ulation) after an exponentially distributed time with parameter λ + µ. With probability
λ/(λ + µ) the cell then splits, and with probability µ/(λ + µ) it dies. Denote by Xt the
number of living cells at time t. This is an (E, E)-valued stochastic process. Assume that it
is a right-continuous, standard Markov process.

i) Show that the generator Q is given by

Q(i, j) =


λi j = i+ 1
−(λ+ µ)i, j = i
µi, j = i− 1, i > 0.

You may use the result of Lemma 4.3.1.

ii) Suppose X0 = 1 a.s. We would like to compute the generating function

G(z, t) =
∑
j

zjP1{Xt = j}.

Show (using the Kolmogorov forward equations, that you may assume to hold) that G
satisfies the partial differential equation

∂G

∂t
= (λz − µ)(z − 1)

∂G

∂z
,

with boundary condition G(z, 0) = z. Show that this PDE has solution

G(z, t) =

{ λt(1−z)+z
λt(1−z)+1 , µ = λ
µ(1−z)e−µt−(µ−λz)e−λt
λ(1−z)e−µt−(µ−λz)e−λt , µ 6= λ

iii) Compute E1Xt by differentiating G appropriately. Compute limt→∞ E1Xt.

iv) Compute the extinction probability P1{Xt = 0}, as well as limt→∞ P1{Xt = 0} (use G).
What conditions on λ and µ ensure that the cell population dies out a.s.?



Chapter 5

Feller-Dynkin processes

The general problem of the existence of a derivative of a transition function is more compli-
cated in the general state space case. It is not clear what is meant by derivative of a probability
measure. The usual approach is functional-analytic one, where derivatives of t 7→ Exf(Xt) are
considered. The goal is seek for conditions under which functional versions of the Kolmogorov
forward and backward equations hold. In particular, under wich conditions does it hold that

d
dt(Ptf) = Pt(Qf) = Q(Ptf), t ≥ 0?

If this relation holds, then the integral form (4.2.1) holds and we have seen that this is not
generally true, even for the simpler case of a countable state Markov process.

5.1 Semi-groups

As the question is mainly analytic, this section will be analytically oriented. The starting
point is a transition function {Pt}t≥0 on the measurable space (E, E), where again E is Polish
and E the Borel-σ-algebra on E. Let S be a Banach space of real-valued measurable functions
on E, and let || · || denote the corresponding norm. By virtue of the Chapman-Kolmogorov
equations, {Pt}t is a so-called semigroup.

Definition 5.1.1 The semigroup {Pt}t is a strongly continuous semigroup on S (shorthand
notation: SCSG(S)), if

i) Pt : S → S is a bounded linear operator for each t ≥ 0. I.o.w. ||Pt|| := supf∈S
||Ptf ||
||f || < ∞

for t ≥ 0.

ii) limt↓0 ||Ptf − f || = 0 for each f ∈ S.

A main notion that we will use is closedness.

Let B : D → S be a linear operator defined on D ⊂ S, with D a linear subspace. D is
called the domain of B. The set G(B) = {(f,Bf) | f ∈ D} ⊂ S × S is called the graph of B.
Note that S × S is a Banach space with norm ||(f, g)|| = ||f || + ||g||. Then we call B is closed
iff G(B) = G(B).

If {Pt}t is a SCSG(S), then f 7→ Ptf is continuous, and so Pt is a closed linear operator
for each t ≥ 0.

109
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Example 5.1.1 Consider Example 3.1.2 (A, B) Brownian motion and the Ornstein-Uhlenbeck
process. Let

S = C0(R) = {f : R→ R | f continuous with lim
x→±∞

f(x) = 0},

and let ||f || = supx∈R |f(x)|. One can show that the associated transition functions are
strongly continuous semigroups on C0(R) (cf. Section 5.3).

Example 5.1.2 Consider the Markov jump process in Example 3.2.1. Suppose that there
exists a function F : E → R+ and a constant c > 0 such that PF (x) ≤ cF (x), for all x ∈ E.
Let

S = {f : E → R | ||f ||F := sup
x

|f(x)|
F (x)

<∞}.

Then the associated transition function is a strongly continuous semigroup on S, with

||Pt|| ≤
∞∑
n=0

e−λt
(λt)n

n!
cn = e(c−1)λt.

This norm is a weighted supremum norm and the Banach space S is used in much of modern
Markov chain theory with applications in queueing and control. The choice F ≡ 1 often
applies.

Example 5.1.3 Let X be a countable state Markov process, that is minimal, stable, standard
and conservative with P ′t |t=0 = Q. Suppose that there exists a V -moment function and a
constant such that QV ≤ cV . Let

C0(E, V ) =

{
f : E → R

∣∣∣∣∣ for each ε > 0 there exists a finite set K = K(ε, f),

such that |f(x)|
V (x) ≤ ε, for x 6∈ K

}
C0(E, V ) equipped with the norm || · ||V is a Banach space, and (Pt)t is a strongly continuous
semigroup on this space.

The norm of an SCSG(S) cannot grow quicker than exponentially. This follows from the
following lemma.

Lemma 5.1.2 Let {Pt}t≥0 be a SCSG(S). There are constants M ≥ 1, α ≥ 0, such that
||Pt|| ≤Meαt.

Proof. Note first that there exists constants M ≥ 1 and t0 > 0, such that ||Pt|| ≤M , t ≤ t0.
Suppose that not. Then there exists a sequence tn ↓ 0, n → ∞, such that ||Ptn || → ∞.

The Banach-Steinhaus theorem (cf. BN Theorem 10.4) then implies that supn ||Ptnf || = ∞
for some f ∈ S. This contradicts strong continuity. Hence there exists a constant M ≥ 1,
such that ||Pt|| ≤M for t ≤ t0.

Finally, put α = (logM)/t0. Let t ∈ [0,∞). Then with k = bt/t0c, we get

||Pt|| = ||Pkt0Pt−kt0 || ≤ ||Pt0 ||
k||Pt−kt0 || ≤ e

αt ·M.

QED
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Corollary 5.1.3 t 7→ Ptf is continuous (i.o.w. lims→t ||Ptf − Psf || = 0) for all f ∈ S, and
t ≥ 0).

Proof. We will only prove right-continuity. Let h > 0. Then

||Pt+hf − Ptf || ≤ ||Pt||||Phf − f || → 0, h ↓ 0.

QED

Generator Let next

D = {f ∈ S | ∃g ∈ S such that lim
t↓0
||Ptf − f

t
− g|| = 0}.

A priori it is not clear whether D is even non-empty! For each f ∈ D we write

Af = g = lim
t↓0

Ptf − f
t

.

A : D → S is a (generally unbounded) linear operator, with domain D(A) = D, A is called
the generator.

From the definition we immediately see that for f ∈ D(A)

Eν(f(Xt+h)− f(Xt) | FXt ) = hAf(Xt) + o(h), Pν − a.s.,

as h ↓ 0. In this sense the generator describes the motion in an infinitesimal time-interval.

Example 5.1.4 Brownian motion has D(A) = {f ∈ C0(R) | f ′, f ′′ ∈ C0(R)}. It holds that
Af = f ′′/2 for f ∈ D(A). The proof is given in §5.3. Notice that this implies that 1{B}, B ∈ B,
are not even contained in the domain, and so these functions do not satisfy the Kolmogorov
forward and backward equations!

Example 5.1.5 (Ornstein-Uhlenbeck process) Consider the Orstein-Uhlenbeck process
in Example 3.1.2 (B). The generator is given by

Af(x) = 1
2σ

2f ′′(x)− αxf ′(x), x ∈ R,

if f ∈ {g ∈ C0(R) | g′, g′′ ∈ C0(R)}(cf. Exercise 5.1).
Recall that we introduced Brownian motion as a model for the position of a particle.

The problem however is that Brownian motion paths are nowhere differentiable, whereas the
derivative of the position of a particle is its velocity, hence it should be differentiable. It
appears that the Ornstein-Uhlenbeck process is a model for the velocity of a particle, and
then its position at time t is given by

St =

∫ t

0
Xudu.

It can be shown that αSnt/
√
n→Wt in distribution, as n→∞. Hence, for large time scales,

Brownian motion may be accepted as a model for particle motion.



112 CHAPTER 5. FELLER-DYNKIN PROCESSES

Example 5.1.6 Consider the Geometric Brownian motion in Example 3.1.2 (C). The gener-
ator is given by

Af(x) = µxf ′(x) + 1
2σ

2x2f ′′(x),

for f ∈ {g ∈ C0(R) | g′, g′′ ∈ C0(R)}.

The full description of the domain D(A) is very difficult in general. Lateron we provide some
tools that might help for its specification.

We next derive the important Kolmogorov forward and backward equations. This requires
integrating S-valued functions of t.

Denote by CS(a, b) = {u : [a, b] → S |u is continuous}, a, b ∈ [−∞,∞]. A function
u : [a, b] → S is said to be (Rieman) integrable over [a, b] if limh→0

∑n
k=1 u(sk)(tk − tk−1)

exists, where a = t0 ≤ s1 ≤ t1 ≤ · · · ≤ tn−1 ≤ sn ≤ tn = b and h = maxk(tk − tk−1), and the

limit is independent of the particular sequence t0, s1, . . . , tk. It is then denoted by
∫ b
a u(t)dt.

If a and/or b =∞, the integral is defined as an improper integral.
Furthermore, by I we mean the identity operator. The following result holds.

Integration Lemma

a) If u ∈ CS(a, b) and
∫ b
a ||u(t)||dt <∞, then u is integrable over [a, b] and

||
∫ b

a
u(t)dt|| ≤

∫ b

a
||u(t)||dt.

If a, b are finite then every function in CS(a, b) is integrable over [a, b].

b) Let B be a closed linear operator on S. Suppose that u ∈ CS(a, b), u(t) ∈ D(B) for all

t ∈ [a, b], and both u,Bu are integrable over [a, b]. Then
∫ b
a u(t)dt ∈ D(B) and

B

∫ b

a
u(t)dt =

∫ b

a
Bu(t)dt.

c) If u ∈ CS[a, b] and u continuously differentiable on [a, b] then∫ b

a

d

dt
u(t)dt = u(b)− u(a).

Proof. See Exercise 5.2. QED

The consequence is that we can interchange of integral and closed linear operators. By
Corollary 5.1.3 s 7→ Psf is continuous, hence integrable over [0, t].

The following theorem holds.

Theorem 5.1.4 Let {Pt}t be an SCSG(S).

i) Let f ∈ S, t ≥ 0. Then
∫ t

0 Psfds ∈ D(A) and

Ptf − f = A

∫ t

0
Psfds.
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ii) Let f ∈ D(A) and t ≥ 0. Then Ptf ∈ D(A). The function t 7→ Ptf is differentiable in S
and the Kolmogorov backward and forward equations hold:

d

dt
Ptf = APtf = PtAf.

More precisely,

lim
h↓0

∣∣∣∣∣∣Pt+hf − Ptf
h

− PtAf
∣∣∣∣∣∣ = lim

h↓0

∣∣∣∣∣∣Pt+hf − Ptf
h

− APtf
∣∣∣∣∣∣ = 0.

iii) Let f ∈ D(A), t ≥ 0. Then

Ptf − f =

∫ t

0
PsAfds =

∫ t

0
APsfds.

Proof. For the proof of (i) note that

1

h
(Ph − I)

∫ t

0
Psfds =

1

h

∫ t

0

(
Ps+hf − Psf

)
ds

=
1

h

∫ t+h

H
Psfds−

1

h

∫ t

0
Psfds.

For the second term we get∣∣∣∣∣∣1
h

∫ t

0
Psfds− f

∣∣∣∣∣∣ ≤ 1

h

∫ h

0
||Psf − f ||ds→ 0, h ↓ 0.

Similarly, for the first term∣∣∣∣∣∣1
h

∫ t+h

t
Psfds− Ptf

∣∣∣∣∣∣ ≤ ||Pt||
h

∫ h

0
||Psf − f ||ds→ 0, h ↓ 0.

The result follows. For (ii) note that∣∣∣∣∣∣Pt+hf − Ptf
h

− PtAf
∣∣∣∣∣∣ =

∣∣∣∣∣∣Pt(Phf − f
h

− Af
)∣∣∣∣∣∣ ≤ ||Pt||∣∣∣∣∣∣Phf − fh

− Af
∣∣∣∣∣∣.

Taking the limit h ↓ 0 yields that

lim
h↓0

∣∣∣∣∣∣Pt+hf − Ptf
h

− PtAf
∣∣∣∣∣∣ = 0. (5.1.1)

Since Af ∈ S, g = PtAf ∈ S. Rewriting (5.1.1) gives

lim
h↓0

∣∣∣∣∣∣Ph(Ptf)− Ptf
h

− g
∣∣∣∣∣∣ = 0.

Hence g = APtf . Consequently PtAf = g = APtf = (d+/dt)Ptf (d+/dt stands for the right-
derivative). To see that the left derivative exists and equals the right-derivative, observe for
h > 0 that∣∣∣∣∣∣Ptf − Pt−hf

h
− PtAf

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Ptf − Pt−hf
h

− Pt−hAf
∣∣∣∣∣∣+

∣∣∣∣∣∣Pt−hAf − PtAf ∣∣∣∣∣∣
≤ ||Pt−h||

∣∣∣∣∣∣Phf − f
h

− Af
∣∣∣∣∣∣+

∣∣∣∣∣∣Pt−hAf − PtAf ∣∣∣∣∣∣→ 0, h ↓ 0,
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where we have used strong continuity and the fact that Af ∈ S. For (iii) note that (d/dt)Ptf =
PtAf is a continuous function of t by Corollary 5.1.3. It is therefore integrable, and so

Ptf − f =

∫ t

0

d

ds
Psfds =

∫ t

0
APsfds =

∫ t

0
PsAfds.

QED

The previous theorem (i) shows that D(A) is non-empty. In fact it is dense in S and A is a
so-called closed operator.

Corollary 5.1.5 Let {Pt}t be an SCSG(S). Then D(A) = S and A is a closed operator.

Proof. Theorem 5.1.4 (i) and the fact that ||
∫ t

0 Psfds/t − f || → 0, t ↓ 0 immediately imply

that D(A) = S.

Let {fn}n ⊂ D(A) be any sequence with the property that there exist f, g ∈ S such that
fn → f and Afn → g as n→∞. We need to show that g = Af .

To this end, note that Ptfn− fn =
∫ t

0 Ps(Afn)ds, for all t > 0, by virtue of Theorem 5.1.4

(iii). Since ||(Ptfn − fn) − (P f − f)|| → 0 and ||
∫ t

0 PsAfnds −
∫ t

0 Psgds|| → 0 as n → ∞,

necessarily Ptf − f =
∫ t

0 Psgds, for all t > 0. Hence

∣∣∣∣∣∣Ptf − f
t

−
∫ t

0 Psgds

t

∣∣∣∣∣∣ = 0, ∀t > 0.

It follows that

lim
t↓0

∣∣∣∣∣∣Ptf − f
t

− g
∣∣∣∣∣∣ ≤ lim

t↓0

∣∣∣∣∣∣Ptf − f
t

−
∫ t

0 Psgds

t

∣∣∣∣∣∣+ lim
t↓0

∣∣∣∣∣∣∫ t0 Psgds
t

− g
∣∣∣∣∣∣ = 0,

so that g = Af . QED

5.2 The generator determines the semi-group: the Hille-Yosida
theorem

By virtue of Corollary 5.1.3, the map t → Ptf is continuous for each f ∈ S. Recall that
||Pt|| ≤Meαt for some constants M ≥ 1 and α ≥ 0. By the Integration Lemma, for all λ > α
we may define

Rλf(x) =

∫ ∞
0

e−λtPtf(x)dt.

Rλ is simply the Laplace transform of the semigroup calculated at the ‘frequency’ λ. The
next lemma collects preliminary properties of the operators Rλ. In particular, it states that
for all λ > 0, Rλ is in fact an operator that maps S into itself. It is called the resolvent of
order λ.

Lemma 5.2.1 Let {Pt}t be a SCSG(S).

i) ||Rλ|| ≤M/(λ− α).
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ii) The resolvent equation

Rµ −Rλ + (µ− λ)RµRλ = 0

holds for all λ, µ > α.

Proof. The first part is straightforward. To prove the resolvent equation, note that

e−µt − e−λt = (λ− µ)e−λt
∫ t

0
e(λ−µ)sds.

Hence,

Rµf(x)−Rλf(x) =

∫ ∞
0

(e−µt − e−λt)Ptf(x)dt

= (λ− µ)

∫ ∞
0

e−λt
(∫ t

0
e(λ−µ)sPtf(x)ds

)
dt

= (λ− µ)

∫ ∞
0

e−µs
(∫ ∞

s
e−λ(t−s)Ptf(x)dt

)
ds,

by the integration Lemma. A change of variables, the semigroup property of the transition
function and another application of Integration Lemma show that the inner integral equals∫ ∞

0
e−λuPs+uf(x)du =

∫ ∞
0

e−λuPsPuf(x)du

=

∫ ∞
0

e−λu
(∫

E
Puf(y)Ps(x, dy)

)
du

=

∫
E

(∫ ∞
0

e−λuPuf(y)du
)
Ps(x, dy)

= PsRλf(x).

Inserting this in the preceding equation yields the resolvent equation. QED

The following important connection between resolvent and generator is easily derived.

Theorem 5.2.2 Let {Pt}t be a SCSG(S) with ||Pt|| ≤ M · eαt. For all λ > α the following
hold.

i) RλS = D(A).

ii) λI− A : D(A)→ S is a 1-1 linear operator with (λI− A)D(A) = S.

iii) (λI−A)−1 : S → D(A) exists as a bounded linear operator. In particular (λI−A)−1 = Rλ.

iv) Rλ(λI− A)f = f for all f ∈ D(A).

v) (λI− A)Rλg = g for all g ∈ S.

Proof. The proof consists of 2 main steps: Step 1 Proof of (v); and Step 2 Proof of (iv). As a
consequence, (iv) implies (i) and the first part of (ii); (v) implies the second part of (ii). (iii)
then follows by combining (iv,v).
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Proof of Step 1. Let g ∈ S. By the Integration Lemma we may write

PhRλg =

∫ ∞
0

e−λtPt+hgdt.

Hence

PhRλg −Rλg
h

=
1

h

[ ∫ ∞
0

e−λtPt+hgdt−
∫ ∞

0
e−λtPtgdt

]
=

eλh − 1

h
Rλg −

1

h
eλh
∫ h

0
e−λtPtgdt.

The right-hand side converges to λRλg − g. It follows that∣∣∣∣∣∣PhRλg −Rλg
h

− (λRλg − g)
∣∣∣∣∣∣→ 0, h ↓ 0.

By definition, Rλg ∈ D(A) and

ARλg = λRλg − g. (5.2.1)

The result follows by rewriting.

Proof of Step 2. Let f ∈ D(A), then by definition Af ∈ S. We have

Rλ[Af ] =

∫ ∞
0

e−λtPt[Af ]dt =

∫ ∞
0

e−λtA[Ptf ]dt = A

∫ ∞
0

e−λtPtfdt = ARλf. (5.2.2)

The last equality follows from the Integration Lemma by using that A is closed. The second
follows from Theorem 5.1.4 (ii). The rest follows by inserting (5.2.2) into (5.2.1) and rewriting.
QED

Due to the importance of resolvents, we will explicitly compute these for two examples.

Example 5.2.1 Consider the BM-process from Example 3.1.2 (A). Its resolvents are given
by

Rλf(x) =

∫
R
f(y)rλ(x, y)dy,

where rλ(x, y) = exp{−
√

2λ|x− y|}/
√

2λ (see Exercise 5.3).

Example 5.2.2 Let X be the Markov jump process from Example 5.1.2. The resolvent is
given by (cf. Exercise 5.4).

Rµf =
1

λ+ µ

∑
n≥0

( λ

λ+ µ

)n
Pnf = ((λ+ µ)I− λP )−1f f ∈ S,

for µ > (c− 1)λ. This is by a direct computation, and the fact that (proved using induction)∫ ∞
0

tne−ξtdt =
n!

ξn+1
.
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We have proved one part of the Hille-Yosida theorem specifying the precise relation between
generator and semigroup. It will however be convenient to restrict to so-called contraction
SCSG’s: the transition function {Pt}t is a strongly continuous contracting semigroup on the
Banach space S (SCCSG(S)) if it is a SCSG(S) with ||Pt|| ≤ 1 for all t ≥ 0.

This is no restriction. Suppose that ||Pt|| ≤M · eαt for constants M ≥ 1 and α ≥ 0. Then
Pte
−αt is a SCSG(S) with ||Pte−αt|| ≤M . Define a new norm || · ||∗ by

||f ||∗ = sup
t≥0
||Pte−αtf ||,

then ||f || ≤ ||f ||∗ ≤M ||f ||. Hence || · || and || · ||∗ are equivalent norms and S is a Banach space
with respect to || · ||∗. It easily follows that {Pte−αt}t is a SCCSG(S) with respect to the new
norm.

We need the notion of dissipativeness. The linear operator B : V → S, V a linear subspace
of S, is (α,M)-dissipative if

||(λI−B)f || ≥ λ− α
M
||f ||, ∀f ∈ V, λ > 0.

Theorem 5.2.3 (Hille-Yosida Theorem) Suppose that there exists a linear operator A :
D(A) → S, where D(A) is a linear subspace of S. Then A is the generator of a SCCSG(S)
semigroup if and only if the following three properties hold:

i) D(A) = S;

ii) A is (0, 1)-dissipative. In other words:

||λf − Af || ≥ λ||f ||, ∀f ∈ D(A), λ > 0;

iii) (λI− A)D(A) = S for some λ > 0.

Proof of “⇒”. The only thing left to prove is (ii) (why?). By Theorem 5.2.2 (i) there exists
g ∈ S, such that f = Rλg. By the same theorem (v) (λI− A)f = g. We have

||f || = ||Rλg|| ≤
1

λ
||g|| =

1

λ
||λf − Af ||.

QED

For proving ‘⇐’, we need to derive a number of lemmas. We will formulate these for A being
(α,M)-dissipative and return to the (0, 1)-dissipative case at the moment we really need it.

Lemma 5.2.4 Let A : D(A)→ S, be an (α,M) dissipative linear operator, with D(A) ⊂ S a
linear subspace, and M ≥ 1, α ≥ 0. Then A is a closed operator if and only if (λI− A)D(A)
is a closed set (in S), for some λ > α. Under either condition (λI − A)D(A) is a closed set
(in S) for all λ > α.
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Proof. Assume that A is closed. Let λ > α. Let {fn}n ⊂ D(A) be a sequence such that
(λI− A)fn → h, n→∞, for some h ∈ S. We have prove that h ∈ (λI− A)D(A).

By (α,M)-dissipativeness of A we have

||(λI− A)(fn − fm)|| ≥ λ− α
M
||fn − fm)||.

Hence {fn}n is a Cauchy-sequence in S, and so it has a limit f ∈ S. It holds that

Afn = −(λI− A)fn + λfn → −h+ λf, n→∞.

A is closed, hence f ∈ D(A), Af = −h+λf . Therefore h = (λI−A)f . The conclusion is that
(λI− A)D(A) is closed.

Next we assume that (λI − A)D(A) is closed in S for some λ > α. Let {fn}n ⊂ D(A), with
fn → f , Afn → g for some f, g ∈ S. Then

(λI− A)fn → λf − g, n→∞,

and so λf − g ∈ (λI−A)D(A). Hence, there exists h ∈ D(A), such that λh−Ah = λf − g. A
is (α,M)-dissipative, so that

||λI− A)(fn − h)|| = ||(λ(fn − h)− A(fn − h)|| ≥ λ− α
M
||fn − h||.

The left-hand side converges to 0, as n → ∞. Hence fn → h and so f = h ∈ D(A) and
g = Af . This shows that A is closed. QED

Lemma 5.2.5 Let A : D(A) → S, be an (α,M) dissipative, closed linear operator, with
D(A) ⊂ S a linear subspace, and M ≥ 1, α ≥ 0. Let

λ(A) =

λ > α

∣∣∣∣∣∣
(λI− A) is 1-1,
(λI− A)D(A) = S,
(λI− A)−1exists as a bounded linear operator on S


Then λ(A) 6= ∅ ⇒ λ(A) = (α,∞).

Proof. It is sufficient to show that λ(A) is both open and closed in (α,∞). First we will show
that λ(A) is open in (α,∞). To this end, let λ ∈ λ(A). Let

B = {µ ∈ (α,∞) | |λ− µ| < ||(λI− A)−1||−1}.

B is open in (α,∞). We will show that B ⊂ λ(A).
Let µ ∈ B. Then

C =
∞∑
n=0

(λ− µ)n
(

(λI− A)−1
)n+1

: S → S

is a bounded linear operator. We claim that C = (µI−A)−1. Use µI−A = λI−A+ (µ−λ)I
to show that C(µI− A) = (µI− A)C = I. Then it easily follows that µ ∈ λ(A).
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We next show that λ(A) is closed in (α,∞). To this end, let {λn}n ⊂ λ(A), with λn → λ,
n→∞, for some λ ∈ R, λ > α. We have to show that λ ∈ λ(A).

The proof consists of two steps: Step 1 (λI − A)D(A) = S; Step 2 (λI − A) is 1-1. Steps
1 and 2 then imply that for each g ∈ S there exists precisely one element f ∈ D(A) with
g = (λI− A)f . This means that the inverse (λI− A)−1 exists. By (α,M)-dissipativeness

||(λI− A)−1g|| = ||f || ≤ M

λ− α
||λf − Af || =

M

λ− α
||g||.

Since g ∈ S was arbitrary, ||(λI− A)−1|| ≤M/(λ− α) <∞. This shows that λ ∈ λ(A).

Proof of Step 1. Let g ∈ S. Put gn = (λI − A)(λnI − A)−1g, for all n. Clearly g =
(λI− A)(λnI− A)−1g and so gn − g = (λ− λn)(λnI− A)−1g. A is (α,M)-dissipative, and so

||gn − g|| ≤ |λn − λ|||(λnI− A)−1g|| ≤ |λn − λ|
M

λ− α
||g|| → 0, n→∞.

It follows that (λI− A)D(A) = S. Since (λI − A)D(A) is closed by Lemma 5.2.4, S =
(λI− A)D(A).

Proof of Step 2. This follows immediately from (α,M)-dissipativeness. QED

Lemma 5.2.6 Let A : D(A) → S, be an (α,M) dissipative, closed linear operator, with
D(A) ⊂ S a linear subspace, and M ≥ 1, α ≥ 0. Suppose that D(A) = S and λ(A) = (α,∞).
Define the Yosida-approximation Aλ = λA(λI − A)−1, λ > α. Then Aλ, λ > α, have the
following properties.

a) Aλ is a bounded linear operator S → S and etAλ =
∑∞

n=0 t
nAnλ/n! is a SCSG(S) with

generator Aλ.

b) AλAµ = AµAλ.

c) ||Af − Aλf || → 0, λ→∞, for all f ∈ D(A).

Proof. For all λ > α write Uλ = (λI− A)−1. In the proof of Lemma 5.2.5 we have seen that
||Uλ|| ≤ M/(λ − α). Further UλUµ = UµUλ. This follows by a straightforward computation.
Hence

(λI− A)Uλ = I, on S (5.2.3)

Uλ(λI− A) = I, on D(A). (5.2.4)

We first prove (a). Using the above, we may rewrite Aλ = λAUλ by

Aλ = λ2Uλ − λI, on S (5.2.5)

= λUλA, on D(A). (5.2.6)

(5.2.5) implies that Aλ is bounded, with

||etAλ || ≤ e−tλetλ2||Uλ|| ≤ etλ2M/(λ−α)−tλ. (5.2.7)
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Further, for all f ∈ S

||etAλf − f || ≤
∞∑
n=1

tn||Aλ||n||f ||/n!→ 0, t ↓ 0.

Hence {etAλ}t is a SCSG(S). In a similar way, one can prove that Aλ is the generator.

The proof of (b) follows by using the expression (5.2.5) for Aλ on S and the fact that Uλ
and Uµ commute. We will finally prove (c). First we show that ||λUλf − f || → 0, λ→∞, for
all f ∈ S.

For f ∈ D(A), we use (5.2.4) to obtain

||λUλf − f || = ||UλAf || ≤
M

λ− α
||Af || → 0, λ→∞.

Let f ∈ S and let {fn}n ⊂ D(A) converge to f . Then for all n

lim sup
λ→∞

||λUλf − f || ≤ lim sup
λ→∞

[
||λUλfn − fn|| +

Mλ

λ− α
||fn − f || + ||fn − f ||

]
Let λ → ∞. The first term on the right-hand side converges to 0, the second converges to
M ||fn − f || and the third equals ||fn − f ||. Since the left-hand side is independent of n, we
can take the limit n → ∞ and obtain that the left-hand side must equal 0. (c) follows by
combining with (5.2.6). QED

Lemma 5.2.7 Suppose that B,C are bounded linear operators on S with ||etB||, ||etC || ≤ 1,
that commute: BC = CB. Then

||etBf − etCf || ≤ t||Bf − Cf ||

for every f ∈ S and t ≥ 0.

Proof. Use the identity

etBf − etCf =

∫ t

0

d

ds
[esBe(t−s)Cfds =

∫ t

0
esB(B − C)e(t−s)Cds

=

∫ t

0
esBe(t−s)C(B − C)fds.

QED

Continuation of the proof of the Hille-Yosida Theorem: ‘⇐’ The idea is the define a
strongly continuous contraction semigroup {Pt}t and then show that it has generator A.

Conditions (ii), (iii) and Lemma 5.2.4 imply that A is closed. By inspection of the ar-
guments for proving closedness of λ(A) in Lemma 5.2.5, we can deduce that λ(A) 6= ∅.
Lemma 5.2.5 implies λ(A) = (0,∞).

Using the notation in Lemma 5.2.6, define for each λ > 0 the SCCSG(S) {etAλ}t. Let us
check that it is indeed a SCCSG(S).
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By virtue of (5.2.7), ||etAλ || ≤ 1. By virtue of Lemmas 5.2.6(b) and 5.2.7

||etAλf − etAµf || ≤ t||Aλf − Aµf ||,

for all t ≥ 0, and f ∈ S. By virtue of Lemma 5.2.6 (c), limλ→∞ e
tAλf exists for all t ≥ 0,

uniformly in t ∈ [0, T ], for each T > 0, for all f ∈ D(A). Define Ptf = limλ→∞ e
tAλf , for all

f ∈ D(A). By uniform convergence, t→ Ptf is continuous for each f ∈ D(A).
The fact that D(A) = S allows to define Ptf on all of S, for all t ≥ 0.
Next it holds that

Pt+sf − PtPsf = Pt+sf − e(t+s)Aλf + etAλ(esAλf − Psf) + (esAλ − Ps)Ptf.

This allows conclude that the Chapman-Kolmogorov equations apply. We may similarly prove
that strong continuity holds and that Pt is a bounded linear operator with norm at most 1,
t ≥ 0. We may then conclude that {Pt}t is a SCCSG(S).

Finally we will show that this SCSG has generator A. By Theorem 5.1.4 (iii)

etAλf − f =

∫ t

0
esAλAλfds, (5.2.8)

for all f ∈ S, t ≥ 0, λ > 0. For all f ∈ D(A) and t ≥ 0

esAλAλf − Psf = esAλ(Aλf − Af) + (esAλ − Ps)f.

By virtue of Lemma 5.2.6 (iii) this implies that ||esAλAλf − PsAf || → 0, λ→∞, uniformly

in s ∈ [0, t]. Combining with (5.2.8) yields Ptf − f =
∫ t

0 PsAfds, for all f ∈ D(A) and t ≥ 0.
Suppose that {Pt}t has generator B, with domain D(B). The above implies that D(B) ⊃

D(A) and B = A on D(A). Hence B extends A.
By Theorem 5.2.2 λI − B is 1-1 for λ > 0. Since S = (λI − A)D(A) = (λI − B)D(A),

D(B) \ D(A) = ∅, otherwise we would get a contradiction with the fact that λI − B is 1-1.
QED

It is generally hard to determine the domain of a generator. The following lemma may be of
use. Notice the connection with Lemma 4.4.4.

Lemma 5.2.8 Let {Pt}t be a SCSG(S) with ||Pt|| ≤ Meαt. Suppose that the linear operator
B is an extension of the generator A. In other words, B : D → S is a linear operator with
D ⊃ D(A), and Bf = Af for f ∈ D(A). If λI − B is 1-1 for some value λ > α, then B
equals A, that is, D = D(A). A sufficient condition for λI − B to be 1-1 is that there is no
non-trivial f ∈ D with Bf = λf .

Proof. Suppose that f ∈ D. Put g = λf −Bf . Then h = Rλg ∈ D(A) and so

λf −Bf = g = λh− Ah = λh−Bh, (5.2.9)

since A = B on D(A). Hence f = h ∈ D(A), if λI−B is 1-1.
Suppose that we only know that there does not exist any function non-zero F ∈ S with

BF = λF . Then substracting the right side in (5.2.9) from the left, we obtain that f = h,
and thus λI−B is 1-1. QED

We may finally ask ourselves whether the transition function is uniquely determined by the
generator. The answer is again yes in the case of a SCSG(S). In general this need not be
true.

In the case of special Banach spaces, more interesting properties prevail.
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5.3 Feller-Dynkin transition functions

From now on consider semigroups with additional properties. For simplicity, the state
space E is assumed to be a closed or open subset of Rd with E its Borel-σ-algebra, or of
Zd with the discrete topology and with the E the σ-algebra generated by the one-point
sets.

By C0(E) we denote the space of real-valued functions that vanish at infinity. C0(E) functions
are bounded, and so we can endow the space with the supremum norm defined by

||f || = sup
x∈E
|f(x)|.

In these notes, we can formally describe C0(E) by

C0(E) =

f : E → R

∣∣∣∣∣∣
f continuous and
for each ε > 0 there exists a compact set K = K(ε, f),
such that |f(x)| ≤ ε, for x 6∈ K


Note that C0(E) is a subset of the space of bE of bounded, measurable functions on E, so we
can consider the restriction of the transition operators (Pt)t to C0(E). It is also a Banach
space.

We will now introduce a seemingly weaker condition on the semigroup than strong conti-
nuity. This notion does not have a unique name in the literature: sometimes it is called the
Feller property.

Definition 5.3.1 The transition function (Pt)t≥0 is called a Feller-Dynkin transition function
if

i) PtC0(E) ⊆ C0(E), for all t ≥ 0;

ii) Ptf(x)→ f(x), t ↓ 0, for every f ∈ C0(E) and x ∈ E.

A Markov process with Feller-Dynkin transition function is called a Feller-Dynkin process.

Note that the operators Pt are contractions on C0(E), i.e. for every f ∈ C0(E) we have

||Ptf || = sup
x∈E

∣∣∣ ∫
E
f(y)Pt(x, dy)

∣∣∣ ≤ ||f ||.
So, for all t ≥ 0 we have ||Pt||∞ ≤ 1, where ||Pt||∞ is the norm of Pt as a linear operator on
the normed linear space C0(E), endowed with the supremum norm (see Appendix B LN, or
BN section 11).

If f ∈ C0(E), then Ptf ∈ C0(E) by part (i) of Definition 5.3.1. By the semigroup property
and part (ii) it follows that

Pt+hf(x) = Ph(Ptf)(x)→ Ptf(x), h ↓ 0.

In other words, the map t 7→ Ptf(x) is right-continuous for all f ∈ C0(E) and x ∈ E.

Right-continuous functions f : R→ R are B(R)/B(R)-measurable. See BN§3.
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In particular, this map is measurable, and so for all λ > 0 we may define the resolvent Rλ.
Also in this weaker case, it is a bounded linear operator with norm ||Rλ|| ≤ 1. We will now
show that in the case of the space C0(E), pointwise continuity implies strong continuity.

Theorem 5.3.2 Suppose that {Pt}t is a Feller-Dynkin transition function. Then RλC0(E) =
C0(E), and {Pt}t is a SCCSG(C0(E)).

Proof. In order that a Feller-Dynkin transition function be a SCCSG(C0(E)), we only need to
show strong continuity. We will first show that this is easily checked, provided that RλC0(E)
is dense in C0(E).

Since PtRλf(x) = eλt
∫∞
t=0 e

−λsPsf(x)ds by the Integration Lemma,

PtRλf(x)−Rλf(x) = (eλt − 1)

∫ ∞
t

e−λsPsf(x)ds−
∫ t

0
e−λsPsf(x)ds.

Therefore
||PtRλf −Rλf ||∞ ≤ (eλt − 1)||Rλ|f |||∞ + t||f ||∞.

Since the right-hand side tends to 0 as t ↓ 0, this shows desired norm continuity for functions
in the dense subset RλC0(E) of C0(E). Now let f ∈ C0(E) be arbitrary. Then for every
g ∈ RλC0(E) it holds that

||Ptf − f ||∞ ≤ ||Ptf − Ptg||∞ + ||Ptg − g||∞ + ||g − f ||∞
≤ ||Ptg − g||∞ + 2||g − f ||∞.

Taking the lim supt↓0 and using the first part of the proof, we get

lim sup
t↓0

||Ptf − f ||∞ ≤ 2||g − f ||∞,

for every g ∈ RλC0(E). The right-hand side can be made arbitrarily small, since RλC0(E) is
dense in C0(E). Hence limt↓0 ||Ptf − f ||∞ = 0.

Next we will show that RλC0(E) is dense in C0(E). Suppose that this is not true and
that RλC0(E)⊂6=C0(E). By the Hahn-Banach theorem (BN §9, Corollary 11.2) there exists a
non-trivial bounded linear functional B on C0(E) that vanishes on Rλ(C0(E)). By the Riesz
representation theorem (BN §9 Theorem 11.3) there exist finite Borel measures ν and ν ′ on
E such that

B(f) =

∫
E
fdν −

∫
E
fdν ′ =

∫
E
fd(ν − ν ′),

for every f ∈ C0(E). By part (ii) of Definition 5.3.1 and dominated convergence, for every
x ∈ E

λRλf(x) =

∫ ∞
0

λe−λtPtf(x)dt =

∫ ∞
0

e−sPs/λf(x)ds→ f(x), λ→∞. (5.3.1)

Note that ||λRλf ||∞ ≤ ||f ||∞. Then dominated convergence implies

0 = B(λRλf) =

∫
E
λRλf(x)(ν − ν ′)(dx)→

∫
E
f(x)d(ν − ν ′)(dx) = B(f), λ→∞.

We conclude that the functional B vanishes on the entire space C0(E) and so B is trivial. A
contradiction. QED
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Example 5.3.1 Brownian motion, the Ornstein-Uhlenbeck process en Geometric Brownian
motion from Example 3.1.2 (A, B, C) are Feller-Dynkin processes. Hence their semigroups
are SCCSG(C0(R)) (cf. Example 5.1.1).

We will show that the BM transition function has the Feller-Dynkin property. First we
check continuity of x 7→ Ptf(x) for each t ≥ 0 and f ∈ C0(R). To this end let x ∈ R and let
{xn}n ⊂ R be a converging sequence with limit x and let f ∈ C0(R). Then

Ptf(xn) =

∫
R
f(xn − u)

1√
2πt

e−u
2/2tdu.

Define the functions fn by fn(u) = f(xn−u), n = 1, . . .. We have fn ∈ C0(R), and supn ||fn|| =
||f || <∞. Note that fn(u)→ f(x−u), n→∞, by continuity of f . By dominated convergence
it follows that

lim
n→∞

Ptf(xn) = lim
n→∞

∫
R
fn(u)

1√
2πt

e−u
2/2tdu =

∫
R
f(x− u)

1√
2πt

e−u
2/2tdu = Ptf(x).

The proof that Ptf(x)→ 0 as |x| → ∞, is proved similarly.

We will prove pointwise continuity of the function t 7→ Ptf(x) as t ↓ 0, x ∈ R. Note
that this amounts to proving that Exf(Xt)→ Exf(X0) for each f ∈ C0(R). First, by sample

path continuity Xt → X0, t ↓ 0, Px-a.s. Hence by BN Lemma 5.4 Xt
D→ X0, t ↓ 0. The BN

Portmanteau theorem 5.3 implies desired convergence.

Example 5.3.2 New result Consider a minimal, standard, stable and right-continuous
Markov process with values in the countable state space E equipped with E = 2E . Suppose
there exist a moment function V : E → (0,∞) and a constant α > 0 such that QV ≤ αV ,
where Q = P ′t |t=0. Then the V -transformation (see section 4.4.1) is a Feller-Dynkin process.

It follows that X is a Feller-Dynkin process with respect to the space

C0(E, V ) =

{
f : E → R

∣∣∣∣∣ for each ε > 0 there exists a finite set K = K(ε, f),

such that |f(x)|
V (x) ≤ ε, for x 6∈ K

}

(cf. Exercise 5.5).

5.3.1 Computation of the generator

Let us first look compute the generator of Brownian motion in a straightforward manner.

Example 5.3.3 (cf. Example 5.1.4). We claim that for the BM process we have D(A) =
{f ∈ C2(R) | f, f ′′ ∈ C0(R)}. One can show that f, f ′′ ∈ C0(R) implies that f ′ ∈ C0(R).
Furthermore, for f ∈ D(A) we have Af = f ′′/2.

The procedure to prove this claim, is by showing for h ∈ D(A) that

A1 h ∈ C2
0(R); and

A2 λh− 1
2h
′′ = λh− Ah.
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It then follows that D(A) ⊆ {f ∈ C2(R) | f, f ′′ ∈ C0(R)}. Hence A′ defined by A′h = 1
2h
′′,

h ∈ {f ∈ C2(R) | f, f ′′ ∈ C0(R)} is an extension of A.

We will use Lemma 5.2.8 to show that A′ = A. The lemma implies that this is true if,
given λ > 0, say λ = 1, there exists no function h ∈ D(A′) with h′′/2 = h.

Let us assume that such a function exists. Then there exists x ∈ R with h(x) ≥ h(y) for
all y ∈ R. This implies that h′(x) = 0 and h′′(x) ≤ 0 by a second order Taylor expansion.
Hence h(x) = h′′(x)/2 ≤ 0. Consequently 0 ≥ h(y) = h′′(y)/2 for all y ∈ R. It follows that
h′(y) ≤ 0 for y ≥ x.

By the assumption that h is non-trivial, there must be some x′ ≥ x with h(x′) < 0. Since
h ∈ C0(R), limy→∞ h(y) = 0. Hence, there exists y > x with h′(y) > 0. Contradiction.

We are left to show that A1 and A2 hold. Let h ∈ D(A). Then there exists f ∈ C0(R)
such that h = Rλf , i.e.

h(x) = Rλf(x) =

∫
R
f(y)rλ(x, y)dy

=

∫
R
f(y)

1√
2λ
e−
√

2λ|y−x|dy,

which integral is bounded and differentiable to x. Hence,

h′(x) =

∫
R
f(y)
√

2λ rλ(x, y) sgn(y − x)dy.

The integrand is not continuous in y = x! We have to show that h′ is differentiable. For δ > 0
we have

h′(x+ δ)− h′(x) =

∫
y<x

f(y)
√

2λ
(rλ(x, y)− rλ(x+ δ, y)

δ

)
dy

+

∫
y>x+δ

f(y)
√

2λ
(rλ(x+ δ, y)− rλ(x, y)

δ

)
dy

−
∫
x≤y≤x+δ

f(y)
√

2λ
(rλ(x+ δ, y) + rλ(x, y)

δ

)
dy

Clearly, ∫
y<x
· · ·+

∫
y>x+δ

· · · → 2λ

∫
R
f(y)rλ(x, y)dy = 2λh(x), δ → 0.

Further, ∫ x+δ

x
· · · =

∫ δ

u=0

(exp
√

2λ(u−δ) + exp−
√

2λu

δ

)
f(x+ u)du

=

∫ 1

u=0
1{u≤δ}

(exp
√

2λ(u−δ) + exp−
√

2λu

δ

)
f(x+ u)du

→ 2f(x), δ ↓ 0,

by dominated convergence. Combining yields

h′(x+ δ)− h′(x)

δ
→ 2λh(x)− 2f(x), δ ↓ 0.
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The same holds for δ ↑ 0, and so we find that h is twice differentiable with

h′′ = 2λh− 2f.

Hence,
λh− 1

2h
′′ = f = (λI− A)h = λh− Ah,

and so A1,2 hold.

The first observation is that this is a nasty computation that is hardly amenable to use for more
complicated situations. The second is that we derive the domain directly from Lemma 5.2.8.
What we implicitly use is the so-called maximum principle that we will not further discuss.
We believe that the essential feature validating an extension B to equal the generator A, is
the fact that λI−B is 1-1.

Before further investigating ways to compute the generator, we first generalise Lemma 3.1.4,
showing conditions under which a function φ of a Feller-Dynkin process is Feller-Dynkin, and
it provides a relation between the corresponding generators.

Lemma 5.3.3 Let X be a Feller-Dynkin process with state space (E, E), initial distribution ν
and transition function (Pt)t defined on an underlying filtered probability space (Ω,F , (Ft)t≥0,Pν).
Suppose that (E′, E ′) is a measurable space. Let φ : E → E′ be continuous and onto, and such
that ||φ(xn)|| → ∞ if and only if ||xn|| → ∞.

Suppose that (Qt)t is a collection of transition kernels, such that Pt(f ◦ φ) = (Qtf) ◦ φ
for all f ∈ bE ′. Then Y = φ(X) is a Feller-Dynkin process with state space (E′, E ′), initial
measure ν ′, with ν ′(B′) = ν(φ−1(B′)), B′ ∈ E ′, and transition function (Qt)t. The generator
B of Y satisfies D(B) = {f ∈ C0(E′) | f ◦ φ ∈ D(A)} and A(f ◦ φ) = (Bf) ◦ φ for f ∈ D(B).

Example 5.3.4 In Example 3.1.6 we have seen that W 2
t is a Markov process. W 2

t is also a
Feller-Dynkin process with generator Bf(x) = 2xf ′′(x) + f ′(x), f ∈ D(B) = C2

0 (R+). See
Exercise 5.6.

5.3.2 Applications of the generator and alternative computation

Generators provide an important link between Feller-Dynkin processes and martingales.

Theorem 5.3.4 Let X be a Feller-Dynkin process, defined on (Ω,F , {Ft}t). For every f ∈
D(A) and initial probability measure ν, the process

Mf
t = f(Xt)− f(X0)−

∫ t

0
Af(Xs)ds,

is a Pν-martingale.

The proof is straightforward, and similarly to the countable state space case, implies the
validity of Dynkin’s formula.

Corollary 5.3.5 (Dynkin’s formula) Let X be a right-continuous Feller-Dynkin process.
For every f ∈ D(A) and every {FXt }t-stopping time τ with Exτ <∞, we have

Exf(Xτ ) = f(x) + Ex

∫ τ

0
Af(Xs)ds, x ∈ E.
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Proof. By Theorem 5.3.4 and the optional sampling theorem, we have

Exf(Xτ∧n) = f(x) + Ex

∫ τ∧n

0
Af(Xs)ds,

for every n ∈ Z+. The left-handside converges to Exf(Xτ ), n → ∞ (why, since we do not
assume left limits?). Since Af ∈ C0(E), we have ||Af ||∞ <∞ and so∣∣∣ ∫ τ∧n

0
Af(Xs)ds

∣∣∣ ≤ ||Af ||τ.
By the fact that Exτ <∞ and by dominated convergence, the integral on the right-handside
converges to

Ex

∫ τ

0
Af(Xs)ds.

QED

This lemma is particularly useful.

Example 5.3.5 Consider the (canonical continuous) BM process Xt = X0 +Wt, t ≥ 0, where
X0 and (Wt)t are independent, and (Wt)t a standard BM.

Let (a, b) ⊂ R, a < b. The problem is to determine a function f : [a, b]→ R, f ∈ C2
0 [a, b],

with f ′′(x) = 0, x ∈ (a, b) and f(a) = c1, f(b) = c2 for given constants c1, c2. Clearly, in
dimension 1 this is a simple problem - f is a linear function. However, we would like to use
it as an illustration of our theory.

Suppose such a function f exists. Then f can be extended as a C2
0 (R) function. Then

f ∈ D(A) for our process X. Let ν = δx be the initial distribution of X for some x ∈ (a, b). We
have seen that τa,b = inf{t > 0 |Xt ∈ {a, b}} is a finite stopping time with finite expectation.
Consequently, Dynkin’s formula applies and so

Exf(Xτa,b) = f(x) + Ex

∫ τa,b

0
Af(Xs)ds = f(x) + Ex

∫ τa,b

0

1
2f
′′(Xs)ds = f(x).

The left-handside equals

c1
b− x
b− a

+ c2
x− a
b− a

(cf. Exercise 2.29).

Characteristic operator We will now give a probabilistic interpretation of the generator.
Call a point x ∈ E absorbing if for all t ≥ 0 it holds that Pt(x, {x}) = 1. This means that

if the process starts at an absorbing point x, it never leaves x (cf. Exercise 3.12).
Let X be a right-continuous, Feller-Dynkin process For r > 0, define the {Ft}t-stopping

time

ηr = inf{t ≥ 0 | ||Xt −X0|| ≥ r}. (5.3.2)

If x is absorbing, then Px-a.s. we have ηr =∞ for all r > 0. For non-absorbing points however,
the escape time ηr is a.s. finite and has finite mean provided r is small enough.

Lemma 5.3.6 If x ∈ E is not absorbing, then Exηr <∞ for all r > 0 sufficiently small.
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Proof. Let Bx(ε) = {y | ||y − x|| ≤ ε} be the closed ball of radius ε around the point x. If x is
not absorbing, then Pt(x,Bx(ε)) < p < 1 for some t, ε > 0.

By the Feller-Dynkin property of the semi-group Pt we have that Pt(y, ·)
w→ Pt(x, ·) as

y → x. Hence, the Portmanteau theorem, and the fact that Bx(ε) is closed imply that

lim sup
y→x

Pt(y,Bx(ε)) ≤ Pt(x,Bx(ε)).

Let p̂ ∈ (p, 1). It follows that for all y sufficiently close to x, say y ∈ Bx(r) for some r ∈ (0, ε),
we have Pt(y,Bx(r)) ≤ p̂. Using the Markov property it is easy to show (cf. Exercise 5.7)
that Px(ηr > nt} ≤ p̂n, n = 0, 1, . . .. Hence,

Exηr =

∫ ∞
0

Px{ηr ≥ s}ds ≤ t
∞∑
n=0

Px(ηr ≥ nt} ≤
t

1− p̂
<∞.

This completes the proof. QED

We can now prove the following alternative description of the generator.

Theorem 5.3.7 Let X be a right-continuous Feller-Dynkin process. For f ∈ D(A) we have
Af(x) = 0 if x is absorbing, and otherwise

Af(x) = lim
r↓0

Exf(Xηr)− f(x)

Exηr
, (5.3.3)

pointwise!

Proof. If x is absorbing, we have Ptf(x) = f(x) for all t ≥ 0 and so Af(x) = 0. For
non-absorbing x ∈ E the stopping time ηr has finite mean for sufficiently small r. Dynkin’s
formula imples

Exf(Xηr) = f(x) + Ex

∫ ηr

0
Af(Xs)ds.

It follows that ∣∣∣Exf(Xηr)− f(x)

Exηr
− Af(x)

∣∣∣ ≤ Ex
∫ ηr

0 |Af(Xs)− Af(x)|ds
Exηr

≤ sup
||y−x||≤r

|Af(y)− Af(x)|.

This completes the proof, since Af ∈ C0(E). QED

The operator defined by the right-handside of (5.3.3) is called the characteristic operator of
the Markov process X. Its domain is simply the collection of all functions f ∈ C0(E) for which
the limit in (5.3.3) exists as a C0(E)-function. The theorem states that for right-continuous,
canonical Feller-Dynkin processes the characteristic operator extends the infinitesimal gener-
ator. We will check the conditions of Lemma 5.2.8 to show that the characteristic operator is
the generator. To this end, denote the characteristic operator by B. Suppose that generator
and characteristic operator are not equal. Then there exists f ∈ C0(E), with λf = Bf . We
may assume λ = 1. Then this implies that

f(x) = lim
r↓0

Exf(Xηr)− f(x)

Exηr
.
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Suppose that f has a maximum at x: f(x) ≥ f(y) for all y ∈ E. Then the above implies that
f(x) ≤ 0 and hence f(y) ≤ 0 for all y ∈ E. On the other hand, g = −f satisfies Bg = g. Let
x′ be a point where g is maximum. Then, similarly, g(x′) ≤ 0 and so g(y) ≤ 0 for all y ∈ E.
Consequently f = −f ≡ 0. Hence, it is sufficient to computer the characteristic operator and
its domain, for the computation of the generator and its domain.

5.4 Killed Feller-Dynkin processes

***NOT FINISHED YET***
In this section we consider a Feller-Dynkin cadlag process X with values in (E, E), where

E is an open or closed subset of Rd or Zd and E the Borel-σ-algebra of E.
Upto this point we have always assumed that the transition function (Pt)t satisfies Pt(x,E) =

1, i.e. Pt(x, ·) are probability measures for all x ∈ E and t ≥ 0. It is sometimes useful to
consider transitions functions for which Pt(x,E) < 1, for some x ∈ E and t ≥ 0. We have
seen this in the context of explosive countable state Markov processes. We call the transition
function sub-stochastic if this is the case.

Intuitively, a sub-stochastic transition function describes the motion of a particle that can
disappear from the state space E, or die, in finite time. A sub-stochastic transition function
can be turned into a stochastic one (as has already been mentioned) by adjoining a new point
∆ to E, called the coffin state. Put E∆ = E∪{∆}. Extend the topology of E to E∆ in such a
way that E∆ is the one-point compactification of E, if E is not compact, and ∆ is an isolated
point otherwise. Then put E = σ(E , {∆}). Define a new transition function (P∆

t )t by putting

P∆
t (x,A) =


Pt(x,A), A ∈ E , x ∈ E
1− Pt(x,E), A = {∆}, x ∈ E
1, x = ∆, A = {∆}.

By construction the point ∆ is absorbing for the new process.
By convention, all functions on E are extended to E∆ by putting f(∆) = 0. This is

consistent in the one-point compactification case. A function f ∈ C0(E∆) therefore satisfies
f(∆) = 0. By Corollary 3.2.2 for each probability measure ν on (Eδ, Eδ) there exists a

probability measure Pν on the canonical space (Ω,F) = (E
R+

δ , ER+

δ ), such that under Pν the
canonical process X is a Markov process with respect to the natural filtration (FXt ), with
transition function (P δt )t and initial distribution ν. Then the process on the extended space
is still a cadlag Feller-Dynkin process.

In the sequel we will not distinguish between Pt and P∆ in our notation, and denote by
X the extended process.

We now define the killing time by

ζ = inf{t ≥ 0 |Xt− = ∆ or Xt = ∆}

Clearly ζ <∞ with positive probability if X is sub-stochastic. Since {∆} is both closed and
open, ζ is a stopping time w.r.t. the filtration w.r.t. which X is Markov.

Lemma 5.4.1 For every λ > 0 and every nonnegative function f ∈ C0(Eδ), the process

e−λtRλf(Xt)

is a Pν-supermartingale with respect to the filtration (FXt ), for every initial distribution ν.
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Proof. By virtue of the Markov property we have

Eν(e−λtRλf(Xt) | FXs ) = e−λtPt−sRλf(Xs) Pν − a.s.

(see Theorem 3.2.4). Hence, to prove the statement of the lemma it suffices to prove that

e−λtPt−sRλf(x) ≤ e−λRλf(x), x ∈ E. (5.4.1)

This is a straightforward calculation (cf. Exercise 5.12). QED

Finally we turn to the regularisation problem for Feller-Dynkin processes.

5.5 Regularisation of Feller-Dynkin processes

5.5.1 Construction of canonical, cadlag version

In this section we consider a Feller-Dynkin transition function Pt on (E, E), with E an open
or closed subset of Rd or Zd and E the Borel-σ-algebra of E. For constructing a cadlag
modification, we need to add a coffin state, δ say, to our state space E: Eδ = E ∪ δ, such that
Eδ is compact, metrisable. δ represents the point at infinity in the one-point compactification
of E. Then Eδ = σ(E , {δ}) and we extend the transition function by putting

P δt (x,B) =

{
Pt(x,B), x ∈ E,B ∈ E
1δ(B), x = δ,B ∈ Eδ.

Then P δt is a Feller-Dynkin transition function on (Eδ, Eδ). Note that f ∈ C0(Eδ) if and only
if the restriction of f − f(δ) to E belongs to C0(E).

I plan to include a formal proof of this statement in BN, and I will discuss some topo-
logical issues.

By Corollary 3.2.2 for each probability measure ν on (Eδ, Eδ) there exists a probability measure

Pν on the canonical space (Ω,F) = (E
R+

δ , ER+

δ ), such that under Pν the canonical process X is
a Markov process with respect to the natural filtration (FXt ), with transition function (P δt )t
and initial distribution ν.

Lemma 5.4.1 allows to use the regularisation results for supermartingales from the pre-
ceding chapter.

Theorem 5.5.1 The canonical Feller-Dynkin process X admits a cadlag modification. More
precisely, there exists a cadlag process Y on the canonical space (Ω,F) such that for all t ≥ 0
and every initial distribution ν on (Eδ, Eδ) we have Xt = Yt, Pν-a.s.

Proof. Fix an arbitrary initial distribution ν on (Eδ, Eδ). Let H be a countable, dense subset
of the space C+

0 (E). Then H separates the points of Eδ (see Exercise 5.13). By the second
statement of Corollary ??, the class

H′ = {nRnh |h ∈ H, n ∈ Z+}

has the same property. The proof of Theorem 2.3.2 can be adapted to show that the set

Ωh′ = {ω | lim
q↓t

h′(Xr)(ω), lim
q↑t

h′(Xr)(ω) exist as finite limits for all t > 0} (5.5.1)
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is FX∞-measurable. By virtue of Lemma 5.4.1 and Theorem 2.3.2 Pν(Ωh′) = 1 for all h′ ∈ H
and initial measures ν. Take Ω′ =

⋂
h′ Ωh′ . Then Ω′ ∈ FX∞ and Pν(Ω

′) = 1.
In view of Exercise 5.14, it follows that on Ω′ the limits

lim
q↓t

Xq(ω), lim
q↑t

Xq(ω)

exist in Eδ, for all t ≥ 0, ω ∈ Ω′.
Now fix an arbitrary point x0 ∈ E and define a new process Y = (Yt) as follows. For

ω 6∈ Ω′, put Yt(ω) = x0. For ω ∈ Ω′ and t ≥ 0 define

Yt(ω) = lim
q↓t

Xq(ω).

We claim that for every initial distribution ν and t ≥ 0, we have Xt = Yt Pν-a.s. To prove
this, let f and g be two functions on C0(Eδ). By dominated convergence, and the Markov
property

Eνf(Xt)g(Yt) = lim
q↓t

Eνf(Xt)g(Xq)

= lim
q↓t

EνEν(f(Xt)g(Xq) | FXt )

= lim
q↓t

Eνf(Xt)Pq−tg(Xt).

By strong continuity, Pq−tg(Xt)→ g(Xt), q ↓ t, Pν-a.s.. By dominated convergence, it follows
that Eνf(Xt)g(Yt) = Eνf(Xt)g(Xt). By Exercise 5.15 we indeed have that Xt = Yt, Pν-a.s.

The process Y is right-continuous by construction, and we have shown that Y is a modi-
fication of X. It remains to prove that for every initial distribution ν, Y has left limit with
Pν-probability 1. To this end, note that for all h ∈ H′, the process h(Y ) is a right-continuous
martingale. By Corollary 2.3.3 this implies that h(Y ) has left limits with Pν-probability 1. In
view of Exercise 5.14, it follows that Y has left limits with Pν-probability 1. QED

Note that Y has the Markov property w.r.t the natural filtration. This follows from the fact
that X and Y have the same fdd’s and from Characterisation lemma 3.1.5.

By convention we extend each ω ∈ Ω to a map ω : [0,∞] → Eδ by setting ω∞ = δ.
We do not assume that the limit of Yt for t → ∞ exists, but by the above convention
Y∞ = δ.
The formal setup at this point (after redefining) is the canonical cadlag Feller-Dynkin
process X with values in (Eδ, Eδ) and transition function (P δt )t. It is defined on the

measure space (Ω,F), where Ω is the set of extended cadlag paths, F = ER+

δ ∩ Ω
the induced σ-algebra. The associated filtration is the natural filtration (FXt )t. With
each initial distribution ν on (Eδ, Eδ), X has induced distribution Pν (through the outer
measure, see Ch.1 Lemma ∗).

5.5.2 Augmented filtration and strong Markov property

Let X be the canonical, cadlag version of a Feller-Dynkin process with state space Eδ (with E
a closed or open subset of Rd or Zd+) equipped with the Borel-σ-algebra Eδ and Feller-Dynkin
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transition function P δt . So far, we have been working with the natural filtration (FXt ). In
general this filtration is neither complete nor right-continuous. We would like to replace
it with a larger filtration that satisfies the usual conditions (see Definition 1.6.3) and with
respect to which the process X is still a Markov process.

We will first construct a new filtration for every fixed initial distribution ν. Let Fν∞ be
the completion of FX∞ w.r.t. Pν (cf. BN p. 4) and extend Pν to this larger σ-algebra.

Denote by N ν the Pν-negligible sets in Fν∞, i.e. the sets of zero Pν-probability. Define the
filtration Fνt by

Fνt = σ(FXt ,N ν), t ≥ 0.

Finally, we define the filtration (Ft) by

Ft =
⋂
ν

Fνt

where the intersection is taken over all probability measures on the space (Eδ, Eδ). We call
(Ft)t the usual augmentation of the natural filtration (FXt )t. Remarkably, it turns out the we
have made the filtration right-continuous!

For a characterisation of the augmented σ-algebras see BN§10.

Theorem 5.5.2 The filtrations (Ft)t and (Fνt )t are right-continuous.

Proof. First note that right-continuity of (Fνt )t for all ν implies right-continuity of (Ft)t. It
suffices to show right-continuity of (Fνt )t.

To this end we will show that B ∈ Fνt+ implies B ∈ Fνt . So, let B ∈ Fνt+ . Then B ∈ Fν∞.
Hence, there exists a set B′ ∈ FX∞ such that Pν(B

′4B) = 0. We have

1{B} = Eν(1{B} | Fνt+)
Pν−a.s.

= Eν(1{B′} | Fνt+).

It therefore suffices to show (explain!) that

Eν(1{B′} | Fνt+) = Eν(1{B′} | Fνt ),Pν − a.s.

To this end, define

S = {A ∈ FX∞ |Eν(1{A} | Fνt+) = Eν(1{A} | Fνt ),Pν − a.s.}.

This is a d-system, and so by BN Lemma 3.7 it suffices to show that S contains a π-system
generating FX∞. The appropriate π-system is the collection of finite-dimensional rectangles.
Let A be a finite-dimensional rectangle, i.e.

A = {Xt1 ∈ A1, . . . , Xtn ∈ An},

for n, 0 ≤ t1 < · · · < tn, Ak ∈ Eδ, k = 1, . . . , n. Then

1{A} =

n∏
k=1

1{Ak}(Xtk). (5.5.2)
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By the Feller-Dynkin properties, we need to consider C0(Eδ) functions instead of indicator
functions. To this end, we will prove for Z =

∏n
k=1 fk(Xtk), f1, . . . , fn ∈ C0(Eδ), that

E(Z | Fνt ) = E(Z | Fνt+), Pν − a.s. (5.5.3)

The proof will then be finished by an approximation argument.
Suppose that tk−1 ≤ t < tk (the case that t ≤ t1 or t > tn is similar). Let h < tk− t. Note

that Fνt+h and FXt+h differ only by Pν-null sets. Hence

Eν(Z | Fνt+h) = Eν(Z | FXt+h), Pν − a.s.

For completeness we will elaborate this. Let Y1 = Eν(Z | Fνt+h) and Y2 = Eν(Z | FXt+h). Note

that Fνt+h ⊇ FXt+h. Then Y1 and Y2 are both Fνt+h-measurable. Then {Y1 > Y2 +1/n} ∈ Fνt+h
and so there exists A1, A2 ∈ FXt+h, with A1 ⊆ {Y1 > Y2 + 1/n} ⊆ A2 and Pν{A2 \ A1} = 0.

Since A1 ∈ FXt+h ⊆ Fνt+h ∫
A1

(Y1 − Y2)dPν =

∫
A1

(Z − Z)dPν = 0,

but also ∫
A1

(Y1 − Y2)dPν ≥ Pν{A1}/n.

Hence Pν{A1} = Pν{A2} = 0, so that also Pν{Y1 > Y2 + 1/n} = 0, for each n. Using that
{Y1 > Y2} = ∪n{Y1 > Y2 + 1/n}, it follows that Pν{Y1 > Y2} = 0. The reverse is proved
similarly.

Use the Markov property to obtain that

Eν(Z | FXt+h) =
k−1∏
i=1

fi(Xti)E(
n∏
i=k

fi(Xti) | FXt+h) =
k−1∏
i=1

fi(Xti)g
h(Xt+h), Pν − a.s.

with
gh(x) = Ptk−(t+h)fkPtk+1−tkfk+1 · · ·Ptn−tn−1fn(x).

By strong continuity of Pt, ||gh − g0||∞ → 0, as h ↓ 0. By right-continuity of X, Xt+h → Xt,
Pν-a.s., so that gh(Xt+h)→ g0(Xt), h ↓ 0, Pν-a.s. It follows that

Eν(Z | Fνt+h) = E(Z | FXt+h) =
k−1∏
i=1

fi(Xti)g
h(Xt+h)→

→
k−1∏
i=1

fi(Xti)g
0(Xt) = Eν(Z |FXt ) = Eν(Z | Fνt ), Pν − a.s.

On the other hand, by virtue of the Lévy-Doob downward theorem 2.2.16

Eν(Z | Fνt+h)→ Eν(Z | Fνt+), Pν − a.s..

This implies (5.5.3).
The only thing left to prove is that we can replace Z by 1{A} from (5.5.2). Define

fmi (x) = 1−m ·min{ 1
m , d(x,Ai)},
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where d is a metric on Eδ consistent with the topology. Clearly, fmi ∈ C0(Eδ), and fmi ↓ fi,
as m → ∞. For Z =

∏n
i=1 f

m
i (Xti) (5.5.3) holds. Use monotone convergence, to obtain

that (5.5.3) holds for Z = 1{A} given in (5.5.2). Hence, the d-system S contains all finite-

dimensional rectangles, and consequently FX∞. This is precisely what we wanted to prove.
QED

Our next aim is to prove that the generalised Markov property from Theorem 3.2.4 remains
true if we replace the natural filtration (FXt )t by its usual augmentation. This will imply that
X is still a Markov process in the sense of the old definition 3.1.3.

First we will have to address some measurability issues. We begin by considering the
completion of the Borel-σ-algebra Eδ on Eδ. If µ is a probability measure on (Eδ, Eδ), we
denote by Eµδ the completion of Eδ w.r.t µ. We then define

E∗ =
⋂
µ

Eµδ ,

where the intersection is taken over all probability measures on (Eδ, Eδ). The σ-algebra E∗ is
called the σ-algebra of universally measurable sets.

Lemma 5.5.3 If Z is a bounded or non-negative, F∞-measurable random variable, then the
map x 7→ ExZ is E∗-measurable, and

EνZ =

∫
x
ExZ ν(dx),

for every initial distribution ν.

Proof. Fix ν. Note that F∞ ⊆ Fν∞. By definition of Fν∞, there exist two FX∞ random
variables Z1, Z2, such that Z1 ≤ Z ≤ Z2 and Eν(Z2−Z1) = 0. It follows for every x ∈ E that
ExZ1 ≤ ExZ ≤ ExZ2. Moreover, the maps x 7→ ExZi are Eδ-measurable by Lemma 3.2.3 and∫

(ExZ2 − ExZ1)ν(dx) = Eν(Z2 − Z1) = 0.

By definition of Eνδ this shows that x 7→ ExZ is Eνδ -measurable and that

EνZ = EνZ1 =

∫
ExZ1 ν(dx) =

∫
ExZ ν(dx).

Since ν is arbitrary it follows that x 7→ ExZ is in fact E∗-measurable. For a detailed argu-
mentation go through the standard machinery. QED

Lemma 5.5.4 For all t ≥ 0, the random variable Xt is measurable as a map from (Ω,Ft) to
(Eδ, E∗).

Proof. Take A ∈ E∗, and fix an initial distribution ν on (Eδ, Eδ). Denote the distribution of Xt

on (Eδ, Eδ) under Pν by µ. Since E∗ ⊆ Eµδ , there exist A1, A2 ∈ Eδ, such that A1 ⊆ A ⊆ A2 and
µ(A2 \ A1) = 0. Consequently, X−1

t (A1) ⊆ X−1
t (A) ⊆ X−1

t (A2). Since X−1
t (A1), X−1

t (A2) ∈
FXt and

Pν{X−1
t (A1) \X−1

t (A2)} = Pν(X
−1
t (A2 \A1) = µ(A2 \A1) = 0,
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the set X−1
t (A) is contained in the Pν-completion of FXt . But ν is arbitrary, and so the proof

is complete. QED

Corollary 5.5.5 Let Z be an F∞-measurable random variable, bounded or non-negative. Let
ν be any initial distribution and let µ denote the Pν-distribution of Xt. Then EνEXtZ = EµZ.

We can now prove that the generalised Markov property, formulated in terms of shift opera-
tors, is still valid for the usual augmentation (Ft) of the natural filtration of the Feller-Dynkin
process.

Theorem 5.5.6 (Generalised Markov property) Let Z be a F∞-measurable random vari-
able, non-negative or bounded. Then for every t > 0 and initial distribution ν,

Eν(Z ◦ θt | Ft) = EXtZ, Pν − a.s.

In particular, X is an (Eδ, E∗)-valued Markov process w.r.t. (Ft)t.

Proof. We will only prove the first statement. Lemmas 5.5.3 and 5.5.4 imply that EXtZ is
Ft-measurable. So we only have to prove for A ∈ Ft that∫

A
Z ◦ θtdPν =

∫
A
EXtZdPν. (5.5.4)

Assume that Z is bounded, and denote the law of Xt under Pν by µ. By definition of F∞ there
exist a FX∞-measurable random variable Z ′, such that {Z 6= Z ′} ⊂ Γ, Γ ∈ FX∞ and Pν(Γ) = 0
(use the standard machinery). We have that

{Z ◦ θt 6= Z ′ ◦ θt} = θ−1{Z 6= Z ′} ⊆ θ−1(Γ).

By Theorem 3.2.4

Pν{θ−1
t (Γ)} = Eν(1{Γ}◦θt) = EνEν(1{Γ}◦θt | FXt ) = EνEXt1{Γ} =

∫
Ex1{Γ}µ(dx) = Pµ1{Γ} = 0,

since the distribution of Xt under Pν is given by µ. This shows that we may replace the left-
handside of (5.5.4) by

∫
A Z
′ ◦ θtdPν. Further, we have used that the two probability measures

B 7→ EνEXt1{B} and B 7→ Pµ(B) coincide for B ∈ F∞. Since Pµ{Z 6= Z ′} ≤ Pµ{Γ} = 0

Eν |EXtZ − EXtZ
′| ≤ EνEXt |Z − Z

′| = Eµ|Z − Z ′| = 0.

It follows that EXtZ = EXtZ
′, Pν-a.s. In the right-handside of (5.5.4) we may replace Z by Z ′

as well. Since Z ′ is FX∞-measurable, the statement now follows from Theorem 3.2.4 (we have
to use that a set A ∈ Ft can be replaced by a set A′ ∈ FXt ). QED

We consider again a Feller-Dynkin canonical cadlag process X with state space (Eδ, Eδ), where
E ⊆ Rd,Zd+. This is a Markov process with respect to the usual augmentation (Ft)t of the
natural filtration of the canonical process on the compactified state space Eδ. As before, we
denote shift operators by θt.

In this section we will prove that for Feller-Dynkin processes the Markov property of
Theorem 5.5.6 does not only hold for deterministic times t, but also for (Ft)t-stopping times.
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This is called the strong Markov property. Recall that for deterministic t ≥ 0 the shift operator
θt on the canonical space Ω maps a path s 7→ ωs to the path s 7→ ωt+s. Likewise, for a random
time τ we now define θτ as the operator that maps the path s 7→ ωs to the path s 7→ ωτ(ω)+s.
If τ equals the deterministic time t, then τ(ω) = t for all ω and so θτ equals the old operator
θt.

Since the canonical process X is just the identity on the space Ω, we have for instance that
(Xt ◦ θτ )(ω) = Xt(θτ (ω)) = (θτ )(ω))t = ωτ(ω)+t = Xτ(ω)+t(ω), in other words Xt ◦ θτ = Xτ+t.
So the operators θτ can still be viewed as time shifts.

Theorem 5.5.7 (Strong Markov property) Let Z be an F∞-measurable random vari-
able, non-negative or bounded. Then for every (Ft)-stopping time τ and initial distribution
ν, we have Pν-a.s.

Eν(Z ◦ θτ | Fτ ) = EXτ (Z). (5.5.5)

Note that on τ =∞ by convention Xτ = δ.

Proof. First, check that Xτ is Fτ -measurable (use arguments similar to Lemmas 1.6.16 and
1.6.17. Further, check that EXτZ is bounded or non-negative Fτ -measurable for all bounded
or non-negative F∞-measurable random variables Z.

Suppose that τ is a stopping time that takes values in a countable set D ∪ {∞}. Since θτ
equals θd on the event {τ = d}, we have (see Ch.1 Exercise 1.21) for every initial distribution
ν

Eν(Z ◦ θτ | Fτ ) =
∑
d∈D

1{τ=d}Eν(Z ◦ θτ | Fτ )

=
∑
d∈D

1{τ=d}Eν(Z ◦ θd | Fd)

=
∑
d∈D

1{τ=d}EXdZ = EXτZ,

Pν-a.s. by the Markov property.

Let us consider a general stopping time τ . We will first show that (5.5.5) holds for Z an
FX∞-measurable random variable. A similar reasoning as in the proof of Theorem 5.5.2 shows
(check yourself) that we can restrict to showing (5.5.5) for Z of the form

Z =
k∏
i=1

fi(Xti),

t1 < . . . < tk, f1, . . . , fk ∈ C0(Eδ), k ∈ Z+. Define countably valued stopping times τn as
follows:

τn(ω) =

∞∑
k=0

1{k2−n≤τ(ω)<(k+1)·2−n}
k + 1

2n
+ 1{τ(ω)=∞} · ∞.

Clearly τn(ω) ↓ τ(ω), and Fτn ⊇ Fτn+1 ⊇ · · · ⊇ Fτ for all n by virtue of Exercise 1.18. By
the preceding,

Eν(
∏
i

fi(Xti) ◦ θτn | Fτn) = EXτn

∏
i

fi(Xti) = 1{τn<∞}g(Xτn),
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Pν-a.s., where
g(x) = P δt1f1P

δ
t2−t1f2 · · ·P δtk−tk−1

fk(x).

By right-continuity of paths, the right-hand side converges Pν-a.s. to g(Xτ ). By virtue of
Corollary 2.2.17 the left-handside converges Pν-a.s. to

Eν(
∏
i

fiXti) ◦ θτ | Fτ ),

provided that Fτ = ∩nFτn . Note that Fτ ⊆ ∩nFτn , and so we have to prove the reverse
implication. We would like to point out that problems may arise, since {τn ≤ t} need not
increase to {τ ≤ t}. However, we do have {τ ≤ t} = ∩m ∪n {τn ≤ t+ 1/m}.

Let A ∈ Fτn for all n. Then A ∩ {τn ≤ t+ 1/m} ∈ Ft+1/m for all n. Hence A ∩ ∪n{τn ≤
t+ 1/m} ∈ Ft+1/m, and so A ∩ {τ ≤ t} = A ∩m ∪n{τn ≤ t+ 1/m} ∈ ∩mFt+1/m = Ft+ = Ft.

This suffices to show (5.5.5) for Z FX∞-measurable. Let next Z be a F∞-measurable
random variable. We will now use a similar argument to the proof of Theorem 5.5.6.

Denote the distribution of Xτ under Pν by µ. By construction, F∞ is contained in the Pµ-

completion of FX∞. Hence there exist two FX∞-measurable, bounded or non-negative random
variables Z ′, Z ′′, with Z ′ ≤ Z ≤ Z ′′ and Eµ(Z ′′ − Z ′) = 0. It follows that Z ′ ◦ θτ ≤ Z ◦ θτ ≤
Z ′′ ◦ θτ . By the preceding

Eν(Z ′′ ◦ θτ − Z ′ ◦ θτ ) = EνEν(Z ′′ ◦ θτ − Z ′ ◦ θτ | Fτ )

= EνEXτ (Z ′′ − Z ′)

=

∫
Ex(Z ′′ − Z ′)µ(dx) = Eµ(Z ′′ − Z ′) = 0.

It follows that Z ◦ θτ is measurable with respect to the Pν-completion of FX∞. Since ν is
arbitrary, we conclude that Z ◦ θτ is F∞-measurable. Observe that Pν-a.s.

E(Z ′ ◦ θτ | Fτ ) ≤ E(Z ◦ θτ | Fτ ) ≤ E(Z ′′ ◦ θτ | Fτ ).

By the preceding, the outer terms Pν-a.s. equal EXτZ
′ and EXτZ

′′ respectively. These are
Pν-a.s. equal. Since Z ′ ≤ Z ≤ Z ′′ they are both Pν-a.s. equal to EXτZ. QED

5.6 Feller diffusions
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5.7 Exercises

Exercise 5.1 Show for the generator A of the Ornstein-Uhlenbeck process (cf. Example 3.1.2
(B) and 5.1.5) that

Af(x) = 1
2σ

2f ′′(x)− αxf ′(x), x ∈ R, f ∈ {g : R→ R | g, g′′, ĝ ∈ C0(R), ĝ(x) = xg′(x)}.

You may use the expression for the generator of Brownian motion derived in Example 5.3.3.
Hint: denote by PXt and PWt the transition functions of Ornstein-Uhlenbeck process and BM

respectively. Show that PXt f(x) = PWg(t)f(e−αtx) where g(t) = σ2(1− e−2αt)/2α.

Exercise 5.2 Prove the Integration Lemma.

Exercise 5.3 Prove the claim made in Example 5.2.1. Hint: to derive the explicit expression
for the resolvent kernel it is needed to calculate integrals of the form∫ ∞

0

e−a
2t−b2/t
√
t

dt.

To this end, first perform the substitution t = (b/a)s2. Next, make a change of variables
u = s− 1/s and observe that u(s) = s− 1/s is a continuously differentiable bijective function
from (0,∞) to R, the inverse u−1 : R → (0,∞) of which satisfies u−1(t) − u−1(−t) = t,
whence (u−1)′(t) + (u−1)′(t) = 1.

Exercise 5.4 Prove the validity of the expression for the resolvent of the Markov jump
process in Example 5.2.2.

Exercise 5.5 Show that the Markov process from Example 3.2.1 is a Feller-Dynkin process
if PC0(E) ⊂ C0(E). Give an example of a Markov jump process that is not a Feller-Dynkin
process.

Exercise 5.6 Prove Lemma 5.3.3. That means that you may assume the validity of Lemma 3.1.4.

Exercise 5.7 In the proof of Lemma 5.3.6, show that P{ηr > nt} ≤ p̂n for n = 0, 1, . . .. Hint:
use the Markov property.

Exercise 5.8 Suppose that X is a real-valued canonical continuous Feller-Dynkin process,
with generator

Af(x) = α(x)f ′(x) + 1
2f
′′(x), x ∈ R,

for f ∈ D = {g : R → R | g, g′, g′′ ∈ C0(R)}, where α is an arbitrary but fixed continuous,
bounded function on R. Suppose that there exists a function f ∈ D, f 6≡ 0, such that

Af(x) = 0, x ∈ R. (5.7.1)

Then the martingale Mf
t has a simpler structure, namely Mf

t = f(Xt)− f(X0).

i) Show that for f ∈ D(A), satisfying (5.7.1), Dynkin’s formula holds, for all x ∈ E. Hence
the requirement that Exτ <∞ is not necessary!
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Let (a, b) ⊂ R, a < b. Put τ = inf{t > 0 |Xt ∈ (−∞, a] ∪ [b,∞)}. Define px = Px{Xτ = b}.

ii) Assume that τ < ∞, Px-a.s. for all x ∈ (a, b). Prove that px = f(x)−f(a)
f(b)−f(a) , x ∈ (a, b),

provided that f(b) 6= f(a).

iii) Let X be a real-valued canonical, right-continuous Feller-Dynkin process, such that Xt =
X0 + βt+ σWt, where X0 and (Wt)t are independent, and (Wt)t a standard BM. Show
for the generator A that D(A) ⊃ D = {g : R→ R | f, f ′, f ′′ ∈ C0(R) and is given by

Af = βf ′ + 1
2σ

2f ′′

for f ∈ D) (you may use the generator of BM).

Show that τ < ∞, Px-a.s., x ∈ (a, b). Determine px for x ∈ (a, b). Hint: you have to
solve a simple differential equation to find f with βf ′ + σ2f ′′/2 = 0. This f is not a
C2

0 (R) function. Explain that this is no problem since Xt only lives on [a, b] until the
stopping time.

iv) Let X be the Ornstein-Uhlenbeck process (cf. Example 3.1.2 (B) and 3.3.14). Show that
τ < ∞, Px-a.s. and determine px for x ∈ (a, b). You may use the result of Exercise 5.1
on the generator of the Ornstein-Uhlenbeck process. See also hint of (iii). Notice that
the solution can only be represented as an integral.

Exercise 5.9 Consider canonical Geometric Brownian Motion from Example 3.1.2 (C) with
continuous paths. Let

D = {f ∈ C0(R+) |x 7→ f ′(x), f ′′(x), xf ′(x), x2f ′′(x), x ∈ R+ ∈ C0(E)}.

Geometric BM has generator

Af(x) = µxf ′(x) +
1

2
σ2x2f ′′(x), x ∈ R+, (5.7.2)

on f ∈ D ⊂ D(A).

i) Show that this is true for µ = σ2/2 and characterise all of D(A) in this case. You may use
the results for BM (see Example 5.3.3).

ii) Give the main steps in the proof of (5.7.2) in the general case, for functions in D.

Exercise 5.10 We want to construct a standard BM in Rd (d < ∞): this is an Rd-valued
process W = (W 1, . . . ,W d), where W 1, . . . ,W d are independent standard BMin R.

i) Sketch how to construct d-dimensional BM.

ii) Show that W has stationary, independent increments.

iii) Show that W is a Feller-Dynkin process with respect to the natural filtration, with
transition function

Ptf(x) =
1

(2πt)d/2

∫
Rd
f(y)e−||y−x||

2/2tdy,

where y = (y1, . . . , yd), x = (x1, . . . , xd) ∈ Rd and ||y − x|| =
√∑d

i=1(yi − xi)2 is the

L2(Rd)-norm.
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Exercise 5.11 (Continuation of Exercise 5.10) Let X be an Rd-valued canonical con-
tinuous Feller-Dynkin process, such that Xt = X0 + Wt, where X0 is an Rd-valued r.v. and
(Wt)t a standard d-dimensional BM that is independent of X0. Notice that X is strong
Markov.

We would like to show that the generator is defined by

Af(x) = 1
2∆f(x), (5.7.3)

where ∆f(x) =
∑d

i=1
∂2

∂x2i
f(x) is the Laplacian of f , for f ∈ D = {f : Rd → R | f, ∂

∂xi
f, ∂2

∂xi∂xj
f ∈

C0(Rd), i, j = 1, . . . , d}. We again want to use the characteristic operator. To this end, define
for r > 0

τr = inf{t ≥ 0 | ||Xt −X0|| ≥ r}.

i) Argue that τr is a finite (Ft)t-stopping time. Show that Exτr = r2/d (by using optional
stopping). Argue that Xτr has the uniform distribution on {y | ||y − x|| = r}.

ii) Show the validity of (5.7.3) for f ∈ D (use the characteristic operator). Argue that this
implies D(A) ⊃ D.

iii) For 0 < a < ||x|| < b, show that

Px{Ta < Tb} =


log b−log ||x||
log b−log a , d = 2

||x||2−d−b2−d

a2−d−b2−d , d ≥ 3,

where Ta = inf{t ≥ 0 | ||Xt|| ≤ a} and Tb = inf{t ≥ 0 | ||Xt|| ≥ b}. Hint: a similar
procedure as in Exercise 5.8.

iv) Compute Px{Ta <∞} for x with a < ||x||.

Exercise 5.12 Prove (5.4.1) in the proof of Lemma 5.4.1.

Exercise 5.13 Suppose that E ⊆ Rd. Show that every countable, dense subset H of the
space C+

0 (E) of non-negative functions in C0(E) separates the points of Eδ. This means that
for all x 6= y in E there exists a function h ∈ H, such that h(x) 6= h(y), and for all x ∈ E
there exists a function h ∈ H, such that h(x) 6= h(δ) = 0.

Exercise 5.14 Let (X, d) be a compact metric space (with metric d). LetH be a class of non-
negative, continuous functions on X that separates the points of X. Prove that d(xn, x)→ 0
if and only if h(xn) → h(x) for all h ∈ H. Hint: suppose that H = {h1, h2, . . .}, endow R∞

with the product topology and consider the map A(x) = (h1(x), h2(x), . . .).

Exercise 5.15 Let X,Y be two random variables defined on the same probability space,
taking values in the Polish space E equipped with the Borel-σ-algebra. Show that X = Y
a.s. if and only if Ef(X)g(Y ) = Ef(X)g(X) for all C0(E) functions f and g on E. Hint: use
the monotone class theorem (see BN) and consider the class H = {h : E×E → R |h E ×E −
measurable, ||h||∞ <∞,Eh(X,Y ) = Eh(X,X)}.
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Exercise 5.16 Let (Ft)t be the usual augmentation of the natural filtration of a canonical,
cadlag Feller-Dynkin process. Show that for every nonnegative, Ft-measurable random vari-
able Z and every finite stopping time τ , the random variable Z ◦ τ is Fτ+t-measurable. Hint:
first prove it for Z = 1{A}, A ∈ FXt . Next, prove it for Z = 1{A}, A ∈ Ft, and use the fact

that A ∈ Fνt if and only if there exists B ∈ FXt and C,D ∈ Nν , such that B \C ⊆ A ⊆ B∪D
(this follows from Problem 10.1 in BN). Finally prove it for arbitrary Z.

Exercise 5.17 Let X be a Feller-Dynkin canonical cadlag process and let (Ft)t be the usual
augmentation. Suppose that we have (Ft)t-stopping times τn ↑ τ a.s. Show that limnXτn =
Xτ a.s. on {τ <∞}. This is called the quasi-left continuity of Feller-Dynkin processes. Hint:
first argue that it is sufficient to show the result for bounded τ . Next, put Y = limnXτn and
explain why this limit exists. Use the strong Markov property to show for f, g ∈ C0(Eδ) that

Exf(Y )g(Xτ ) = lim
t↓0

lim
n

Exf(Xτn)g(Xτn+t) = Exf(Y )g(Y ).

The claim then follows from Exercise 5.15.
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