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1 Basic definitions
In this seminar we shall study Néron models, a special type of model. Much of
this section is from Chapter 1 of [1].

Definition 1.1. Let S be a Dedekind scheme of dimension 1 with fraction field K
(that is, a normal Noetherian scheme of dimension 1). if X/K is a scheme, then a
scheme X/S along with a fixed isomorphism f : XK → X is a model of X over S.

Suppose XK is a smooth and separarted K-scheme of finite type. A Néron
model is an S-model X which is smooth, separated, and of finite type over S and
which satisfies the Néron mapping property (or NMP for short):

For each smooth S-scheme Y and morphism uK : YK → XK , there exists a
unique S-morphism u : Y → X extending uK .

We can generalise this definition to arbitrary irreducible schemes S, not just
Dedekind schemes. Later in the seminar we’ll see examples of this.

The NMP implies an important property called the extension property for étale
points.

Definition 1.2. Let X/S be a scheme, where S is a Dedekind scheme. Then X
is said to satisfy the extension property for étale points at a point s if for each
étale local OS,s algebra R′ with field of fractions K ′, the map X(R′)→ XK(K ′) is
surjective.

The map X(R′) → XK(K ′) is injective whenever X is separated over S, and
it is injective whenever X/S is proper by the valuative-criterion for properness.

Remark 1.3. Étale local OS,s algebras R′ are faithfully flat extensions of discrete
valuation rings OS,s ⊂ R′ such that the extension of fraction fields is finite and
separable and the extension of discrete valuation rings is unramified.

Rather than work with all local étale OS,s algebras it suffices by a limit argu-
ment to show the property for Osh

S,s, the strict henselisation of OS,s. This is defined
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to be the direct limit lim→(R, r) where R is an étale local OS,s algebra and r is
a homomorphism of the residue field of R into a fixed separable closure of the
residue field of OS,s.

Proposition 1.4. Let X/S be a Néron model of its generic fibre XK, where S is
a Dedekind scheme as before.

• X is uniquely determined by XK up to canonical isomorphism.

• X satisfies the extension property for étale points.

• If S ′/S is étale, X ×S S
′ is a Néron model for XK′ = XK ×K K ′.

Proof. The first property follows from the NMP. Indeed, if Y is another Néron
model then we have an isomorphism uK : YK → XK extending to u : Y → X and
u−1
K extending to u′ : X → Y . The compositions of u and u′ are the identities on

their respective generic fibres. Morphisms from a reduced scheme to a separated
scheme that generically agree are necessarily equivalent, whence the result.

We show the second property in the case S is a discrete valuation ring, with
the general result following by a limit argument (see Lemma 1.2.5 of [?]). Let
s be the closed point, R′ an étale local OS,s scheme. Then given a morphism
SpecK ′ → XK , i.e. an element of XK(K ′), this extends uniquely by the NMP to
a morphism SpecR′ → X. The result follows.

Néron models are mostly used to study group schemes. We’ll look at abelian
varieties and group schemes in more depth later in the seminar. For now we note
the following definitions:

Definition 1.5. A group scheme X over a scheme S is a representable functor
X : (Sch/S) → (Groups), i.e. a scheme X such that for all S-schemes T , X(T )
has the structure of a group.

A group scheme X over a scheme S is said to be an abelian scheme if it is
proper and smooth over S with connected fibres.

Abelian schemes are particularly "well-behaved" for constructing Néron models
as the following lemma shows:

Lemma 1.6 (Proposition 1.2.8 of [?]). Let S be a Dedekind scheme, X/S an
abelian scheme. Then X is the Néron model of its generic fibre.

Conversely, suppose we begin with an abelian variety over K. Then we have
the following:

Theorem 1.7 (Theorem 1.4.3 of [?]). Let S be a Dedekind scheme with field of
fractions K. Let AK be an abelian variety over K. Then AK admits a Néron
model over S.
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For the proof see [?].
Remark 1.8. The group structure on AK extends via the NMP to a group structure
on the Néron model of AK over S. The Néron model is not in general an abelian
scheme as it may not be proper. This leads us to the notion of an abelian variety
having good reduction.

Definition 1.9. Let S be a Dedekind scheme with field of fractions K, and let
AK be an abelian variety. Then AK is said to have good reduction at a closed point
s ∈ S if AK extends to a smooth, proper scheme A over OS,s.

2 Example: Elliptic curves
The construction of Néron models for elliptic curves is very "hands-on". We also
care about this particular case, as the Jacobian is particularly nice and the Picard
scheme will naturally generalise the Jacobian of a curve. The purpose of this
example is to illustrate that the construction of the Néron model is potentially
very concrete.

Assume that R is a strictly Henselian discrete valuation ring with the charac-
teristic of the residue field different from 2 or 3.

Let EK/K be an elliptic curve in P2
K defined by its Weierstrass form

y2z = x3 + βxz2 + γz3.

The discriminant of EK is then ∆ = 4β3 + 27γ2 and the j-invariant is j =
26334β3/∆.

EK is a group scheme, where without loss of generality the point (0 : 1 : 0) is
the unit section. Let π denote a uniformizer of R with valuation v(π) = 1.

Lemma 2.1 (Lemma 1.5.2 of [?]). Given n ∈ Z, the change of coordinates

(x : y : z)→ (π−2nx : π−3ny : z)

induces on the equation for EK the following changes

∆→ π12n∆, β → π4nβ, γ → π6nγ.

Using this lemma we may assume that β and γ are inR and that min{v(β3), v(γ2)}
is minimal for all choices of n. This is then the minimal Weierstrass equation, and
it defines the minimal Weierstrass model E of EK over SpecR in P2

R.
In good situations (namely, v(∆) = 0) E is smooth and it is then an abelian

scheme extending EK . Hence it is a Néron model of EK . In general we must
work harder to get the Néron model from the minimal Weierstrass model using
blow-ups. This is done explicitly in blr.
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2.1 Where this is going

Let C be a (smooth, proper) curve over K, where K is as before. Then the
Jacobian J(C) of C is the set of line-bundles of degree 0. It can be viewed as an
abelian variety over K, and hence we may construct its Néron model. The case
of elliptic curves is particularly nice because the elliptic curve is isomorphic to its
Jacobian.

It turns out the Jacobian is the connected component of the identity of a larger
group scheme called the Picard variety, which arises from the Picard functor Pic.
This connected component Pic0 can be defined for more general cases than curves,
and thus serves as a generalisation of the Jacobian. One can ask whether a Néron
model exists for Pic0 of a variety X/K. This leads us to study the Picard functor
in subsequent lectures. For the remainder of this lecture we’ll look at a paper of
Serre and Tate [2] for a motivation of the usefulness of Néron models.

3 The paper of Serre and Tate (1968)
The paper of Serre and Tate [2] says when an abelian variety defined over a field
K = Frac(R), R a DVR, has good reduction. The notation for this is as follows:

R is a DVR, K = Frac(R) its fraction field, v the valuation defining R in K,
and k the residue field of R. We assume that k is perfect. Ks will denote a fixed
separable closure of K, with v̄ an extension of v to Ks. We shall let I(v̄) or simply
I denote the inertia subgroup of Gal(K̄/K), and D(v̄) the decomposition group.

Here are some facts we shall need from algebraic number theory:

• D(v̄)/I(v̄) ∼= Gal(k̄/k), where k̄ is the algebraic closure of k. This is the
separable closure of k as k is perfect.

• Given an extension K ⊂ L ⊂ Ks, L/K is unramified at v if and only if l is
fixed by I(v̄).

• Let T be a set on which Gal(Ks/K) acts. We say that T is unramified at v
if I(v̄) acts trivially on T .

Definition 3.1. Let m be an integer prime to char(K). Then for an abelian
variety A/K, we define

Am = Hom(Z/mZ, A(Ks)).

Equivalently, Am is the set of Ks-rational points of A with order dividing m.
It is a free Z/mZ-module of rank 2dim(A).
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Definition 3.2. Let l be a prime different from char(K). Then for an abelian
variety A/K, we define

Tl(A) = lim
←n

Aln = Hom(Ql/mathbbZl, A(KS)).

Theorem 3.3 (Theorem 1 of [2]). Let A/K be an abelian variety. Let l be a prime
number different from char(k). The following are equivalent:

1. A has good reduction at v;

2. Am is unramified at v for all m prime to char(k);

3. Am is unramified at v for infinitely many m prime to char(k).

4. Tl(A) is unramified at v.

Proof. By a limit argument we note that (4) holds if and only if Aln is unramified
at v for all values of n. Hence we have that (2)⇒ (4)⇒ (3), and it remains only
to show that (1)⇒ (2) and (3)⇒ (1). We’ll start by showing (1)⇒ (2).

Now, A has good reduction if and only if there exists a smooth, proper model
Ā extending A over S. One can show using the NMP that this implies the Néron
model N of A over S is then proper. Conversely, if N is proper over S then clearly
A has good reduction. Thus we have that N is an abelian scheme over S, and so
in particular its special fibre Ñ is an abelian variety over k.

Our goal is to show that if m is prime to char(k), then Am = AI
m, where AI

m is
the set of elements of Am fixed by I = I(v̄). We shall accomplish this by showing
AI

M is isomorphic to a group Ñm, which is a free Z/mZ-module of rank 2dim(A).
As Am has the same structure and these are finite groups, we shall be done.

We define Ñm = Hom(Z/mZ, Ñ(k̄)) (recall that k is perfect, so k̄ = ksep. As
Ñ is an abelian variety, Ñm is a free Z/mZ-module of rank 2dim(Ñ) = 2dim(A).
The following lemma will imply the result:

Lemma 3.4. We have that AI
m
∼= Ñm.

Proof of Lemma. Let L = KI
s , and note that

Hom(Z/mZ, A(L)) = HomI(Z/mZ, A(Ks)) = AI
m.

If OL is the ring of integers of L with respect to v̄, its residue field is k̄, and OL is a
henselian local ring. By the NMP we have A(L) = N(OL). Furthermore, as OL is
henselian and N is smooth, Corollary 6.2.13 of [3] shows that we have a surjection
r : N(OL)→ Ñ(k̄). This gives a short exact sequence

0→ ker(r)→ N(OL)→ Ñ(k̄)→ 0,
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and applying the left-exact functor Hom(Z/mZ,−) we get

0→ Hom(Z/mZ→ AI
m → Ñm.

Surjectivity follows from the fact Nm is smooth over OL as multiplication by
m is an étale endomorphism of N , m being prime to the characteristic of k. One
then applies Corollary 6.2.13 of [3] to get surjectivity. That Hom(Z/mZ = 0
uses the fact that, as multiplication by m is an étale endomorphism of N and OL

is henselian, the kernel of r has no torsion points of order dividing m. See, for
example, Lemma 3.28 of [5].

Let us now consider the implication (3)⇒ (1). For this we need the following
fact: Ñ0, the connected component of Ñ containing the identity, is an extension
of an abelian variety B by a linear gorup H, where H = S × U for S a torus and
U unipotent. We need another lemma to proceed:

Lemma 3.5. Let c = [Ñ : Ñ0]. Then Ñm is an extension of a group of order
dividing c by a free Z/mZ-module of rank dim(S) + 2dim(B).

Proof of Lemma. Clearly [Ñm : Ñ0
m] divides [Ñ : Ñ0] = c. But H(k̄) ism-divisible,

H being a linear group and m being prime to char(k), and so the sequence

0→ Hm → Ñ0
m → Bm

is also right-exact. To see this, let b ∈ Bm, so that mb = 0. There exists an
element a ∈ Ñ0 mapping to b, and ma necessarily maps to 0. Hence we can find
some element h ∈ H mapping to ma. By the divisibility of H, there exists h′ with
mh′ = −h, and hence the element h′ + a of Ñ0

m maps to b.
As Hm and Bm are free Z/mZ-modules of ranks dim(S) and 2dim(B) respec-

tively, we are done.

Let us now assume that (3) holds, so that there exists infinitely many m prime
to char(k) with Am = AI

m. In particular, we may find such an m where m > c.
For such an m, we have Am = AI

m = Ñm, where Am is free of rank 2dim(A). By
considering the cardinalities of these Z/mZ-modules, we have

|Am| = m2dim(A) ≤ cmdim(S)+2dim(B) ≤ mdim(S)+2dim(B)+1,

so in particular we find that 2dim(A) ≤ 2dim(B) + dim(S). But as dim(A) =
dim(U) +dim(S) +dim(B), we find that U = S = 0. Thus Ñ is an abelian variety
(note the index of Ñ0 in Ñ is finite), hence proper over k. It is a fact from algebraic
geometry that given a smooth scheme X over Spec(R), where R is a DVR, such
that the generic fibre is geometrically connected and the special fibre is proper,
then X is proper over Spec(R). Hence we conclude that N , the Néron model of
A, is proper, and hence that A has good reduction at v.
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We see from the above proof that Néron models provide a useful tool for study-
ing abelian varieties over the fraction field of a DVR. Their use is also found in
the proof of the second theorem of Serre and Tate in [2]. For the statement of this
theorem we need a definition.
Definition 3.6. Let A/K be an abelian variety as in the first theorem. We say
that A has potential good reduction at v if there exists a finite field extension K ′/K
along with an extension v′/v of v to K ′ such that A×K K ′ has good reduction at
v′.

The second theorem deals with an abelian variety having potential good reduc-
tion. Given a prime l different from char(k), define ρl : Gal(Ks/K)→ Aut(Tl) to
be the l-adic representation corresponding to Tl.
Theorem 3.7 (Theorem 2 of [2]). Let A/K be an abelian variety as in the first
theorem.
• A has potential good reduction if and only if the image of I(v̄) under ρl is
finite.

• When this holds, the restriction of ρl to I(v̄) is independent of l in that its
kernel is independent of l ands it character has values in Z independent of l.

Proof. The proof of the first statement largely follows from the first theorem. See
[5] for a proof. We do not include it here as it does not directly illustrate the
usefulness of Néron models.

For the second statement, note that we only care about the action of I(v̄), so
we may assume without loss of generality that K = (Ks)

I(v̄), i.e. that the Galois
group of Ks/K is equal to I(v̄).

Consider a finite extension K ⊂ K ′ ⊂ K̄, where K̄ is a fixed algebraic closure
of K. Let GK′ = Gal(K ′/K) = Gal(Ks/Ks ∩ K ′) ⊂ I(v̄). If an abelian variety
AK′ = A×KK

′ has good reduction, then necessarily GK′ ⊂ ker(ρl). Thus GK′ is in
the kernel regardless of l, and so the kernel of ρl is defined by the finite extensions
at which AK′ has good reduction. Hence ker(ρl) is independent of l.

Now assume that there exists a finite K ′/K for which AK′ has good reduction,
and let N ′ be the Néron model of AK′ . This is an abelian scheme over O′v by
assumption. Note that GK′ acts on AK′ be its action on K ′. By the Néron
Mapping Property, this extends to an action of GK′ on N ′ that commutes with
the action of GK′ on O′v. (There is a slight subtlety here: the NMP requires
that we have a K ′-morphism. This holds in this case, but only after viewing AK′

as a K ′-scheme after composing with the morphism from Spec(K ′) → Spec(K ′)
induced by the action of GK′ .) As GK′ acts trivially on k = k̄, it acts on Ñ ′. A
theorem of Weil (see Chapter VII of [4]) then informs us that the action of GK′ on
Tl(AK′) has an integral character independent of l. As Tl(A) ∼= Tl(A

′) ∼= Tl(Ñ
′),

we are done.
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