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Preface

This thesis is the result of my Ph.D. studies at the International School for Advanced
Studies (SISSA) in Trieste, Italy.

My Ph.D. project, conducted under the supervision of Prof. Giovanni Landi (Uni-
versità di Trieste), with Prof. Ludwik Dąbrowski as internal co-advisor, focused on
topological aspects of (noncommutative) principal circle bundles, and it culminated
in the following papers (listed in chronological order):
[1] F. Arici, S. Brain, G. Landi, The Gysin sequence for quantum lens spaces,

arXiv:1401.6788, J. Noncomm. Geom. in press.
[2] F. Arici, J. Kaad, G. Landi, Pimsner algebras and Gysin sequences from principal

circle actions, arXiv:1409.5335, J. Noncomm. Geom. in press.
[3] F. Arici, F. D’Andrea, G. Landi, Pimsner algebras and noncommutative circle

bundles, arXiv:1506.03109, to appear in "Noncommutative analysis, operator the-
ory and applications NAOA2014".

This dissertation aims at presenting the results obtained in the above mentioned
works in a clear, coherent and self-consistent way.
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"Would you tell me, please, which way I ought to go from
here?"

"That depends a good deal on where you want to get to."
"I don’t much care where."
"Then it doesn’t matter which way you go."
(Lewis Carroll, Alice in Wonderland)





Introduction

Noncommutative topology has its roots in a deep mathematical concept, that of
duality between algebra and geometry. Indeed, by Gel’fand’s theorem ([37]) to any
locally compact topological space X one can associate the commutative C∗-algebra
C0(X) of continuous functions vanishing at infinty, and conversely every commutative
C∗-algebra A is isometrically isomorphic to the algebra C0(σ(A)) of functions on the
spectrum σ(A), which is a locally compact Hausdorff space. This correspondence
is realized in terms of a contravariant functor, and yields an (anti)-equivalence of
categories.

Motivated by this duality, one is led to consider noncommutative C∗-algebras as
algebras of functions on some virtual dual noncommutative space. Examples are quan-
tizations of classical commutative spaces, obtained by deforming the corresponding
algebras of functions, the simplest instance of this construction being the noncom-
mutative torus described in Example 1.5.

Noncommutative C∗-algebras also appear as the right algebraic framework for mod-
eling dynamical systems. Group actions on a topological space are encoded in the con-
struction of crossed product C*-algebras. Another class of algebras appearing from
the study of dynamical systems are the Cuntz and Cuntz-Krieger algebras of [23] and
[25], whose underlying dynamical systems are shifts and subshifts, respectively.

Gel’fand’s duality can be extended to the category of complex vector bundles over a
compact spaceX by considering projective modules of finite type over the correspond-
ing C∗-algebra of continuous functions C(X). This is the content of the Serre-Swan
theorem of [78, 82], which again provides an (anti)-equivalence of categories. In order
to study Hermitian vector bundles, i.e. vector bundles with a fiber-wise Hermitian
product, one is then led to consider Hilbert modules over C∗-algebras. The simples
example of a Hermitian vector bundle is that of an Hermitian line bundle L → X;
the corresponding noncommutative object is a self-Morita equivalence bimodule over
a the C∗-algebra C(X), which is a full Hilbert C∗-module E over B together with an
isomorphism of B with the algebra KB(E) of compact endomorphisms on E .

In classical geometry complex line bundles are naturally associated to principal
circle bundles. One of the aims of this thesis is studying the noncommutative topology
of principal circle bundles–both classical and noncommutative–by means of Gysin
exact sequences in K-theory and KK-theory.
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Motivation

Classically, one can associate to every oriented vector bundle and to every sphere bun-
dle a long exact sequence in (singular) cohomology, named the Gysin exact sequence.
In the case of a principal circle bundle π : P → X the sequence reads:

· · · // Hk(P,Z) π∗ // Hk−1(X,Z) α // Hk+1(X,Z) π∗ // Hk+1(P,Z) // · · · ,

where π∗ : Hk(X,Z) → Hk(P,Z) and π∗ : Hk(P,Z) → Hk−1(P,Z) denote the the
pull-back and the push-forward map, respectively, and α : Hk−1(X,Z)→ Hk+1(X,Z)
is defined on forms ω ∈ Hk−1(X,Z) as the cup product α(ω) = c1(L) ∪ ω with the
first Chern class c1(L) of the line bundle L → X associated to the principal circle
bundle π : P → X via the left regular representation.

The above exact sequence admits a version in topological K-theory, in the form
of a six-term exact sequence, involving the K-theoretic Euler class χ(L) of the line
bundle L→ X.

The Gysin exact sequence plays an important rôle in mathematical physics, in
particular in T-duality and in Chern-Simons theory. In T-duality, the k = 3 segment
of the Gysin sequence in singular cohomology maps the class of the H-flux, a given
three-form on the total space P , to a class in H2(X,Z). This can be thought of as
the class of the curvature of a connection on the T-dual circle bundle P ′ → X. In
the case of a two-dimensional base manifold X the exact sequence immediately gives
an isomorphism H3(P,Z) ' H2(X,Z), hence establishing a correspondence between
Dixmier-Douady classes on P and line bundles on X (cf. pages 385 and 391 of [10]).

In Chern-Simons theory, the importance of the Gysin sequence lies in the evaluation
of the path integral on circle bundles over smooth curves, where it facilitates the
counting of those circle bundles over the total space which arise as pull-backs from
the base (cf. page 26 of the [9]).

A class of examples of circle bundles, which are of relevance for both T-duality
and Chern-Simons theories, is that of lens spaces. These arise in classical geometry
as quotients of odd-dimensional spheres by the action of a finite cyclic group, and
they can be seen as total spaces of circle bundles over weighted projective spaces.

In the recent work [3] we focused on their noncommutative counterparts: quan-
tum lens spaces. These have been the subject of increasing interest of late: they first
appeared in [59] in the context of what we would now call theta-deformed topol-
ogy; they later surfaced in [46] in the form of graph C∗-algebras, with certain more
recent special classes described in [12, 41]. The particular case of the quantum three-
dimensional real projective space was studied in [68] and [56]. In parallel with the
classical construction, quantum (weighted) lens spaces are introduced as fixed point
algebras for suitable actions of finite cyclic groups on function algebras over odd
dimensional quantum spheres. Similarly, quantum (weighted) projective spaces are
defined as fixed point algebras for a circle action on odd dimensional quantum spheres.
More generally, quantum weighted projective spaces can be obtained as fixed point
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algebras of a circle action on the algebra of odd dimensional lens spaces–of which odd
dimensional spheres are a particular example.

At the coordinate algebra level, lens spaces admit a vector space decomposition as
direct sums of line bundles, which provides them with a Z-graded algebra structure.
A central rôle is played by the module of sections of the tautological line bundle over
the quantum projective space. This graded decomposition and the central character
played by the tautological line bundle naturally lead one to consider the notion of
Pimsner algebra.

Pimsner algebras, principal circle bundles and Gysin sequences

Pimsner algebras, which were introduced in the seminal work [67], provide a unifying
framework for a range of important C∗-algebras including crossed products by the
integers, Cuntz-Krieger algebras [23, 25], and C∗-algebras associated to partial auto-
morphisms [34]. Due to their flexibility and wide range of applicability, there has been
an increasing interest in these algebras recently (see for instance [36, 71]). A related
class of algebras, known as generalized crossed products, was independently invented
in [1]. The two notions coincide in many cases, in particular in those of interest for
the present work.

The connection between principal circle bundles and Pimsner algebras was spelled
out, for the commutative case, in [36, Proposition 5.8]: the algebra C(P ) of continuous
functions on the total space of a principal circle bundle P → X can be described as
a Pimsner algebra generated by a classical line bundle over the compact base space.
More precisely, starting from a principal circle bundle P over a compact topological
space X, the module of section of any of the associated line bundles is a self-Morita
equivalence bimodule for the commutative C∗-algebra C(X) of continuous functions
over X. Suitable tensor powers of the (sections of the) bundle are endowed with an
algebra structure eventually giving back the C∗-algebra C(P ) of continuos functions
on P .

In this thesis we extend this analogy and relate the notion of Pimsner algebra to
that of a noncommutative (in general) principal circle bundle: a self-Morita equiva-
lence bimodule E over an arbitrary C∗-algebra B is thought of as a noncommutative
line bundle and the corresponding Pimsner algebra OE plays the rôle of the algebra
of continuous functions on the total space of a noncommutative a principal circle
bundle associated to E .

With a Pimsner algebra come two natural six term exact sequences in KK-theory,
which relate the KK-theories of the Pimsner algebra OE with that of the C∗-algebra
B. These exact sequences are noncommutative analogues of the Gysin sequence,
which, as mentioned before, in the commutative case relates the K-theories of the to-
tal space and of the base space of a circle bundle. The classical cup product with the
Euler-class is replaced by a Kasparov product with the identity minus the class of the
self-Morita equivalence bimodule E . Predecessors of these six term exact sequences
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are the Pimsner-Voiculescu six term exact sequences of [66] for crossed products by
the integers.

Outline of the thesis

Part I deals with some prerequisites from noncommutative topology: in Chapter 1
we describe C∗-algebras and modules, stating Gel’fand duality and the Serre-Swan
theorem. We describe K-theory and K-homology, which are the basic topological in-
variants used in the study of C∗-algebras, and conclude by describing some important
classes of C∗-algebras, namely crossed product by the integers, Cuntz and Cuntz-
Krieger algebras. Chapter 2 provides an overview of the theory of Hilbert modules,
C∗-correspondences and KK-theory, focusing on Morita equivalence for C∗-algebras
and self-Morita equivalence bimodules.

In Part II we describe the connection between Pimsner algebras and principal circle
bundles. In Chapter 3 we recall the definition of the Toeplitz and Pimsner algebras of a
full C∗-correspondence and the construction of generalized crossed products, focusing
on the case of self-Morita equivalence bimodules. In Chapter 4 we give the definition
of quantum principal circle bundles using Hopf algebras and Z-graded algebras, and
recall how principality of the action can be translated into an algebraic condition on
the induced grading. This condition is particularly relevant since it resembles a similar
condition appearing in the theory of generalized crossed products. We then show how
all these notions are interconnected and can be seen as different descriptions of the
same construction. Finally, we provide several examples: we illustrate how theta-
deformed and quantum weighted projective and lens spaces fit into the framework.

Part III is devoted to exact sequences and explicit computations, and it contains the
results of the recent works [3, 5]. In Chapter 5 we construct a Gysin exact sequence
in K-theory for (unweighted) quantum lens spaces of any dimension. We use this
exact sequence to compute the K-theory groups of the quantum lens spaces and to
construct explicit generators of torsion classes as (combinations) of pulled-back line
bundles. In Chapter 6 we think of weighted lens spaces as principal circle bundles
over weighted projective lines. We construct Gysin exact sequences in KK-theory,
which we use to compute the KK-groups of these spaces. A central character in this
computation is played by an integer matrix whose entries are index pairings. The
resulting computation of the KK-theory for this class of q-deformed lens spaces is,
to the best of our knowledge, a novel one.



Part I

Algebras, modules and all that





Chapter 1

Some elements of noncommutative topology

This first chapter is devoted to recalling some elements of noncommutative geometry
that are essential prerequisites for this work.

The material covered here can be found in standard books on operator algebras and
their K-theory. Our main references are [57, 38] for the treatment of noncommutative
topology, [75, 8, 87] for K-theory and [18, 44] for K-homology.

We start by recalling the duality between topological spaces and C∗-algebras that
goes under the name of Gel’fand duality. This duality can be naturally extended to the
category of vector bundles, leading to the Serre-Swan theorem. After that we give the
definition of K-theory and K-homology for C∗-algebras, describing their properties
and the index pairing. We conclude this chapter by presenting some C∗-algebras that
will play a rôle later in the work as particular examples of Pimsner algebras.

1.1 Algebras as spaces

The starting idea of noncommutative geometry is that of trading spaces for algebras.
In order to make this statement more precise, one needs to recall some notions.

A *-algebra is an algebra A that admits an involution, i.e. a map ∗ : A → A such
that ∗2 = 1, which is anti-linear and compatible with the algebra structure, i.e.

(αa+ βb)∗ = αa∗ + βb∗

(ab)∗ = b∗a∗.
(1.1.1)

for all a, b ∈ A, α, β ∈ C.

A normed algebra (A, ‖ · ‖) is an algebra equipped with a norm which, in addition
to the usual properties, satisfies ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A. If the algebra is a
Banach space (complete normed space) with respect to ‖ · ‖, it is named a Banach
algebra.

Combining the previous definitions, a Banach ∗-algebra is a Banach algebra to-
gether with an involution ∗ that satisfies ‖a∗‖ = ‖a‖.

9



10 Chapter 1. Some elements of noncommutative topology

A C∗-algebra is a Banach *-algebra (A, ‖ · ‖) that satisfies the stronger condition

‖a∗a‖ = ‖a‖2 ∀a ∈ A. (1.1.2)

The above condition is called C∗-property.

A C∗-algebra A is called separable if it contains a countable subset which is dense
in the norm topology of A.

We have chosen to use the symbol A to distinguish C∗-algebras from general com-
plex algebras, which will be denoted by A.
Example 1.1. Let X be a topological space, that is assumed to be compact and
Hausdorff. One constructs in a natural way a commutative complex algebra, denoted
C(X), by considering continuous complex valued functions f : X → C with point-
wise sum and product: for all f, g : X → C, one defines

(f + g)(x) = f(x) + g(x) (1.1.3)
(f · g)(x) = f(x)g(x) (1.1.4)

Since X is compact, the supremum norm

‖f‖ = sup
x∈X
|f(x)| (1.1.5)

is well-defined. Moreover, since the limit of a uniformly convergent sequence of con-
tinuous functions is continuous, C(X) is complete with respect to the norm (1.1.5).

One can endow C(X) with an isometric involution

∗ : C(X)→ C(X) f ∗(x) = f(x) ∀x ∈ X,

with respect to which C(X) is a commutative unital C*-algebra, with unit the con-
stant function equal to 1.

The construction can be extended to the case of a more general locally compact
Hausdorff space Y . In that case one can still construct a C∗-algebras, denoted C0(Y ),
consisting of complex valued functions that vanish at infinity; the algebra will however
be a priori non-unital.

The above example exhausts all commutative C∗-algebras. Indeed one has the
following result:
Theorem 1.1.1 (Gel’fand). Let A be a commutative unital C*-algebra. There exists
a compact topological space σ(A), called the spectrum of A, such that A ' C(σ(A))
isometrically.

There is actually more to that: if f : X → Y is a continuous mapping between
two compact spaces, then Cf := f ∗ : C(Y ) → C(X), defined as h 7→ h ◦ f , is a
unital *-homomorphism. Moreover, if g : Y → Z is another continuous mapping,
then C(g ◦ f) = Cf ◦ Cg and C IdY is the identity element of C(X). This can be
summarized in the following:
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Lemma 1.1.2. The correspondence X → C(X), f → Cf is a contravariant functor
from the category of compact topological spaces with continuous maps to that of unital
commutative C∗-algebras with *-homomorphisms.

Moreover, one has the following theorem, due to Gel’fand:
Theorem 1.1.3 ([86, Section 1.1]). The C-functor from the category of compact topo-
logical spaces with continuous maps to that of unital commutative C∗-algebras with
*-homomorphism is an (anti-)equivalence of categories.

Motivated by this duality, one can think of a noncommutative C∗-algebra as the
algebra of functions on a virtual dual noncommutative space. We will now present
some genuinely noncommutative examples of C∗-algebras.
Example 1.2. The algebra Mn(C) of n × n matrices with complex coefficients, with
the identity matrix as unit, is a unital C*-algebra with respect to the involution
∗ : T 7→ T ∗, defined by taking the adjoint, i.e. the conjugate transpose matrix, and
the norm

‖T‖ = the positive square root of the biggest eigenvalue of T ∗T . (1.1.6)

It is possible to generalize the construction to a direct sum of complex matrix algebras,
and get that

Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnk(C) (1.1.7)

is a unital C*-algebra.
Example 1.3. Generalizing the previous example, let H be a Hilbert space. The space
L(H) of all bounded linear operators on H is a Banach space, with respect to the
operator norm

‖T‖ = sup
x∈H,x 6=0

‖Tx‖
‖x‖

. (1.1.8)

Moreover, with product the composition of operators, the identity operator as unit
element and involution defined by the adjoint operator T 7→ T ∗, L(H) is a C*-algebra.

If the Hilbert space is finite dimensional, i.e. isomorphic to Cn, the norm in (1.1.8)
agrees with that of (1.1.6) and one gets back to Example 1.2.
Example 1.4. The subspace K(H) of compact operators on a Hilbert space H form
a norm closed subalgebra of L(H) which is closed under adjoints, and hence a C∗-
algebra. The algebra K(H) is not unital unless H is finite dimensional. In that case
one has K(H) = L(H) = Mn(C).
Example 1.5. One of the first, and probably the most studied example of noncom-
mutative space is the irrational rotation algebra Aθ, sometimes also called the non-
commutative torus. This is the universal C∗-algebra generated by two unitaries U, V
subject to the relation

UV = e2πiθV U,

for θ any irrational number.

Generalizing Example 1.4, every norm-closed subalgebra B ⊆ L(H), which is closed
under the operation of taking the adjoint, is a C*-algebra and it is called a concrete
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C*-algebra. We will see that every abstract C∗-algebra can be realized as a concrete
C∗-algebra. To make this statement more precise, one needs to define C∗-algebra
representations.

A *-morphism between two C∗-algebras A and B is a complex linear map φ : A→
B which is a homomorphism of *-algebras, i.e. multiplicative

φ(ab) = φ(a)φ(b), ∀a, b ∈ A,

and ∗-preserving
φ(a∗) = φ(a)∗, ∀a ∈ A.

By [38, Lemma 1.6] every *-homomorphism is norm-decreasing and continuous. More-
over, one can prove that a *-morphism is injective if and only if it is isometric, i.e. if
and only if ‖φ(a)‖B = ‖a‖A for all a ∈ A.

A representation of a C∗-algebra A is a pair (H, π) where H is a Hilbert space
and π : A→ L(H) is a *-morphism between A and the C∗-algebra L(H) of bounded
operators on H.

A representation (H, π) is called faithful if ker(π) = {0}. Every faithful represen-
tation π of a C∗-algebra A makes it isomorphic to the concrete C∗-algebra π(A).

Two representations (H1, π1) and (H2, π2) are said to be unitarily equivalent if there
exists a unitary operator U : H1 → H2 such that

π1(a) = U∗π2(a)U ∀a ∈ A.

A C∗-algebra is called finite dimensional if it admits a faithful representation on a
finite dimensional Hilbert space.

The C∗-algebras in Example 1.2 are clearly finite dimensional C∗-algebras. Con-
versely, it is possible to show that every finite dimensional C*-algebra can be repre-
sented as a direct sum of matrix algebras. For the proof of this fact we refer to [31,
Theorem III.1.1].
Theorem 1.1.4 (Gel’fand-Năımark). For each C∗-algebra A there exists a Hilbert space
H and an isometric *-homomorphism φ : A→ L(H). If A is separable, then H may
be chosen to be separable.

The above theorem admits a constructive proof, giving a concrete recipe on how to
construct the Hilbert space explicitly. This goes under the name of GNS (Gel’fand-
Năımark-Segal) construction (cf. [31, Theorem 1.9.6]).
Example 1.6. For the irrational rotation algebra Aθ, the underlying Hilbert space is
the space L2(S1) of square integrable functions on the circle. If one identifies func-
tions in L2(S1) with square integrable functions on the real line of period 1, the
representation π of Aθ on L2(S1) is given on generators by

π(U)f(z) = e2πiθf(z), π(V )f(z) = f(z + θ),

for all f ∈ L2(S1).
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1.2 Modules as bundles

The duality between spaces and algebras can be extended to the case of vector bun-
dles by considering modules over algebras. We will see that the finitely generated
projective ones can be thought of as noncommutative vector bundles. We will state
all results for modules over general complex algebras A, and will only need to use
C∗-algebras in the formulation of the Serre-Swan theorem.

1.2.1 Modules over algebras

Let A be a complex algebra. A right A-module is a vector space E together with a
right action E ×A 3 (ξ, a) 7→ ξa ∈ E satisfying

ξ(ab) = (ξa)b,
ξ(a+ b) = ξa+ ξb,

(ξ + η)a = ξa+ ηa,

(1.2.1)

for all ξ, η ∈ E and a ∈ A.

A family {ηλ}λ∈Λ of elements of E , with Λ any directed set, is called a generating
set for the right module E if any element of ξ ∈ E can be written (not necessarily in
a unique way) as a combination

ξ =
∑
λ∈Λ

ηλaλ, (1.2.2)

with only a finite number of elements aλ ∈ A different from zero.

A family {ηλ} is called free if its elements are linearly independent over A. It is
called a basis if it is a free generating set, so that every element ξ ∈ E can be written
uniquely as a combination of the form (1.2.2).

A module is called free whenever it admits a basis, and it is called finitely gener-
ated if it admits a finite generating set. Later on, we will refer to these objects as
algebraically finitely generated modules, to distinguish them from the topologically
finitely generated ones.

From now on the *-algebra A is assumed to be unital.
Example 1.7. The module An, given by the direct sum of A with itself n-times, is
a free finitely generated module for every n. The collection {ξj}nj=1, where ξj is the
vector with one in the i-th entry and zeroes elsewhere, is a basis, called the standard
basis of An.

If a module E is finitely generated, there is always a positive integer n and a
module surjection ρ : An → E , such that the image of the standard basis of An is a
generating set for E (not necessarily free).
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Definition 1.2.1. A right A-module E is said to be projective if it satisfies one of the
following equivalent properties:

1. Given a surjective homomorphism ρ : M → N of right A-modules, any homo-
morphism λ : E → N can be lifted to a homomorphism λ′ : E → M such that
λ = ρ ◦ λ′.

2. Every surjective module morphism ρ : M → E splits, that is there exists a module
morphism s : E → M such that ρ ◦ s = IdE .

3. The module E is a direct summand of a free module, that is there exists a free
module F and a module E ′ such that

F ' E ⊕ E ′. (1.2.3)

For the proof of equivalence of the above conditions, we refer the reader to [88,
Section 2.2] (see also the discussion after [57, Definition 7]).

Now suppose that E is both projective and finitely generated, with surjection
ρ : An → E . Then by the lifting property 1 there exists a lift s : E → An such
that s ◦ ρ = IdE . Then e := ρ ◦ s is an idempotent in Mn(A) satisfying e2 = e and
E = eAn.

The interest in finitely generated projective modules comes from the Serre-Swan
theorem, which establishes a correspondence between vector bundles over a compact
topological space X and finitely generated projective modules over the dual C∗-
algebra of continuous functions C(X). This correspondence is actually an equivalence
of categories, realized in terms of the functor of sections Γ .

1.2.2 The Γ -functor

Recall that a vector bundle E overX, in symbols E → X is a locally trivial continuous
family of finite dimensional vector spaces indexed by X.

The collection of continuous sections of a complex vector bundle E → X, denoted
by Γ (E,X) or simply Γ (E), is naturally a module for the commutative algebra
C(X) of continuous functions on the base space, the right action given by scalar
multiplication in each fiber:

(s · a)(x) = s(x)a(x), for all s ∈ Γ (E), a ∈ C(X). (1.2.4)

If τ : E → E ′ is a bundle map, then there exists a natural map Γτ : Γ (E) → Γ (E ′)
given by

Γτ (s) = τ ◦ s,

which is C(X)-linear by linearity of each fiber map: τx : Ex → E ′x.
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Lemma 1.2.2 ([38, Lemma 2.5]). The correspondence E → Γ (E), τ → Γτ is a functor
from the category of complex vector bundles over X to the category of C(X)-modules.

The Γ -functor carries the operations of duality, Whitney sum and tensor product
of bundles, which are defined fiber-wise, to analogous operations on C(X)-modules.
Indeed, one can easily check the following module isomorphisms:

Γ (E∗) ' HomC(X)(Γ (E), C(X)),
Γ (E)⊕ Γ (E ′) ' Γ (E ⊕ E ′).

Moreover, by [38, Proposition 2.6] one has:

Γ (E)⊗C(X) Γ (E ′) ' Γ (E ⊗ E ′),

where the tensor product on the left-hand side makes sense because each Γ (E) is a
C(X)-bimodule, by commutativity.

Let E → X be any complex vector bundle over X. By [38, Proposition 2.9]
the C(X)-module Γ (E) is finitely generated projective. More explicitely, for every
complex vector bundle E → X there exists an idempotent e in the matrix algebra
Mn(C(X)) for some n such that Γ (E) ' eC(X)n as modules over C(X). Conversely,
any C(X)-module of the form eC(X)n is the module of sections of some vector bundle
over X.

This correspondence is actually an equivalence of categories, as stated in the Serre-
Swan theorem of [78, 82], that we present here in the same form of [38, Theorem 2.10].
Theorem 1.2.3 (Serre-Swan). The Γ -functor from vector bundles over a compact space
X to finitely generated projective modules over C(X) is an equivalence of categories.

1.2.3 Hermitian structures over projective modules

Hermitian vector bundles, that is bundles with a fiber-wise Hermitian product, corre-
spond to finitely generated projectiveA-modules endowed with anA-valued sesquilin-
ear form. For C∗-algebras, the appropriate framework is that of Hilbert C∗-modules,
that will be described throughly in Chapter 2, since they are at the heart of Pimsner’s
construction.

1.3 K-theory and K-homology

In this section we present the definition of K-theory and K-homology for unital C∗-
algebras. Both theories can be defined for non-unital C∗-algebras, but we prefer not
to dwell upon that general construction here, restricting our attention to the unital
case.
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1.3.1 K-theory for C∗–algebras

K theory for C∗-algebras is the noncommutative counterpart to K-theory for topo-
logical spaces. We therefore start this section by recalling the definition of topological
K-theory.

If X is a compact Hausdorff space, the group K0(X) is the abelian group generated
by the isomorphism classes of complex vector bundles over X, subject to the relation

[E] + [E ′] = [E ⊕ E ′].

In view of the Serre-Swan duality described in Section 1.2.2, a complex vector bundle
over X is equivalent to a finitely generated projective module over C(X). In this dual
picture a finitely generated projective module is more conveniently described in terms
of idempotents in Mn(A), the C∗-algebra of n× n matrices with entries in A.

Note that by [48, Lemma 16] any idempotent in a C∗-algebra is similar to a pro-
jection, i.e. to a self-adjoint idempotent p2 = p = p∗. This leads to the possibility of
describing K-theory for C∗-algebras in terms of projections only.

We define the following equivalence relation: two projections p,q ∈ Mn(A) are
Murray-von Neumann equivalent if there exists u ∈ Mn(A) such that p = u∗u and
q = uu∗. This is however not enough: in order to be able to add equivalence classes
of projections one needs to consider the algebra M∞(A) := ⋃

n∈Z Mn(A), obtained as
the inductive limit over the inclusions

φ : Mn(A)→ Mn+1(A), a 7→ φ(a) :=
(
a 0
0 0

)
.

Two projections p,q ∈ M∞(A) are then said to be equivalent if there exists u ∈
M∞(A) such that p = u∗u and q = uu∗. The set V(A) of equivalence classes is made
into an abelian semigroup by defining the group operation

[p] + [q] :=
[(

p 0
0 q

)]
, ∀ [p], [q] ∈ V(A).

Definition 1.3.1. The group K0(A) is the Grothendieck group of the semigroup V(A).
It is realized as the collection of equivalence classes K0(A) := V(A)× V(A)/ ∼ with
respect to the equivalence relation

([p], [q]) ∼ ([p′], [q′]) if and only if ∃ [r] ∈ V(A) : [p] + [q′] + [r] = [p′] + [q] + [r].
(1.3.1)

Note that the extra [r] appearing in (1.3.1) is inserted in order to get transitivity
of the equivalence relation.

With this picture in mind, the group structure on K0(A) is defined via the addition

([p], [q]) + ([p′], [q′]) = ([p] + [p′], [q] + [q′]),
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and it is independent of the representatives chosen.

The neutral element is represented by the class of

([p], [p]), ∀[p] ∈ V(A),

and it is straightforward to check that by (1.3.1) all such elements are equivalent.

Finally, the inverse in K0(A) is given by

−([p], [q]) = ([q], [p]).

Notice that there is a natural homomorphism

κA : V(A)→ K0(A) [p] 7→ ([p], 0),

from the semigroup V(A) to its Grothendieck group; the group K0(A) is universal in
the following sense:
Proposition 1.3.2 ([57, Proposition 23]). Let A be a unital C∗-algebra, G an abelian
group and suppose that φ : V(A) → G is a homomorphism of semigroups such
that φ(V(A)) is invertible in G. Then there exists a unique group homomorphism
ψ : K0(A)→ G that makes the following diagram commutative:

V(A)
κA
��

φ

""

K0(A) ψ
// G

.

K0 is a covariant functor from the category of C∗-algebras to that of Abelian
groups: if α : A→ B is a morphism of C∗-algebras, then the induced map

α∗ :V(A)→ V(A)
α∗([pij]) = [α(pij)]

descends, by universality, to a group homomorphism

α∗ : K0(A)→ K0(B).

The group K1(A) is built in terms of unitaries, an approach that makes it less
complicated to construct and to deal with than K0.

Let U(A) be the group of unitary elements in a unital C∗-algebra A. One sets

Un(A) = U(Mn(A)), U∞(A) :=
∞⋃
n=1
Un(A).

There is a natural binary operation on U∞(A), given by



18 Chapter 1. Some elements of noncommutative topology

u⊕ v :=
(

u 0
0 v

)
∈ Un+m(A), u ∈ Un(A), v ∈ Um(A).

One defines an equivalence relation ∼1 on U∞(A) as follows: for u ∈ Un(A), v ∈
Um(A), one writes u ∼1 v whenever there exists k ≥ max{n,m} such that u⊕ 1k−n
and v⊕ 1k−m are homotopy equivalent in Uk(A).
Definition 1.3.3. The group K1(A) is the quotient group U∞(A)/ ∼1.

The group K1(A) can be equivalently defined as the quotient U∞(A)/U∞(A)0, with
U∞(A)0 denoting the connected component with the identity. Moreover, it admits
another description in terms of invertible elements in the matrix algebra M∞(A),
giving an isomorphism K1(A) ' GL∞(A)/GL∞(A)0, where again the subscript 0
denotes the connected component of the identity.

Like K0, K1 is also a covariant functor: if α : A→ B is a morphism of C∗-algebras,
one has a well-defined map α∗[uij] = [α(uij)] on representatives, inducing a group
homomorphism

α∗ : K1(A)→ K1(B).

In topological K-theory, the group K1(X) is defined in terms of the suspension.
For a compact topological space X, the suspension of X, denoted by SX, is the space
obtained by taking the union of two copies of the cone over X, in symbols:

SX := X × [0, 1]/(X × {0} ∪X × {1}).

Then one defines the group K1(X) as the K-theory of the suspension:

K1(X) := K0(SX).

Likewise, for a C∗-algebra A one defines the suspension of A as

SA := A⊗ C0((0, 1)) ' C0((0, 1), A).

Then one has the following crucial result:
Theorem 1.3.4 ([87, Theorem 7.2.5]). There is an isomorphism

θA : K1(A)→ K0(SA)

such that, for every morphism of C∗-algebras α : A → B, the following diagram
commutes:

K1(A) α∗−−−→ K1(B)yθA yθA .

K0(SA) Sα∗−−−→ K0(SB)

The next result, that goes under the name of Bott periodicity, implies that there
are actually only two distinct K-theory groups.
Theorem 1.3.5 ([87, Chapter 9]). There is an isomorphism
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βA : K0(A)→ K1(SA)

that makes the following diagram commutative, whenever α : A → B is a morphism
of C∗-algebras:

K0(A) α∗−−−→ K0(B)yθA yθA .

K1(SA) Sα∗−−−→ K1(SB)

As a corollary one gets the following isomorphism:

K2n(A) = K0(A) and K2n+1(A) = K1(A),

which motivates the name periodicity.

The functors K0 and K1 are half-exact functors: any short exact sequence of
C∗-algebras 0 // I

i // A
p
// A/I // 0 induces two short exact sequences of

groups:
Kj(I) i∗ // Kj(A) p∗

// Kj(A/I) j = 0, 1. (1.3.2)

Furthermore, one can define a map

∂ : K1(A/I)→ K0(I) (1.3.3)

as described in [87, Definition 8.1]. This map is known as the connecting homomor-
phism or the index map. Using the map in (1.3.3), together with Bott periodicity,
one can combine the exact sequences of (1.3.2), obtaining the following:

Theorem 1.3.6 ([87, Theorem 9.3.2]). Let 0 // I i // A
p
// A/I // 0 be a

short exact sequence of C∗-algebras. Then there is an exact sequence

K0(I) i∗−−−→ K0(A) p∗−−−→ K0(A/I)

∂

x y∂
K1(A/I) ←−−−

p∗
K1(A) ←−−−

i∗
K1(I)

(1.3.4)

where i∗ and p∗ are the maps in K-theory induced by the corresponding C∗-algebra
maps, the map ∂ : K1(A/I)→ K0(I) is the index map of (1.3.3) and ∂ : K0(A/I)→
K1(I) is the so-called exponential map, which is the composition of the suspended
index map with Bott periodicity.

We conclude this section by remarking that, for commutative C∗-algebras, operator
K-theory agrees with topological K-theory. More precisely if A = C(X) for a compact
Hausdorff space X, then

Ki(A) = Ki(X), i = 0, 1.
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1.3.2 Fredholm modules and K-Homology

K-homology is the dual theory to K-theory for C∗-algebras, in the sense that there
exists a well-defined pairing between the two theories, taking values in Z.

There are several ways to define K-homology for C∗-algebras. Here we will follow
Kasparov’s approach, which is based on the notion of Fredholm module. Our main
references are [44, Chapter 8] and [18, Section 4].
Definition 1.3.7. Let A be a C∗-algebra. An odd or ungraded Fredholm module over A
is a triple F := (ρ,H, F ) consisting of a representation ρ : A→ L(H) on a separable
Hilbert space H, and of an operator F on H such that [F, ρ(a)], (F 2 − 1)ρ(a) and
(F − F ∗)ρ(a) are in K(H) for all a ∈ A.

An even or graded Fredholm module is given by the same data, plus in addition
a grading on the Hilbert space H, i.e. a self-adjoint involution γ : H → H, that
commutes with the representation ρ, and such that Fγ − γF = 0.

Triples for which the operators [F, ρ(a)], (F 2− 1)ρ(a), (F −F ∗)ρ(a) are zero for all
a ∈ A are called degenerate Fredholm modules.

Note that one can define Fredholm modules for a general unital *-algebraA without
changing the definition. Moreover by [21, Proposition 4.7] if A is a C∗-algebra and
A ⊆ A is a dense *-subalgebra which is closed under holomorphic functional calculus,
any Fredholm module over A extends to a Fredholm module over A.

The simplest nontrivial example of an ungraded Fredholm module over A comes
from ρ : A→ L(H) a representation of A and P ∈ L(H) a projection that commutes,
modulo compacts, with every ρ(a). Then if one sets F = 2P − 1, (ρ,H, F ) is an odd
Fredholm module over A.

Similarly, if ρ : A → L(H) is a representation of A and U ∈ L(H) is a unitary
that commutes, modulo compacts, with every ρ(a), one can define a graded Fredholm
module (H′, ρ′, F ) over A by setting

H′ := H⊕H, ρ′ = ρ⊕ ρ, F =
(

0 U∗

U 0

)
.

Definition 1.3.8 ([21, Definition 4.3]). A Fredholm module (ρ,H, F ) for A is (p+ 1)-
summable, for p ∈ N, if there exists a dense subalgebra A ⊂ A such that for all a ∈ A
one has

[F, ρ(a)] ∈ Lp+1(H),

where Lp+1(H) denotes the Schatten ideal

Lp+1(H) := {T ∈ L(H) | Tr(|T |p) <∞}.

There is a natural binary operation of direct sum on Fredholm modules, given
by taking the direct sum of the Hilbert spaces, of the representations and of the
operators.



1.3. K-theory and K-homology 21

In order to define the Kasparov K-homology groups, we need to define some notions
of equivalence for Fredholm modules, that will work both in the graded and in the
ungraded case.
Definition 1.3.9. Let F = (ρ,H, F ) and F ′ = (ρ′,H′, F ′) be two Fredholm modules
over the same C∗-algebra A. We say that they are unitarily equivalent, if there exists a
(grading preserving) homomorphism U : H → H′ that intertwines the representations
ρ and ρ′ and the operators F and F ′.
Definition 1.3.10. A Fredholm module (ρ,H, F ′) is a compact perturbation of the
Fredholm module (ρ,H, F ) if and only if (F − F ′)ρ(a) ∈ K(H) for all a ∈ A.
Definition 1.3.11. Suppose that Ft = (ρ,Ht, Ft) is a family of Fredholm modules
parametrized by t ∈ [0, 1], in which the representation remains constant but Ft varies
with t. If the function t 7→ Ft is norm continuous, one says that the family de-
fines an operator homotopy between the Fredholm modules F0 = (ρ,H0, F0) and
F1 = (ρ,H1, F1), and that the two Fredholm modules are operator homotopic.

It is easy to see that compact perturbation implies operator homotopy, given by
the linear path from F to F ′.

We are now ready to define the Kasparov K-homology groups.
Definition 1.3.12. Let i = 0, 1. The K-homology group Ki(A) is the abelian group
with one generator for every unitary equivalence class of Fredholm modules, (even or
graded if i = 0, odd or ungraded if i = 1), with the following relations:

• If F0 and F1 are operator homotopic Fredholm modules of the same degree, then
[F0] = [F1] ∈ Ki(A).

• If F0 and F1 are Fredholm modules of the same degree, [F0] + [F1] = [F0 ⊕F1].

For every degenerate Fredholm module F0, and for every Fredholm module F one
has that [F ⊕ F0] = [F ], hence the class of a degenerate Fredholm module is zero in
K-homology.

K-homology is a contravariant functor from the category of separable (unital) C∗-
algebras to that of abelian groups. Indeed, if α : A→ B is a morphism of C∗-algebras,
and (ρ,H, F ) a Fredholm module over B, then (ρ ◦ α,H, F ) is a Fredholm module
over A. This gives a map

α∗ :Ki(B)→ Ki(A)
[(ρ,H, F )] 7→ [(ρ ◦ α,H, F )],

for i = 0, 1.

Like for K-theory, one can obtain exact sequences in K-homology from an extension
of C∗-algebras, but only if an extra condition is fulfilled.

Theorem 1.3.13. Let 0 // I
i // A

p
// A/I // 0 an exact sequence of C∗-

algebras admitting a completely positive cross section A/I → A. Then there is an
exact sequence
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K0(I) ←−−−
i∗

K0(A) ←−−−
p∗

K0(B)y∂ ∂

x ,

K1(B) p∗−−−→ K1(A) i∗−−−→ K1(I)

(1.3.5)

where i∗ and p∗ are the maps in K-homology induced by the corresponding C∗-
algebra maps, and ∂ are again connecting maps defined in terms of an index.

1.3.3 Pairings

Recall that a bounded linear operator F on a Hilbert space H is called Fredholm if
it has closed range and finite dimensional kernel and cokernel. Then one defines the
index of the operator as

Ind(F ) := dim ker(F )− dim coker(F ).

The Fredholm index is constant under compact perturbations and it is a homotopy
invariant (cf. [44, Proposition 2.1.6]).

The pairing between K-theory and K-homology is given by the index of a suitable
Fredholm operator. For this reason it is sometimes named the index pairing.

We start from the ungraded case. Let F = (ρ,H, F ) be an odd Fredholm module
over A and u ∈ Mk(A) a unitary. One denotes by Hk the Hilbert space Ck ⊗H, by
Pk the operator 1⊗ 1

2(1 +F ) on Hk and by U the unitary operator (1⊗ ρ)(u) on Hk.
By [44, Proposition 8.7.1] the operator

Pk(U)Pk − (1− Pk) : Hk → Hk

is Fredholm and, by invariance under homotopy and compact perturbations, its Fred-
holm index only depends on the K-theory class [u] ∈ K1(A) and on the K-homology
class [F ] ∈ K1(A), not on the chosen representatives. This gives a well-defined pairing

〈·, ·〉 : K1(A)×K1(A)→ Z.

Let now F = (ρ,H, F ) be an even Fredholm module over A and p ∈ Mk(A)
a projection. One denotes by Hk the Hilbert space H ⊗ Ck–that now is seen as a
graded Hilbert space–and by P the projection (1⊗ ρ)(p) in L(H). If one writes

F =
(

0 F−
F+ 0

)

with respect to the graded decomposition H = H+ ⊕ H−, then by [44, Proposi-
tion 8.7.2] the operator

P (1⊗ F+)P : P (Ck ⊗H+)→ P (Ck ⊗H−)
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is Fredholm and its Fredholm index only depends on the K-theory class [p] ∈ K0(A)
and on the K-homology class [F ] ∈ K0(A). This gives a well-defined pairing

〈·, ·〉 : K0(A)×K0(A)→ Z.

The existence of a pairing between K-theory and K-homology can be seen as an in-
stance of the properties of the Kasparov product, that we will describe in Section 2.4.

1.4 Further examples of C∗-algebras

We finish this chapter with a description of some notable C∗-algebras, that we will
encounter later as particular cases of Pimsner’s construction. These are crossed prod-
ucts by the integers, Cuntz algebras and Cuntz-Krieger algebras.

At the end of this section we will describe how these algebras can be naturally
endowed with a strongly continuous circle action. Our interest in algebras with circle
action is two-fold: on one hand, these seem to yield the correct framework for modeling
principal circle actions on spaces, provided they satisfy an extra assumption; on the
other hand, we will see later in Subsection 3.2.1 that Pimsner algebras are naturally
endowed with a strongly continuous action, called the gauge action.

1.4.1 Crossed Products by the integers

Crossed products are the basic tool used to study groups acting on a C∗-algebra.
They provide a larger C∗-algebra which encodes information both on the original
algebra and on the group action. Although crossed products can be defined for any
locally compact group, we will focus here on the particular case of crossed products
by the integers. Before that, we need to recall a more general definition:
Definition 1.4.1. Let B a C∗-algebra. A continuous action of a locally compact group
G on B is a group homomorphism

α : G→ Aut(B), (1.4.1)

such that the map t 7→ αt(x) is continuous from G to B for any x ∈ B, with respect
to the norm topology on B.
The triple (B,G, α) is called a C*-dynamical System.
Definition 1.4.2. Given a C∗-dynamical system (B,G, α), a covariant representation
is a pair (π, u), where π is a representation of B on a Hilbert space H and u is a
unitary representation of G on the same Hilbert space satisfying

utπ(a)u∗t = π(αt(a)) for all a ∈ B, t ∈ G. (1.4.2)
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Equation (1.4.2) is an identity between operators: it must hold for every element
ϕ ∈ H.

As already mentioned, we shall now restrict our attention to the group of integers
Z. The Haar measure on Z is the counting measure and the topology is the discrete
one; if one considers the space Cc(Z, B) of continuous compactly supported B valued
functions on Z, this is just the algebra of formal sums

f =
∑
t∈Z

att, (1.4.3)

with the coefficients at ∈ B different from zero for a finite number of t’s. The formula
in (1.4.3) should be interpreted as the statement that the function f takes the value
at in t.

One has a twisted convolution product given by

f ∗ g =
∑
s∈Z

∑
t∈Z

atαt(bs−t)
 s, (1.4.4)

and an involution given by
f ∗ =

∑
t∈Z

αt(a−t∗)t, (1.4.5)

that turn Cc(Z, B) into a *-algebra.

The algebra B can be embedded in Cc(Z, B) using functions supported at the
identity element of Z. Likewise, the group Z is represented in Cc(Z, B) by associating
to every s ∈ Z the delta-function

δs(t) =

1 t = s

0 t 6= s
.

The algebra Cc(Z, B) is a good candidate for an algebra encoding information
about both the algebra B and the group Z. For each f in Cc(Z, B) one can define
the L1-norm

‖f‖1 :=
∑
t∈Z
‖at‖B, (1.4.6)

where ‖ · ‖B denotes the C*-algebra norm of B. The norm (1.4.6) turns Cc(Z, B) into
a normed algebra with isometric involution. One denotes by L1(Z, B) its completion
in the norm (1.4.6), which is a Banach algebra but in general not a C*-algebra, as
one can see in the following example:
Example 1.8. For B = C, the resulting algebra is `1(Z) equipped with twisted invo-
lution and convolution. It is easy to see that the C∗-property (1.1.2) does not hold.
A counterexample is given by the sequence a = (an) with
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an =


1 n = 0
−1 n = 1
0 otherwise

. (1.4.7)

One should therefore look for another way of making Cc(Z, B) into a C∗-algebra.
Note that given a covariant representation (π, u,H) of the discrete C*-dynamical
system (B,Z, α), one can always construct a representation π × u of the algebra
Cc(Z, B) on L(H) given by

(π × u)(f) =
∑
t∈Z

π(at)ut. (1.4.8)

Moreover, given any nondegenerate faithful representation π : B → L(H), there
always exists a covariant representation (πα, λ) of (B,G, α), with λ the left-regular
representation, satisfying:

πα(x)ξ(t) = π(αt−1(x))ξ(t) (λ(t)ξ)(s) = ξ(t−1s), (1.4.9)

If one considers the image of the representation πα × λ in L(H) this is by definition
a concrete C∗-algebra.
Definition 1.4.3. The crossed product BoαZ of the C∗-algebra B by Z is the concrete
C*-algebra

B oα Z = (πα × λ)(Cc(Z, B)).

Example 1.9. The irrational rotation algebra Aθ of Example 1.5 can be realized as a
crossed product by the integers, by considering the C∗-dynamical system (C(S1), α,Z)
defined as follows.

We identify functions in C(S1) with continuous functions on the real line of period
1. The action α of Z induced by rotation of the angle θ, and it is given, for every
n ∈ Z, by

αnf(t) = f(t+ nθ).

For the corresponding crossed product algebra one has the isomorphism

C(S1) oα Z ' Aθ.

Remark 1.4.4. For a general group G, the definition of the crossed product algebra is
slightly more involved. One constructs the algebra B oα G starting from the algebra
Cc(G,B) of compactly supported B valued functions on G, with twisted convolution
and involution, and completing in the norm

‖f‖ = sup
σ
‖σ(f)‖, (1.4.10)

with σ running over all possible *-representations of Cc(G,B). The supremum is
always bounded by the L1 norm of f , and it is taken over a non-empty family of
representations.
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If instead of taking all possible *-representations of Cc(G,B), one completes in
the norm induced by the left regular representation, then the resulting algebra is, in
general, smaller than B oα G. It is named the reduced crossed product algebra and it
is denoted by B ored G.

It is a known fact that for abelian groups, and hence for the particular case of the
integers, the reduced crossed product and the full one agree. This fact is true more
generally for a bigger class of groups, that of amenable groups, as stated for instance
in [90, Theorem 7.13].

1.4.2 Cuntz and Cuntz-Krieger algebras

Cuntz algebras and Cuntz-Krieger algebras are universal C∗-algebras generated by
(partial) isometries subject to certain additional conditions. They naturally appear
in the study of dynamical systems.

Before describing these algebras in detail, one needs to recall some facts about
isometries and partial isometries.
Definition 1.4.5. Let S be a bounded linear operator on a Hilbert space. S is an
isometry if and only if S∗S = Id.
Theorem 1.4.6. Let S be a bounded linear operator on a Hilbert space. The following
are equivalent:

1. S is a partial isometry;

2. S∗S is a projection;

3. SS∗ is a projection;

4. SS∗S = S;

5. S∗SS∗ = S∗.

In this case, S∗S is the projection on (kerS)⊥ and SS∗ is the projection on the range
of S.
Definition 1.4.7. Let n ≥ 2. The Cuntz algebra On is the universal C∗-algebra gen-
erated by n-isometries S1, . . . , Sn subject to the additional condition

n∑
i=1

SiSi
∗ = Id . (1.4.11)

Note that condition (1.4.11) implies in particular that the corresponding range
projections are orthogonal, i.e. S∗i Sj = δij Idn for all i, j.
Theorem 1.4.8 ([23, Theorem 3.1]). Suppose that Si and Ti, i = 1, . . . , n are two
families of non-zero partial isometries satisfying (1.4.11). Then the map Si 7→ Ti
extendes to an isomorphism C∗(S1, . . . , Sn) ' C∗(T1, . . . , Tn).
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Cuntz algebras admit an extension by compact operators:
Proposition 1.4.9 ([23, Proposition 3.1]). Let V1, . . . , Vn be isometries on a Hilbert
space H such that ∑n

i=1 ViV
∗
i ≤ 1. Then the projection P := Id−∑n

i=1 ViV
∗
i generates

a closed two sided ideal I in C∗(V1, . . . , Vn) which is isomorphic to K(H) and contains
P as a minimal projection. The quotient C∗(V1, . . . , Vn)/I is isomorphic to On.

The Toeplitz extension

0 // K(H) // C∗(V1, . . . , Vn) // On // 0. (1.4.12)

is used to prove the following result:
Theorem 1.4.10 ([24, Theorem 3.7]). For all n ∈ N, the K-theory group of the Cuntz
algebra equal

K0(On) ' Zn−1, K1(On) ' Z.

This in particular implies that the Cuntz algberas are pairwise non isomorphic, i.e.
On ' Om if and only if n = m.

Cuntz-Krieger algebras are a generalization of the above construction.
Definition 1.4.11. Let A be a matrix with entries in {0, 1} with no rows or columns
equal to zero.

The Cuntz-Krieger algebra OA is the universal C∗-algebra generated by partial
isometries Si with pairwise orthogonal range projections, subject to the relations

n∑
i=1

SiSi
∗ = Id

Si
∗Si =

n∑
j=1

AijSjSj
∗.

(1.4.13)

Clearly for A the matrix with all entries equal to one, one gets back the Cuntz
algebras On.

Any family {Si}ni=1 of partial isometries satisfying the conditions in (1.4.13) is called
a Cuntz-Krieger A-family, and there is a uniqueness results similar to Theorem 1.4.8.
We state it here under mildly stronger assumptions than those of the original paper.
Theorem 1.4.12 (cf.[25, Theorem 2.13]). Let A be an n × n matrix with entries in
{0, 1} which is irreducible and not a permutation matrix, and assume that Si and
Ti, i = 1, . . . , n are Cuntz-Krieger A-families. Then the map Si 7→ Ti extends to an
isomorphism C∗(S1, . . . , Sn) ' C∗(T1, . . . , Tn).

The K-theory groups of the Cuntz-Krieger algebras can be computed in terms of
the algebraic properties of the matrix A.
Theorem 1.4.13 ([24, Theorem 4.2]). One has group isomorphisms

K0(OA) ' coker(1−At) K1(OA) ' ker(1−At). (1.4.14)
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Remark 1.4.14. Given any n × n matrix A with entries in {0, 1}, one can construct
a graph Γ with n vertices and an edge joining the i-th and the j-th vertex whenever
Aij = 1. The resulting Cuntz-Krieger algebra OA agrees with the C∗-algebra of the
graph Γ , as defined in [54, 53].

1.4.3 Circle actions

We conclude this chapter by explaining how the algebras described in this section
are naturally equipped with a strongly continuous circle action, a feature they share
with all Pimsner algebras, as we will see in Subsection 3.2.1.
Definition 1.4.15. An action σ := {σw}w∈S1 of the circle S1 on a C∗-algebra A is
strongly continuous if for every convergent sequence (wn)n∈N in S1, with limit w, and
every a ∈ A, the sequence σwn(a) converges to σw(a).

If σ is a strongly continuous action, then for every a ∈ A, the map w → σw(a) is a
continuous function from S1 → A, with respect to the norm topology.

Let A = BoZ be the crossed product C∗-algebras of B with the integers. There is
a natural action α̂ of the Pontryagin dual group Ẑ := S1 on A. This action is defined,
at the level of functions, as

α̂γ (f) (t) = γ(t)f(t),

for all γ ∈ Ẑ and t ∈ Z; it is called the dual action.

Similarly, given the Cuntz algebras On, for every z ∈ S1 the family {zSi}ni=1 is a
family which generates On as well, and by Theorem 1.4.8 the assignment σz(Si) = zSi
gives a homomorphism σz : On → On. The homomorphism σz is an inverse to σz,
so that σz is actually in Aut(On). Moreover, it is easy to see that σ := {σz}z∈S1 is a
strongly continuous circle action on On, that is named the gauge action.

The construction works readily for Cuntz-Krieger algebras: one uses the fact
that for any z ∈ S1 the family {zSi}ni=1 is also a Cuntz-Krieger A-family, and by
Theorem 1.4.12 one has a well-defined homomorphism σz : OA → OA such that
σz(Si) = zSi. An inverse is given by σz, so that σz ∈ Aut(OA) and σ := {σz}z∈S1

gives a strongly continuous circle action on OA, named the gauge action as well.

We will investigate algebras endowed with a strongly continuous circle action in
Section 3.2, and relate them to Pimsner algebras.



Chapter 2

Hilbert modules, Morita equivalence and KK-theory

In this chapter, we will describe the building blocks of this thesis: Hilbert modules,
C∗-correspondences and self-Morita equivalence bimodules. We will start by defining
Hilbert C∗-modules, showing how to construct new modules from existing ones, and
we will describe the properties of operators between Hilbert modules, leading to the
notion of module frames. We will then define C∗-correspondences and show how they
appear in the definition of Morita equivalence for C∗-algebras. A central character
in this thesis will be played by a particular class of correspondences that go under
the name of self-Morita equivalence bimodules; we will think of these as sections of a
noncommutative Hermitian line bundle. We conclude this chapter by recalling some
notions of Kasparov’s bivariant K-theory.

Our main references for this chapter are [8, 55, 70, 87].

2.1 Hilbert modules, operators and module frames

Hilbert C∗-modules play a central rôle in the modern developments of noncommu-
tative geometry and index theory. Roughly speaking, they are a generalization of
Hilbert spaces in which the complex scalars are replaced by a C∗-algebra. They were
first introduced by Kaplansky in [48] for the commutative unital case. Later Paschke
proved in [64] that most facts hold true in the case of an arbitrary C∗-algebra. Around
the same time, the theory of Hilbert C∗-modules was developed and used by Rieffel in
his work [72] on induced representations, leading to the notion of strong Morita equiv-
alence. Hilbert C∗-modules are a central character in Kasparov’s bivariant K-theory
(see for instance [50]) and from a geometrical point of view, they can be thought of
as modules of sections of a noncommutative Hermitian vector bundle.

In the following we will denote an arbitrary C∗-algebra with the letter B.
Definition 2.1.1. A pre-Hilbert module over B is a right B-module E with a B-valued
Hermitian product, i.e. a map 〈·, ·〉B : E × E → B satisfying

29
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〈ξ, η〉B = 〈η, ξ〉 ∗B ;
〈ξ, ηb〉B = 〈ξ, η〉Bb;

〈ξ, ξ〉B ≥ 0;
〈ξ, ξ〉B = 0⇒ ξ = 0

for all ξ, η ∈ E and for all b ∈ B.

To lighten notation we shall write 〈·, ·〉 = 〈·, ·〉B whenever possible.

Note that we use here the so-called physicists’ notation with linearity in the second
entry. This may seem to be inconsistent with the usual notion of Hilbert space found
in mathematics textbooks, like for instance Definition 12.1 in [76], but it has some
practical advantages: we will use right modules and linear operators acting on the
left. For this reason, if not otherwise stated, we will always consider our modules to
be right-modules. Clearly one may just as well define left-modules by adapting the
above definition.

For a pre-Hilbert module E , one can define a scalar valued norm ‖ · ‖ using the
C∗-norm on B:

‖ξ‖2 = ‖〈ξ, ξ〉B‖B. (2.1.1)

Definition 2.1.2. A Hilbert C∗-module E is a pre-Hilbert module that is complete in
the norm (2.1.1).

If one defines 〈E ,E〉 to be the linear span of elements of the form 〈ξ, η〉 for ξ, η ∈ E ,
then its closure its a two-sided ideal in B. We say that the Hilbert module E is full
whenever 〈E ,E〉 is dense in B.
Example 2.1. Clearly, a Hilbert C∗-module over the field of complex numbers C is
nothing but a Hilbert space.
Example 2.2. If B is a commutative unital C∗-algebra, then by Gel’fand’s Theorem
1.1.1, B ' C(X). Moreover, by the Serre-Swan Theorem 1.2.3, a vector bundle
E → X is equivalently described by the right C(X)-module of sections E := Γ (X),
with right action given, for every ξ ∈ E and f ∈ C(X), by the section t 7→ ξ(t)f(t). If
in addition E is an Hermitian vector bundle with fiber Et, i.e. if one has an Hermitian
product 〈·, ·〉Et in every fiber, which varies continuously with t, then for any two
sections ξ, η ∈ Γ (X) one can define their Hermitian product as the section

t 7→ 〈ξ(t), η(t)〉Et .

Then E is a Hilbert C∗-module over the commutative C∗-algebra B ' C(X).
Example 2.3. The simplest (in general) noncommutative example of Hilbert C∗-
module is given by the algebra B itself, with Hermitian product

〈a, b〉 = a∗b, (2.1.2)

and right action given by the algebra product. This module will be denoted by BB.
By the existence of approximate units for C∗-algebras (cf. [31, Theorem 1.4.8]), the
module BB is automatically full.
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Example 2.4. Since every C∗-algebra is naturally a Hilbert module over itself, one
can use this fact to define, for any natural number n, the B module Bn, in analogy
with Example 1.7. It consists of n-tuples of elements ξi ∈ B, with component-wise
right multiplication and well-defined Hermitian product

〈ξ, η〉 =
n∑
i=1
〈ξi, ηi〉B, (2.1.3)

for ξ = (ξi) and η = (ηi), which turn it into a Hilbert C∗-module.
Example 2.5. Generalizing the previous example, one can start from {Ei}ni=1 a finite
set of Hilbert C∗-modules over B. The direct sum ⊕n

i=1 Ei is a B-module in the
obvious way (point-wise multiplication) with inner product defined, as in (2.1.3). If
all Ei = E , then ⊕n

i Ei will be denoted by En.

Things become subtler if {Ei}i∈I is an infinite set of Hilbert B-modules. One defines⊕
i∈I Ei as the set of sequences (ξi), with ξi ∈ Ei and such that ∑i∈I〈ξi, ξi〉 converges

in B. Then for ξ = (ξi) and η = (ηi) the inner product

〈ξ, η〉 =
∑
i∈I
〈ξi, ηi〉

is well-defined and the module ⊕i∈I Ei is complete, hence a Hilbert C∗-module.
Example 2.6. If H is a Hilbert space, the algebraic tensor product H ⊗alg B has a
natural structure of right B-module and it can be endowed with a B-valued Hermitian
product

〈ξ ⊗ a, η ⊗ b〉 := 〈ξ, η〉a∗b,

which turns it into a pre-Hilbert module. We denote its completion with H⊗B. If the
Hilbert spaceH has an orthonormal basis, thenH⊗B can be naturally identified with
the direct sum module⊕iB defined previously. If H is a separable, finite dimensional
Hilbert space, then H ⊗ B is denoted with HB and it is referred to as the standard
Hilbert module.

A Hilbert C∗-module E is topologically finitely generated if there exists a finite set
{η1, . . . , ηn} of elements of E such that the B-linear span of the ηi’s is dense in E .
It is said to be algebraically finitely generated if every element ξ ∈ E is of the form∑n
i=1 biηi for some bi.

Definition 2.1.3 (cf.Definition 1.2.1). LetB a unital C∗-algebra. A Hilbert C∗-module
E is projective if it is a direct summand in the free module Bn for some n.
Proposition 2.1.4 ([87, Corollary 15.4.8]). Every algebraically finitely generated Hilbert
C∗-module over a unital algebra is projective.

Let now E ,F be two Hilbert C∗-modules over the same C∗-algebra B.
Definition 2.1.5. A map T : E → F is said to be an adjointable operator if and only
if there exists another map T ∗ : F → E with the property that

〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ E , η ∈ F .
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Every adjointable operator is automatically linear, and by the Banach-Steinhaus
theorem, it is bounded. However, the converse is in general not true: a bounded linear
map between Hilbert modules need not be adjointable. To see this, let A be a unital
C∗-algebra, B a proper ideal and i : B → A the inclusion. If i were adjointable, we
would have i∗(1) = 1, which is not the case, since 1 /∈ B.

The collection of adjointable operators from E to F is denoted LB(E ,F ). When
E = F , the adjointable operators form a C∗-algebra, that is denoted by LB(E).

Inside the space of adjointable operators one can single out a particular class, which
is analogous to that of finite rank operators on a Hilbert space. More precisely, for
every ξ ∈ F , η ∈ E one defines the operator θξ,η : E → F as

θξ,η(ζ) = ξ〈η, ζ〉, ∀ζ ∈ E (2.1.4)

This is an adjointable operator, with adjoint θ∗ξ,η : F → E given by θη,ξ.

We denote by KB(E ,F ) the closed linear subspace of LB(E ,F ) spanned by

{θξ,η | ξ, η ∈ E}, (2.1.5)

which we refer to as the space of compact adjointable operators.

In particular KB(E) := KB(E ,E) ⊆ LB(E) is an ideal, hence a C∗-subalgebra,
whose elements are referred to as compact endomorphisms. For any C∗-algebra B,
seen as a Hilbert module over itself, we have KB(B) ' B.

Finally, the C∗-algebraic dual of E , denoted by E∗ is defined as the space

E∗ := {φ ∈ LB(E , B) | ∃ ξ ∈ E with φ(η) = 〈ξ, η〉 ∀η ∈ E} . (2.1.6)

Thus, with ξ ∈ E , if λξ : E → B is the operator defined by λξ(η) = 〈ξ, η〉, for all
η ∈ E , every element of E∗ is of the form λξ for some ξ ∈ E .

One says that a module E is self-dual if the C∗-algebraic dual E∗ coincides with
LB(E , B). If B is unital, then Bn is self dual. As a consequence, every finitely gener-
ated projective Hilbert C∗-module over a unital C∗-algebra is also self-dual.

We finish by describing how finite projective modules can be characterized in terms
of their algebra of compact operators.
Theorem 2.1.6 ([38, Proposition 3.9]). Let B be a unital C∗-algebra and E a right
B-module. Then E is finitely generated projective if and only if

1 = IdE ∈ KB(E).

Proof. In one direction the proof is straightforward: let E ' pBn, it is then enough
to consider the image of the standard basis of Bn.

Conversely, since IdE ∈ KB(E), and KB(E) is an ideal, we have an isomorphism
KB(E) ' LB(E). Since KB(E) is a unital C∗-algebra, and the invertible elements in
a unital C∗-algebra form an open set, the dense ideal of finite rank operators cannot
be proper, so IdE is actually finite rank. This means that the identity operator is of
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the form
IdE =

∑n

j=1 θζj ,ζ
′
j
, (2.1.7)

for a finite number of ζj, ζ ′j ∈ E . Using the trivial identity IdE = Id∗E IdE we can
actually select a finite family {ηj}nj=1 in E such that

IdE =
∑n

j=1 θηj ,ηj . (2.1.8)

As a consequence, one can reconstruct any element of ξ ∈ E as

ξ =
∑n

j=1 ηj 〈ηj, ξ〉B. (2.1.9)

The matrix p = (pjk) with elements pjk = 〈ηj, ηk〉B is a projection in the matrix
algebra Mn(B). By construction (pjk)∗ = pkj and, using (2.1.9) one shows

(p2)jl =
n∑
k=1
〈ηj, ηk〉B〈ηk, ηl〉B

=
n∑
k=1
〈ηj, ηk〈ηk, ηl〉B〉B = 〈ηj, ηl〉B = pjl .

This establishes the finite right B-module projectivity of E with the isometric iden-
tification E ' pBn. Furthermore, E is self-dual for its Hermitian product. ut

The proof of the theorem motivates the following definition:
Definition 2.1.7 ([74]). A finite standard module frame for the right Hilbert B-module
E is a finite family of elements {ηi}nj=1 of E such that, for all ξ ∈ E , the reconstruction
formula (2.1.9), holds true.
Remark 2.1.8. More generally, one could consider frames with countable elements,
with (2.1.9) replaced by a series convergent in E , or equivalently (2.1.8) replaced
by the condition that the series ∑j θηj ,ηj is strictly convergent to the unit of LB(E)
(KB(E) need not be unital). We refer to [35] for details.

As we have seen in the proof of Theorem 2.1.6, the existence of a finite frame is
a geometrical condition: whenever one has a right Hilbert B-module E with a finite
standard module frame, the module itself is finitely generated and projective.

Actually, for E to be finitely generated projective it is enough to have two finite
sets {ζi}ni=1 and {ζ ′i}ni=1 of elements of E satisfying (2.1.7). Then, any element ξ ∈ E
can be reconstructed as

ξ =
n∑
j=1

ζj 〈ζ ′j, ξ〉B,

and the matrix with elements ejk = 〈ζj, ζ ′k〉B is an idempotent in Mn(B), (e2)jk = ejk,
and E ' eBn as a right B-module.
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2.2 C∗-correspondences, bimodules and Morita equivalence

C∗-correspondences are the building blocks of Kasparov’s bivariant K-theory, and
they play a crucial rôle in Morita equivalence.

2.2.1 C∗-correspondences

We have described in the previous section how any C∗-algebra B is naturally a Hilbert
B-module. Given a second C∗-algebra A and a C∗-homomorphism φ : A → B, the
algebra B itself can be endowed with a left A-module structure, with action

a · b = φ(a)b,

satisfying 〈φ(a)b, c〉 = 〈b, φ(a)∗c〉.

Note that whenever we have a Hilbert B-module E , by its very definition, the
algebra LB(E) and its subalgebra KB(E) act adjointably on E from the left. More
generally, whenever one has a map φ : A→ LB(E), it is possible to endow the Hilbert
module E with a left A-module structure:

a · ξ = φ(a)(ξ) (2.2.1)

for all ξ ∈ E and a ∈ A. This motivates the following:
Definition 2.2.1. A C∗-correspondence (E , φ) from A to B, also named an (A,B)-
correspondence, is a right Hilbert B-module E endowed with a *-homomorphism
φ : A→ LB(E). If A = B we refer to (E , φ) as a C∗-correspondence over B.

When no confusion arises, we will refer to the pair (E , φ) by using the compact
notation Eφ.

Two C∗-correspondences Eφ and Fψ over the same algebra B are called isomorphic
if and only if there exists a unitary U ∈ LB(E ,F ) intertwining φ and ψ.

C∗-correspondences can be composed: given an (A,B)-correspondence Eφ and a
(B,C)-correspondence Fψ, one can construct an (A,C)-correspondence, named the
interior tensor product of Eφ and Fψ.

As a first step, one constructs the balanced tensor product E ⊗B F which is a
quotient of the algebraic tensor product E ⊗alg F by the subspace generated by
elements of the form

ξb⊗ η − ξ ⊗ ψ(b)η, (2.2.2)

for all ξ ∈ E , η ∈ F , b ∈ B.

This has a natural structure of right module over C given by

(ξ ⊗ η)c = ξ ⊗ (ηc)
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and a C-valued inner product defined on simple tensors as

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉C := 〈η1, ψ(〈ξ1, ξ2〉B)η〉C , (2.2.3)

and extended by linearity.

The inner product is well-defined and has all required properties; in particular, the
null space N = {ζ ∈ E ⊗alg F ; 〈ζ, η〉 = 0} is shown to coincide with the subspace
generated by elements of the form in (2.2.2).

One then defines E⊗̂ψF to be the right Hilbert module obtained by completing
E ⊗B F in the norm induced by (2.2.3).

Moreover for every T ∈ LB(E), the operator defined on simple tensors by

ξ ⊗ η 7→ T (ξ)⊗ η

extends to a well-defined operator φ∗(T ) := T ⊗ Id. It is adjointable with adjoint
given by T ∗ ⊗ Id = φ∗(T ∗). In particular, this means that there is a left action of A
defined on simple tensors by

(φ⊗ψ Id)(a)(ξ ⊗ η) = φ(a)ξ ⊗ η,

and extended by linearity to a map

φ⊗ψ Id : A→ LC(E⊗̂ψF ),

thus turning E⊗̂ψF into an (A,C)-correspondence.

We have already encountered an example of interior tensor product: if E = H a
Hilbert space seen as a correspondence over C, and F = BB with ι the complex action
by multiples of the identity, then H⊗ι B is unitarily equivalent, as a correspondence
over C, to the module H⊗B presented in Example 2.6.
Proposition 2.2.2 ([7, Proposition 5.2]). Given two *-algebra homomorphisms φ :
A→ B and ψ : B → C, one has an isomorphism of (A,C)-correspondences.

Eφ⊗̂ψEψ = Eψ◦φ.

Taking the interior tensor power is an associative operation on isomorphism classes
of C∗-correspondences.
Remark 2.2.3. In the paper [67], the name Hilbert bimodule was used to denote a
right Hilbert module with a left action by adjointable operators. We however pre-
fer describing a pair (E , φ) with the name C∗–correspondence, which has recently
emerged as a more common one, reserving the terminology Hilbert bimodule to the
more restrictive case where one has both a left and a right inner product satisfying
an extra compatibility relation.
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2.2.2 Hilbert bimodules

Given a right Hilbert B-module E , by construction, compact endomorphisms act on
the left on E . Then by defining,

〈ξ, η〉KB(E) := θξ,η, (2.2.4)

one obtains a natural KB(E)-valued Hermitian product on E . Note this is left linear
over KB(E), that is 〈Tξ, η〉KB(E) = T ( 〈ξ, η〉K ) for T ∈ KB(E). Thus E is a left Hilbert
KB(E)-module and by the very definition of KB(E), E is full over KB(E). One easily
checks the compatibility condition

ξ〈η, ζ〉B = 〈ξ, η〉KB(E) ζ, for all ξ, η, ζ ∈ E . (2.2.5)

In particular, the B-valued and KB(E)-valued norms coincide [70, Lemma 2.30].

This motivates the following definition:
Definition 2.2.4. Given two C∗-algebras A and B, a Hilbert (A,B)-bimodule E is a
right Hilbert B-module with B-valued Hermitian product 〈 , 〉B, which is at the same
time a left Hilbert A-module with A-valued Hermitian product 〈 , 〉A and such that
the Hermitian products are compatible, that is,

ξ〈η, ζ〉B = 〈ξ, η〉A ζ, for all ξ, η, ζ ∈ E . (2.2.6)

Note that 〈 , 〉B is right B-linear, while 〈 , 〉A is left A-linear.

A Hilbert (A,B)-bimodule is a very special object: an (A,B)-correspondence Eφ in
the sense of Definition 2.2.1 need not have, in general, a left A-valued inner product.
However, whenever the map φ is injective with KB(E) ⊆ φ(A), the map φ−1 is well-
defined on KB(E). One can use this fact together with the left KB(E)-valued inner
product on E to define an A-valued inner product

〈ξ, η〉A = φ−1( 〈ξ, η〉KB(E) ), for all ξ, η ∈ E . (2.2.7)

Note that the module E need not be full with respect to this left inner product. If in
addition φ is an isomorphism onto KB(E), then by the very definition of KB(E), E
is also full as left Hilbert A-module.

2.2.3 Morita equivalence

Definition 2.2.5. An (A,B)-equivalence bimodule is a full (A,B)-correspondence Eφ

where the left action φ : A → LB(E) is an isomorphism onto KB(E). One says
that two C∗-algebras A and B are Morita equivalent if such an (A,B)-equivalence
bimodule exists.

Every full Hilbert B-module E is a (KB(E), B)-equivalence bimodule.
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Morita equivalence is a weaker equivalence relation that isomorphism. Indeed, given
an isomorphism φ : A→ B, the C∗-correspondence (BB, φ) is an (A,B)-equivalence
bimodule.
Remark 2.2.6. Let (A,B) two unital C∗-algebras. Any C∗-correspondence Eφ im-
plementing the Morita equivalence between the two algebras is finitely generated
projective as an A-module. To see this, one can use the fact that A ' KB(E) is
unital and Theorem 2.1.6 to obtain the claim. Moreover, this in particular implies
that E admits a finite module frame in the sense of Definition 2.1.7.
Proposition 2.2.7 ([70, Proposition 3.8]). If Eφ is an (A,B)-equivalence bimodule,
then Eφ is a Hilbert (A,B)-bimodule in the sense of Definition 2.2.4.
Theorem 2.2.8. Morita equivalence is an equivalence relation.

Proof. Morita equivalence is clearly symmetric since for every C∗-algebra one has
B ' KB(B). It is reflexive since by [55, Proposition 7.1] B ' KA(E) implies that
A ' KB(F ) for F the Hilbert module F = KA(E,A). Moreover, F is full whenever
E is.

Transitivity is obtained by taking the interior tensor product of correspondences.
To see this, one needs to check that φ⊗ψ Id gives an isomorphism A ' KC(E ⊗ψ F ),
whenever φ and ψ are isomorphisms.

First of all, every ξ ∈ E and η ∈ F the equation Sξ(η) = ξ ⊗ η, defines an element
Sξ ∈ LC(F ,E⊗̂ψF ) whose adjoint is just S∗ξ (ζ⊗η) = ψ(〈ξ, ζ〉)η, for ξ, ζ ∈ E , η ∈ F .
Finally, for b ∈ B and ξ1, ξ2, ζ ∈ E and η ∈ F , one computes:

Sξ1ψ(b)S∗ξ2(ζ ⊗ η) = Sξ1ψ(b)ψ(〈ξ2, ζ〉)(η) = ξ1 ⊗ ψ(b〈ξ2, ζ〉)(η)
= ξ1b〈ξ2, ζ〉 ⊗ η = (θξ1b,ξ2(ζ))⊗ η
= φ∗(θξ1b,ξ2)(ζ ⊗ η)

Thus
φ∗(θξ1b,ξ2) = Sξ1ψ(b)S∗ξ2 ,

which is in KC(E⊗̂ψF ) since ψ(b) ∈ KB(E).
Since ψ is non degenerate, it follows, by using an approximate unit for B, that
ψ∗(θξ1,ξ2) = Sξ1S

∗
ξ2 , and by the definition of KB(E) it follows that φ∗(KB(E)) is

contained in KC(E⊗̂ψF ). By [55, Proposition 4.7], whenever φ is an isomorphism, φ∗
is an isomorphism as well. In particular, for A ' KB(E) one has that A ' KC(E⊗̂ψF )
via the isomorphism φ∗. ut

Morita equivalence is a purely noncommutative notion. Indeed, Morita equivalent
algebras have isomorphic centers (cf. [52, Section 2.3]), and therefore two commuta-
tive C∗-algebras are Morita equivalent if and only if they are isomorphic.

In noncommutative topology Morita equivalence is the most natural equivalence re-
lation to consider: Morita equivalent C∗-algebras have, among other things, the same
representation theory and the same K-theory and K-homology (and also bivariant
K-theory) groups.
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2.3 Self-Morita equivalence bimodules and the Picard group

Let B be a C∗-algebra. A self-Morita equivalence bimodule over B is any C∗-
correspondence Eφ over B which implements the reflexivity of Morita equivalence
for a C∗-algebra B. The simplest example of self-Morita equivalence bimodule is the
algebra B itself together with the identity map. Equivalently, self-Morita equivalence
bimodules can be defined in terms of (B,B)-bimodules, but we prefer adopting the
former approach.
Definition 2.3.1. A self-Morita equivalence bimodule over B is a C∗-correspondence
(E , φ), where E is full and φ : B → KB(E) is an isomorphism.

Two self-Morita equivalence bimodules are isomorphic if and only if they are iso-
morphic as C∗-correspondences; by [2, Corollary 1.2] the left inner product is auto-
matically preserved.

The prototypical commutative example of a self-Morita equivalence bimodule is
provided by B = C(X), the C∗-algebra of continuous functions on a compact topo-
logical space X, E = Γ (X) the C(X)-module of sections of a Hermitian line bundle
L → X and φ the trivial action. For this reason, one is led to think of self-Morita
equivalence bimodules as noncommutative line bundles.

Similarly to line bundles in classical geometry, self-Morita equivalence bimodules
are invertible in some sense. More precisely, if (E , φ) is a self-Morita equivalence
bimodule over B, the dual Hilbert module E∗ as defined in (2.1.6), can be made into
a self-Morita equivalence bimodule over B as well.

First of all, E∗ is given the structure of a (right) Hilbert C∗-module over B by
means of the map φ. Recall that the elements of E∗ are of the form λξ for some
ξ ∈ E , with λξ(η) = 〈ξ, η〉, for all η ∈ E . The right action of B on E∗ is given by

λξ b := λξ ◦ φ(b) = λφ(b)ξ ,

the second equality being easily established. The B-valued Hermitian product on E∗
uses the left KB(E)-valued Hermitian product on E :

〈λξ, λη〉 := φ−1(θξ,η) ,

and E∗ is full as well. Next, define a ∗-homomorphism φ∗ : B → LB(E∗) by

φ∗(b)(λξ) := λξ·b∗ ,

which is in fact an isomorphism φ∗ : B → KB(E∗). Thus, the pair (E∗, φ∗) is a self-
Morita equivalence bimodule over B, according to Definition 2.3.1. It is the inverse
to the self-Morita equivalence bimodule (E , φ) with respect to the operation given by
the interior tensor product.

For a C∗-algebra B, the collection of unitary equivalence classes of self-Morita
equivalence bimodules over B has a natural group structure with respect to the
interior tensor product, with identity element the class of the self-Morita equivalence
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bimodule (B, Id). Thinking of self-Morita equivalence bimodules as noncommutative
line bundles, this group is named the Picard group of B, denoted by Pic(B), in analogy
with the classical situation for which the Picard group of a space X is the group of
isomorphism classes of line bundles over X.

Recall that every automorphism α ∈ Aut(B) yields a self-Morita equivalence bi-
module (B,α) for B. If β is another automorphism, then by Proposition 2.2.2 their
product is equivalent to (B, βα). Thus one has an anti-homomorphism from the group
of automorphisms of B to the Picard group, that is denoted by

ΦB : Aut(B)→ Pic(B).

Let us now assume, for the sake of simplicity, that B is unital. Then if u is a unitary
element in B, one denotes by Adu the automorphism of B defined by Adu(b) =
ubu∗. Ad(u) is called an inner automorphism of B and one denotes the group of
inner automorphisms of B with Inn(B). Since isomorphism of correspondences is
implemented by unitaries, one gets that Inn(B) is contained in the kernel of the map
ΦB. By [11, Theorem 3.1] one actually has an isomrphism Inn(B) ' ker(ΦB).

Recall now that for any unital algebra B one also has a short exact sequence of
groups

1 // Inn(B) // Aut(B) // Out(B) // 1 .

For every automorphism α, we will denote by [α] its corresponding class in Out(B);
then every element [α] ∈ Out(B) yields an element in Pic(B).
Remark 2.3.2. If B is not unital, an analogous result holds true, with the group
Inn(B) replaced by the group of generalized inner automorphisms Gin(B), the group
of inner automorphisms of the multiplier algebraM(B) of B.

The Picard group of a commutative C∗-algebra

Since a class of examples of self-Morita equivalence bimodules that are of interest
for the present thesis comes from modules over commutative algebras, it is crucial to
understand the structure of the group Pic(B) in the commutative case.

Recall that for a commutative C∗-algebra B, the classical Picard group CPic(B) is
the group of Hilbert line bundles over the spectrum σ(B) of B (cf. [32]), and one
can prove that it agrees with the group Pic(σ(X)). The following result relates the
noncommutative Picard group with its classical counterpart:
Theorem 2.3.3 ([2, Theorem 1.12]). Let B a commutative C∗-algebra. Then CPic(B)
is a normal subgroup in Pic(B) and

Pic(B) ' CPic(B) o Aut(B),

where the action of Aut(B) is given by conjugation.

We will see an example of this phenomenon in Section 4.3.
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2.4 Kasparov modules and KK-theory

We conclude this section with a quick overview of Kasparov’s bivariant K-theory.
Definition 2.4.1. Let A and B two C∗-algebras. We define E(A,B) to be the set of
all triples (E , φ, F ), where (E , φ) is a countably generated (A,B)-correspondence,
with grading γ : E → E, and F ∈ LB(E) is an operator of degree one, such that
[F, φ(a)], (F 2 − 1)φ(a), (F − F ∗)φ(a) are in KB(E) for all a ∈ A.

The elements of E(A,B) are called even Kasparov modules. Triples (E , φ, F ) for
which the operators [F, φ(a)], (F 2 − 1)φ(a), (F − F ∗)φ(a) are all zero are called de-
generate Kasparov modules. We denote their collection with D(A,B).
Example 2.7. If φ : A → B is a graded homomorphism, then the triple (B, φ, 0) is a
Kasparov (A,B)-module. One special case is when A = B and φ = IdA.
Example 2.8. Whenever one has a C∗-correspondence (E , φ) satisyfying the additional
assumption that the image of φ is contained in KB(E), then the triple (E , φ, 0) is an
even Kasparov (A,B)-module.

There is a naturally binary operation on Kasparov modules given by direct sum,
and E(A,B) is closed under direct sum. If (Ei, φi, Fi) are Kasparov (Ai, B)-modules
for i = 1, 2, then (E1 ⊕ E2, φ1 ⊕ φ2, F1 ⊕ F2) is a Kasparov (A1 ⊕ A2, B)-module.
Similarly, if (Ei, φi, Fi) are Kasparov (A,Bi)-modules for i = 1, 2, then (E1⊕E2, φ1⊕
φ2, F1 ⊕ F2) is a Kasparov (A,B1 ⊕B2)-module.

In order to define KK-theory, one needs to introduce some equivalence relation on
Kasparov modules, which are reminiscent of the equivalence relations for K-theory
and K-homology we encountered in Section 1.3.
Definition 2.4.2. Two Kasparov modules (E1, φ1, F1), (E2, φ2, F ) ∈ E(A,B) are uni-
tarily equivlent if there is a unitary in L∗B(E1,E2), of degree 0, intertwining the φi’s
and the Fi’s.
Definition 2.4.3. A Kasparov module (E , φ, F ′) is a compact perturbation of (E , φ, F )
if and only if (F − F ′)φ(a) ∈ KB(E) for all a ∈ A.

One defines ∼cp to be the equivalence relation on E(A,B) generated by unitary
equivalence, compact perturbation and addition of degenerate elements. Moreover,
one can define a stabilized version of this equivalence relation, that is denoted by ∼c:
(E1, φ1, F1) ∼c (E2, φ2, F ) if and only if there exist (E ′1, ψ1, G1) and (E ′2, ψ2, G2) such
that ∼c: (E1, φ1, F1) ⊕ (E ′1, ψ1, G1) ∼cp (E2, φ2, F ) ⊕ (E ′2, ψ2, G2). This equivalence
relation has different names in the literature: in [26] it is named cobordism. The set
of equivalence classes of E(A,B) under the equivalence relation ∼c will be denoted
by KKc(A,B).
Definition 2.4.4. Two Kasparov modules (E1, φ1, F1), (E2, φ2, F ) ∈ E(A,B) are ho-
motopy equivalent if there is an element (E , φ, F ) ∈ E(A,C([0, 1], B)) such that the
element (E ⊗fi B, fi · φi, fi(F )) is unitarily equivalent to (Ei, φi, Fi).

The set of equivalence classes of E(A,B) under the equivalence relation ∼h will be
denoted by KK(A,B).
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From now on we will assume that A is separable and B is σ-unital. In that case the
equivalence relations ∼h and ∼c coincide and by [26, Theorem 3.7] we have a group
isomorphism KKc(A,B) ' KK(A,B).
Definition 2.4.5. An odd Kasparov module is a triple (E , φ, F ) as in Definition 2.4.1,
were E is trivially graded and F ∈ LB(E) is an operator such that [F, φ(a)],
(F 2 − 1)φ(a) and (F − F ∗)φ(a) are in KB(E) for all a ∈ A1.

The group KK1(A,B) is defined as the set of equivalence classes of odd Kasparov
modules under unitary equivalence and homotopy. Alternatively, it can be defined
using the theory of extensions. This was acutally Kasparov’s approach [50].
Remark 2.4.6 (Higher KK-groups). The groupKK1(A,B) can be equivalently defined
as KK(A,B⊗̂C). More generally, one sets

KKd(A,B) := KK(A,B⊗̂Cn),

for all d ∈ N, where ⊗̂ denotes the graded tensor product of C∗-algebras (see for
instance [8, Section 14.5]).

The KK groups are functorial: if f : A′ → A and g : B → B′ are homomorphisms
of C∗-algebras, one has a map f ∗ : E(A,B)→ E(A′, B) given by

f ∗(E , φ, F ) = (f ∗E , φ ◦ f, F ),

and a map g∗ : E(A,B)→ E(A,B′) given by

g∗(E , φ, F ) = (E ⊗B B′, φ⊗g Id, F ⊗̂1).

Both maps pass to the quotient KK.

2.4.1 The unbounded picture

Definition 2.4.7. An unbounded Kasparov module is a pair (E ,D), where E is an
(A,B)-bimodule, D : Dom(D) → E is an odd self adjoint regular operator and for
all a ∈ A, the operator a(1 + D2)−1 is a compact endomorphism. Moreover, the
subalgebra

A := {a ∈ A | [D, a] ∈ LB(E)}

is dense in A.

The set of unbounded Kasparov (A,B)-modules is denoted by Ψ1(A,B).

Given any unbounded Kasparov module (E ,D) ∈ Ψ1(A,B), one can construct a
bounded Kasparov module in E(A,B) by considering the bounded transform of D,
which is defined as the operator:
1 Since E is trivially graded, there is no requirement on the degree of F .
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F := D(1 + D2)− 1
2 .

The relation between the bounded and unbounded picture of K-theory was established
in [6] and it is contained in the following:
Theorem 2.4.8. Let (E ,D) be an unbounded Kasparov module and let F be the
bounded transform of D. Then the following facts hold:

• (E , φ, F ) is a bounded Kasparov module.

• Two unbounded Kasparov modules are equivalent if their bounded transforms are
homotopic. Any Kasparov module is homotopic to the bounded transform of an
unbounded one.

Unbounded representatives can be defined for higher KK-groups by looking at
modules in Ψ1(A,B⊗̂Cn).

2.4.2 The Kasparov product

There is a well-defined bilinear pairing

⊗B : KK(A,B)×KK(B,C)→ KK(A,C) (2.4.1)

denoted with (x, y) 7→ x⊗B y, covariant in C and contravariant in A. It is compatible
with composition of morphisms: given φ : A → B and ψ : B → C morphisms of
C∗-algebras, then

[φ]⊗B [ψ] = [ψ ◦ φ] ∈ KK(A,C).

Proposition 2.4.9. The product is associative, meaning that if α ∈ KK(A,B), β ∈
KK(B,C), and γ ∈ KK(C,D), then

α⊗B (β ⊗C γ) = (α⊗B β)⊗C γ ∈ KK(A,D).

The Kasparov product is functorial, i.e. it is compatible with pull-back and push-
forward. In particular, one has the following three possibilities:

1. If A,A′ are separable, f : A′ → A is a homomorphism, and x1 ∈ KK(A,B),
x2 ∈ KK(B,C), then f ∗(x1)⊗B x2 = f ∗(x1 ⊗B x2) ∈ KK(A′, C).

2. If g : C → C ′ is a homomorphism and x1 ∈ KK(A,B), x2 ∈ KK(B,C), then
x1 ⊗B g∗(x2) = g∗(x1 ⊗B x2) ∈ KK(A,C ′).

3. If h : B → B′ is a homomorphism, x1 ∈ KK(A,B), x2 ∈ KK(B′, C), then
x1 ⊗B h∗(x2) = h∗(x1)⊗B′ x2 ∈ KK(A,B).

Proposition 2.4.10. Let [1A] ∈ KK(A,A) denote the class of the Kasparov module
(A, IdA). Then for any α ∈ KK(A,B) and any β ∈ KK(B,A), 1A ⊗A α = α and
β ⊗A 1A = β.
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If A is separable, it follows from associativity that KK(A,A) is a ring under the
intersection product. Moreover, KK(C,C) ' Z as a ring.

KK-theory incorporates both K-homology and K-theory of C∗-algebras, by setting
the first or the second variable equal to C, respectively:

KKi(C, B) = Ki(B), KKi(A,C) = Ki(A).

As a consequence the intersection product

KKi(C, A)×KKi(A,C)→ KK(C,C)

agrees with the index pairing between K-theory and K-homology described in Sub-
section 1.3.3.

The Kasparov product 2.4.1 admits a simpler description in terms of unbounded
Kasparov modules. This is still a central topic of active research, which however goes
beyond the scope of the present work. We limit ourself to mentioning the following
partial result, which will be used later in this work.
Theorem 2.4.11 ([65, Appendix A],[17, Theorem 2.3]). Let (E ,D) be an unbounded
odd Kasparov (A,B)-module. Then, assuming that D has a spectral gap around zero,
the Kasparov product of K1(A) with the class of (E ,D) is represented by

〈[u], [E ,D]〉 = [kerPuP ]− [cokerPuP ] = Ind(PuP ) ∈ K0(B), (2.4.2)

where P is the non-negative spectral projection for the operator D.

2.4.3 KK-equivalence, mapping cones and six term exact sequences

Any fixed element α ∈ KKd(A,B) determines homomorphisms in K-theory and in
K-homology, given by left and right multiplication:

⊗Aα : Kj(A)→ Kj+d(B), α ⊗B : Kj(B)→ Kj+d(A). (2.4.3)

We say that two C∗-algebras A and B are KK-equivalent if there exists α ∈
KKd(B,A) and β ∈ KK−d(B,A) such that α ⊗B β = 1A and β ⊗A α = 1B. The
elements α and β are said to be invertible.

Morita equivalence implies KK-equivalence, which is implemented by the class of
the right B-module E such that LB(E) ' A, with φ : A → LB(E) the isomorphism
and F = 0. The fact that the modules are full implies that the action of A on E is
by compact operators, hence the Kasparov module is well-defined.

As a consequence of KK-equivalence one has Bott periodicity in KK-theory:
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Proposition 2.4.12 ([8, Theorem 19.2.1, Corollary 19.2.2]). For any A and B there
are isomorphisms KK1(A,B) ' KK(A, SB) ' KK(SA,B) and KK(A,B) '
KK1(A, SB) ' KK1(SA,B) ' KK(S2A,B) ' KK(A, S2B) ' KK(SA, SB).
Definition 2.4.13. The cone over a C∗-algebra A is the C∗-algebra

CA := {f ∈ C([0, 1), A) | f(0) = 0} ,

with point-wise operation and norm the supremum norm.

The mapping cone for a morphism α : A→ B is the C∗-algebra

Cα := {a⊕ f ∈ A⊕ CB |f(1) = α(a)} .

For every C∗-algebra A, the cone fits in an exact sequence involving the suspension

0 // SA // CA // A // 0 .

Similarly, for a morphism α : A → B, the mapping cone Cα is related to A and B
via the exact sequence

0 // SB ι // Cα
π // A // 0 , (2.4.4)

where ι(f ⊗ a)(t) := f(t)a and π is the projections π(a⊕ f) = a. The exact sequence
(2.4.4) admits a completely positive cross section given by φ(a) = (a, (1− t)α(a)).

In order to construct six term exact sequences in KK-theory, one needs the following
important result.
Theorem 2.4.14 ([8, Theorem 19.5.3]). Let A be a C∗-algebra, I ⊆ A an ideal. Suppose
that the exact sequence

0 // I
i // A

p
// A/I // 0 ,

admits a completely positive splitting. Then the exact sequence

0 // SI // CA
π // Cp // 0 , (2.4.5)

admits a completely positive splitting as well.

This fact has the following important consequence, which was observed in [26].
Theorem 2.4.15. Let A a C∗-algebra and I ⊆ A an ideal satisfying the assumptions
of the previous lemma. The map e : I → Cp defined by e(x) = (x, 0), seen as an
element of KK(I, Cq), is a KK-equivalence.

The inverse of e is the element u ∈ KK(Cp, I) ' KK1(Cp, SI) representing the
extension (2.4.5).

As a corollary, one obtains six-term exact sequences in KK-theory, of which the
exact sequences (1.3.4) and (1.3.5) are particular instances.
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Theorem 2.4.16 ([8, Theorem 19.5.7]). Let

0 // I
i // A

p
// A/I // 0 ,

be a short exact sequence of C∗-algebras, admitting a completely positive splitting.
Then for any separable C∗-algebra C, the following six-term exact sequence is exact:

KK0(C, I) i∗−−−→ KK0(C,A) p∗−−−→ KK0(C,A/I)

∂

x y∂ .

KK1(C,A/I) ←−−−
p∗

KK1(C,A) ←−−−
i∗

KK1(C, I)

If A is separable and C sigma unital, then the following six-term exact sequence is
exact

KK0(I, C) ←−−−
i∗

KK0(A,C) ←−−−
p∗

KK0(A/I, C)y∂ ∂

x
KK1(A/I, C) p∗−−−→ KK1(A,C) i∗−−−→ KK1(I, C)

where ∂ is the multiplication with the class in KK1(A/I, I) corresponding to the
extension. Up to the identification KK1(A/I, I) with KK(S(A/I), I), the extension
class corresponds to ι∗(u), where ι is the natural inclusion of S(A/I) into Cp and
u ∈ KK(Cp, I) is the inverse of e : I → Cp defined in Theorem 2.4.15.
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Chapter 3

Pimsner algebras and generalized crossed products

3.1 Pimsner algebras

In his breakthrough paper [67], starting from a full C∗-correspondence (E , φ) such
that the left action φ : B → LB(E) is an isometric ∗-homomorphism, Pimsner con-
structed two C∗-algebras: these are now referred to as the Toeplitz algebra and the
Cuntz-Pimsner algebra of the C∗-correspondence (E , φ), denoted by TE and OE re-
spectively. The former is actually an extension of the second, and can be thought of as
a generalization of the Toeplitz algebra, while the latter encompasses a large class of
examples, like Cuntz-Krieger algebras and crossed products by the integers. Both al-
gebras are characterized by universal properties and depend only on the isomorphism
class of the C∗-correspondence.

Generalized crossed product algebras, a related notion, were defined in [1] as uni-
versal C∗-algebras associated to any Hilbert (B,B)-bimodule E . We will present their
definition and recall how, for the case of a self-Morita equivalence bimodule, they are
isomorphic to the corresponding Cuntz-Pimsner algebra.

We will conclude with six term exact sequences in KK-theory, naturally associated
to any Pimsner algebra.

3.1.1 The Toeplitz algebra of a full C∗-correpsondence

In this section we will work under the following assumption:
Assumption 3.1.1. The image of φ is contained in KB(E).

Iterating the construction of the interior tensor product module described in Sub-
section 2.2.1, one considers the the k-fold tensor products

E (k) := E ⊗̂
k
φ k > 0. (3.1.1)

Then one builds the infinite direct sum module

49
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E+ = B ⊕
∞⊕
k=1

E (k). (3.1.2)

It is a C∗-correspondence over B, with left action φ+ given, for all b ∈ B, by

φ+(b)(ξ1 ⊗ . . .⊗ ξk) = φ(b)ξ1 ⊗ . . .⊗ ξk;

for k ≥ 1 and ξ1, . . . , ξk ∈ E and

φ+(b)(b′) = bb′

for b′ ∈ B. It is referred to as the (positive) Fock correspondence associated to the
correspondence Eφ.

One can naturally associate to any element ξ ∈ E a creation and an annihilation
operator in LB(E+); the creation operator is given by

Tξ(ξ1 ⊗ . . .⊗ ξk) = ξ ⊗ ξ1 ⊗ . . .⊗ ξk, Tξ(b) = ξb, (3.1.3)

and its adjoint is the annihilation operator

T ∗ξ (ξ1 ⊗ . . .⊗ ξk) = φ(〈ξ, ξ1〉)ξ2 ⊗ . . .⊗ ξk, T ∗ξ (b) = 0. (3.1.4)

Definition 3.1.2. The Toeplitz algebra TE of the C∗-correspondence Eφ is the smallest
C∗-subalgebra of LB(E+) that contains all the Tξ for ξ ∈ E .

The algebra is universal in the following sense:
Theorem 3.1.3 ([67, Theorem 3.4]). Let (E , φ) be a full C∗-correspondence over B,
C any C∗-algebra and ψ : B → C a ∗-homomorphism with the property that there
exist elements tζ ∈ C for all ζ ∈ E such that

1. αtξ + βtη = tαξ+βη for all α, β ∈ C and ξ, η ∈ E ;

2. tξψ(a) = tξa and ψ(a)tξ = tφ(a)ξ for all ξ ∈ E and a ∈ B ;

3. t∗ξtη = ψ(〈ξ, η〉) ∈ B for all ξ, η ∈ E ;

then there exists a unique extension ψ̃ : TE → C that maps Tξ to tξ.

3.1.2 The Pimsner Algebra of a full C∗-correspondence

The (Cuntz-)Pismner algebra OE of a full C∗-correspondence (E , φ) is a quotient of
the Toeplitz algebra. Under Assumption 3.1.1 one has the following:
Definition 3.1.4. The Pimsner algebra OE of the C∗-correspondence (E , φ) is the
quotient algebra appearing in the exact sequence

0 // KB(E+) // TE
π // OE // 0. (3.1.5)
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It is easy to check that since E is full, then E+ is a full Hilbert module as well;
hence KB(E+) is by definition Morita equivalent to the algebra B.

The image of an element Tξ ∈ TE under the quotient map π will be denoted by Sξ.
Example 3.1. Let B = C and E = Cn and φ the left action by multiplication. If
one chooses a basis for Cn, then the Toeplitz algebra of (E , φ) is generated by n
isometries V1, . . . , Vn satisfying ∑i ViV

∗
i ≤ 1. This is the Toeplitz extension for the

Cuntz algebras On:

0 // K(H) // C∗(V1, . . . , Vn) // On // 0.

In particular, for n = 1 one gets the classical Toeplitz extension

0 // K(H) // TC // C(S1) // 0. (3.1.6)

Example 3.2. Generalizing the previous example, let A be a n×n matrix with entries
in {0, 1} with no rows or columns equal to zero. Let us consider the finite dimensional
commutative C∗-algebra B = Cn, that we identify with the set of n × n diagonal
matrices. B is generated by the minimal projections pi, for i = 1, . . . , n.

Let eij be the standard basis of Cn ⊗ Cn. One defines E to be the vector space

E = span{eij | Aij = 1} ⊆ Cn ⊗ Cn. (3.1.7)

The left and right module structures are given by the natural conditions

φ(pk)eij = δkieij eijpk = δkjekj

with inner product
〈eij, ekl〉 = δikδjlpj.

This module admits a finite frame
{
ei = ∑

j eij | Aij = 1, i = 1, . . . , n
}
.

The inner product of elements in the frame has the form

〈ei, ej〉 = δij
∑
k

Aikpk,

while the left action on frame elements is given by

φ(pi) = θei,ei ∈ KB(E).

It follows that the algebra OE is generated by elements Si := Sei that satisfy

SiS
∗
i = pi, S∗i Si =

n∑
j=1

AijSjSj
∗

and hence it coincides with the Cuntz-Krieger algebra OA of [25], described in Sub-
section 1.4.2.
Example 3.3. More generally, if the module E is finitely generated projective, the
Pimsner algebra of (E , φ) can be realized explicitly in terms of generators and rela-
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tions [47]. Since E is finitely generated projective, it admits a finite frame {ηj}nj=1.
Then, from the frame reconstruction formula (2.1.9), for any b ∈ B:

φ(b)ηj =
n∑
j=1

ηi〈ηi, φ(b)ηj〉B,

The C∗-algebra OE is the universal C∗-algebra generated by B together with n op-
erators S1, . . . , Sn, satisfying

S∗i Sj = 〈ηi, ηj〉B,
∑

j
SjS

∗
j = 1, and bSj =

∑
i
Si〈ηi, φ(b)ηj〉B, (3.1.8)

for b ∈ B, and j = 1, . . . , n. The generators Si are partial isometries if and only if the
frame satisfies 〈ηi, ηj〉 = 0 for i 6= j. For B = C and E a Hilbert space of dimension
n, one recovers the Cuntz algebra On of Example 3.1.
Example 3.4. Let B be a C∗-algebra and α : B → B an automorphism of B. Then
E = B can be naturally made into a C∗-correspondence.
The right Hilbert B-module structure is the standard one, with right B-valued inner
product 〈a, b〉B = a∗b.
The automorphism α is used to define the left action via a · b = α(a)b and left
B-valued inner product given by 〈a, b〉B = α(a∗b).

Each module E (k) is isomorphic to B as a right-module, with left action

a · (x1 ⊗ · · · ⊗ xk) = αk(a)αk−1(x1) · · ·α(xk−1)xk. (3.1.9)

The corresponding Pimsner algebra OE coincides then with the crossed product alge-
bra B oα Z, while the Toeplitz algebra TE agrees with the Toeplitz algebra T (B,α)
of [66, Section 2], that appears in the exact sequence

0 // B ⊗K(H) // T (B,α) // B oα Z // 0. (3.1.10)

Similarly to the Toeplitz algebra TE (cf. Theorem 3.1.3), the Pimsner algebra OE
can be characterized in terms of its universal properties.
Theorem 3.1.5 ([67, Theorem 3.12]). Let (E , φ) as above, C a C∗-algebra and ψ :
B → C a ∗-homomorphism. Suppose that there exist elements sζ ∈ C for all ζ ∈ E
such that

1. α · sξ + β · sη = sα·ξ+β·η for all α, β ∈ C and ξ, η ∈ E ;

2. sξ · ψ(a) = sξ·a and ψ(a) · sξ = sφ(a)(ξ) for all ξ ∈ E and a ∈ B;

3. s∗ξsη = ψ(〈ξ, η〉) for all ξ, η ∈ E ;

4. sξs∗η = ψ(φ−1(θξ,η)) for all ξ, η ∈ E ;

then there exists a unique ∗-homomorphism ψ̂ : OE → C with ψ̂(Sξ) = sξ for all
ξ ∈ E .
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3.1.3 The case of a self-Morita equivalence bimodule

In view of our geometrical motivation, which is the study of noncommutative circle
and line bundles, we will now restrict our attention to case of self-Morita equivalence
bimodules. For this reason, we will work under the following assumption:
Assumption 3.1.6. The map φ is an isomorphism onto the compacts KB(E).

Note that of all the examples of Hilbert bimodules, with corresponding Pimsner
algebras, presented in 3.1.1, only the Toeplitz extension of (3.1.6) and the crossed
product algebra are the Pimsner algebras of a self-Morita equivalence bimodule. In
the other examples the map φ is not surjective.

Given a self-Morita equivalence bimodule (E , φ) for the C∗-algebra B, in Section 2.3
we described how to take interior tensor products of self-Morita equivalences and how
to turn the dual E∗ into a self-Morita equivalence bimodule (E∗, φ∗). In the self-Morita
equivalence bimodule case the situation is highly symmetric, and instead of working
with a direct sum indexed over N, one can construct a direct sum over the integers.
Indeed, for every k ∈ Z one defines the module E (k) as:

E (k) :=


E ⊗̂

k
φ k > 0

B k = 0
(E∗)⊗̂

−k
φ∗ k < 0

.

Clearly, E (1) = E and E (−1) = E∗. From the very definition of these Hilbert B-
modules, one has isomorphisms

K(E (k),E (l)) ' E (l−k), for k, l ∈ Z.

Out of them, one constructs the Hilbert B-module E∞ as a direct sum:

E∞ :=
⊕
k∈Z

E (k) , (3.1.11)

which is referred to as the two-sided Fock module of the self-Morita equivalence bi-
module E .

As described in the previous section, one naturally defines creation and annihilation
operators on the two-sided Fock module as well. First of all, for each ξ ∈ E one has
a bounded adjointable operator (a creation operator) Sξ : E∞ → E∞, shifting the
degree by +1, defined on simple tensors by:

Sξ(b) := ξb , b ∈ B ,

Sξ(ξ1 ⊗ · · · ⊗ ξk) := ξ ⊗ ξ1 ⊗ · · · ⊗ ξk , k > 0 ,
Sξ(λξ1 ⊗ · · · ⊗ λξ−k) := λξ2·φ−1(θξ1,ξ) ⊗ λξ3 ⊗ · · · ⊗ λξ−k , k < 0 .

The adjoint of Sξ (an annihilation operator) is easily found to be given by
Sξ
∗ := Sλξ : E∞ → E∞:
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Sλξ(b) := λξb , b ∈ B ,

Sλξ(ξ1 ⊗ . . .⊗ ξk) := φ(〈ξ, ξ1〉)ξ2 ⊗ ξ3 ⊗ · · · ⊗ ξk , k > 0 ,
Sλξ(λξ1 ⊗ . . .⊗ λξ−k) := λξ ⊗ λξ1 ⊗ · · · ⊗ λξ−k , k < 0 ;

In particular, Sξ(λξ1) = SξSξ1
∗ = φ−1(θξ,ξ1) ∈ B and Sξ∗Sξ1 = Sλξ(ξ1) = 〈ξ, ξ1〉 ∈ B.

Definition 3.1.7. The Pimsner algebra OE of the self-Morita equivalence bimodule
(E , φ) is the smallest C∗-subalgebra of LB(E∞) generated by the creation operators
Sξ for all ξ ∈ E .
Remark 3.1.8. Again the algebra OE depends only on the isomorphism class of the
correspondence (E , φ).

There is an injective ∗-homomorphism i : B → OE . This is induced by the injective
∗-homomorphism φ : B → LB(E∞) defined by

φ(b)(b′) := b · b′ ,
φ(b)(ξ1 ⊗ · · · ⊗ ξn) := φ(b)(ξ1)⊗ ξ2 ⊗ · · · ⊗ ξn ,

φ(b)(λξ1 ⊗ · · · ⊗ λξn) := φ∗(b)(λξ1)⊗ λξ2 ⊗ · · · ⊗ λξn
= λξ1·b∗ ⊗ λξ2 ⊗ · · · ⊗ λξn ,

and whose image is in the Pimsner algebra OE .

3.2 Circle actions and generalized crossed products

Pimsner algebras are endowed with a natural action of the circle γ : S1 → Aut(OE),
known as the gauge action, a feature they have in common with ordinary crossed
products by the integers and with Cuntz-Krieger algebras.

In this section we will describe the gauge action on a Pimsner algebra and its
properties, and recall the theory of C∗-algebras endowed with a circle action, focusing
on their connection with the notion of generalized crossed products.

3.2.1 The gauge action

By the universal properties of Proposition 3.1.5 (with C = B, ψ the identity and
sξ := zSξ), the map

Sξ → σw(Sξ) := w∗Sξ, w ∈ S1,

extends to an automorphism of OE , that we will denote with γ. The action is strongly
continuous.
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The fixed point algebra OγE is in general bigger than the algebra of scalars B. In
the case of a self-Morita equivalence bimodule the two algebras agree, as shown by
the following theorem.
Theorem 3.2.1. Let OE be the Pimsner algebra of a full C∗-correspondence over B.
Suppose that E is a self-Morita equivalence bimodule, then the fixed point algebra OγE
agrees with the algebra of scalars B.

Proof. Inside the fixed point algebra one has all elements of the form S∗i Sj; by the
universal property 3 it follows that all inner products of elements in E are in the
fixed point algebra. By fullness of E one has that B ↪→ OγE . Moreover, the fixed point
algebra also contains all words of the form Si1 . . . SikSj1

∗ . . . Sjk
∗ for all n. Elements

of this form can be naturally seen as elements in KB(E (k)).

Using the same notation of [67], we denote with FE the C∗-algebra generated in
limn LB(E (k)) by all the algebras KB(E (k)), with the convention that KB(E (0)) = OγE .
If Im(φ) ⊆ KB(E) then FE agrees with the direct limit algebra limkKB(E (k)).

It is easy to see that the fixed point algebra OγE coincides with the algebra FE .
Notice that whenever the image of φ contains KB(E), then KB(E (k+1)) ⊆ KB(E (k)),
which implies that FE = B. In view of Assumptions 3.1.1 and 3.1.6, this happens in
particular in the case of a self-Morita equivalence bimodule. ut

3.2.2 Algebras and circle actions

Let A be a C∗-algebra endowed with a strongly continuous action σ : S1 → Aut(A).
For each k ∈ Z, one defines the k-th spectral subspace for the action σ to be

Ak :=
{
ξ ∈ A | σw(ξ) = w−k ξ for all w ∈ S1

}
.

Clearly, the invariant subspace A0 ⊆ A is a C∗-subalgebra of A, with unit whenever
A is unital; this is the fixed-point subalgebra Aσ for the action.

For every pair of integers k, l ∈ Z, the subspace AkAl–meant as the closed linear
span of the set of products xy with x ∈ Ak and y ∈ Al–is contained in Ak+l. Thus,
the algebra A is Z-graded and the grading is compatible with the involution, that is
A∗k = A−k for all k ∈ Z.

In particular, for any k ∈ Z the space A∗kAk is a closed two-sided ideal in A0.
Thus, each spectral subspace Ak has a natural structure of Hilbert A0-bimodule (not
necessarily full) with left and right Hermitian products:

〈x, y〉A0 = xy∗, 〈x, y〉A0 = x∗y, for all x, y ∈ Ak. (3.2.1)
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3.2.3 Generalized crossed products

A somewhat better framework for understanding the relation between Pimsner alge-
bras and algebras endowed with a circle action is that of generalized crossed products.
They were introduced in [1] and are naturally associated to Hilbert bimodules via
the notion of a covariant representation.
Definition 3.2.2. Let E be a Hilbert (B,B)-bimodule (not necessarily full). A covari-
ant representation of E on a C∗-algebra C is a pair (π, T ) where

1. π : B → C is a ∗-homomorphism of algebras;

2. T : E → C satisfies

T (ξ)π(b) = T (ξb) T (ξ)∗T (η) = π(〈ξ, η〉B)
π(b)T (ξ) = T (bξ) T (ξ)T (η)∗ = π( 〈ξ, η〉B )

for all b ∈ B and ξ, η ∈ E .

Using the theory of hereditary subalgebras in a C∗-algebra, one can show that co-
variant representations always exist (cf. [1, Proposition 2.3]).
Definition 3.2.3. Let E be a Hilbert (B,B)-bimodule. The generalized crossed product
BoE Z of B by the Hilbert bimodule E is the universal C∗-algebra generated by the
covariant representations of E .

In [1, Proposition 2.9] the generalized crossed product algebra is realized as a cross-
sectional algebra (à la Fell-Doran) for a suitable C∗-algebraic bundle over Z.

It is worth stressing that a generalized crossed product need not be a Pimsner
algebra in general, since the representation of B giving the left action need not be
injective, nor the modules full. However, a self-Morita equivalence bimodule (E , φ) is
always a Hilbert bimodule, with left B-valued inner product constructed in terms of
the map φ, as described in (2.2.4), and the bimodule is full. By using the universal
properties in Theorem 3.1.5, one shows that for a self-Morita equivalence bimodule
the two constructions yield isomorphic algebras.

The advantage of using generalized crossed products is that one can reconstruct a
C∗-algebra carrying a circle action as a generalized crossed product if and only if a
certain completeness condition is satisfied. As we will see, this condition is intrinsically
geometrical, and it is deeply connected to principal actions.
Theorem 3.2.4 ([1, Theorem 3.1]). Let A be a C∗-algebra with a strongly continuous
action of the circle. The algebra A is isomorphic to A0 oA1 Z if and only if A is
generated, as a C∗-algebra, by the fixed point algebra A0 and the first spectral subspace
A1 of the circle action.

The above condition was introduced in [34] and is referred to as having a semi-
saturated action. It is fulfilled in a large class of examples, like crossed product by
the integers, and noncommutative (or quantum) principal circle bundles, as we shall
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see quite explicitly in Chapter 4. In fact, this condition encompasses more general
non-principal actions, which are however beyond the scope of the present work.

In Theorem 3.2.4 a central character is played by the module A1. If one assumes
that it is a full bimodule, that is if

A∗1A1 = A0 = A1A
∗
1, (3.2.2)

the action σ is said to have large spectral subspaces (cf. [64, Section 2]), a slightly
stronger condition than semi-saturatedness (cf. [5, Proposition 3.4]). Firstly, the
condition above is equivalent to the condition that all bimodules Ak are full, that is
A∗kAk = A0 = AkA

∗
k for all k ∈ Z. When this happens, all bimodules Ak are self-

Morita equivalence bimodules for A0, with isomorphisms φ : A0 → KA0(Ak) given by

φ(a)(ξ) := a ξ, for all a ∈ A0, ξ ∈ Ak. (3.2.3)

Combining Theorem 3.2.4 with the fact that for a self-Morita equivalence bimodule
the generalized crossed product construction and Pimsner’s construction yield the
same algebra, one obtains the following result.
Theorem 3.2.5. [5, Theorem 3.5] Let A be a C∗-algebra with a strongly continuous
action of the circle. Suppose that the first spectral subspace A1 is a full and countably
generated Hilbert bimodule over A0. Then the Pimsner algebra OA1 of the self-Morita
equivalence (A1, φ), with φ as in is (3.2.3), is isomorphic to A. The isomorphism is
given by Sξ 7→ ξ for all ξ ∈ A1.

Up to completions, all examples considered in this work will fit into the framework
of the previous theorem.

3.3 Six term exact sequences

With a Pimsner algebra OE come two natural six term exact sequences inKK-theory,
which provide an elegant description of the KK-theory groups of OE .

We will describe the exact sequences for the case of a self-Morita equivalence bi-
module: these relate the KK-theory groups of the Pimsner algebra OE with that of
the C∗-algebra of (the base space) scalars B. The corresponding sequences in K-
theory are noncommutative analogues of the Gysin sequence (A.2.2), which in the
commutative case relates the K-theories of the total space and of the base space of
a principal circle bundle. The classical cup product with the Euler class is replaced,
in the noncommutative setting, by a Kasparov product with the identity minus the
generating Hilbert C∗-module E .

We begin with a proposition, which is an immediate consequence of Theorem 3.2.1
and [67, Theorem 2.5].
Proposition 3.3.1. Let E be a self-Morita equivalence bimodule. The exact sequence
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0 // KB(E+) // TE
π // OE // 0. (3.3.1)

admits a completely positive cross section s : OE → TE .

Since the exact sequence has a completely positive cross section, by Theorem 2.4.16
it will induce six term exact sequences in KK-theory.

In the sequences we will use the fact that the algebra KB(E+) is by definition Morita
equivalent to B, and that by [67, Theorem 4.4] the Toeplitz algebra is KK-equivalent
to B. We will now describe the maps appearing in the exact sequence.

First of all, in view of Assumption 3.1.6 the following class is well-defined.
Definition 3.3.2. The class in KK0(B,B) defined by the even Kasparov module
(E , φ, 0) (with trivial grading) will be denoted by [E ].

Next, consider the orthogonal projection P : E∞ → E∞ with range

Im(P ) =
∞⊕
k≥0

E (k) ⊆ E∞ . (3.3.2)

Since [P, Sξ] ∈ K(E∞) for all ξ ∈ E , one has [P, S] ∈ K(E∞) for all S ∈ OE . Then, let
F := 2P − 1 ∈ L(E∞) and let φ̂ : OE → L(E∞) be the inclusion.
Definition 3.3.3. The class in KK1(OE , B) defined by the odd Kasparov module
(E∞, φ̂, F ) will be denoted by [∂] and it is referred to as the extension class.

The class [∂] admits a natural unbounded representative (cf.[18, Section 6]). This
is the analogue of the number operator on the Fock space of quantum mechanics.
Geometrically, this operator can be interpreted as the infinitesimal generator for the
gauge action. It is defined as

N : Dom(N )→ E∞, N

∑
k∈Z

xk

 :=
∑
k∈Z

k xk (3.3.3)

on the dense domain Dom(N ) ⊆ E∞

Dom(N ) :=

ξ =
∑
k∈Z

ξk ∈ E∞ | ξk ∈ E (k),

∥∥∥∥∥∥
∑
k∈Z

k2〈ξk, ξk〉

∥∥∥∥∥∥ <∞
 . (3.3.4)

This defines a self-adjoint and regular operator on E∞ (cf. [65, Proposition 4.6] and
[16, Proposition 2.7]) and it follows from [71, Theorem 3.1] that the pair (E∞,N )
yields a class in the odd unbounded Kasparov bivariant K-theory KK1(B,OE) whose
bounded transform is the module of Definition 3.3.3.

For any separable C∗-algebra C one then has group homomorphisms

[E ] : KK∗(B,C)→ KK∗(B,C) , [E ] : KK∗(C,B)→ KK∗(C,B)

and



3.3. Six term exact sequences 59

[∂] : KK∗(C,OE)→ KK∗+1(C,B) , [∂] : KK∗(B,C)→ KK∗+1(OE , C) ,

which are induced by the Kasparov product. With abuse of notation we denote the
product with the class with the same symbol as the class itself: care should be taken
since the Kasparov products above are sometimes taken on the left and sometimes
on the right.

These yield natural six term exact sequences in KK-theory [67, Theorem 4.8].
Theorem 3.3.4. Let OE be the Pimsner algebra of the self-Morita equivalence bimodule
(E , φ) over the C∗-algebra B. If C is any separable C∗-algebra, there are two exact
sequences:

KK0(C,B) 1−[E ]−−−→ KK0(C,B) i∗−−−→ KK0(C,OE)

[∂]

x y[∂]

KK1(C,OE) ←−−−
i∗

KK1(C,B) ←−−−
1−[E ]

KK1(C,B)

and

KK0(B,C) ←−−−
1−[E ]

KK0(B,C) ←−−−
i∗

KK0(OE , C)y[∂] [∂]

x
KK1(OE , C) i∗−−−→ KK1(B,C) 1−[E ]−−−→ KK1(B,C)

with i∗, i∗ the homomorphisms in KK-theory induced by the inclusion i : B → OE .

In particular, for C = C one obtains a six-term exact sequence in K-theory:

K0(B) 1−[E ]−−−→ K0(B) i∗−−−→ K0(OE)

[∂]

x y[∂] .

K1(OE) ←−−−
i∗

K1(B) ←−−−
1−[E ]

K1(B)

(3.3.5)

with i∗ the homomorphism in K-theory induced by the inclusion i : B → OE . This
could be considered as a generalization of the classical Gysin sequence in K-theory
of (A.2.2) for the noncommutative line bundle E over the noncommutative space B
and with the map 1− [E ] having the same rôle as the Euler class χ(E) := 1− [E ] of
the line bundle E .

Note that whenever K1(B) = 0 one can easily compute the K-theory groups of the
Pimsner algebra OE as

K0(OE) ' coker(1− [E ]), K1(OE) ' ker(1− [E ]). (3.3.6)

We will use this fact in Chapter 5 for computing the K-theory groups of quantum
lens spaces of arbitrary dimension.

The dual sequence would then be an analogue in K-homology:
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K0(B) ←−−−
1−[E ]

K0(B) ←−−−
i∗

K0(OE)y[∂] [∂]

x .

K1(OE) i∗−−−→ K1(B) 1−[E ]−−−→ K1(B)

(3.3.7)

where now i∗ is the induced homomorphism in K-homology. With the same reasoning
as above, whenever K1(B) = 0 one can easily compute the K-homology groups of the
Pimsner algebra OE as

K0(OE) ' ker(1− [E ]), K1(OE) ' coker(1− [E ]). (3.3.8)

Example 3.5. As a particular case of the above exact sequences, one has the Pimsner-
Voiculescu exact sequence for the K-theory of crossed products by the integers of [66].
This reads

K0(B) 1−α∗−−−→ K0(B) i∗−−−→ K0(B oα Z)

[∂]

x y[∂] ,

K1(B oα Z) ←−−−
i∗

K1(B) ←−−−
1−α∗

K1(B)

(3.3.9)

where Kasparov product with 1− [E ], reduces, in this case, to the map 1− α∗. This
is induced by the identity on B and, with the same convention of Definition 1.4.1, by
the automorphism α := α1 : B → B.



Chapter 4

Pimsner algebras from principal circle bundles

In this chapter we explore the connections between principal circle bundles–both
commutative and noncommutative–, frames for modules as described in Section 2,
and Z-graded algebras. This is based on Sections 3 and 4 of [3] and on [4].

We will describe noncommutative principal bundles at the level of coordinate alge-
bras, focusing on the case of circle bundles. These can be naturally given a structure
of Z-graded algebras. We will state a necessary and sufficient condition for a Z-graded
algebra to be a noncommutative principal bundle.

As we will see, this follows from the fact that the condition of having a principal
bundle is equivalent, for an abelian structure group G, to the total space algebra
being strongly graded over the Pontryagin dual Ĝ.

When completing with natural C∗-norms one has to consider continuous circle
actions on a C∗-algebra, and the Z-grading will agree on that given by spectral sub-
spaces, as described in Subsection 3.2.2. We will see that the C∗-algebra of continuous
functions on the total space of a noncommutative circle bundle can be realized as a
Pimsner algebra over the base space, for the Hilbert module given by the first spectral
subspace of the corresponding circle action.

4.1 Noncommutative principal circle bundles

In noncommutative geometry the notion of a circle action is dualized by considering
a coaction of the dual group Hopf algebra. Principality of the action is encoded in
the notion of Hopf-Galois extension. For more details on the theory of Hopf algebras
and their coactions, we refer the reader to [61].

A noncommutative principal bundle is a triple (A,H ,B), where A is the ∗-algebra
of functions on the total space, H is the Hopf-algebra of functions on the structure
group, with A being a right H -comodule ∗-algebra, that is there is a right coaction

∆R : A → A⊗H .

The functions on the base space are given by the subalgebra of coinvariant elements:

61
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B = AcoH := {x ∈ A | ∆R(x) = x⊗ 1}.

We assume the algebra A, and hence B, to be unital. We denote by Ω1
un(A) and

Ω1
un(B) the bimodules of universal differential forms over A and B, respectively.

Definition 4.1.1. One says that the datum
(
A,H ,B

)
is a noncommutative (or quan-

tum) principal circle bundle if and only if the sequence

0→ A(Ω1
un(F))A → Ω1

un(A) ver−→ A⊗ ker εH → 0 (4.1.1)

is exact, with εH denoting the counit of the Hopf algebra H . Here the first map is
inclusion while the second one, given by

ver(a⊗ b) := (a⊗ 1)∆R(b),

generates the analogue of vertical one-forms on the bundle.

The above condition is that of having a quantum principal bundle with the universal
calculus, in the sense of [14]; this in turn is equivalent, by [40, Proposition 1.6], to
the statement that the triple (A,H ,B) is a Hopf-Galois extension.

When H is cosemisimple and has an invertible antipode, exactness of the sequence
(4.1.1) is equivalent to the statement that the canonical map

χ : A⊗B A → A⊗H , x⊗ y 7→ x∆R(y) (4.1.2)

is an isomorphism. By [77, Theorem I], the map χ in (4.1.2) is injective whenever it
is surjective, and thus it is enough to check surjectivity .

When studying the structure of noncommutative circle bundles, one needs to con-
sider the unital complex algebra

O(U(1)) := C[z, z−1]/〈1− zz−1〉,

where 〈1−zz−1〉 is the ideal generated by 1−zz−1 in the polynomial algebra C[z, z−1]
on two variables. The algebraO(U(1)) is a Hopf algebra by defining, for any n ∈ Z, the
coproduct ∆ : zn 7→ zn⊗ zn, the antipode S : zn 7→ z−n and the counit ε : zn 7→ 1. It
is cosemisimple with bijective antipode, so we can rephrase the principality condition:

Proposition 4.1.2. The datum
(
A,O(U(1)),B

)
is a noncommutative (or quantum)

principal circle bundle if and only if the canonical map

χ : A⊗B A → A⊗O(U(1)),

is surjective.

Given A a right O(U(1))-comodule algebra as above, if one defines

Ak := {x ∈ A | ∆R(x) = x⊗ z−k},
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by its very definition, the fixed point algebra B ' A0 and AkAl ⊆ Ak+l. This provides
A with a Z-graded algebra structure.
Remark 4.1.3. Note that, since the group is a classical Abelian group, one may as
well have considered an action σ of S1, obtaining the degree k-part as

Ak = {x ∈ A | σw(x) = xw−k for all w ∈ S1}. (4.1.3)

Conversely, if A = ⊕k∈ZAk is a Z-graded unital algebra. The unital algebra homo-
morphism,

∆R : A → A⊗O(U(1)), x 7→ x⊗ z−k , for x ∈ Ak ,

turns A into a right comodule algebra over O(U(1)). Clearly the unital subalgebra
of coinvariant elements coincides with A0.

We now translate the condition of principality for the case of Z-graded algebras
by presenting a necessary and sufficient condition for the canonical map (4.1.2) to be
surjective, as described in [5, Theorem 4.3](see also [80, Lemma 5.1]). This condition
is more manageable in general, and in particular it can be usefully applied in exam-
ples like the quantum lens spaces as principal circle bundles over quantum weighted
projective spaces [5, 30].

Theorem 4.1.4. The triple
(
A,O(U(1)),A0

)
is a noncommutative principal circle

bundle if and only if there exist finite sequences

{ξj}Nj=1 , {βi}Mi=1 in A1 and {ηj}Nj=1 , {αi}Mi=1 in A−1

such that one has identities:∑N

j=1 ξjηj = 1A =
∑M

i=1 αiβi . (4.1.4)

Proof. Suppose first that
(
A,O(U(1)),A0

)
is a quantum principal circle bundle.

Thus, that the canonical map

χ : A⊗B A → A⊗O(U(1))

is an isomorphism. For each k ∈ Z, define the idempotents

Pk : O(U(1))→ O(U(1)) , Pk : zm 7→ δkmz
m and

Ek : A → A , En : xm 7→ δkmxm

where xm ∈ Am and where δkm denotes the Kronecker delta. Clearly,

χ ◦ (1⊗ E−k) = (1⊗ Pk) ◦ χ : A⊗A0 A → A⊗O(U(1)) . (4.1.5)

for all n ∈ Z. Let us now define the element
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γ := χ−1(1A ⊗ z) =
N∑
j=1

γ0
j ⊗ γ1

j .

It then follows from (4.1.5) that

γ = (1⊗ E−1)(γ) =
N∑
j=1

γ0
j ⊗ E−1(γ1

j ).

To continue, we remark that

m(γ) = m ◦ χ−1(1A ⊗ z) = (Id⊗ε)(1A ⊗ z) = 1A,

where m : A⊗A0 A → A is the algebra multiplication. And this implies that

1A =
∑
j=1

γ0
j · E−1(γ1

j ) =
N∑
j=1

E1(γ0
j ) · E−1(γ1

j ) .

We therefore put,

ξj := E1(γj0) and ηj := E−1(γj1) , for all j = 1, . . . , N .

Next, we define the element

δ := χ−1(1A ⊗ z−1) =
M∑
i=1

δ0
i ⊗ δ1

i .

An argument similar to the one before then shows that ∑M
i=1 αi · βi = 1A, with

αi := E−1(δ0
i ) and βi := E1(δ1

i ) , for all i = 1, . . . ,M .

This proves the first half of the theorem.

To prove the second half we suppose that there exist sequences {ξj}Nj=1, {βi}Mi=1 in
A1 and {ηj}Nj=1, {αi}Mi=1in A−1 such that ∑N

j=1 ξjηj = 1A = ∑M
i=1 αiβi.

We define the inverse map χ−1 : A⊗O(U(1))→ A⊗A0 A by the formula

χ−1 : x⊗ zk 7→


∑N
jk=1

x ξj1 · . . . · ξjk ⊗ ηjk · . . . · ηj1 , k ≥ 0

∑M
ik=1

xαi1 · . . . · αi−k ⊗ βi−k · . . . · βi1 . k ≤ 0
. (4.1.6)

This completes the proof of the theorem. ut

Now, (4.1.4) are exactly the frame relations (2.1.7) for A1 and A−1, which imply
that they are finitely generated and projective over A0.

As already argued at the end of Section 2, with the ξ’s and the η’s as above, one
defines the module homomorphisms
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Φ1 : A1 → (A0)N ,
Φ1(ζ) = (η1ζ , η2 ζ , · · · , ηN ζ)t

and

Ψ1 : (A0)N → A1 ,

Ψ1(x1 , x2 , · · · , xN)t = ξ1 x1 + ξ2 x2 + · · ·+ ξN xN .

It then follows that Ψ1Φ1 = IdA1 . Thus e1 := Φ1Ψ1 is an idempotent in MN(A0), and
A1 ' e1(A0)N . Similarly, with the α’s and the β’s as above, one defines the module
homomorphisms

Φ−1 : A1 → (A0)M ,

Φ−1(ζ) = (β1ζ , β2 ζ , · · · , βM ζ)t

and

Ψ−1 : (A0)M → A1 ,

Ψ−1(x1 , x2 , · · · , xM)t = α1 x1 + α2 x2 + · · ·+ αM xM .

Now one checks that Ψ−1Φ−1 = IdA−1 . Thus e−1 := Φ−1Ψ−1 is an idempotent in
MM(A0), and A−1 ' e−1(A0)M .

Note that condition (4.1.4) implies that the modules A−1A1 and A1A−1 are not
only contained in A0, but they are actually equal to it.

4.1.1 Strongly graded algebras

The relevance of graded algebras for noncommutative principal bundles was already
shown in [84]. The condition of having a principal action can be translated into a
condition on the corresponding grading, as explained in [61, Chapter 8].
Proposition 4.1.5. Let A := ⊕

k∈ZAk be a Z graded unital algebra. The following
facts are equivalent.

1. AkAl = Ak+l for all k, l ∈ Z;

2. AkA−k = A0 for all k ∈ Z;

3. A1A−1 = A0 = A−1A1.

Proof. Conditions 1–3 are successively stronger, hence it only suffices to show that
3⇒ 1.

The fact that AkAl ⊆ Ak+l is simply the definition of graded algebra. Recall that
for any graded unital algebra A one has that 1A ∈ A0. Hence
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Ak ⊆ AkA0, for all k ∈ Z. (4.1.7)

Now suppose that l > 0. By 4.1.7 and iterating the second half of Condition 3 we get
that

Ak+l ⊆ Ak+lA0 = Ak+lA−1A1 = Ak+l−1A1 ⊆ · · · ⊆ AkAl.

Similarly, for l < 0, one performs successive iterations of the first half of Condition 2.
ut

Definition 4.1.6. A Z-graded algebra that satisfies one of the above conditions is
called a strongly Z-graded algebra.

In the context of strongly Z-graded algebras, the fact that all right modules An for
all n ∈ Z are finitely generated projective, as implied by the frame condition (4.1.4),
is a consequence of [63, Corollary I.3.3].

We can therefore rephrase Theorem 4.1.3 as follows:

Corollary 4.1.7. The datum
(
A,O(U(1)),A0

)
is a noncommutative principal circle

bundle if and only if the algebra A is strongly Z-graded.

This can be generalized to the case of any (multiplicative) group G with unit e in
the following sense: one says that an algebra A is G-graded if its admits a direct sum
decomposition labelled by elements of G, that is A = ⊕g∈GAg, with the property
that AgAh ⊆ Agh, for all g, h ∈ G. If H := C[G] denotes the group algebra, it is
well-know that A is G-graded if and only if A is a right H -comodule algebra for the
coaction δ : A → A⊗H defined on homogeneous elements ag ∈ Ag by δ(ag) = ag⊗g.
Clearly, the coinvariants are given by AcoH = Ae, the identity components. One has
then the following result:

Theorem 4.1.8 ([61, Theorem 8.1.7]). The datum
(
A,H ,Ae

)
is a noncommutative

principal H -bundle for the canonical map

χ : A⊗Ae A → A⊗H , a⊗ b 7→
∑

g
abg ⊗ g ,

if and only if A is strongly graded, that is AgAh = Agh, for all g, h ∈ G.

Proof. First note that A being strongly graded is equivalent to AgAg−1 = Ae, for all
g ∈ G. Then one proceeds in constructing an inverse of the canonical map pretty much
as in (4.1.6). Since, for each g ∈ G, the unit 1A ∈ Ae = Ag−1Ag, there exists ξg−1,j in
Ag and ηg,j ∈ Ag−1 , such that ∑j ηg,jξg−1,j = 1A. Then, χ−1 : A⊗ H → A⊗Ae A, is
given by

χ−1 : a⊗ g 7→
∑

j
a ξg−1,j ⊗ ηg,j.

ut
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4.1.2 Tensor powers of line bundles

In the context of the previous sections, the modules A1 and A−1 emerge as a central
character.

They are actually line bundles, being self-Morita equivalence bimodules (in the
algebraic sense) over the algebra A0. In the same vein, by condition 2 in Proposi-
tion 4.1.5, all modules Ak for k ∈ Z are line bundles as well.

Given any natural number d, one is therefore led to consider the direct sum

AZd := ⊕k∈ZAkd. (4.1.8)

This vector space turns out to be isomorphic to the fixed point algebra for an action
of Zd := Z/dZ on the starting algebra A:
Proposition 4.1.9. Let A ' ⊕k∈ZAk be a Z-graded unital algebra, and denote with
σ the corresponding circle action. The vector space AZd := ⊕n∈ZAdn is a *-algebra
made of all elements of A that are invariant under the action σ1/d : Zd → Aut(A)
obtained by restricting the circle action.

Proof. By (4.1.3), the action σ1/d is defined on the generator of Zd by the condition

e2πi/d · x = e2πik/dx, for x ∈ Ak. (4.1.9)

It is straightforward to see that the algebra of invariant elements with respect to
(4.1.9) is precisely AZd . ut

As a corollary of Theorem 4.1.4 one gets the following:

Proposition 4.1.10 ([5, Proposition 4.6]). Suppose
(
A,O(U(1)),A0

)
is a noncommu-

tative principal circle bundle. Then, for all d ∈ N, the datum
(
AZd ,O(U(1)),A0

)
is

a noncommutative principal circle bundle as well.

The proof of this result goes along the line of Theorem 4.1.4 and shows also that
the right modules Ad and A−d are finitely generated projective over A0 for all d ∈ N.
Indeed, let the finite sequences {ξj}Nj=1, {βi}Mi=1 in A1 and {ηj}Nj=1, {αi}Mi=1 in A−1 be
as in Theorem 4.1.4. Then, for each multi-index J ∈ {1, . . . , N}d and each multi-index
I ∈ {4.6, . . . ,M}d the elements

ξJ := ξj1 · . . . · ξjd , βI := βid · . . . · βi1 ∈ Ad and
ηJ := ηjd · . . . · ηj1 , αI := αi1 · . . . · αid ∈ A−d ,

are clearly such that ∑
J∈{1,...,N}d

ξJ ηJ = 1AZd =
∑

I∈{1,...,M}d
αI βI .
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These allow one on one hand to apply Theorem 4.1.4 to show principality and on the
other hand to construct idempotents e(−d) and e(d), thus showing the finite projec-
tivity of the right modules Ad and A−d for all d ∈ N.

4.2 Pimsner algebras from principal circle bundles

4.2.1 An algebraic Pimsner construction

We present here an algebraic version of Pimsner construction, showing how to con-
struct a strongly graded algebra starting from two bimodules.

Let A0 be an associative complex algebra, and A1,A−1 two bimodules, together
with two maps

ψ : A1 ⊗A0 A−1 → A0 and φ : A−1 ⊗A0 A1 → A0.

For every n ≥ 1 we set

An := A1 ⊗A0 A1 ⊗A0 · · · ⊗A0 A1︸ ︷︷ ︸
n-times

A−n := A−1 ⊗A0 A−1 ⊗A0 · · · ⊗A0 A−1︸ ︷︷ ︸
n-times

.

Then we define two algebras A+ := ⊕n≥1An and A− := ⊕n≥1A−n.

Finally, the algebra
A := A− ⊕A0 ⊕A+

is a unital associative Z-graded algebra if and only if the following compatibility
conditions are satisfied

m1
L ◦ (ψ ⊗ Id) = m1

R ◦ (Id⊗φ), m−1
L ◦ (φ⊗ Id) = m−1

R ◦ (Id⊗ψ),

where mi
L : A0 ⊗A0 Ai → Ai and mi

R : Ai ⊗A0 A0 → Ai are the left and right
multiplications with elements of A0, for i = 1,−1.
Proposition 4.2.1. The maps ψ and φ are surjective, if and only if they are injective.

Proof. This fact is a consequence of the above compatibility conditions. ut

Note that the maps φ, ψ are bijective if and only if the modules Ai’s are self-Morita
equivalence bimodules (in the algebraic sense) and they are inverse to one another.
In particular, this gives the following:
Corollary 4.2.2. The algebra A is strongly Z-graded if and only if the modules Ai’s
are self-Morita equivalence bimodules.

A somewhat related construction was already described in [19] for the case of
rings. The starting point there is the notion of R-system for a ring R, i.e a triple
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(P,Q, ψ), where P and Q are R-bimodules and ψ : P ⊗R Q → R is a R-bimodule
homomorphism. Out of these ingredients one constructs a ring T(P,Q,ψ), which plays
the rôle of the Toeplitz algebra, called the Toeplitz ring, and a quotient of the latter,
O(P,Q,ψ), the analogue of the Cuntz-Pimsner algebra, called the Cuntz-Pimsner ring.

4.2.2 C∗-algebras and C∗-completions of Z-graded algebras

If one compares condition (3.2.2) with Theorem 4.1.4, it is clear that a C∗-algebra
A carrying a circle action with large spectral subspaces is strongly Z-graded. One is
then naturally led to consider the corresponding Pimsner algebra.

For commutative algebras this connection was already established in [36, Proposi-
tion 5.8] with the following result:
Proposition 4.2.3. Let A be a unital, commutative C∗-algebra carrying a circle action.
Suppose that the first spectral subspace E = A1 is finitely generated projective over
B = A0. Suppose that E generates A as a C∗-algebra. Then the following facts hold:

1. B = C(X) for some compact space X,

2. E is the module of sections of some line bundle L→ X,

3. A = C(P ), where P → X is the principal S1-bundle over X associated with the
line bundle L, and the S1 action on A is the one induced by the principal S1-action
on P .

More generally, let us start with A = ⊕k∈ZAk a graded ∗-algebra. Denote by σ the
circle action coming from the grading, i.e. given by

σw(a) = w−ka ∀a ∈ Ak. (4.2.1)

In addition, suppose there is a C∗-norm on A, and that σ is isometric with respect
to this norm:

‖σw(a)‖ ≤ ‖a‖, ∀w ∈ S1, a ∈ A. (4.2.2)

Denoting by A the completion of A, one has the following [5, Subsection 3.6]:
Lemma 4.2.4. The action {σw}w∈S1 extends by continuity to a strongly continuous
action of S1 on A. Furthermore, each spectral subspace Ak for the extended action
agrees with the closure of Ak ⊆ A.

Proof. Once Ak is shown to be dense in Ak the rest follows from standard arguments.
Thus, for k ∈ Z, define the bounded operator E(k) : A→ Ak by

E(k) : a 7→
∫
S1
wn σw(a) dw ,
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where the integration is carried out with respect to the Haar-measure on S1. Such
operators are named conditional expectations. We have that E(k)(a) = a for all a ∈ Ak
and then that ‖E(k)‖ ≤ 1. This implies that Ak ⊆ Ak is dense. ut

The left and right A0-valued Hermitian products as in (3.2.1) will make each spec-
tral subspace Ak a (not necessarily full) Hilbert C∗-module over A0. These become
full exactly when A is strongly graded. Theorem 3.2.5 leads then to:
Proposition 4.2.5. Let A = ⊕k∈ZAk be a strongly graded ∗-algebra, endowed with
a *-norm such that the induced circle action is isometric. Then its C∗-closure A is
generated, as a C∗-algebra, by A1, and it is isomorphic to the Pimsner algebra OA1

over A0.

We conclude this section by investigating what happens when the C∗-norm on
A = ⊕k∈ZAk is changed. Thus, let ‖ · ‖′ : A → [0,∞) be another C∗-norm on A
satisfying

‖σw(x)‖′ ≤ ‖a‖′, for all w ∈ S1 and a ∈ A .

The corresponding completion A′ will carry an induced circle action {σ′w}w∈S1 .
Theorem 4.2.6 ([5, Theorem 3.10]). Suppose that ‖a‖ = ‖a‖′ for all a ∈ A0. Then
{σw}w∈S1 has large spectral subspaces if and only if {σ′w}w∈S1 has large spectral sub-
spaces. In this case, the identity map A → A induces an isomorphism A → A′ of
C∗-algebras. In particular, we have that ‖a‖ = ‖a‖′ for all a ∈ A.

Proof. Remark first that the identity mapAk → Ak induces an isometric isomorphism
of Hilbert C∗-modules Ak → A′k for all k ∈ Z. This is a consequence of the identity
‖a‖ = ‖a‖′ for all a ∈ A0. But then we also have isomorphisms

A
(k)
1 ' A

′(k)
1 and A

(k)
−1 ' A

′(k)
−1 ∀ k ∈ N,

with the above modules defined as in (3.1.1), for the right action of A0 given by multi-
plication. These observations imply that {σw}w∈S1 has large spectral subspaces if and
only if {σ′w}w∈S1 has large spectral subspaces. But it then follows from Theorem 3.2.5
that

A ' OA1 ' OA′1 ' A′ ,

with corresponding isomorphism A ' A′ induced by the identity map A → A. ut

The previous result can be seen as a manifestation of the gauge-invariant unique-
ness theorem, [51, Theorem 6.2 and Theorem 6.4]. This property was indirectly used
already in [67, Theorem 3.12] for the proof of the universal properties of Pimsner
algebras.
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4.3 Twistings of graded algebras

A rich class of examples comes from starting from the Z-graded algebra of a given
principal circle bundle and twisting the product in the algebra by a given automor-
phism.

Let A = ⊕k∈ZAk be a Z-graded unital ∗-algebra. In the examples of Subsec-
tion 4.3.1 the algebra A will be the commutative algebra of coordinates on a classical
principal circle bundle, but this construction works for any unital ∗-algebra A, com-
mutative or not.
Definition 4.3.1. Let γ be a graded unital ∗-automorphism of A. We define a new
unital graded ∗-algebra (A, ?γ) =: B = ⊕

k∈Z Bn as follows: for all k we set Bk := Ak
as vector spaces (but not as modules), the involution is unchanged, and the product
on B is defined by:

a ?γ b = γk(a)γ−l(b) , for all a ∈ Bl, b ∈ Bk, (4.3.1)

where the product on the right hand side is the one in A.

It is indeed straightforward to check that the new product satisfies

i) associativity: for all a ∈ Ak, b ∈ Al, c ∈ Am it holds that

(a ?γ b) ?γ c = a ?γ (b ?γ c) = γl+m(a)γm−k(b)γ−k−l(c),

ii) (a ?γ b)∗ = b∗ ?γ a
∗, for all a, b.

Furthermore, the unit is preserved, that is: 1?γ a = a?γ 1 = a for all a, and the degree
zero subalgebra has undeformed product: B0 = A0. Finally,

a ?γ ξ = γk(a)ξ , ξ ?γ a = ξγ−k(a) , for all a ∈ B0, ξ ∈ Bk.

Thus the left B0-module structure of Bk is the one of Ak twisted with γk, and the
right B0-module structure is the one of Ak twisted with γ−k.

We write this as Bn = γk(Ak)γ−k .
Remark 4.3.2. For the particular case when A is commutative, from the deformed
product (4.3.1) one gets commutation rules:

a ?γ b = γ−2l(b) ?γ γ2k(a) , (4.3.2)

for all a ∈ Bl, b ∈ Bk.
Theorem 4.3.3. Assume the datum

(
A,O(U(1)),A0

)
is a noncommutative principal

circle bundle. Then, the datum
(
B,O(U(1)),A0

)
is a noncommutative principal circle

bundle as well.

Proof. With the notation of Theorem 4.1.4, denoting αγi = γ−1(αi), βγi = γ−1(βi),
ξγi = γ(ξi) and ηγi = γ(ηi), the collections {ξγi }Ni=1, {β

γ
i }Mi=1 in B1 and {ηγi }Ni=1, {α

γ
i }Mi=1
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in B−1 are such that:
∑N

i=1 ξ
γ
i ?γ η

γ
i =

∑N

i=1 ξiηi = 1 ,
∑M

i=1 α
γ
i ?γ β

γ
i =

∑M

i=1 αiβi = 1 .

Hence the thesis, when applying Theorem 4.1.4. ut

Remark 4.3.4. There is an isomorphism of bimodules γk(Ak)γ−k ' γ2k(Ak)Id, imple-
mented by the map a 7→ γk(a), for a ∈ Ak. This map intertwines the deformed
product ?γ with a new product

a ?′γ b = γ2k(a)b , for all a ∈ Bl, b ∈ Bk,

and the undeformed involution with a new involution:

a† = γ−2k(a∗), for all a ∈ Bk.

By construction (A, ?γ) is isomorphic to (A, ?′γ) with deformed involution.

Suppose that A is dense in a graded C∗–algebra A and that the action γ extends to
a C∗-automorphism. Then the completion Ek of Ak becomes a self-Morita equivalence
A0-bimodule in the sense of Definition 2.3.1 (with φ = γ2k), and the completion of B
is the Pimsner algebra over A0 associated to the C∗-correspondence (E1 , γ

2).

The above example shows some similarity with the construction described in Ex-
ample 3.4. To make this analogy more precise, let us assume the algebra A (and
hence A0) to be commutative; what we are doing here is taking the commutative
line bundle E1, the completion of A1, which is an element in the classical Picard
group CPic(A0), and twisting it with an automorphism of the base space algebra
A0 to obtain the C∗-correspondence (E1, γ

2), which is an element of Pic(A0). This
is consistent with the description of the Picard group of a commutative algebra that
we gave in Theorem 2.3.3.

4.3.1 Examples

Examples of the above construction are the irrational rotation algebra introduced
by Rieffel in [73] and isospectral deformations in the sense of [22], in particular θ-
deformed spheres and lens spaces.

The irrational rotation algebra

Being a crossed product, the irrational rotation algebra C(T2
θ) ' C(S1) oα Z can be

naturally seen as a Pimsner algebra over C(S1). The automorphism α of C(S1) is the
one induced by the Z-action generated by a rotation by 2πiθ on S1. We will now show
how the coordinate algebra of the noncommutative torus emerges from the deformed
construction outlined above.
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Let A = A(T2) be the commutative unital ∗-algebra generated by two unitary
elements u and v. This is graded by assigning to u, v degree +1 and to their adjoints
degree −1. The degree zero part is A0 ' A(S1), generated by the unitary u∗v. Let
θ ∈ R and γ be the graded ∗-automorphism given by

γθ(u) = e2πiθu , γθ(v) = v .

From (4.3.2) we get
u ?γθ v = e2πiθv ?γθ u ,

plus the relations

u ?γθ u
∗ = u∗ ?γθ u = 1 , v ?γθ v

∗ = v∗ ?γθ v = 1 .

Thus the deformed algebra B := (A, ?γθ) = A(T2
θ) is the coordinate algebra of the

noncommutative torus.

The corresponding C∗-completion B ' Aθ, the irrational rotation algebra of Ex-
ample 1.5, which can be seen as a Pimsner algebra over C(S1) for the self-Morita
equivalence bimodule (E1, γ

2), as described at the end of Remark 4.3.4.

θ-deformed spheres and lens spaces

Let A = A(S2n+1) be the commutative unital ∗-algebra generated by elements
z0, . . . , zn and their adjoints, with relation

n∑
i=0

z∗i zi = 1.

This is graded by assigning to z0, . . . , zn degree +1 and to their adjoints degree −1.
For this grading the degree zero part is A0 ' A(CPn).

Any matrix u = {uij} ∈ U(n+ 1) defines a graded ∗-automorphism γ by

γu(zi) =
∑n

j=0 uijzj , i = 0, . . . , n.

Since a unitary matrix can be diagonalized by a unitary transformation, one can
assume that u is diagonal. If one defines λij := u2

iiū2
jj, then from (4.3.2) one gets

zi ?γu zj = λij zj ?γu zi , zi ?γu z
∗
j = λ̄ij z

∗
j ?γu zi , for all i, j,

(and each zi is normal for the deformed product, since λii = 1), together with the
conjugated relations, and a spherical relation∑n

i=0 z
∗
i ?γ zi = 1 .
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To use a more common notation, consider the matrix Θ = {θij} defined by λij =
e2πiθij . It is real (since we have λijλ̄ij = 1), and antisymmetric (since λ̄ij = λji). We
shall then denote by A(S2n+1

Θ ) the algebra A(S2n+1) with deformed product ?γ.

Proposition 4.3.5. The datum
(
A(S2n+1

Θ ),O(U(1)),A(CPn)
)
is a noncommutative

principal circle bundle.

With the same decomposition and notation as in (4.1.8), for any natural number
d, consider the algebra

A(L2n+1
Θ (d; 1)) := A(S2n+1

Θ )Zd = ⊕n∈Z
(
A(S2n+1

Θ )
)
dn
,

which we think of as the coordinate algebra of the Θ-deformed lens spaces. Clearly,
for d = 1 we get back the algebra A(S2n+1

Θ ).

Proposition 4.3.6. The datum
(
A(L2n+1

Θ (d; 1)),O(U(1)),A(CPn)
)
is a noncommuta-

tive principal circle bundle.

Let use denote by C(CPn), C(S2n+1
Θ ) and C(L2n+1

Θ (d; 1)) the universal enveloping
C∗-algebras for each of the coordinate algebra and by E1 the completion of the module
B1. Since the circle action extended to C(S2n+1

Θ ) has large spectral subspaces, the d-th
spectral subspace Ed agrees with E (d)

1 .
Proposition 4.3.7. For all integers d ≥ 1, the C∗-algebra C(L2n+1

Θ (d; 1)) is a Pimsner
algebra over C(CPn) for the Hilbert bimodule Ed.

4.4 Quantum weighted projective and lens spaces

We describe here another class of examples of noncommutative principal circle
bundles that can be realized as Pimsner algebras. These belong to the so-called
q-deformations and they come from quantum groups.

In Sections 5.1 and 6.1 we will give a detailed descriptions of the two classes of
algebras appearing in the recent works [3, 5], both at the coordinate and as the
C∗-level.

4.4.1 The algebras

The quantum spheres S2n+1
q were defined in [85] as homogeneous spaces for the quan-

tum group SUq(n). We recall their definition here.
Definition 4.4.1. Let 0 < q < 1. The coordinate algebra of the unit quantum sphere
S2n+1
q is the unital ∗-algebra A(S2n+1

q ) generated by 2n + 2 elements {zi, z∗i }i=0,...,n
subject to the relations:
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zizj = q−1zjzi 0 ≤ i < j ≤ n , (4.4.1)
z∗i zj = qzjz

∗
i i 6= j , (4.4.2)

[z∗n, zn] = 0, [z∗i , zi] = (1− q2)
n∑

j=i+1
zjz
∗
j i = 0, . . . , n− 1 , (4.4.3)

together with the sphere relation:

z0z
∗
0 + z1z

∗
1 + . . .+ znz

∗
n = 1 . (4.4.4)

The original notation of [85] is obtained by setting q = eh/2.

Irreducible representation for the quantum spheres S2n+1
q were constructed in [43].

If one denotes by |p1, . . . , pn〉 the standard orthonormal basis of `2(Nn), one has a
faithful ∗-representation π : A(S2n+1

q )→ B(`2(Nn)) given by

π(zi)|p1, . . . , pn〉 = qp1+···+pi−1(1− q2(p1+1))1/2|p1, . . . , pi + 1, . . . , pn〉, 0 ≤ i < n

π(zn)|p1, . . . , pn〉 = qp1+···+pn|p1, . . . pn〉.
(4.4.5)

One can define a weighted circle action on the sphere algebras A(S2n+1
q ). A weight

vector ` = (`0, . . . , `n) is a finite sequence of positive integers, called weights. A
weight vector is said to be coprime if gcd(`0, . . . , `n) = 1; and it is pairwise coprime
if gcd(`i, `j) = 1, for all i 6= j.

For any coprime weight vector ` = (`0, . . . , `n), we define an action of the circle S1

on the algebra A(S2n+1
q ) by setting

σ`w : (z0, z1, . . . , zn) 7→ (w`0z0, w
`1z1, . . . , w

`nzn), w ∈ S1. (4.4.6)

Definition 4.4.2. The coordinate algebra of the quantum n-dimensional weighted pro-
jective space associated with the weight vector ` is the fixed point algebra for the
action (4.4.6), and it is denoted by A(WPnq (`)).

Equivalently, the circle action induces a Z-grading on the coordinate algebra
A(S2n+1

q ) given by

Ak ' {a ∈ A(S2n+1
q ) | σ`w(a) = aw−k ∀w ∈ S1}, (4.4.7)

which is equivalent to that obtained by declaring each zi to be of degree `i and each
z∗i of degree −`i. The algebra A(WPnq (`)) is the degree zero part of A(S2n+1

q ) with
respect to the above grading.
Example 4.1. For ` = (1, . . . , 1) one gets the coordinate algebra A(CPnq ) of the un-
weighted quantum projective space CPnq . This is the ∗-subalgebra of A(S2n+1

q ) gener-
ated by the elements pij := z∗i zj for i, j = 0, 1, . . . , n. We will describe this algebra in
more detail in Section 5.1.
Definition 4.4.3. For a fixed positive integer N , one defines the coordinate algebra of
the quantum lens space A(L2n+1

q (N ; `)) as
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A(L2n+1
q (N ; `)) := A(S2n+1

q )ZN , (4.4.8)

with the same decomposition and notation as in (4.1.8). Equivalently, A(L2n+1
q (N ; `))

is the invariant subalgebra of A(S2n+1
q ) with respect to the cyclic action obtained by

restricting (4.4.6) to the finite cyclic group ZN := Z/NZ ⊆ S1.

The following result was already present in [30], although it was not stated in full
generality. Partial results in this direction can be found in [3, 5].
Proposition 4.4.4 (cf. [13, Proposition 4.2]). For all weight vectors `, denote by
N` := ∏

i `i. The triple
(
A(L2n+1

q (N`; `),O(U(1)),A(WPnq (`))
)
is a noncommutative

principal circle bundle.

Proof. Along the lines of Theorem 4.1.4 one shows that there exist finite sequences of
elements satisfying (4.1.4). This fact relies on the proof of [30, Proposition 7.1] were
one can find polynomials Ai and Bi in A(WPnq (`)), for i = 0, . . . , n, with the property
that

n∑
i=1

Aiz
`i
i z
∗`i
i = 1 =

n∑
i=1

Biz
∗`i
i z`ii .

The statement follows from Theorem 4.1.4, after observing that the z`ii and hence the
Aiz

`i
i have degree +1, while the z`i and hence the Biz

∗`i
i have degree −1. ut

Example 4.2. A class of examples of the above construction is that of multidimen-
sional quantum teardrops studied in [13], that are obtained for the weight vector
` = (1, . . . , 1,m) having all but the last entry equal to 1.

Fix an integer d ≥ 1. From Proposition 4.1.10 applied to the lens space algebra
A(L2n+1

q (dN`; `)) := A(L2n+1
q (N`; `))Zd one gets the following:

Proposition 4.4.5. The triple
(
A(L2n+1

q (dN`; `)) , O(U(1)) , A(WPnq (`))
)

is a
noncommutative principal circle bundle for all integers d ≥ 1.

For ` = (1, . . . , 1) one gets the unweighted quantum lens spaces A(L2n+1
q (d; 1)),

that will be denoted by A(L2n+1
q (d)) in order to lighten notation.

4.4.2 C∗-completions and Pimsner algebras

Let C(S2n+1
q ) be the C∗-completion of A(S2n+1

q ) in the universal C∗-norm. By uni-
versality, one extends the weighted circle action to the C∗-algebra and defines
C(WPnq (`)) and C(L2n+1

q (N ; `)) as the fixed point C∗-subalgebras of C(S2n+1
q ) for

the circle action and for the action of the subgroup ZN ⊂ S1, respectively.

At least for n = 1, the fixed point C∗-subalgebras coincide with the corresponding
universal enveloping C∗-algebras, as we will describe in Subsection 6.1.3.

Let us now denote with B the algebra C(WPnq (`)) and with E the first spectral
subspace of C(S2n+1

q ) for the weighted action of S1, and let φ : B → LB(E) be the
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*-homomorphism obtained by left multiplication. The symbol E (d) will denote the
d-th interior tensor power of E with itself over the map φ, as in (3.1.1).
Proposition 4.4.6. Let d ≥ 1. There is an isomorphism of C∗-algebras

OE(d) ' C(L2n+1
q (dN`; `)).

Proof. The result is a direct consequence of Theorem 3.2.5, once one proves that E
is full. But this follows at once from Proposition 4.4.5, since the modules are finitely
generated projective. ut

Particular examples that are of interest for the present work are unweighted quan-
tum lens spaces of any (odd) dimension and weighted lens spaces over teardrops
(n=1). In the next two sections we will describe these two classes of examples in
detail, focusing on the bundle structures, on the resulting Pimsner algebras obtained
as C∗-algebraic completions and on the corresponding exact sequences.





Part III

Gysin sequences for quantum lens spaces





Chapter 5

A Gysin sequence in K-theory for quantum lens spaces

This chapter is based on the material contained in the paper [3]. There we constructed
a Gysin sequence in K-theory that allows one to compute the K-groups of quantum
lens spaces, as kernel and cokernel of a suitable Z-module map, as described in (3.3.6).
This work was later put in the more general framework of Pimsner algebras, using
the approach described in the previous chapters.

Here we will obtain a Gysin sequence in K-theory as a particular case of the six-
term exact sequence naturally associated to Pimsner algebras.

We will explicitely describe the maps appearing in the exact sequence in terms of
representatives of K-theory classes for the quantum projective space C(CPnq ). This
explicit description will allow us to construct, via pull-back, representatives of the
K-theory of the quantum lens space C(L2n+1

q (d)).

5.1 Quantum lens and projective spaces

5.1.1 Complex projective spaces

The coordinate algebra A(S2n+1
q ) of the quantum sphere is defined as the ∗-algebra

generated by 2n+ 2 elements {zi, z∗i }i=0,...,n subject to the relations (4.4.1-4.4.4).

The unweighted circle action on A(S2n+1
q ), obtained by setting ` = (1, . . . , 1) in

(4.4.6) is given on generators by

σw : (z0, z1, . . . , zn) 7→ (wz0, wz1, . . . , wzn), w ∈ S1. (5.1.1)

To the best of our knowledge, the coordinate algebra A(CPnq ) of the quantum
projective space CPnq first appeared in [89]. It is defined as the fixed point algebra
A(CPnq ) ⊂ A(S2n+1

q ) with respect to the circle action (5.1.1).

The algebra A(CPnq ) admits the following elegant characterization:

81
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Theorem 5.1.1. 1. The algebraic quantum projective space A(CPnq ) agrees with the
unital *-subalgebra of A(S2n+1

q ) generated by the elements pij := z∗i zj for i, j =
1, . . . , n.

2. The elements pij satisfy

pijpkl = qsign(k−i)+sign(j−l) pklpij if i 6= l and j 6= k ,

pijpjk = qsign(j−i)+sign(j−k)+1 pjkpij − (1− q2)∑l>j pilplk if i 6= k ,

pijpji = q2sign(j−i)pjipij + (1− q2)
(∑

l>i q
2sign(j−i)pjlplj −

∑
l>j pilpli

)
if i 6= j ,

(5.1.2)

with sign(0) := 0.

3. A(CPnq ) agrees with the universal unital *-algebra with generators pij subject to
the relations (5.1.2).

Equivalently, the circle action induces a Z grading on A(S2n+1
q ), given by the vector

space decomposition
A(S2n+1

q ) =
⊕
k∈Z
Ak,

where the degree k-part is the module of equivariant sections

Ak ' {a ∈ A(S2n+1
q ) | σw(a) = aw−k ∀w ∈ S1}. (5.1.3)

The *-algebraA(CPnq ) can be realized as the degree zero part ofA(S2n+1
q ) with respect

to the above grading.

The modules Ak are projective of finite type. In order to see this, one needs to
recall some notation. The q-analogue of an integer n ∈ Z is given by

[n] := qn − q−n

q − q−1 ;

it is defined for q 6= 1 and is equal to n in the limit q → 1. For any n ≥ 0, one defines
the factorial of the q-number [n] by setting [0]! := 1 and then [n]! := [n][n− 1] · · · [1].
The q-multinomial coefficients are in turn defined by

[j0, . . . , jn]! := [j0 + . . .+ jn]!
[j0]! . . . [jn]! .

For k ∈ Z, we define Ψk := (ψkj0,...,jn) to be the vector-valued function on S2n+1
q with

components

ψkj0,...,jn :=


[j0, . . . , jn]! 1

2 q−
1
2
∑

r<s
jrjs (zj00 )∗ . . . (zjnn )∗ for k ≥ 0 ,

[j0, . . . , jn]! 1
2 q

1
2
∑

r<s
jrjs+

∑n

r=0 rjr zj00 . . . zjnn for k ≤ 0 ,
(5.1.4)
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with j0 + . . . + jn = |k|. Then Ψ ∗kΨk = 1 and the range projection lives in a matrix
algebra of a certain size:

pk := ΨkΨ
∗
k ∈ Mdk(A(CPnq )), dk :=

(
|k|+ n

n

)
. (5.1.5)

This fact was proven in [27], generalizing the special case where n = 2 of [28]. By
construction, the entries of the matrix pk are S1-invariant and so they are indeed
elements of the algebra A(CPnq ).

To each projection pk there corresponds a module of sections of a line bundle, as
we will now describe.

The column vector Ψk has dk entries, all of which are elements of A(S2n+1
q ). We

consider the collection

Ak :=

ϕk := v · Ψk =
∑

j0+...+jn=k
vj0,...,jn ψ

k
j0,...,jn

 , (5.1.6)

where v = (vj0,...,jn) ∈ (A(CPnq ))dk .

Each Ak obtained in this way turns out to be isomorphic to the module of equiv-
ariant sections described in (5.1.3), whence the abuse of notation.

An argument as in [29, Prop. 3.3] yields the following:
Proposition 5.1.2. There are left A(CPnq )-module isomorphisms

Ak ' (A(CPnq ))dkpk

and right A(CPnq )-module isomorphisms

Ak ' p−k(A(CPnq ))dk .

Since Ak is a bimodule, we have to make a choice: we always use the right A(CPnq )-
module identification, in order to be consistent with the convention used in Part I.
By Proposition 4.4.4 the algebra A(S2n+1

q ) is strongly graded, hence a quantum prin-
cipal bundle.

5.1.2 Quantum lens spaces

Recall from Definition 4.4.3 that the coordinate algebra of the quantum lens space
L2n+1
q (d) is constructed, as a vector space, in terms of the graded parts of A(S2n+1

q ):

A(L2n+1
q (d)) :=

⊕
k∈Z
Adk . (5.1.7)
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By Proposition 4.4.5, the coordinate algebra of the quantum lens space is also strongly
graded, hence the inclusion A(CPnq ) ↪→ A(L2n+1

q (d)) is a quantum principal bundle
as well.

The above definition is consistent with the classical construction of lens spaces as
orbit spaces for an action of the finite cyclic group Zd on odd-dimensional spheres.
In particular, by Proposition 4.1.9, the algebra A(L2n+1

q (d)) is made of all elements
of A(S2n+1

q ) which are invariant under the action of the cyclic group Zd. This was the
content of [3, Proposition 4.1].

5.1.3 C*-completions and Pimsner algebra structure

The C∗-algebra C(S2n+1
q ) of continuos function on the quantum sphere S2n+1

q is de-
fined as the universal enveloping C∗-algebra of the coordinate algebra A(S2n+1

q ). The
algebra of continuous functions on the quantum projective space CPnq is then defined
to be the C∗-subalgbera C(CPnq ) ⊂ C(S2n+1

q ) of invariant elements with respect to
the circle action on C(S2n+1

q ) obtained by extending the action (5.1.1).

It was shown in [45, Subsection 4.3] that both algebras are actually isomorphic
to the Cuntz-Krieger algebra of a graph. This fact can be used in particular for
computing the K-theory and K-homology groups of the algebra CPnq , as kernels and
cokernels of certain Z-module maps.
Theorem 5.1.3. We have isomorphisms of groups

K0(C(CPnq )) ' K0(C(CPnq )) ' Zn+1 and K1(C(CPnq )) ' K1(C(CPnq )) ' 0.
(5.1.8)

Similarly, the C∗-algebra of continuous functions on the quantum lens space
C(L2n+1

q (d)) is the invariant C∗-subalgebra of C(S2n+1
q ) with respect to the Zd action

obtained by restricting the S1 action. It was shown in [46, Section 2] that this algebra
is isomorphic to the C∗-algebra of a graph.

Here we are interested in another feature of the algebra C(L2n+1
q (d)), that of being

a Pimsner algebra over the C∗-algebra of continuous functions over the quantum
projective space, that we will denote by B := C(CPnq ), in analogy with the notation
of Chapter 3.

Furthermore, E will denote the Hilbert C∗-module over B obtained as the closure of
A−1 in the C∗-norm of C(S2n+1

q ); it is nothing but the (minus)-first spectral subspace
for the circle action on C(S2n+1

q ).

As usual, φ : B → LB(E) will denote the *-homomorphism obtained by left mul-
tiplication. We denote with E (d), the d-th interior tensor power of E with itself over
the map φ, in analogy with (3.1.1).
Theorem 5.1.4. For all d ∈ N, there is an isomorphism of C∗-algebras

OE(d) ' C(L2n+1
q (d)).
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We will now use this result to construct six term exact sequence in KK-theory,
following the construction described in 3.3.

5.2 Gysin sequences

For each d ∈ N, let [E (d)] ∈ KK(C(CPq), C(CPq)) denote the class of the Hilbert
C∗-module E (d) as above. Then, given any separable C∗-algebra C, by Theorem 3.3.4
we obtain two six term exact sequences:

KK0(C,C(CPnq )) 1−[E(d)]−−−−−→ KK0(C,C(CPnq )) j∗−−−→ KK0
(
C,C(L2n+1

q (d))
)

[∂]

x y[∂]

KK1(C,C(L2n+1
q (d))) ←−−−

j∗
KK1(C,C(CPnq )) ←−−−−−

1−[E(d)]
KK1(C,C(CPnq ))

(5.2.1)
and

KK0(C(CPnq ), C) ←−−−−−
1−[E(d)]

KK0(C(CPnq ), C) ←−−−
j∗

KK0
(
C(L2n+1

q (d)), C
)

y[∂] [∂]

x
KK1

(
C(L2n+1

q (d)), C
)

j∗−−−→ KK1(C(CPnq ), C) 1−[E(d)]−−−−−→ KK1(C(CPnq ), C)

,

(5.2.2)
where j∗ and j∗ are the maps in KK-theory induced by j : C(CPnq ) ↪→ C(L2n+1

q (d)).

We will refer to these two sequences as the Gysin sequences (in KK-theory) for
the quantum lens space L2n+1

q (d).

5.2.1 The Gysin sequence in K-theory

The above sequence (5.2.1) reduces, for C = C, to a six term exact sequence in
K-theory. We will now describe its features and the properties of the maps at play.

Fist of all we observe that, in virtue of (5.1.8), the sequence reduces to

0 // K1(C(L2n+1
q (d)) [∂]

// K0(C(CPnq )) 1−[E(d)]
// K0(C(CPnq ))→

j∗
// K0(C(L2n+1

q (d))) // 0 ,

(5.2.3)

This has the important consequence that, as described at the end of Section 3.3, we
obtain a description of the K-groups of C(CPnq ) as
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K0(C(L2n+1
q (d))) ' coker(1− [E (d)]), K1(C(L2n+1

q (d))) ' ker(1− [E (d)]). (5.2.4)

By fixing a basis of representatives of classes inK0(C(CPnq )), we will construct explicit
representatives for K-theory classes of C(L2n+1

q (d)).
Remark 5.2.1. The map [∂] : K1(C(L2n+1

q (d)) → K0(C(CPnq )) was given in [3] as
the Kasparov product with an unbounded Kasparov module. The Kasparov module
defined there agrees with the one described in (3.3.3).

By its very definition the operator N has a spectral gap around zero. Hence, by
2.4.11 the map [∂] is given explicitly on classes [u] ∈ K1(C(L2n+1

q (d)) as an index

〈[u], [∂]〉 := [KerPuP ]− [CokerPuP ] ∈ K0(C(CPnq )),

where P denotes the spectral projection for the self-adjoint operatorN and associated
to the positive Fock space defined in (3.3.2).

K-theory and K-homology of the quantum projective space

We will now describe explicit representatives for the K-theory of the quantum pro-
jective space, and their parings with K-homology classes, following [29].

We let [pk] denote the class in K0(A(CPnq )) of the projection pk defined in (5.1.5).
The inclusion A(CPnq ) ↪→ C(CPnq ) induces an isomorphism of K-theory groups

K0(C(CPnq )) ' K0(A(CPnq )). (5.2.5)

This fact is proven by considering pairings with even Fredholm modules that are
generators of the homology group K0(C(CPnq )). These are given explicitly in the
same work ([29]) and have the form

Fm = (A(CPnq ), H(m), π
(m), γ(m), F(m)) , for 0 ≤ m ≤ n . (5.2.6)

We shall not dwell on the explicit description of the Fredholm modules here, since
they are beyond the scope of the present work. However, we are interested in their
pairings with K-theory, which were computed in Propositions 4 and 5 of [29], leading
to the following result.
Proposition 5.2.2. For all k ∈ N and for all 0 ≤ m ≤ n it holds that

〈[Fm], [p−k]〉 := TrHm(γ(m)(π(m)(Tr p−k)) =
(
k
m

)
,

with
(
k
m

)
:= 0 when m > k. Moreover, the elements [F0], . . . , [Fn] are generators of

K0(C(CPnq )), and the elements [p0], . . . , [p−n] are generators of K0(C(CPnq )).

Indeed, the matrix of couplings m ∈ Mn+1(Z) with mij := 〈[Fi], [p−j]〉 =
(
j
i

)
, for

i, j = 0, 1, . . . , n, has inverse with integer entries (m−1)ij = (−1)i+j
(
j
i

)
. Thus the
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aforementioned elements are a basis of Zn+1 as a Z-module, which is equivalent to
saying that they generate Zn+1 as an Abelian group.

This in particular implies that the projections pk are not only generators of
K0(A(CPnq )) but also of K0(C(CPnq )), hence yielding the isomorphism (5.2.5).

Motivated from Proposition 5.1.2 we will denote the class of the projection pk
by the class [Ak] of the corresponding right-module Ak, seen as an element of the
group K0(C(CPnq )). For each k ∈ Z the module Ak describes a line bundle, in the
sense that its rank (as computed by pairing with [F0]) is equal to 1. It is completely
characterized by its first Chern number (as computed by pairing with the class [F1]).
Indeed, using an argument similar to that of the proof of Proposition 5.2.2 one shows
the following.
Proposition 5.2.3. For all k ∈ Z it holds that

〈[F0], [Ak]〉 = 1 and 〈[F1], [Ak]〉 = −k .

From the above discussion, it is clear why the line bundle A−1 emerges as a central
character: its only non-vanishing charges are 〈[F0], [A−1]〉 = 1 and 〈[F1], [A−1]〉 = 1.
It is the noncommutative module of sections of the tautological line bundle for the
quantum projective space CPnq .

Now consider the element in K0(C(CPnq )) given by

u := 1− [A−1] , (5.2.7)

of which we can take powers using the fact that the grading is strong. For j ≥ 0, as
elements in K-theory, one has then

uj = (1− [A−1])j '
j∑

k=0
(−1)k

(
j
k

)
[A−k] . (5.2.8)

Proposition 5.2.4. For 0 ≤ j ≤ n and for 0 ≤ m ≤ n, it holds that

〈[Fm], uj〉 =

0 for j 6= m

(−1)j for j = m
, (5.2.9)

while for all 0 ≤ m ≤ n it holds that

〈[Fm], un+1〉 = 0 . (5.2.10)

Proof. Denoting as before by [A−k] the class of the projection p−k and setting
(
k
m

)
:=

0 when k > m, we compute, using Proposition 5.2.2

〈[Fm], uj〉 =
j∑

k=0
(−1)k

(
j
k

)
〈[Fm], [A−k]〉 =

j∑
k=m

(−1)k
(
j
k

)(
k
m

)
.

If m > j this vanishes again due to
(
k
m

)
:= 0 for m > k. If m ≤ j, it is
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〈[Fm], uj〉 = j!
m!

j∑
k=m

(−1)k
(j − k)!(k −m)!

and a direct computation yields (5.2.9). Similarly, one computes that

〈[Fm], un+1〉 = (n+ 1)!
m!

n+1∑
k=m

(−1)k
(n+ 1− k)!(k −m)! = 0 ,

thus completing the proof. ut

The element u = χ([A−1]) := 1− [A−1] shall be named the Euler class of the line
bundle A−1, in analogy with the classical case (cf. [49, IV.1.13]).

Since for 0 ≤ m ≤ n the elements [Fm] are generators of K0(C(CPnq )), the fact that
〈[Fm], un+1〉 = 0 for 0 ≤ m ≤ n amounts to saying that un+1 = 0 in K0(C(CPnq )). On
the other hand, since the elements [A−k] for 0 ≤ k ≤ n are generators of K0(C(CPnq )),
the results in (5.2.9) say that the elements [Fm] and (−u)j for 0 ≤ m, j ≤ n form dual
bases. These two facts, combined with the isomorphism (5.2.5), lead to the following
analogue of the classical result (cf. [49, Corollary IV.2.11]).
Proposition 5.2.5. It holds that

K0(C(CPnq )) ' Z[A−1]/(1− [A−1])n+1 ' Z[u]/un+1

where u = χ([A−1]) := 1− [A−1] is the Euler class of the line bundle A−1.

Pulling back line bundles

The K-theory map j∗ : K0(C(CPnq )) → K0(C(L2n+1
q (d))) induced by the inclusion

j : C(CPnq ) → C(L2n+1
q (d)) admits a simpler description at the level of coordinate

algebras.
Definition 5.2.6. For eachA(CPnq )-bimoduleAk as in (5.1.6) (a line bundle over CPnq ),
its pull-back to L2n+1

q (d) is the A(L2n+1
q (d))-bimodule

j∗(Ak) :=

ϕ̃k = v · Ψk =
∑

j0+...+jn=k
vj0,...,jn ψ

k
j0,...,jn

 , (5.2.11)

for v = (vj0,...,jn) ∈ (A(L(n,r)
q ))dk . We shall often use the shorthand j∗(Ak) := Ãk.

By embedding the cyclic group Zd into S1 via the d-th roots of unity, each Ãk is
made of elements of A(S2n+1

q ) which transform as ϕ̃k 7→ ϕ̃k e−2πi k/d under the circle
action. By its very definition, Ãk is an A(L2n+1

q (d))-bimodule. Once again, arguments
like those of [29, Proposition 3.3] for the Ãk yield the following.
Proposition 5.2.7. There are left A(L2n+1

q (d))-module isomorphisms

Ãk ' (A(L2n+1
q (d)))dkpk
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and right A(L(n,r)
q )-module isomorphisms

Ãk ' p−k(A(L2n+1
q (d)))dk .

We stress that the projections pk here are those constructed before, in (5.1.4) and
(5.1.5), taken now as elements of the group K0(C(L2n+1

q (d))). Just as for the modules
Ak, we need to make a choice of representatives: we will use the right A(L(n,r)

q )-
module identification and denote by [Ãk] the class of the projection pk as an element
in K0(C(L2n+1

q (d))). Thus, the pull-back of line bundles induces a map

j∗ : K0(C(CPnq ))→ K0(C(L2n+1
q (d))) . (5.2.12)

The pull-back of line bundles from CPnq to L2n+1
q (d) could be depicted as

Ãk Akj∗
oo

A(L2n+1
q (d))

OO

A(CPnq )
j
oo

OO
, (5.2.13)

where the vertical arrows are given by the module structure. This means, in particular,
that for each A(CPnq )-module Ak its pull-back Ãk is the A(L2n+1

q (d))-module

Ãk = Ak ⊗A(CPnq ) A(L2n+1
q (d)) .

From this it follows that Ã−d = A−d ⊗A(CPnq ) A(L2n+1
q (d)) ' A(L2n+1

q (d)) = Ã0,
thus showing that the module Ã−d is free. The above construction is the dual to the
classical one of defining the pull-back as a fibered product (cf. [8, Example 1.3.1], [33,
Section 16.2]).

While we could have taken this product as defining the pull-back map, we rather
prefer the definition in (5.2.6) due to the central character to be played by the partial
isometries Ψk’s of (5.1.4) later on.

We finish this section by underlining the difference between the module Ak and its
pull-back Ãk. While each Ak is not free when k 6= 0 (as a consequence of Proposi-
tion 5.2.3), this need not be the case for Ãk, that is the projection pk could be trivial
(i.e. equivalent to 1) in K0(C(L2n+1

q (d))). Indeed, the pull-back Ã−d of the line bundle
A−d from the projective space CPnq to the lens space L2n+1

q (d) is free: recall that the
corresponding projection is p−d := Ψ−dΨ

∗
−d and here the vector-valued function Ψ−d

has entries in the algebra A(L2n+1
q (d)) itself. Thus the condition Ψ ∗−dΨ−d = 1 implies

that the projector p−d is equivalent to 1, that is to say, the class of the module Ã−d
is that of the trivial bundle. It follows that (Ã−d)⊗k ' Ã−kd also has trivial class for
any k ∈ Z, the tensor product being taken over A(L2n+1

q (d)). We will use this fact to
show that certain linear combinations of pulled-back line bundles Ã−k define torsion
classes and, as we shall see later on, they generate the group K0(C(L2n+1

q (d))).
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The Kasparov product with the Euler class

We will now represent the Kasparov product with the Euler class of the C∗-
correspondenc E (d) in KK(C(CPnq ), C(CPnq )) in terms of an (n+ 1)× (n+ 1) matrix
A with respect to the Z-module basis {1, u, . . . , un} of K0(C(CPnq )) ' Zn+1.

Indeed, one has that, for all i = 0, . . . , n the Kasparov product of the class [ui] ∈
K0(C(CPnq )) with the class of the module [E (d)] ∈ KK(C(CPnq ), C(CPnq )) is[

ui
]
⊗C(CPnq ) [E (d)] = [ui ⊗C(CPnq ) A⊗d−1] =

= [ui ⊗C(CPnq ) (1− u)⊗d] = [ui · (1− u)d].

Using the condition un+1 = 0 one has

(1− u)d =
min (d,n)∑
j=0

(−1)j
(
r
j

)
uj .

Using the Z module basis {1, u, . . . , un}. of K0(CPn) it is easy to see that the
Kasparov product with 1 − [E (d)] is a Z-module homomorphism represented by an
(n+1)× (n+1) strictly lower triangular matrix with entries on the j-th sub-diagonal
equal to (−1)j+1

(
d
j

)
for j ≤ min(d, n) and zero otherwise:

A =



0 0 0 · · · · · · 0
d 0 0 · · · · · · 0
−
(
d
2

)
d 0 · · · · · · 0(

d
3

)
−
(
d
2

)
d 0

... . . . ... ...

0 0 0 · · · · · · d 0


. (5.2.14)

5.3 Computing the K-theory of quantum lens spaces

We now use the Gysin sequence (5.2.3) to compute the K-theory of our quantum lens
spaces.
Remark 5.3.1. A first computation of the K-theory of the quantum lens spaces dates
back to [46], where these spaces are realized as graph algebras, and their K-theory
groups are computed as kernel and cokernels of the map 1−Bt : Zn → Zn, where B
is the incidence matrix of the graph.

It is worth stressing that our construction is structurally different from the one in
[46], the only point of contact being that the K-theory is obtained out of a matrix.
First, our matrix is different from the incidence matrix of [46]. Second, and more
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importantly, the novelty of our construction lies in the fact that it allow us to give
geometric generators of the K0-group as (combinations) of pulled-back line bundles.

Equation (5.2.14) leads to

K1(C(L2n+1
q (d))) ' ker(A), K0(C(L2n+1

q (d))) ' coker(A) , (5.3.1)

as Z-module identifications via the surjective map j∗.

We shall obtain explicit generators as classes of line bundles, generically torsion
ones. This fact will be illustrated by working out some explicit examples. Since the
map j∗ in (5.2.3) is surjective, the group K0(C(L2n+1

q (d))) can be obtained by pulling
back classes from K0(C(CPnq )). The following is then immediate.
Proposition 5.3.2. The (n+ 1)× (n+ 1) matrix A has rank n, whence

K1(C(L2n+1
q (d))) ' Z .

On the other hand, the structure of the cokernel of the matrix A depends on
the divisibility properties of the integer d. Since coker(A) ' Zn+1/Im(A) and Im(A)
being generated by the columns of A, the vanishing of these columns yields conditions
on the generators making them torsion classes in general. Indeed, upon pulling back
to the lens space, the vanishing of the the j-th column is just the condition that the
pulled back line bundles satisfy Ã−(d+j) = Ã−j; thus this vanishing contains geometric
information.

In order to quickly determine coker(A) (although not directly its generators) one
can use the Smith normal form of [81] for matrices over a principal ideal domain, such
as Z. Thus (cf. [58, Theorem 26.2 and Theorem 27.1]) there exist invertible matrices
P and Q having integer entries which transform A to a diagonal matrix

Sm(A) := PAQ = diag(α1, · · · , αn, 0) , (5.3.2)

with integer entries αi ≥ 1, ordered in such a way that αi | αi+1 for 1 ≤ i ≤ n. These
integers are algorithmically computed and explicitly given by

α1 = d1(A) , αi = di(A)/di−1(A) , for each 2 ≤ i ≤ n ,

where di(A) is the greatest common divisor of the non-zero minors of order i of the
matrix A. The above leads directly to the following.
Proposition 5.3.3. It holds that

coker(A) ' coker(Sm(A)) = Z⊕ Z/α1Z⊕ · · · ⊕ Z/αnZ .

As a consequence,

K0(C(L2n+1
q (d))) ' Z⊕ Zα1 ⊕ · · · ⊕ Zαn ,

with the convention that Z1 = Z/1Z is the trivial group.
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As already mentioned, the merit of our construction is not in the computation
of the K-theory groups as abstract groups – these are found for instance by using
graph algebras as in [45]. Owing to the explicit diagonalization as in (5.3.2) and
to Proposition 5.2.5, we also obtain explicit generators as integral combinations of
powers of the pull-back to the lens space L2n+1

q (d) of the generator u := 1 − [A−1].
We show how this works and compute K0(C(L2n+1

q (d))) in some examples.
Example 5.1. If d = 2 one computes α1 = α2 = · · · = αn−1 = 1 and αn = 2n. Hence
for L2n+1

q (d) = S2n+1
q /Z2 = RP2n+1

q , the quantum real projective space, we get

K0(C(RP2n+1
q )) = Z⊕ Z2n ,

in agreement with [45, Subsection 4.2] (with a shift n → n + 1 from there to here).
Moreover, we can construct explicitly the generator of the torsion part of the K-theory
group. We claim this is given by 1− [Ã−1]. First of all, owing to Ã−2 ' Ã0 one has

(1− [Ã−1])2 = 2(1− [Ã−1]),

and iterating:
(1− [Ã−1])k = 2k−1(1− [Ã−1]).

Thus, in a sense one can switch from multiplicative to additive notation. Furthermore,
from Proposition 5.2.5 we know that un+1 = 0, with u = 1− [A−1]. When pulled back
to the lens space, owing to Ã2j ' Ã0 and Ã2j+1 ' Ã−1, for all j ∈ Z, one has

0 = (1− [Ã−1])n+1 = 2n(1− [Ã−1]).

This amounts to saying that the generator 1− [Ã−1] is cyclic of order 2n.
Example 5.2. For n = 1 there is only one α1 = d. Then in this case one has

K0(C(L3
q(d))) = Z⊕ Zd .

From its very definition [Ã−d] = 1, hence Ã−1 generates the torsion part. Alterna-
tively, from u2 = 0 it follows that A−j = −(j − 1) + jA−1 for all j > 0; upon lifting
to L3

q(d; 1), for j = d this yields d(1− [Ã−1]) = 0, i.e. 1− [Ã−1] is cyclic of order d.
Example 5.3. For n = 2 there are two cases, according to whether d is even or odd.
For the α’s in Proposition 5.3.3 one finds:

(α1, α2) =

(d/2, 2d) if d even
(d, d) if d odd

.

As a consequence one has that

K0(C(L5
q(d))) =

Z⊕ Z d
2
⊕ Z2d if d even

Z⊕ Zd ⊕ Zd if d odd
.

This is in agreement with [46, Proposition 2.3] (once again with a shift n→ n + 1).
In particular, for d = 2 we get back the case of Example 5.1. In order to identify
generators in the two cases, we start from [Ã−d] = 1. Direct computations from the
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conditions [Ã−(d+j)] = [Ã−j] for j = 0, · · · , d− 1 lead to

1
2d(d− 1) ũ2 − d ũ = 0 and d ũ2 = 0 , (5.3.3)

where ũ = 1 − [Ã−1]. Indeed these are just the lifts to the lens space L5
q(d; 1) of the

non-vanishing columns of the corresponding matrix A in (5.2.14).

When d = 2k is even, we have conditions coming from (Ã−2)k ' Ã0. In fact, due to
[Ã−2k] = 1, one has (1− [Ã−k])2 = 2(1− [Ã−k]), leading to

0 = (1− [Ã−k])3 = 4(1− [Ã−k]) = 4k ũ− 2k(k − 1) ũ2.

Together with the conditions (5.3.3) this yields

1
2d (ũ2 + 2 ũ) = 0 and 2d ũ = 0,

that is ũ2 + 2 ũ is of order d/2 while ũ is of order 2d (again, for d = 2 this is consis-
tent with the result of Example 5.1, the first ‘generator’ collapsing to the condition
ũ2 + 2 ũ = 0).

When d = 2k + 1 is odd, the conditions (5.3.3) just say that ũ and ũ2 are cyclic
of order d:

d ũ = 0 and d ũ2 = 0.

Example 5.4. When n = 3 the selection of generators for the torsion groups is more
involved but still ‘doable’. As before we denote ũ = 1 − [Ã−1]. There are now four
possibilities. For the α’s in Proposition 5.3.3 one finds:

6 | d 2 | d, 3 - d 2 - d, 3 | d 2 - d, 3 - d
α1 d/6 d/2 d/3 d
α2 d/2 d/2 d d
α3 12d 4d 3d d

.

As a consequence one has the following cases:

Case r ≡ 0 (mod 6):

K0(C(L7
q(d))) = Z⊕ Z d

6
⊕ Z d

2
⊕ Z12d

with generators
ũ3 + 12 ũ , ũ2 + 6 ũ , ũ ,

of order d/6, d/2 and 12d, respectively. For the particular case d = 6, the first torsion
part is absent, one has ũ3 + 12 ũ = 0, and

K0(C(L7
q(6))) = Z⊕ Z3 ⊕ Z72.

Case d ≡ 2, 4 (mod 6):
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K0(C(L7
q(d))) = Z⊕ Z d

2
⊕ Z d

2
⊕ Z4d

with generators
ũ3 + 2 ũ2 , ũ2 + 2 ũ , ũ ,

of order d/2, d/2 and 4d, respectively. The particular case d = 2 goes back to Exam-
ple 5.1 with the first and second torsion parts absent and the condition ũ2 + 2 ũ = 0
as in there.

Case d ≡ 3 (mod 6):

K0(C(L7
q(d))) = Z⊕ Z d

3
⊕ Zd ⊕ Z3d

with generators
ũ3 + 3 ũ , ũ2 , ũ ,

of order d/3, d and 3d, respectively. For the particular case d = 3 the first torsion
part is absent, one has ũ3 + 3 ũ = 0, and

K0(C(L7
q(3))) = Z⊕ Z3 ⊕ Z9.

Case d ≡ 1, 5 (mod 6):

K0(C(L7
q(d))) = Z⊕ Zd ⊕ Zd ⊕ Zd

with the three generators of order d given by

ũ3 , ũ2 , ũ .

To further illustrate the construction, we mention the next case of dimension n = 4,
for which we list the K-theory groups.
Example 5.5. When n = 4 there are 8 possibilities. For the α’s in Prop. 5.3.3 one finds:

24 | d 12 | d; 8 - d 8 | d; 6 - d, 6 | d; 4 - d, 4 | d; 3, 8 - d
α1 d/24 d/12 d/8 d/6 d/4
α2 d/6 d/12 d/4 d/6 d/4
α3 6d 12d 4d 4d 2d
α4 24d 12d 8d 12d 8d

....

....

3 | d; 2 - d 2 | d; 3, 4 - d 2 - d; 3 - d
d/3 d/2 d
d/3 d/2 d
d d/2 d
9d 8d d

.

As a consequence,
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K0(C(L9
q(d))) =



Z⊕ Z d
24
⊕ Z d

6
⊕ Z6d ⊕ Z24d d ≡ 0 (mod 24)

Z⊕ Z d
12
⊕ Z d

12
⊕ Z12d ⊕ Z12d d ≡ 12 (mod 24)

Z⊕ Z d
8
⊕ Z d

4
⊕ Z4d ⊕ Z8d d ≡ 8, 16 (mod 24)

Z⊕ Z d
6
⊕ Z d

6
⊕ Z4d ⊕ Z12d d ≡ 6 (mod 12)

Z⊕ Z d
4
⊕ Z d

4
⊕ Z2d ⊕ Z8d d ≡ 4, 20 (mod 24)

Z⊕ Z d
3
⊕ Z d

3
⊕ Zd ⊕ Z9d d ≡ 3, 9 (mod 12)

Z⊕ Z d
2
⊕ Z d

2
⊕ Z d

2
⊕ Z8d d ≡ 2 (mod 12)

Z⊕ Zd ⊕ Zd ⊕ Zd ⊕ Zd d ≡ 1, 5 (mod 6)

.





Chapter 6

Gysin Sequences in KK-theory for weighted quantum
lens spaces

The material covered in this chapter can be found in the paper [5]. There we defined
the coordinate algebras of quantum weighted projective lines as fixed point algebras
for the weighted circle action on the coordinate algebra A(S3

q) of the quantum 3
sphere. At the C∗-algebra level the lens spaces are given as Pimsner algebras over the
C∗-algebra of the continuous functions over the weighted projective spaces.

Using the six term exact sequences of Theorem 3.3.4, we explicitly compute the
KK-theory of these spaces for general weights. A central character in this computation
is played by an integer matrix whose entries are index pairings. These are in turn
computed by pairing the corresponding Chern-Connes characters in cyclic theory.
The computation of the KK-theory of our class of q-deformed lens spaces is, to the
best of our knowledge, a novel one. Also, it is worth emphasizing that the quantum
lens spaces and weighted projective spaces are in general not KK-equivalent to their
commutative counterparts.

6.1 Weighted quantum lens spaces in dimension three and quantum
teardrops

We recall from Definitions 4.4.2 and 4.4.3 that the quantum weighted projective and
lens spaces WPnq (`) and L2n+1

q (dN`, `) are defined, at the coordinate algebra level, as
fixed point algebras of the quantum spheres S2n+1

q for weighted actions of the circle
and of a finite cyclic group.

Here we will focus on the n = 1 case. From now on, we will denote the weight
vector (`0, `1) with (m, l) and assume that the entries are coprime.

6.1.1 Weighted projective lines

In order to describe the coordinate algebras of the weighted projective lines, we will
use the following characterization.

97
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Theorem 6.1.1 ([12, Theorem. 2.1]). 1. The algebraic quantum projective line
A(WPq(m, l)) agrees with the unital ∗-subalgebra of A(S3

q) generated by the el-
ements a = zl0(z∗1)m and b = z1z

∗
1.

2. The elements a and b satisfy the relations

b∗ = b , ba = q−2l ab ,

aa∗ = q2ml bm
l−1∏
j=0

(1− q2jb) , a∗a = bk
l∏

j=1
(1− q−2jb) .

(6.1.1)

3. A(WPq(m, l)) agrees with the universal unital ∗-algebra with generators a, b, sub-
ject to the relations (6.1.1).

In particular A(WPq(1, 1)) = A(CP1
q), while A(WPq(1, l)) was named quantum

teardrop in [12] using the very same name given by Thurston in [83] to the corre-
sponding orbifold.

Irreducible representations for the algebra A(WPq(m, l)) were given in [12, Propo-
sition 2.2]. These can, up to unitary equivalence, be grouped in two classes:

1. A one dimensional representation defined by

π0 : a 7→ 0, b 7→ 0. (6.1.2)

2. Infinite dimensional representations πs : A(WPq(m, l)) 7→ B(Hs) labeled by s =
1, 2, . . . , l, all on the same separable Hilbert space Hs = `2(N0) with orthonormal
basis |p〉, p ∈ N0, given by

πs(a)|p〉 = qm(lp+s)
l∏

r=1

(
1− q2(lp+s−r)

)1/2
|p− 1〉, p ≥ 1 πs(a)|0〉 = 0,

πs(b)|p〉 = q2(lp+s)|p〉.
(6.1.3)

By [12, Proposition 2.3], all infinite dimensional representations πs are faithful.

It is natural, at this point, to wonder whether the representations of A(WPq(m, l))
are related to those of the quantum sphere A(S3

q). This is indeed the case; more
precisely, let π : A(S3

q) → B(H) be the representation on H = `2(N0) described in
(4.4.5). This is given, on the orthonormal basis |p〉 of H, by

π(z0)|p〉 = (1− q2p)1/2|p− 1〉, π(z1)|p〉 = qp+1|p〉

Let θ : A(WPq(m, l)) → A(S3
q) be the inclusion map, given on generators by a 7→

zl0(z∗1)m, b 7→ z1z
∗
1 .

Proposition 6.1.2 ([12, Proposition 2.4]). There exists an algebra isomorphism φ :
B
(⊕l

s=1Hs

)
→ B(H) that makes the following diagram commutative
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A(WPq(m, l)) θ−−−→ A(S3
q)y⊕πs yπ .

B(⊕l
s=1Hs)

φ−−−→ B(H)

6.1.2 Weighted lens spaces

Recall from Definition 4.4.3 that in order to construct the coordinate algebra of the
weighted quantum lens space, we define an action of the cyclic group Zdlm on the
quantum sphere algebra A(S3

q), by restricting the weighted circle action (4.4.6). This
is given on generators by

e2πi/dlm · (z0, z1) 7→ (e2πi/dlz0, e2πi/dmz1) . (6.1.4)

The coordinate algebra for the quantum lens space Lq(dlm;m, l) is the fixed point
algebra of the action (6.1.4); it will be denoted by A

(
Lq(dlm;m, l)

)
. Equivalently, the

algebra can be obtained as a direct sum of line bundles, starting from the Z-graded
algebra structure of A(S3

q).

The elements zl0(z∗1)m and z1z
∗
1 , generating the weighted projective space algebra

A(WPq(k, l)), are clearly invariant leading to an algebra inclusion

A(WPq(m, l)) ↪→ A
(
Lq(dlm;m, l)

)
∀d ∈ N.

Next, for each k ∈ N0, consider the subspaces of A(S3
q) given by

Ak(m, l) :=
k∑
j=0

(z∗0)lj(z∗1)m(n−j) · A(WPq(m, l)) ,

A−k(m, l) :=
k∑
j=0

(z0)lj(z1)m(n−j) · A(WPq(m, l)) .
(6.1.5)

By construction these subspaces are in fact right-modules over A(WPq(m, l)).

Recall that by [91] the algebra A(S3
q) admits a vector space basis given by the

vectors {ep,r,s | p ∈ Z, r, s ∈ N0}, where

ep,r,s =

z
p
0z

r
1(z∗1)s for p ≥ 0

(z∗0)−pzr1(z∗1)s for p ≤ 0
.

Lemma 6.1.3. Let k ∈ Z. It holds that

ep,r,s ∈ Ak(m, l) ⇐⇒ pm+ (r − s)l = −kml
⇐⇒ σm,lw (ep,r,s) = w−kmlep,r,s , ∀w ∈ S1 .
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As a consequence, it holds that

x ∈ Ak(n, l) ⇐⇒ σm,lw (x) = w−kmlx , ∀w ∈ S1 .

Proposition 6.1.4. The subspaces
{
Adk(m, l)

}
k∈Z

give A(Lq(dlm;m, l)) the structure
of a Z-graded unital ∗-algebra.
Corollary 6.1.5. The algebra A(Lq(ml;m, l)) is strongly Z-graded, hence the triple
(A(Lq(ml;m, l)),O(U(1)),A(WPq(m, l))) is a quantum principal circle bundle.

The result follows immediately from Proposition 4.4.4. We show here explicitly
how to construct elements

ξ1, ξ2, β1, β2 ∈ A1(m, l) and η1, η2, α1, α2 ∈ A−1(m, l)

that satisfy
ξ1η1 + ξ2η2 = 1 = α1β1 + α2β2,

along the lines of Theorem 4.1.4.

Firstly, a repeated use of the defining relations of the algebra A(S3
q) leads to

(z∗0)lzl0 =
l∏

j=1
(1− q−2jz1z

∗
1) .

Then, define the polynomial F ∈ C[X] by the formula

F (X) :=
(

1−
l∏

j=1
(1− q−2jX)

)
/X .

Since z1z
∗
1 = z∗1z1 one has that

(z∗0)lzl0 + z∗1 F (z1z
∗
1) z1 = 1 .

In particular, this implies that

1 =
(
(z∗0)lzl0 + z∗1 F (z1z

∗
1) z1

)m
=

m∑
j=0

(
m

j

)(
(z∗0)lzl0

)j (
z∗1 F (z1z

∗
1) z1

)m−j
= (z∗1)m

(
F (z1z

∗
1)
)m
zm1 +

m∑
j=1

(
m

j

)(
(z∗0)lzl0

)j (
1− (z∗0)lzl0

)m−j

= (z∗1)m
(
F (z1z

∗
1)
)m
zm1 + (z∗0)l


m∑
j=1

(
m

j

)(
zl0(z∗0)l

)j−1(
1− zl0(z∗0)l

)m−j  zl0 .
Define now the polynomial G ∈ C[X] by the formula

G(X) := (1− (1−X)m)/X =
m∑
j=1

(
m

j

)
Xj−1(1−X)m−j , (6.1.6)
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so that
m∑
j=1

(
m

j

)(
zl0(z∗0)l

)j−1(
1− zl0(z∗0)l

)m−j
= G

(
zl0(z∗0)l

)
.

And this enables us to write the above identities as

1 = (z∗1)m
(
F (z1z

∗
1)
)m
zm1 + (z∗0)lG

(
zl0(z∗0)l

)
zl0 . (6.1.7)

Note that both F (z1z
∗
1) and G

(
zl0(z∗0)l

)
belong to A(WPq(m, l)). We thus define

ξ1 := (z∗1)m
(
F (z1z

∗
1)
)m

, η1 := zm1 ,

ξ2 := (z∗0)lG
(
zl0(z∗0)l

)
, η2 := zl0 ,

and this proves the first half of the proposition.

To prove the second half, we consider instead the identity

zl0(z∗0)l =
l−1∏
m=0

(1− q2mz∗1z1) ,

which again follows by a repeated use of the defining identities for A(S3
q).

The polynomial F̂ ∈ C[X] is now given by the formula

F̂ (X) :=
(

1−
l−1∏
m=0

(1− q2mX)
)
/X .

and we obtain that
zl0(z∗0)l + z1F̃ (z1z

∗
1)z∗1 = 1 .

By taking m-th powers and computing as above, this yields that

1 = zm1
(
F̃ (z1z

∗
1)
)m

(z∗1)m + zl0


m∑
j=1

(
m

j

)(
(z∗0)lzl0

)j−1(
1− (z∗0)lzl0

)m−j (z∗0)l .

This identity may be rewritten as

1 = zm1
(
F̂ (z1z

∗
1)
)m

(z∗1)m + zl0G
(
(z∗0)lzl0

)
(z∗0)l ,

where G ∈ C[X] is again the one defined by (6.1.6).
Since both F̂ (z1z

∗
1) and G

(
(z∗0)lzl0

)
belong to A(WPq(m, l)) we define

α1 := zm1
(
F̂ (z1z

∗
1)
)m

, β1 := (z∗1)m ,

α2 := zl0 G
(
(z∗0)lzl0

)
, β2 := (z∗0)l .

Again, the right-modules A1(m, l) and A−1(m, l) play a central rôle, and their com-
pletions will enter in the construction of the corresponding Pimsner algebra.



102 Chapter 6. Gysin Sequences in KK-theory for weighted quantum lens spaces

6.1.3 C∗-completions and Pimsner algebra structure

We are now ready to describe the C∗-algebras of continuous function on the weighted
projective line and on the weighted lens space.
Definition 6.1.6. The algebra of continuous functions on the quantum weighted pro-
jective line WPq(m, l) is the universal enveloping C∗-algebra, denoted C(WPq(m, l)),
of the coordinate algebra A(WPq(m, l)).

It was shown in [12] that this C∗-algebra is isomorphic to a direct sum of compact
operators, with unit adjoined.

More precisely, let Hs = `2(N0) and let Ks denote the algebra of compact operators
on the Hilbert space Hs.Then there is a split exact sequence of C∗-algebras

0 //
⊕l
s=1Ks // C(WPq(m, l)) // C // 0 . (6.1.8)

By split exactness of the sequence, C(WPq(m, l)) is isomorphic to a direct sum of
l algebras of compact operators with C, i.e. to the unital C∗-algebra

⊕̂ls=1Ks ⊆ B
(
⊕ls=1 Hs

)
,

where ·̂ denotes the unitalization functor. Note that, as a consequence of (6.1.8),
the C∗-algebra C(WPq(m, l)) does not depend on m.

Let L1
s := L1(Hs) denote the trace class operators on the Hilbert space Hs.

Lemma 6.1.7. The ∗-homomorphism π := ⊕ls=1πs : A(WPq(m, l))→ ⊕̂ls=1Ks factor-
izes through the unital ∗-subalgebra ⊕̂ls=1L1

s.

Proof. Let s ∈ {1, . . . , l}. We only need to show that πs(a), πs(b) ∈ L1
s.

The operator πs(b) : Hs → Hs is positive and diagonal with eigenvalues {q2(s+lp)}∞p=0
each of multiplicity 1.

It is immediate that πs(b)1/2 ∈ L1
s. Indeed, from (6.1.3),

Tr(πs(b)1/2) =
∞∑
p=0

qs qlp = qs (1− ql)−1 <∞ ,

having restricted the deformation parameter to 0 < q < 1. From πs(b)1/2 ∈ L1
s the

inclusion πs(b) ∈ L1
s follows as well.

To obtain that πs(a) ∈ L1
s we need to verify that |πs(a)| ∈ L1

s. Now, recall that

a∗a = bm ·
l∏

j=1
(1− q−2jb) .

Using this relation, we may compute the absolute value:
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|πs(a)| = πs(b)m/2 ·
( l∏
j=1

(1− q−2jπs(b))
)1/2

.

Since L1
s is an ideal in B(Hs) we may thus conclude that |πs(a)| ∈ L1

s. ut

We now define the algebra of continuous functions on the quantum sphere S3
q and

show, by using arguments presented in Section 4.2.2, that the fixed point algebra with
respect to the extended action agrees with the universal C∗-algebra for WPq(m, l).
Definition 6.1.8. The algebra of continuous functions on the quantum 3-sphere S3

q is
the universal enveloping C∗-algebra, C(S3

q), of the coordinate algebra A(S3
q).

The (weighted) circle action
{
σ(m,l)
w

}
w∈S1

on A(S3
q) will be denoted simply by

{σw}w∈S1 . It induces a strongly continuous circle action on C(S3
q). We let C(S3

q)(0)
denote the fixed point algebra of this action.
Lemma 6.1.9. The inclusion A(WPq(m, l)) ↪→ A(S3

q) induces an isomorphism of
unital C∗-algebras,

i : C(WPq(m, l))→ C(S3
q)(0) .

Proof. Clearly, one has Im(i) ⊆ C(S3
q)(0) and Im(i) is shown to be dense by the use

of a conditional expectation, like in the proof of Lemma 4.2.4.

It therefore suffices to show that i : C(WPq(m, l))→ C(S3
q) is injective. To this end,

consider the ∗-homomorphism π := ⊕ls=1πs as above. Then, by Proposition 6.1.2 there
exist a ∗-homomorphism ρ : A(S3

q)→ B(H) and an isomorphism φ : B
(
⊕ls=1 Hs

)
→

B(H) such that
φ ◦ π = ρ ◦ i : A(WPq(m, l))→ B(`2(N0)) .

Let now x ∈ A(WPq(m, l)). It follows from the above, that

‖x‖ = ‖π(x)‖ = ‖(φ ◦ π)(x)‖ = ‖(ρ ◦ i)(x)‖ ≤ ‖i(x)‖ .

This proves that i : C(WPq(m, l)) → C(S3
q)(0) is an isometry and it is therefore

injective. ut

We now fix m, l ∈ N to be coprime positive integers. Let d ∈ N. With C(S3
q) the

C∗-algebra of continuous functions on the quantum sphere S3
q, the action of the cyclic

group Zdlm given on generators in (6.1.4) results into an action α1/d on C(S3
q).

Definition 6.1.10. The C∗-algebra of continuous functions on the quantum lens space
Lq(dlm;m, l) is the fixed point algebra of this action. It is denoted by C(S3

q)1/d. Thus

C(S3
q)1/d :=

{
x ∈ C(S3

q) | α1/d(1, x) = x
}
.

Lemma 6.1.11. The C∗-quantum lens space C(S3
q)1/d agrees with the closure of the

algebraic quantum lens space A(Lq(dlm;m, l)) with respect to the universal C∗-norm
on A(S3

q).
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Proof. This follows by applying the bounded operator E1/d : C(S3
q)→ C(S3

q)1/d,

E1/d : x 7→ 1
dlm

dlm∑
i=1

α1/d([i], x) ,

with [i] denoting the residual class in Zdlm of the integer i. ut

Alternatively, and in parallel with Definition 6.1.6, we could define the C∗-quantum
lens space as the universal enveloping C∗-algebra of the algebraic quantum lens space
A(Lq(dlm;m, l)). We will denote this C∗-algebra by C(Lq(dlm;m, l)).
Lemma 6.1.12. For all d ∈ N, the identity map A(Lq(dlm;m, l))→ A(Lq(dlm;m, l))
induces an isomorphisms of C∗-algebras,

C(S3
q)1/d ' C(Lq(dlm;m, l)) .

Proof. To prove the claim we use Theorem 4.2.6. Indeed, let d ∈ N and let
‖ · ‖ : A(S3

q) → [0,∞) and ‖ · ‖′ : A(Lq(dlm;m, l)) → [0,∞) denote the universal
C∗-norms of the two different unital ∗-algebras in question. We then have ‖x‖ ≤ ‖x‖′
for all x ∈ A(Lq(dlm;m, l)) since the inclusion A(Lq(dlm;m, l))→ A(S3

q) induce a ∗-
homomorphism C(Lq(dlm;m, l))→ C(S3

q)1/d. But we also have ‖x‖′ ≤ ‖x‖ since the
restriction ‖ · ‖ : A(WPq(m, l)) → [0,∞) is the maximal C∗-norm on A(WPq(m, l))
by Lemma 6.1.9. ut

We are ready to realize the C∗-quantum lens spaces as Pimsner algebras. In order
to be consistent with Chapter 3 and to lighten the notation, we let B := C(WPq) :=
C(WPq(m, l)) and C(Lq(d)) := C(Lq(dlm;m, l)). As before E will denote the Hilbert
C∗-module over B obtained as the closure of A1(m, l) in C(S3

q). The ∗-homomorphism
φ : B → LB(E) is induced by the product in C(S3

q).
Theorem 6.1.13 ([5, Theorem 6.9]). For all d ∈ N , there is an isomorphism of C∗-
algebras,

OE(d) ' C(S3
q)1/d .

Proof. Recall from Proposition 6.1.4 that, for all d ∈ N

A(Lq(dlm;m, l)) ' ⊕n∈ZA(dn)(m, l) .

Let us denote by {ρw}w∈S1 the associated circle action on A(Lq(dlm;m, l)). Then, we
have ‖ρw(x)‖ ≤ ‖x‖ for all x ∈ A(Lq(dlm;m, l)) and all w ∈ S1, where ‖ · ‖ is the
norm on C(S3

q)1/d (the restriction of the maximal C∗-norm on C(S3
q)). To see this,

choose a z ∈ S1 such that zdlm = w. Then σ(m,l)
z (x) = ρw(x), where the weighted

circle action σ(m,l) on C(S3
q) is the one defined by extending the action (4.4.6).

An application of Theorem 4.2.5 now shows that OE(d) ' C(S3
q)1/d for all d ∈ N ,

provided that {ρw}w∈S1 satisfies the conditions in 4.2.2. To this end, taking into
account the analysis of the coordinate algebra A(Lq(lm;m, l)) provided in Subsec-
tion 6.1.2, the only non-trivial thing to check is that the collections
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〈E ,E〉 := Span
{
ξ∗η | ξ, η ∈ E

}
and 〈E∗,E∗〉 := Span

{
ξη∗ | ξ, η ∈ E

}
are dense in C(WPq(m, l)). But this follows at once from the fact that the modules
are finitely generated projective. ut

6.2 Gysin sequences

For each d ∈ N, let [E (d)] ∈ KK(C(WPq), C(WPq)) denote the class of the self-Morita
equivalence bimodule E (d) as described in Definition 3.3.2.

Then, given any separable C∗-algebra C, by Theorem 3.3.4 we obtain two six term
exact sequences in KK-theory.

KK0(C,C(WPq))
1−[E(d)]−−−−−→ KK0(C,C(WPq))

j∗−−−→ KK0
(
C,C(Lq(d))

)
[∂]

x y[∂]

KK1(C,C(Lq(d))) ←−−−
j∗

KK1(C,C(WPq)) ←−−−−−
1−[E(d)]

KK1(B,C(WPq))

(6.2.1)

and

KK0(C(WPq), C) ←−−−−−
1−[E(d)]

KK0(C(WPq), C) ←−−−
j∗

KK0
(
C(Lq(d)), C

)
y[∂] [∂]

x
KK1

(
C(Lq(d)), C

)
j∗−−−→ KK1(C(WPq), C) 1−[E(d)]−−−−−→ KK1(C(WPq), C)

,

(6.2.2)
where j∗ and j∗ are the maps in KK-theory induced by j : C(WPnq ) ↪→ C(Lq(d)).

We will refer to these two sequences as the Gysin sequences (in KK-theory) for
the quantum lens space Lq(dlm;m, l).

6.2.1 K-theory and K-homology for weighted quantum projective
lines

As a direct consequence of the extension (6.1.8), one has the following corollary
Corollary 6.2.1 ([12, Corollary 5.3]). . The K-groups of C(WPq(m, l)) are:

K0(C(WPq(m, l))) = Zl+1 , K1(C(WPq(m, l))) = 0 .

Recall the representations πs of C(WPq(m, l)) given in (6.1.3). For each r ∈
{1, . . . , l}, let pr ∈ C(WPq(m, l)) denote the orthogonal projection defined by
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πs(pr) =
{

e00 for s = r
0 for s 6= r

, (6.2.3)

where e00 : `2(N0) → `2(N0) denotes the orthogonal projection onto the closed sub-
space C|0〉 ⊆ `2(N0). For r = 0, let p0 = 1 ∈ C(WPq(m, l)). The classes of these l+ 1
projections {pr, r = 0, 1, . . . , l} form a basis for the group K0(C(WPq(m, l))).

Similarly for the K-homology, we have

K0(C(WPq(m, l))) = Zl+1 , K1(C(WPq(m, l))) = 0 .

In order to construct Fredholm modules, we let E denote, as before, the Hilbert C∗-
module over the quantum weighted projective line C(WPq(m, l)) which is obtained
as the closure of A1(m, l) in C(S3

q).

The two polynomials in A(WPq(m, l)) at the end of Subsection 6.1.2, written as

(F (z1z
∗
1))m =

((
1− (z∗0)lzl0

)
/(z1z

∗
1)
)m

and

G
(
zl0(z∗0)l

)
=
(
1− (1− zl0(z∗0)l)m

)
/(zl0(z∗0)l) ,

are manifestly positive, since ‖z1z
∗
1‖ ≤ 1 and thus also ‖zl0(z∗0)l‖, ‖(z∗0)lzl0‖ ≤ 1 in

C(WPq(m, l)). It therefore makes sense to take their square roots:

ξ1 := F (z1z
∗
1)m/2 =

((
1− (z∗0)lzl0

)
/(z1z

∗
1)
)m/2

∈ C(WPq(m, l)) and

ξ0 := G
(
zl0(z∗0)l

)1/2
=
((

1− (1− zl0(z∗0)l)m
)
/(zl0(z∗0)l)

)1/2
∈ C(WPq(m, l)) .

Next, define the morphism of Hilbert C∗-modules Ψ : E → C(WPq(m, l))2 by

Ψ : η 7→
(
ξ1z

m
1 η

ξ0z
l
0 η

)
,

whose adjoint Ψ ∗ : C(WPq(m, l))2 → E is given by

Ψ ∗ :
(
x
y

)
7→ (z∗1)mξ1 x+ (z∗0)lξ0 y .

It then follows from (6.1.7) that Ψ ∗Ψ = IdE . The associated orthogonal projection is

p := ΨΨ ∗ =
(
ξ1 (z1z

∗
1)m ξ1 ξ1 z

m
1 (z∗0)l ξ0

ξ0 z
l
0(z∗1)m ξ1 ξ0 z

l
0(z∗0)l ξ0

)
∈M2(C(WPq(m, l))) . (6.2.4)

Let H := `2(N0) ⊗ C2. We use the subscripts “+” and “−” to indicate that the
corresponding spaces are thought of as being even or odd respectively, for a suit-
able Z2-grading γ. Then H± will be two copies of H. For each s ∈ {1, . . . , l},
with the ∗-representations π0 and πs given in (6.1.2) and (6.1.3), define the even
∗-homomorphism
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ρs : A(WPq(m, l))→ B
(
H+ ⊕H−

)
, ρs : x 7→

(
πs(ΨxΨ ∗) 0

0 π0(ΨxΨ ∗)

)
.

We are slightly abusing notation here: the element ΨxΨ ∗ is a 2× 2 matrix, hence πs
and π0 have to be applied component-wise. Next, define

F =
(

0 1
1 0

)
, γ =

(
1 0
0 −1

)
. (6.2.5)

Lemma 6.2.2. The datum Fs :=
(
H+ ⊕ H−, ρs, F, γ

)
, defines an even 1-summable

Fredholm module over the coordinate algebra A(WPq(m, l)).

Proof. It is enough to check that πs(Ψz1z
∗
1Ψ
∗), πs(Ψzl0(z∗1)mΨ ∗) ∈ L1(H) and further-

more that πs(p)− π0(p) ∈ L1(H), for p the projection in (6.2.4).

That the two operators involving the generators z1z
∗
1 and zl0(z∗1)m lie in L1(H)

follows easily from Lemma 6.1.7. To see that πs(p)− π0(p) ∈ L1(H) note that

π0(p) =
(

0 0
0 1

)
.

The desired follows again from Lemma 6.1.7, since the operators πs(z1z
∗
1)m,

πs(zl0(z∗1)m), and πs(1− zl0(z∗0)l) are of trace class. ut

For s = 0, we take

ρ0 :=
(
π0 0
0 0

)
: C(WPq(m, l))→ L(C⊕ C)

and define the even 1-summable Fredholm module

F0 :=
(
C+ ⊕ C−, ρ0, F, γ

)
.

Remark 6.2.3. The 1-summable l + 1 Fredholm modules over A(WPq(m, l)) we have
defined are different from the 1-summable Fredholm modules defined in [12, Section 4].
The present Fredholm modules are obtained by twisting the Fredholm modules in [12]
with the Hilbert C∗-module E .

6.2.2 Index pairings

We have the classes in the K-homology group K0(C(WPq(m, l))) represented by
the even 1-summable Fredholm modules Fs, s = 0, . . . , l, which we described in the
previous paragraph. We are interested in computing the index pairings

〈[Fs], [pr]〉 := 1
2 Tr

(
γF [F, ρs(pr)]

)
∈ Z , for r, s ∈ {0, . . . , l} .
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Proposition 6.2.4. It holds that:

〈[Fs], [pr]〉 =


1 for s = r
1 for r = 0
0 otherwise

.

Proof. Suppose first that r, s ∈ {1, . . . , l}. We then have:

〈[Fs], [pr]〉 = Tr
(
πs(ΨprΨ ∗)

)
,

and the above operator trace is well-defined since πs(ΨprΨ ∗) is an orthogonal projec-
tion in M2(K) and it is therefore of trace class. We may then compute as follows:

Tr
(
πs(ΨprΨ ∗)

)
= Tr

(
πs(ξ1z

m
1 pr(z∗1)mξ1)

)
+ Tr

(
πs(ξ0z

l
0pr(z∗0)lξ0)

)
= Tr

(
πs(pr(z∗1)mξ2

1z
m
1 )
)

+ Tr
(
πs(pr(z∗0)lξ2

0z
l
0)
)

= Tr
(
πs(pr)

)
= δsr ,

where the second identity follows from [79, Corollary 3.8] and δsr denotes the Kro-
necker delta.

If r ∈ {1, . . . , l} and s = 0, then ρ0(pr) = 0 and thus

〈[F0], [pr]〉 = 0.

Next, suppose that r = s = 0. Then

〈[F0], [p0]〉 = Tr
(

1 0
0 0

)
= 1 .

Finally, suppose that r = 0 and s ∈ {1, . . . , l}. We then compute

〈[Fs], [p0]〉 = Tr
(
πs(p)− π0(p)

)
= Tr

(
πs(ξ2

1(z1z
∗
1)m)

)
+ Tr

(
πs(ξ0z

l
0(z∗0)lξ0)− 1

)
= Tr

(
πs(1− (z∗0)lzl0)m

)
− Tr

(
πs(1− zl0(z∗0)l)m

)
.

We will prove in the next lemma that this quantity is equal to 1. This will complete
the proof of the present proposition. ut

Lemma 6.2.5. It holds that:

Tr
(
πs(1− (z∗0)lzl0)m

)
− Tr

(
πs(1− zl0(z∗0)l)m

)
= Tr

(
πs([zl0, (z∗0)l])

)
= 1 .

Proof. Notice firstly that πs
(
1−(z∗0)lzl0

)
, πs

(
1−zl0(z∗0)l

)
∈ L1(`2(N0)) by Lemma 6.1.7.

It then follows by induction that

Tr
(
πs(1− (z∗0)lzl0)m

)
− Tr

(
πs(1− zl0(z∗0)l)m

)
= Tr

(
πs([zl0, (z∗0)l])

)
.

Indeed, with x := zl0, for all j ∈ {2, 3, . . .}, one has that,
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Tr
(
πs(1− x∗x)j

)
− Tr

(
πs(1− xx∗)j

)
=

= Tr
(
πs(1− x∗x)j−1

)
− Tr

(
πs(xx∗(1− xx∗)j−1)

)
− Tr

(
πs(1− xx∗)j

)
=

= Tr
(
πs(1− x∗x)j−1

)
− Tr

(
πs(1− xx∗)j−1

)
.

It therefore suffices to show that Tr
(
πs([zl0, (z∗0)l])

)
= 1. Now, one has:

[zl0, (z∗0)l] =
l∑

j=0
(−1)jqj(j−1)

(
l

j

)
q2

(1− q−2jl) (z1z
∗
1)j

where the notation
(
l
j

)
q2

refers to the q2-binomial coefficient, defined by the identity

l∏
j=1

(1 + q2(j−1)Y ) =
l∑

j=0
qm(m−1)

(
l

j

)
q2
Y j

in the polynomial algebra C[Y ]. Then, as in [12, Proposition 4.3] one computes:

Tr
(
πs([zl0, (z∗0)l])

)
=

l∑
j=1

(−1)jqj(j−1)
(
l

j

)
q2

(1− q−2jl) q2js

1− q2jl =

= 1−
l∑

j=0
(−1)jqj(j−1)

(
l

j

)
q2
q2j(s−l) =

= 1−
l∏

j=1
(1− q2(s−j)) = 1 ,

since, due to s ∈ {1, . . . , l} one of the factors in the product must vanish. ut

Remark 6.2.6. The non-vanishing of the pairings in Proposition 6.2.4 for r = 0 means
that the class of the projection p in (6.2.4) is non-trivial in K0(C(WPq(m, l))).
(In this case the pairings are computing the couplings of the Fredholm modules
of [12, Section 4] with the projection p.) Geometrically this means that the line
bundle A(1)(m, l) over A(WPq(m, l)) and then the quantum principal circle bundles
A(WPq(m, l))) ↪→ A(Lq(dlm);m, l) are non-trivial.

6.3 Computing the KK-theory of quantum lens spaces

As a direct consequence of (6.1.8), since the C∗-algebra C(WPq(m, l)) is isomorphic
to ⊕̂l

s=1Ks, we have that that C(WPq(m, l)) is KK-equivalent to Cl+1.

To show this equivalence explicitly, for each s ∈ {0, . . . , l} we define a KK-class
[Πs] ∈ KK(C(WPq(m, l)),C) via the Kasparov module Πs ∈ E(C(WPq(m, l)),C)
given by:
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Πs :=
(
`2(N0)+ ⊕ `2(N0)−, π̃s, F, γ

)
for s 6= 0,

Π0 := (C, π0, 0) for s = 0 ,

with F and γ the canonical operators in (6.2.5). The representation is

π̃s =
(
πs 0
0 π0

)
,

with the representation πs and π0 given in (6.1.2) and (6.1.3).

For each r ∈ {0, . . . , l} we define the KK-class [Ir] ∈ KK(C, C(WPq(m, l))) by
the Kasparov module

Ir :=
(
C(WPq(m, l)), ir, 0

)
∈ E(C, C(WPq(m, l))) ,

where ir : C → C(WPq) is the ∗-homomorphism defined by ir : 1 7→ pr with the
orthogonal projections pr ∈ C(WPq) given in (6.2.3).

Upon collecting these classes as

[Π] := ⊕ls=0[Πs] ∈ KK(C(WPq),Cl+1) and [I] := ⊕lr=0[Ir] ∈ KK(Cl+1, C(WPq)) ,

it follows that [I]⊗̂C(WPq)[Π] = [1Cl+1 ] and that [Π]⊗̂Cl+1 [I] = [1C(WPq)], from stability
of KK-theory (see [8, Corollary 17.8.8]).

We need a final tensoring with the Hilbert C∗-module E . This yields a class

[Ir]⊗̂C(WPq)[E ]⊗̂C(WPq)[Πs] ∈ KK(C,C) ,

for each s, r ∈ {0, . . . , l}. Then, we let Msr ∈ Z denote the corresponding integer in
KK(C,C) ' Z, with M := {Msr}ls,r=0 ∈ Ml+1(Z) the corresponding matrix.

As a consequence the six term exact sequence in (6.2.1) becomes

⊕lr=0K
0(B) 1−Md

−−−→ ⊕ls=0K
0(B) −−−→ KK0

(
B,C(Lq(d))

)
x y

KK1(B,C(Lq(d))) ←−−− ⊕ls=0K
1(B) ←−−−

1−Md
⊕lr=0K

1(B)

(6.3.1)

while, with Mt ∈ Ml+1(Z) denoting the matrix transpose of M ∈ Ml+1(Z), the six
term exact sequence in (6.2.2) becomes

⊕ls=0K0(B) ←−−−−−
1−(Mt)d

⊕lr=0K0(B) ←−−− KK0
(
C(Lq(d)), B

)
y x

KK1
(
C(Lq(d)), B

)
−−−→ ⊕lr=0K1(B) 1−(Mt)d−−−−−→ ⊕ls=0K1(B)

. (6.3.2)

In order to proceed we therefore need to compute the matrix M ∈ Ml+1(Z).
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Lemma 6.3.1. The Kasparov product [E ]⊗̂C(WPq)[Πs] ∈ KK(C(WPq),C) is repre-
sented by the Fredholm module Fs in Lemma 6.2.2 for each s ∈ {0, . . . , l}.

Proof. Recall firstly that the class [E ] ∈ KK(C(WPq), C(WPq)) is represented by
the Kasparov module (

E , φ, 0
)
∈ E(C(WPq), C(WPq)) ,

where φ : C(WPq) → LB(E) is induced by the product on the algebra C(S3
q ). It

then follows from the observations in the beginning of this section that (E , φ, 0) is
equivalent to the Kasparov module(

C(WPq)2, ΨφΨ ∗, 0
)
∈ E(C(WPq), C(WPq)) .

Suppose next that s = 0. The Kasparov product [E ]⊗̂C(WPq)[Π0] is then represented
by the Kasparov module(

C(WPq)2⊗̂π0C, ΨφΨ ∗ ⊗ 1, 0
)
∈ E(C(WPq),C) ,

which is equivalent to the Kasparov module(
C+ ⊕ C− ,

(
π0 0
0 0

)
,

(
0 1
1 0

))
.

This proves the claim of the lemma in this case.

Suppose thus that s ∈ {1, . . . , l}. The Kasparov product [E ]⊗̂C(WPq)[Πs] is then
represented by the Kasparov module given by the Z2-graded Hilbert space(

C(WPq))2⊗̂πs `2(N0)
)

+
⊕
(
C(WPq)2⊗̂π0 `

2(N0)
)
−
' H+ ⊕H−

with associated ∗-homomorphism

ρs =
(
πs(ΨφΨ ∗) 0

0 π0(ΨφΨ ∗)

)
: C(WPq)→ B

(
H+ ⊕H−

)
,

and with Fredholm operator F and grading γ the canonical ones in (6.2.5). This
proves the claim of the lemma in these cases as well. ut

Combining the results of Lemma 6.3.1 and Proposition 6.2.4 one obtains the following:
Proposition 6.3.2. The matrix M = {Msr} ∈ Ml+1(Z) has entries

Msr = 〈[Fs], [Ir]〉 =


1 for s = r
1 for r = 0
0 otherwise

.
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A combination of Proposition 6.3.2 and the six term exact sequences in (6.3.1) and
(6.3.2) then allows us to compute the K-theory and the K-homology of the quantum
lens space Lq(dlm;m, l) for all d ∈ N.

When C = C, the sequence in (6.3.1) reduces to

0 −→ K1(C(Lq(d)) −→ Zl+1 1−Md
// Zl+1 −→ K0(C(Lq(d)) −→ 0

while the one in (6.3.2) becomes

0←− K1(C(Lq(d))←− Zl+1 Zl+1 ←− K0(C(Lq(d))←− 0 .1−(Mt)d
oo

Let us use the notation ι : Z → Zl, 1 7→ (1, . . . , 1) for the diagonal inclusion and
let ιt : Zl → Z denote the transpose, ιt : (m1, . . . ,ml) 7→ m1 + . . .+ml.
Theorem 6.3.3. Let m, l ∈ N be coprime and let d ∈ N. Then

K0
(
C(Lq(dlm;m, l))

)
' Coker(1−Md) ' Z⊕

(
Zl/Im(d · ι)

)
K1
(
C(Lq(dlm;m, l))

)
' Ker(1−Md) ' Zl

and

K0
(
C(Lq(dlm;m, l))

)
' Ker(1− (Mt)d) ' Z⊕

(
Ker(ιt)

)
K1
(
C(Lq(dlm;m, l))

)
' Coker(1− (Mt)d) ' Z/(dZ)⊕ Zl .

We finish by stressing that the results on the K-theory and K-homology of the lens
spaces Lq(dlm;m, l) are different from the ones obtained for instance in [46]. In fact
our lens spaces are not included in the class of lens spaces considered there. Thus, for
the moment, there seems to be no alternative method which results in a computation
of the KK-groups of these spaces.



Conclusion

We studied the noncommutative topology of principal circle bundles in the context of
Pimsner algebras. Chapter 3 was devoted to the theory of Pimsner algebras and gen-
eralized crossed products. Their connection with principal circle bundles was analyzed
in Chapter 4, where we also provided a handful of examples.

In Part III we focused on two special classes of examples: quantum lens spaces of
any odd-dimension, seen as principal circle bundles over quantum projective spaces,
and weighted lens spaces in dimension three, seen as principal circle bundles over
weighted projective lines.

In Chapter 5 we constructed an exact sequence in K-theory for quantum lens
spaces C(L2n+1

q (d)) of any dimension. This sequence allowed us to compute the K-
theory groups of the algebra C(L2n+1

q (d)). While a computation of these groups was
already present in [46], it is worth stressing that our approach is substantially dif-
ferent, more geometrical, and it provides explicit representatives of the generators of
the group K0(C(L2n+1

q (d))), in the form of combinations of pulled-back line bundles.
We described these generators for some particular cases in Section 5.3.

Similarly, in Chapter 6 we constructed an exact sequence in KK-theory for weighted
quantum lens spaces in dimension three. There a central character is played by an
integer matrix of index pairings. The novelty of our approach lies in the construction
of this matrix, and to the best of our knowledge, there seems to be no alternative
method for computing the KK-groups of the quantum lens spaces C(Lq(dkl; k, l)) for
d 6= 1. It is worth mentioning that the K-groups of these spaces are different from
their classical counterparts.

The relevance of the mapping cone extension (2.4.4) in constructing the Gysin
exact sequence was already noticed in [3, Section 5], where we employed techniques
borrowed from [17]. An interesting problem would be understanding the connection
between the exact sequence (3.3.5) and the mapping cone exact sequence for the
inclusion B ↪→ OE , in the case of a self-Morita equivalence bimodule, and even in
the most general case of a general full correspondence. More on this problem can be
found in Appendix B. This problem is currently under investigation and results in
this direction will be reported elsewhere.

113





Appendices





Appendix A

Principal circle bundles and Gysin sequences

A.1 Vector bundles and principal bundles

A.1.1 Complex vector bundles

Let X be a Hausdorff topological space. A complex vector bundle of rank n over the
base X consists of a topological space E, named the total space, together with a
continuous surjection π : E → X such that each fiber Ex := π−1(x) has the structure
of complex n-dimensional vector space, and such that for every point x ∈ X there
exists an open neighborhood U of x inX and a homeomorphism Φ : π−1(U)→ U×Cn,
mapping each fiber Ex complex linearly onto {x}×Cn. The latter condition is referred
to as local triviality.
Example A.1. The trivial rank n bundle over X consists of the product manifold
E = X × Cn, with projection π : X × Cn → X onto the first factor. In this case one
has a global trivialization with U = X and Φ the identity map on π−1(X) = X×Cn.

Given two vector bundles π′ : E ′ → X ′ and p′ : E ′ → X ′, a vector bundle map is a
continuous map τ : E → E ′ such that there exists a map u : X → X ′ satisfying

π′ ◦ τ = f ◦ π, (A.1.1)

i.e. such that
E

τ−−−→ E ′yπ yπ′,
X

f−−−→ X ′

and such that the induced fiber-wise maps are linear maps. Condition (A.1.1) is
equivalent to τ(Ex) ⊆ E ′f(x), so the bundle map is fiber preserving.

If both π : E → X and π′ : E ′ → X are vector bundles over the same base, then a
vector bundle map is a continuous map τ : E1 → E2 satisfying π2 ◦ τ = π1, defining
fiber-wise linear maps. In that case a bundle map τ : E → E ′ is named an equivalence
if the induced fiber-wise maps τx : Ex → E ′x are linear isomorphisms for every x ∈ X.
A vector bundle is trivial if it is equivalent to the product bundle π : X × Cn → X.
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Given two vector bundles E → X and E ′ → X, of rank n and m, respectively, one
defines their tensor product as the rank nm vector bundle E ⊗ E ′ → X constructed
using the fiber-wise tensor product of vector spaces.

Given a vector bundle E → X, the dual bundle E∗ → X is the vector bundle with
fibers the dual spaces to the fibers of E. It is a complex vector bundle of the same
rank.

Line bundles and the Picard group

A complex line bundle is a vector bundle E → X with fiber isomorphic to the complex
line C.

Equivalence classes of line bundles over a topological space X form a group, under
the operation of tensor product over C, with inverse the dual line bundle and unit
element the trivial line bundle. This groups is named the topological Picard group of
X, denoted by Pic(X). One has a map

c1 : Pic(X) ' H2(X,Z), (A.1.2)

which is an isomorphism of groups, satisfying

c1(L⊗ L′) = c1(L) + c1(L′).

There are several ways to define this isomorphism: in Chern-Weyl theory (see for
instance [60, Section 14]) one defines this map by picking a connection on the line
bundle and by considering an appropriate multiple of the trace of the curvature of
the connection. Equivalently, this map can be defined in terms of sheaf cohomology
(see [42, Exercise III.4.5 and Section B.5]).

A.1.2 Principal bundles

Let X be a Hausdorff topological space and G a topological group. A continuous
principal bundle over X with structure group G is a triple (P, π,G) where P is a
topological space, π : P → X is a continuous surjection, and there is a right action
of G on P such that the following are satisfied:

1. The action preserves the fibers of π, i.e.

π(p · g) = π(p); (A.1.3)

2. For every point x ∈ X there exists an open neighborhood U of x in X and a
homeomorphism Ψ : π−1(U)→ U ×G of the form
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Ψ(p) = (π(p), ψ(p)),

where ψ : π−1(U)→ G satisfies

ψ(p · g) = ψ(p)g (A.1.4)

for all p ∈ π−1(U) and g ∈ G. This property is named local triviality.

While (A.1.3) implies that the group G acts on the bundle fiber-wise, condition
(A.1.4) has the important consequence (cf. [62, Lemma 4.1.1]) that the fiber of P at
p coincides with the orbit of the point p, i.e.

Pp := π−1(π(p)) = {p · g | g ∈ G} = p ·G.

We wil sometimes denote the bundle (P, π,G) with the compact notation π : P → X.
If the projection map is understood from the context, we will write G ↪→ P → X.
Example A.2. The trivial principal G-bundle over X consists of the product manifold
P = X × G, the projection π : X × G → X onto the first factor and the action
(x, h) · g = (x, hg). In this case one has a global trivialization with U = X and Ψ the
identity map on π−1(X) = X ×G.

Let us fix a topological group G and let us consider two principal G-bundles π :
P → X and π′ : P ′ → X ′. For convenience we denote the two-actions of G on P and
P ′ with the same dot. Then a principal bundle map is a continuous map τ : P → P ′

such that
τ(p · g) = τ(p) · g,

for all p ∈ P1 and g ∈ G. The map τ preserves the fibers of the bundles, and in
particular, it determines a map f : X → X ′ defined by

π′ ◦ τ = f ◦ π,

i.e. such that
P

τ−−−→ P ′yπ yπ′.
X

f−−−→ X ′

If both π : P → X and π′ : P ′ → X are principal G-bundles over the same base space,
then a bundle map τ : P → P ′ is named an equivalence if the induced map f : X → X
is the identity on X. It is easy to check (see for instance [62, Exercise 4.3.3]) that τ
is necessarily a homeomorphism and its inverse τ−1 : P ′ → P is also an equivalence.
A principal G-bundle is said to be trivial if it is equivalent to the trivial bundle
π : X ×G→ G.
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Associated bundles

Let V be a finite dimensional vector space and ρ : G→ GL(V ) a representation of G
on V . Then ρ gives rise to an action of G on V by

(g, v) 7→ g · v = ρ(g)(v).

In particular, this allows one to define a right action of G on P × V by

(p, ξ) · g = (p · g, g−1 · v).

We denote by P×ρV the orbit space of P×V by this action. More precisely, one defines
an equivalence relation ∼ on P × V as follows: (p1, v1) ∼ (p2, v2) if and only if there
exists g ∈ G such that (p2, v2) = (p1, v1) · g. The equivalence class of (p, v) is denoted
by [p, v] := {(p · g, g−1 · v) | g ∈ G}. As a set, P ×ρ V = {[p, v] : (p, v) ∈ P × V },
and one endows P ×ρ V with the quotient topology. The map πρ([p, v]) = π(p) is
continuous and πρ : P ×ρ V → X is a locally trivial vector bundle with fiber V . It is
called the vector bundle associated to π : P → X via the representation ρ.
Example A.3. Let π : P → X be any principal circle bundle, and V = C. If ρ : S1 →
GL(C) = C× is any one-dimensional representation of the circle group on C, then
the associated vector bundle Pρ := P ×ρ C has fibers that are copies of C and it is
a complex line bundle. A natural choice of representation is given by ρ : S1 → C×,
obtained by taking ρ(g)z = gz (note that if g = eiθ for 0 ≤ θ < 2π, then ρ(g) is
rotation by θ). We will denote the corresponding complex line bundle by P ×S1 C.

Classification of principal circle bundles

The correspondence between principal circle bundles and associated line bundles is
one-to-one. This in particular allows one to classify principal circle bundles using the
classification result of (A.1.2).
Theorem A.1.1 ([20], see also [15, Exercise 4.4.3]). Circle bundles over a topological
space X are classified by the group H2(X,Z), via their Euler class χ(P ). This class
agrees with the first Chern class of the associated line bundle.

A.2 The Gysin sequence

The Gysin exact sequence, defined in [39], is a long exact sequence in cohomology,
naturally associated to any sphere bundle ([9, Proposition 14.33]) and to any oriented
vector bundle ([60, Chapter 12]). In this work we focus on the topology of circle
bundles, hence we will concentrate on that particular case.
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A.2.1 The Gysin sequence in cohomology

Let π : P → X be a principal circle bundle. The pull-back map π∗ : Hk(X,Z) →
Hk(P,Z) and the push-forward map π∗ : Hk(P,Z)→ Hk−1(P,Z) fit into a long exact
sequence:

· · · // Hk(P,Z) π∗ // Hk−1(X,Z) α // Hk+1(X,Z) π∗ // Hk+1(P,Z) // · · · ,
(A.2.1)

where α : Hk−1(X,Z)→ Hk+1(X,Z) is defined on forms ω ∈ Hk−1(X,Z) as the cup
product α(ω) = χ(P )∪ω with the Chern class of the associated line bundle P ×S1 C.

The above sequence is called the Gysin sequence for the principal circle bundle
π : P → X. It has the important feature of relating the cohomology groups of the
total space and of the base space of the bundle π : P → X. Furthermore, it has some
notable applications in mathematical physics, as we described in the Introduction.

A.2.2 The Gysin sequence in K- theory

The Gysin exact sequence (A.2.1) admits a version in topological K-theory. In this
section we simply follow Karoubi’s book [49], simplifying the construction by focusing
on the case of line bundles and circle bundles. Let π : L→ X be a complex line bundle;
we assume the base space X to be compact.

Let us choose a metric on L, which is always possible by the existence of partitions
of unity.

We write B(L) for the ball bundle of L, the bundle over X whose fibre B(L)x at
the point x ∈ X is the closed unit ball of the fibre Lx of L. Similarly we write S(L)
for the sphere bundle of L, whose fibre S(L)x at x ∈ CPn is the unit circle in the fibre
Lx. Then B(L)− S(L) denotes the open ball bundle.

Let now K∗(B(L), S(L)) denote the relative K-theory groups. One has a six term
exact sequence in topological K-theory [49, IV.1.13]:

K0(B(L), S(L)) // K0(B(L)) // K0(S(L))

∂
��

K1(S(L))

∂

OO

K1(B(L))oo K1(B(L), S(L)).oo

(A.2.2)

Here π′∗ is the map induced by the projection π′ : S(L)→ X and the vertical arrows
are connecting homomorphisms. The map α is simply the product with the Euler
class χ(L) of the line bundle L, defined in [49, Section V.3].

Since S(L) is closed in B(L), by [49, Proposition II.5.19] we have isomorphisms

K∗(L) ' K∗(B(L)− S(L)) ' K∗(B(L), S(L)).
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Moreover, B(L) has the same homotopy type of X, via the inclusion of the latter
into B(L) determined by the zero section of L.

If P → X is a principal circle bundle with associated line bundle L → X, upon
identification of S(L) with the total space P , the exact sequence becomes

K0(X) // K0(X) // K0(P )

∂
��

K1(P )

∂

OO

K1(X)oo K1(X).oo

(A.2.3)

Example A.4 (The Gysin sequence for the complex projective space). Let CPn denote
the complex projective space of Cn+1 and let L be a complex line bundle over CPn
equipped with a Hermitian fibre metric. We write again B(L) for the ball bundle
and S(L) ' P for the sphere bundle of L, with B(L)− S(L) denoting the open ball
bundle.

Using the vanishing K1(CPn) = 0 (cf. [49, Cor. IV.2.8]), the sequence A.2.2 trans-
forms into the K-theoretic Gysin sequence for the bundle S(L):

0 −→ K1(S(L)) ∂−→ K0(CPn) α−→ K0(CPn) π∗−−→ K0(S(L)) −→ 0 . (A.2.4)

Now let L be the tautological line bundle over CPn, whose total space is Cn+1 and
whose fibre Lx at x ∈ CPn is the one-dimensional complex vector subspace of Cn+1

which defines that point. Via the associated bundle construction, the bundle L may
be identified with the quotient of S2n+1 × C by the equivalence relation

(x, t) ∼ (λx, λ−1t), λ ∈ S1 ⊆ C.

Similarly, its d-th tensor power L⊗d may be identified with the quotient of S2n+1×C
by the equivalence relation (x, t) ∼ (λx, λ−dt). Moreover, L⊗d can be given the fibre
metric defined by ϕ ((x, t′), (x, t)) = t′t̄. It follows that the sphere bundle S(L⊗d)
can be identified with the lens space L2n+1(d) := S2n+1/Zd (where the cyclic group
Zd of order d acts upon the sphere S2n+1 via the d-th roots of unity) by the map
(x, t) 7→ d

√
t · x.

Taking L⊗d in the above sequence (A.2.4) one finds, just as in [49, IV.1.14], the
K-theoretic Gysin sequence for the lens space L2n+1(d):

0 −→ K1(L2n+1(d)) δ10−−→ K0(CPn) α−→ K0(CPn) π∗−−→ K0(L2n+1(d)) −→ 0 . (A.2.5)

Here, since L⊗d is a line bundle, its Euler class (giving the map α) is given simply by

χ(L⊗d) := 1− [L⊗d] .



Appendix B

The mapping cone exact sequence and Pimsner
algebras

This appendix is devoted to an alternative proof of the exactness of the Gysin se-
quence for the quantum lens spaces C(L2n+1

q (d)). In [3] the Gysin sequence was con-
structed explicitly by providing the maps appearing in it. Our strategy to prove
exactness was to relate the sequence to a six-term exact sequence in K-theory coming
from the mapping cone of the inclusion B ↪→ A, with A = C(L2n+1

q (d)) being the
C∗-algebra of continuous functions on the quantum lens space and B = C(CPnq ).

In this appendix we show that the Gysin exact sequence described in 5.2.3 and the
mapping cone exact sequence associated to the inclusion of i : C(CPnq ) ↪→ C(L2n+1

q (d))
fit into a nice commutative diagram.

B.1 K-theory of the mapping cone

Let i : B ↪→ A an inclusion of C∗-algebras. We define that the mapping coneM(B,A)
of the pair (B,A) to be the mapping cone Ci of the inclusion, as in Definition 2.4.13.
It is easy to see that

M(B,A) ' {f ∈ C([0, 1], A) | f(0) = 0, f(1) ∈ B} .

The group K0(M(B,A)) has a particularly elegant description in terms of partial
isometries. Indeed, let us write Vm(B,A) for the set of partial isometries v ∈ Mm(A)
such that the associated projections v∗v and vv∗ belong to Mm(B). Using the inclusion
Vm(B,A) ↪→ Vm+1(B,A) given by setting v 7→ v ⊕ 0, one defines

V (B,A) :=
⋃
m

Vm(B,A)

and then generates an equivalence relation ∼ on V (B,A) by declaring that:

1. v ∼ v ⊕ p for all v ∈ V (B,A) and p ∈ Mm(B);

2. if v(t), t ∈ [0, 1], is a continuous path in V (B,A) then v(0) ∼ v(1).

123
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Following [69, Lemma 2.5], there is a well-defined bijection between V (B,A)/∼ and
the K-theory K0(M(B,A)). It is also shown there that if v and w are partial isome-
tries with the same image in K0(M(B,A)) one can arrange them to have the same
initial projection, i.e. v∗v = w∗w, without changing their class in V (B,A)/∼. Having
done so, with the same reasoning as in [17, Lemma 3.3], one defines an addition in
V (B,A)/∼ by [v ⊕ w∗] = [v] + [w∗] = [v] − [w] = [vw∗] so that V (B,A)/∼ and
K0(M(B,A)) are isomorphic as Abelian groups.

The class of the unbounded Kasparov module (E∞,N ) in KK1(A,B) described in
Remark 5.2.1, has a canonical lift to the groupKK0(M(B,A), B). Let P be as before,
the spectral projection for N corresponding to the non-negative real axis. Following
the same reasoning as in Section 4 of [17], we write

T± := ±∂t ⊗ 1 + 1⊗N

for the unbounded operators with domains

Dom(T±) : =
{
f ∈ C∞c ([0,∞))⊗Dom(N ) | f =

n∑
i=1

fi ⊗ xi, xi ∈ Dom(N ),
}

and P (f(0)) = 0 (+ case), (1− P )(f(0)) = 0 (– case),

where smoothness at the boundary of [0,∞) is defined by taking one-sided limits.
With Y := L2([0,∞))⊗ E∞, one finds that

N̂ : Dom(T+)⊕Dom(T−)→ Y ⊕ Y, N̂ :=
(

0 T−
T+ 0

)
,

is a densely defined unbounded symmetric linear operator. By modifying the domains
slightly, one obtains a Z2-graded Hilbert M(B,A)-B-bimodule Ê endowed with an
odd unbounded linear operator N̂ : Dom(N̂ ) → Ê which in addition is self-adjoint
and regular by [17, Proposition 4.13]. It then follows from [17, Proposition 4.14] that
the pair (Ê , N̂ ) determines a class in the bivariant K-theory KK0(M(B,A), B).

The internal Kasparov product of K0(M(B,A)) with the class of (Ê , N̂ ) yields a
map

IndN̂ : K0(M(B,A))→ K0(B). (B.1.1)

Following [17, Theorem 5.1] , the internal Kasparov product of the K-theoryK0(M(B,A))
with the class of (X̂, D̂) in the bivariant K-theory KK0(M(B,A), B) is represented
by the index

IndN̂ ([v]) := Ker(PvP )|v∗vPEm∞ −Ker(Pv∗P )|vv∗PEm∞ ,

the result being an element of KK0(C, B) = K0(B). Here v ∈ Mm(A) is a partial
isometry representing a class in K0(M(B,A)) and considered as a map

v : v∗vPEm∞ → vv∗PEm∞.
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B.1.1 The mapping cone exact sequence

The extension
0→ SA

ι−→M(B,A) ev−→ B → 0, (B.1.2)

where ι(f ⊗ a)(t) := f(t)a and ev(f) := f(1), admits a completely positive cross
section, yielding six term exact sequence in KK-theory. We will concentrate on the
one in K-theory, which has the form

K0(SA) ι∗ // K0(M(B,A)) ev∗ // K0(B)

∂′

��

K1(B)
∂′

OO

K1(M(B,A))ev∗
oo K1(SA).ι∗

oo

. (B.1.3)

Using the vanishing of K1(B), the sequence (B.1.3) degenerates to

0 // K0(SA) ι∗ // K0(M(B,A)) ev∗ // K0(B)→

∂′ // K1(SA) // K1(M(B,A)) // 0 .

(B.1.4)

Where ι∗ : K0(S))→ K0(M(B,A)). is the map in K-theory induced by the inclusion
ι : SA→M(B,A), and ev∗ in (B.1.3) can be given by

ev∗ : K0(M(B,A))→ K0(B), ev∗([v]) := [v∗v]− [vv∗],

for v ∈ Mm(A) a partial isometry representing a class in K0(M(B,A)) (cf. [69,
Lemma 2.3]).

The boundary map ∂′ is defined as in [44, Remark 4.9.3]: for [p] − [q] ∈ K0(B)
one chooses representatives p, q over B and, from these, self-adjoint lifts x, y over
M(B,A). Then the exponentials e2πix and e2πiy are unitaries over C(S1) ⊗ A which
are equal to the identity modulo C0((0, 1))⊗ A, so one defines

∂′([p]− [q]) := [e2πix]− [e2πiy] ∈ K1(SA). (B.1.5)

B.1.2 Exactness of the Gysin sequence

Recall that A is a Cuntz-Krieger algebra associated to a graph which is connected,
row-finite and has neither sources nor sinks [46]. It follows [17, Lemma 6.7] that
K1(M(B,A)) = 0 and that the index map (B.1.1) is an isomorphism [17, Proposi-
tion 6.8]. Thus

K0(M(B,A)) ' K0(B) ' Zn+1, (B.1.6)

where the second isomorphism is the result of Proposition 5.2.2, since B = C(CPnq ).
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As a consequence, there is a very easy description of the partial isometries which
generateK0(M(B,A)). Recall from the discussion at the end of Subsection 5.2.1 that,
upon pulling-back to A, one finds that for all k ∈ Z the projections pdk become equiv-
alent to the identity. This is equivalent to saying that for any m ∈ Z the projections
pdk and pd(k+m) are equivalent for all k ∈ Z. Indeed, one can explicitly exhibit partial
isometries relating these projectors. Taking the particular case m = 1, these partial
isometries are the elements vN ∈ M(dd(k+1), ddk)(A), with the integers d(·) as in (5.1.5),
given by

vk = Ψd(k+1) Ψ
†
dk, k = 0,−1, . . . ,−n; (B.1.7)

clearly v∗kvk = pdk and vkv∗k = pd(k+1) for k = 0,−1, . . . ,−n. With our conventions,
the entries of vk are elements of A homogeneous of degree −d for the action of Ũ(1).
Proposition B.1.1 ([3, Proposition 5.2]). The partial isometries (B.1.7) form a basis
of K0(M(B,A)).

Proof. From (B.1.6) we just need n+ 1 independent generators. Now, since the map
(B.1.1) is an isomorphism, the partial isometries vN are independent (and thus a basis
for K0(M(B,A)) if and only if the classes Ind

N̂
([vk]) are so. Since pvkp is essentially

a ‘left degree shift’ operator on the elements of non-negative homogeneous degree in
pEddk
∞ it has no cokernel. Its kernel thus determines the index:

Ind
N̂

([vk]) = [pdk].

Now, it follows from Proposition 5.2.2 that the matrix of pairings {〈[µm], [p−dk]〉 =(
dk
m

)
} is invertible, thus proving that the elements pdk for k = 0,−1, . . . ,−n are

independent. We note that these projections do not form a basis for K0(B): the
matrix of pairings (while invertible over Q) is not invertible over Z, that is it does
not belong to GLn+1(Z). ut

Finally we introduce a pair of maps

BB : K0(B)→ K0(B), BA : K1(SA)→ K0(A).

The former is defined simply by the multiplication

BB([p]− [q]) := −[p−d]([p]− [q])

in K0(B). The latter map BA is the inverse of the Bott isomorphism

βA : K0(A)→ K1(SA)

of Theorem 1.3.5.

We are ready to state and prove the central result of this appendix:
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Theorem B.1.2 ([3, Theorem 5.3]). There is a diagram

0 // K1(A) ι∗ //

id
��

K0(M(B,A)) ev∗ //

Ind
N̂

��

K0(B) ∂′ //

BB
��

K1(SA) //

BA
��

0

0 // K1(A) [∂]
// K0(B) 1−[E(d)]

// K0(B) j∗
// K0(A) // 0

(B.1.8)

in which every square commutes and each vertical arrow is an isomorphism of groups.

Proof. Upon using the isomorphismK1(A) ' K0(SA), that the first square commutes
is precisely [17, Theorem 5.1]. For the second square we explicitly compute that for
each k = 0,−1, . . . ,−n, one has

α
(
IndN̂ ([vk])

)
= (1− [p−d])[pdk] = −[p−d]([pdk]− [pd(k+1)]) = BB(ev∗([vk]).

For the third square, we argue as in [17, Lemma 3.1]. Recall that in defining the map
(B.1.5) we chose self-adjoint lifts x, y over M(B,A). We choose here in particular the
lifts x := t⊗ j(p) and y := t⊗ j(q). These are both self-adjoint and vanish at t = 0;
at t = 1 they are matrices over B. It follows that

[e2πix]− [e2πiy] = [e2πi(t⊗p)]− [e2πi(t⊗q)] = −Bott([p]− [q]) ∈ K1(SA).

Thus it follows that, modulo the isomorphism Bott : K0(A)→ K1(SA), we have

∂′([p]− [q]) = −([j(p)]− [j(q)]), (B.1.9)

i.e. that ∂′ is induced up to Bott peridocity by minus the algebra inclusion j : B → A.
Now using the fact that the image of the class of p−d in K0(A) along j : B → A is
trivial, the above (B.1.9) may in fact be written

∂′([p]− [q]) = −[j(p−d)]([j(p)]− [j(q)]),

up to Bott periodicity, from which the result follows. ut
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