Deformation Quantization

JESSE VOGEL
based on Chapter 5 of Deformation Quantization and Index Theory by B. Fedosov

Let (M,w) be a symplectic manifold, and let Z = C°°(M)[h] be the linear space of formal power

series

a:thak, with ap, € C*°(M).
k=0

Definition 1. Deformation quantization of C°°(M) refers to an associative product x on Z,

called a star product, satisfying

1. (formal deformation) axb mod k= ab for all a,b € C°(M).

2. (locality) for any a,b € Z, we have axb = > p— h¥cy, where ¢, depends on 9“a;0°b; with
i+j+ ol +|B] <k

3. (correspondence principle) for all a,b € Z, we have
[a,b] = axb—bxa = —ili{ag, by} + O(K?),
where {-,-} denotes the Poisson associated to w.

Remark 2. Note that deformation quantization differs from Weyl quantization by the fact that the

Planck constant 7 is no longer a positive number, but a formal parameter.
THE FORMAL WEYL ALGEBRAS BUNDLE

Definition 3. The formal Weyl algebra bundle is the bundle W = S/yEl(T*M@)(C)[[h]]. Locally,

its sections are of the form

where y* = (y!)®1 - .- (y2")*2», with y® a basis for T*M, and aj , complex-valued functions on M.

Definition 4. The Weyl product of two sections a,b € T'(W) is given (fiberwise) by

aob= exp <—Z2hwij aayi (ij) a(y)b(z) -
o0 . k
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Lemma 5. The center of T'(W) with respect to the Weyl product is Z.

Proof. Take any a in the center of I'(W). If we take b = y* for some k, then

i 0 i 00
aob=ay" — 5 a7 and boa=ay” — 7@ By




SO

7 0
0= [a,b] = —ihw* 22
oy’
Varying over k, we find that g;i = 0 for all 7, so a € Z. Conversely, it is easy to see that Z lies in
the center of W. O

We grade the bundle W by setting degy® = 1 and deg h = 2. This yields a filtration
F(W) D) F(Wl) D) F(Wg) DR

Similarly, the bundles of differential forms W ® AY are graded, where the degree of any pure g-form
is zero. The Weyl product can be extended to W ® A using the wedge product A, where the 3 and
dz® commute. The commutator of forms a € T(W @ A9) and b € T(W ® A%) is

[a,b] =aob— (—1)19po a.
Similar to Lemma 5, the center of I'(WW ® A) with respect to the Weyl product is Z ® A.

Notation 6. For any a € I'(W ® A), we write ag = aly—o and agp = a|y—0,dz—0. Furthermore, for

any a € I'(W), we write o(a) for ag = aly—o.
Definition 7. Define operations § and §* on I'(W ® A) by

§:T(W, @ A?) = T(W,_1 ® AT, ars daf A %,
Y
S T(W, @A) = T(Wppr @ AT, aws ykbgmk a.
In particular, § lowers the degree by one, while §* raises the degree by one.

Lemma 8. The operations § and §* do not depend on the choice of local coordinates, and satisfy
(i) 62 = (5%)* =0,

(ii) (66* +6*6)(a) = (p+ q)a for a monomial a = y** - - y'rdat A --- A dada.

(iii) 6(aob) = (da) ob+ (—1)Tao (6b) fora e (W @ A1) and b € T(W @ A%).

(iv) da = —+[w;jy'dal, a).

Proof. Straightforward. O

Definition 9. Let a € I'(W ® A), and write a,, for (p, ¢)-homogeneous part. Then define

sla ra0%ap i p+q>0,
P 0 otherwise.

In particular, using Lemma 8(ii), any a € I'(W ® A) has a Hodge—De Rham decomposition
a=ag+ 66 ta+ 5" a. (1)

Recall that there exists a symplectic connection V on M. Tensorially, there is an induced connection
on W ® A, also denoted by V.



Lemma 10.

(i) V(aob) =Vaob+ (—1)"ao Vb fora € T(W ® A™).

(i) V(n ANa) =dnAa+ (=1)In A Va for n € T'(A9).
Proof. Follows from the definition of the Weyl product o and the fact that V preserves w. O

Let us work in Darboux local coordinates, with Ffj the Christoffel symbols. Recall that for a
symplectic connection the numbers I';;; = wigfﬁk are completely symmetric in ijk. Although it is

cumbersome to write out, it is straightforward to find that

1 [1 o
Va = da + 7 [Qrijkylyjdxk, a] ,
and we write I' = %Fijkyiyjdxk for the local 1-form with values in W.

Now, we want to consider more general (symplectic) connections. Consider connections of the form

Da:Va—l—%[’y,a] :da—i-%[l"—i—fy,a],

where v € T'(W ® A!), a global 1-form. Note that v is determined by D only up to a central one-
form, since it appears in a commutator. To enforce uniqueness we impose the Weyl normalization

condition, requiring vo = y|y=0 = 0 (like a gauge condition).

Lemma 11. Let V be a symplectic connection on M. Then

Véa+6Va=0
and ]
Vg = %[R, al

where R = %Rijkeyiyjdxk A dz®, with Rijke is the curvature tensor of V.

Proof. Follows from the expression of V and § as above. Note that the latter equation is a compact
form of the Ricci identity. O

Definition 12. Let D be a connection on W of the form D = V + £[y,"] with 7o = 0. Then the
curvature of D is defined as

Q:R+V7+%72.

Lemma 13. We have

(i) (Bianchi identity) DQ = VQ + +[y,Q] =0,

(i1) (Ricci identity) D*a = +[(, a].

Proof. By definition of D and €2, we have

. . -\ 2
2 2 2 ]
D= R+ 9+ 193]+ 1h R+ b Vel + (5) b

By the Bianchi identity for V, we have VR = 0. Furthermore, obviously [y,7%] = 0, and V?y =
%[R, ] as seen earlier. Therefore, D) = 0. Part (i7) is straightforward. O



ABELIAN CONNECTIONS AND (QUANTIZATION

Definition 14. A connection D of W is abelian if
D?*aq = E[Q,a] =0
h
for all @ € T(W ® A), that is, if the curvature of the connection is a central form.

We will show there exists an abelian connection of the form

D=V-0+ %[r, 1=V+ %[wijyidxj + 7,

where V is a fixed symplectic connection, and 7 € T'(W3 ® A') a globally defined one-form, with

Weyl normalization o = 0. Computing the curvature of D gives
1 , 4 ;
Q= —iwijdx’ ANdz? + R — 0r + Vr + %72.

It suffices to find an r satisfying

5T=R—|—V’I“—|—%’I“2,

so that Q = —w is indeed central.
Theorem 15. The above equation has a unique solution r such that degr > 2 and 6 'r = 0.

Proof. From (1) follows that any such 7 has r = § =167, as rg9 = 0 and §6*r = 0. Applying 6+
yields

r=0"'R4+6" (vr + ;T2) .

Since V preserves the filtration on W ® A, and ! raises the degree by 1, one obtains a unique
solution by the iteration method. Conversely, one can show that this solution yields an abelian

connection (again using the iteration method). O

Remark 16. Explicitly, the iterating method yields

1 - 1 o
"= gRijkeyzyjykdxz + %vaijkeyzyjykymdfcz + -

Definition 17. Let D be an abelian connection on W. We define Wp C W to be the subbundle
of flat sections with respect to D, that is, Da = 0. Note that I'(Wp) is a subalgebra of I'(W) with

respect to the Weyl product because of Lemma 10.

Theorem 18. For any ag € Z, there exists a unique section a € I'(Wp) such that o(a) = ao.

Proof. Rewrite the equation Da = 0 as

da = (D +d)a,



and note that D+6 =V + %[T, ] does not lower degree since degr > 2. Applying 5!, we find using
the (1) that
a=ap+ 6 '6a=ayg+5 D +d)a, (%)

where we used 60 'a = 0 as a € I'(W). Since §~! raises degree, we can solve this equation (uniquely)

via iterations. Conversely, if a is a solution of (), then o(a) = ag since 0 0 6~ = 0. Now,
6 'Da=6YD+d6a—-56"a=a—ay—56"5a=05""ta=0.
Since D is abelian, we have D(Da) = 0, or §Da = (D + §)Da, and applying 6 ' gives
Da = 64D + §)Da.

Solve by iterations to get Da = 0. O
Remark 19. By iterations, we can construct the section a € T'(Wp) from its symbol ag = o(a),

a = ag + G;apy’ + %@@'aoyiyj + %@‘ajakaoyiyjyk - iRijkéwzmamaoyiyjyk +--
If the curvature tensor R is zero, we have

a = 8i1-~-8ika0y“--~yi’“.
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Definition 20. The bijection between I'(Wp) and Z = C°°(M)[#A] allows to define a star product
on Z, given by
a*xb=o0c(Q(a)oQ(b)),

where Q) : Z — Wp, called the quantization procedure, is the inverse to o. One can check that this
star product satisfies the properties of Definition 1. The subalgebra T'(Wp) is called the quantum

algebra.

Example 21. Let M = R®" with w = lw;;dz’ A da? a constant symplectic form on M. The
connection ]
D% = da + %[wijyidxj, a) or D% =d -,

is abelian with curvature
O =—w.

Now the corresponding quantum algebra is given by

da 0
F(WDO):{aeF(W):ﬁz—a;:O}.

That is, any a € I'(Wpo) is of the form

1 (e}
a = Z Waaby ,

| 20
for some b € Z = C*°(R?")[h]. Note that the star product now corresponds to the Weyl product.

Remark 22. Later it will be shown that any W is locally isomorphic to Wpo (R?").



Theorem 23. The cohomology groups of
S T(WeAP) B T(W @ AP = .

are trivial for p > 0.

Proof. We can extend the quantization procedure to an isomorphism @Q : I'(W ® AP) = I'(W ® AP)
via

Qa=a+5 D+ 6)Qa.
Indeed, by the iterating method there is a unique solution, and the inverse is given by
Q la=a—6"YD+)a.
One can show that
Q'D+6Q ' =0,

by substituting for Q~1, and using (1). Then it follows that D = —QJ5Q !, so we can replace the
complex with —§, and then the result follows from the Hodge-De Rham decomposition. Namely,
for any a € T'(W ® AP), write a = agp + 60~ ta + 6 16a. If §a = 0, that is,

§a = dagy + 66 6a = dagy + (5a — 67 16%a) = dagy + da = 0,

then a = ago+60 ta+8"16a = ago— 9 1dagy+36ta = 6(§ Lagy+46ta) lies in the image of 6, so the
sequence is exact for p > 0. Note that we used that p > 0 in the line where 66 ~'a + 6 1da =a. O

Corollary 24. Any equation Da = b with b € T(W ® AP) and p > 0 has a solution if and only if
Db = 0. The solution may be taken in the form

a=D"1b=-Q5 Q'

GENERALIZATIONS

Note that in the above, the symplectic form w pops up in two places: in the Weyl multiplication rule,
and as the curvature of the abelian connection D. In this section we will make them distinct. This
is convenient when when we have to vary symplectic structures: we may fix the Weyl multiplication

and vary the curvature.

Let L be a symplectic vector bundle over M of dimension 2n with a fixed symplectic structure w and

symplectic connection V. We assume that L is isomorphic to TM, but not canonically. Denote by

0:TM — L
a bundle isomorphism, and by
0: L —-T*M
a dual isomorphism. Introducing a local symplectic frame (eq,...,eq,) for L yields a dual frame
(el,...,e?m) for L*, and a frame 0! = §(e!),..., 07" = §(e*") for T* M, with corresponding vector



fields X1,..., X, giving a dual frame for TM. The form w on L can be transported to TM giving
a non-degenerate 2-form on M
1 o

QO = 7§wij01 A 9J,
but note that it need not be closed. We will use 6 to vary the symplectic structure on T'M.
Lemma 25. Let Q(t) be a family of non-degenerate 2-forms on M with Q(0) = Qo = —Fw;;0° N 69,
Then there exists a family 0(t) of isomorphisms such that Q(t) = —3w;;0(t)" A 0(t)7.
Proof. Omitted. See [1, Lemma 5.3.1]. O

Analogous to the previous section, we make some definitions.
Definition 26. Let £ be a complex vector bundle over M with connection V¢, and let A =
Hom(&, E) (the coefficient bundle).

m The formal Weyl bundle with coefficients in A is the bundle

W (L, A) = Sym(L*)[A] ® A.
m Using the same rule as in Definition 3, we can define Weyl multiplication on W (L, .A), but now
the coefficients are taken in A4, which means the multiplication may be non-commutative.
m The connections V¥ and V¢ induce a connection V on W (L, A).

m In a local symplectic frame of L, we can write

Va =da+ % |:2Fijyzyja a:| + [Fg, CL] and v2a = % |:2Rijy2yjaa:| + [R5a a] 3

so we define the curvature of V to be
1 o
R = ERijyzyJ - ZhRg S F(W(L,A) ® Az)
m Consider more general connections on W (L, A) of the form
D=V+ %[% al,

for some globally defined v € T(W (L, A) ® A'). (Note that there are no unique V and ~
representing D, although we can always choose an arbitrary symplectic connection V, and
then ~ is well-defined up to some scalar 1-form Ay € T'(A!)[R].) The curvature of D (with
respect to V and ) is defined by

Q=Vy+ 9%+ ReD(W(L A) 0 A2).

m Define operators

o0
oYk’
§* :T(W(L, A), @ A?) = T(W(L, A)pr1 @ A7), a = yFiy,a.

§:T(W(L, A), @ A?) = T(W(L, A)p_1 @ AT, a8 A

In particular, note that § agrees with L* — T*M on linear forms.



m The construction of 6!, the Bianchi identity and Ricci identity (Lemma 13), the Hodge-De

Rham decomposition (1), all remain valid.

Theorem 27. Let Q = Qo + A + h2Qs + -+ be a closed 2-form, and 0 : TM — L a bundle
isomorphism such that Qo = —iw;;0° A 09. Then for any section p € (W (L, A)) with deg(p) > 3
and pily—o = 0 there exists a unique sectionr € T(W (L, A)@A') with deg(r) > 2 such that 5~ 'r = p,

and the corresponding connection D =V — § + %[r, || is abelian with curvature Q.

Proof. Omitted. See [1, Theorem 5.3.3]. O

Remark 28. The construction of D as in the theorem depends smoothly on the parameters. That
is, if Q(t) is a family of closed 2-forms with non-degenerate leading term Qg (t), and a family u(t)
with deg p(t) > 3 and p(t)|y—o = 0, there exists a family r(t) satisfying the requirements.

Having constructed the abelian connection D, we define a quantum algebra with twisted coefficients
Wp(L, A) in the same way as before. Theorems 18 and 23 and Corollary 24 remain valid for the

bundle W (L, A). In particular, may define a quantization procedure

D(A)R] 2 T(Wp(L, A).

THE HEISENBERG EQUATION

Consider the Heisenberg equation in Wp = Wp(L, A),

da 1

— 4+ —[H(t),d = 2
with H(t) € I'(Wp) a given flat section, and a(t) € I'(Wp) an unknown flat section. If H(¢) and
a(t) are obtained via quantization, coming from symbols Hy(t) and ag(t), then the leading term of

the equation reads

d

—a

i’
which corresponds to the Louiville equation in classical mechanics. That is, the Heisenberg equation

(t) + {Ho, ao} = 0,

can be seen as the quantum analogue of the Liouville equation.

Consider a family of abelian connections on W (L, A),

D=Vt 2] =V =6+ ().,

where v, = w;;y0(t)7 + r(t) with deg(r(t)) > 2, and 6(t) : TM — L is a family of bundle isomor-
phisms. Furthermore, let H(¢) be a section of W (L, A), called the Hamiltonian, satisfying

(1) X := D.H(t) — %(t) lies in A'[A],
(2) there exists a vector field X; such that deg (vx,['(t) + H(t)) > 2.

Now consider the equation

. .
%+ (ex, Di + Deex,) a+ 5 [H(b),a] = 0. (3)



Remark 29. When D is time-independent and a € I'(Wp), the above equation reduces to (2).
Namely, in this case tx,a = 0 and Da = 0, so (tx,D; + Ditx,)a = 0. Furthermore, A is closed
since d\ = D\ = D?H = 0, as D is abelian, so locally we can write A = —dHg(t) for some scalar
function Hy(t). Since Hy(t) is central, we can replace H(t) with H(t) + Ho(t), which is flat as
D(H(t) + Ho(t)) = 0 by the first property of the Hamiltonian.

Definition 30. Let W+ > W be the bundle whose sections are of the form

a = § hkak,ayaa
2k+|a|>0

where k is allowed to be negative, as long as the total degree 2k + || is non-negative.

Remark 31. Note that the fibers W are still algebras with respect to the Weyl multiplication,
and the connections V and D are well-defined on W .

Lemma 32. Let a € T(W™) with Da = 0, then a € T(Wp). That is, a does not contain negative

powers of h.

Proof. Note that o(a) must only have non-negative powers of h, and thus o(a) € Z. By Theorem
18, a flat section is determined by o(a), so it follows that a € I'(Wp). O

Assume that the vector field X; defines a flow f; : M — M for t € [0, 1]. (Generally this is only true

for small ¢t and = € M ranging over a compact set.)

Theorem 33. For any initial a(0) € T'(W ®A), equation (3) has a unique solution a(t) € T(WQA).
Moreover, if a(0) € T(Wp,), then a(t) € T'(Wp,).

Proof. Substituting D, = V + %[y, ], we can rewrite (3) as

; .
d% + (tx,V + Vix,)a + ,Z;[H(t) +tx,7,a] = 0.

By the second property of the Hamiltonian, we know deg (H (t) 4+ tx,vt) > 2, so we write

1 .

where H(t) is a section of A and deg Hs(t) > 3. We define a pullback ff : W@ A - W ® A as

follows. On differential forms it is the usual pullback, and on sections a € T'(W) we set

H(t) + vx,v: = Ha(t) + H3(t) =

(ft*CL)(SC, y) = Ut_la(ft(x)a Ut(y))vta

where o : Ly — Ly, () is a linear symplectic lifting of f;, and vy : &€ — &y, (,) an isomorphism of

bundles, lifting f;. Now we will see how these lifts are obtained.
Lemma 34. There exist such liftings o¢ and vy such that for any a € T(W ® A),

1

0= 57 (¥ + Vi o+ 1))



Proof. For scalar differential forms, the above equation follows from Cartan’s formula, so it suffices
to prove the equation for a € I'(W). See [1, Lemma 5.4.4]. O

Now, for any solution a(t) of (3), we have that b(t) = f;a(t) satisfies

d i
@b(t) + ﬁ[ft Hs, b]

=17 (G + x4 Vi) ot £l + 17 (G100,

:0,

and conversely, any such b(t) gives a(t) = (f;)~!b(t) a solution of (3). Hence, it suffices to solve for

b(t),

t

‘ [fXHs3(T),b(T)]dT,

_ﬁo

which can be done via iterations. Indeed these iterations converge as deg(f; Hs(t)) > 3.

b(t) = b(0)

Remark 35. The solution b(¢) can be expressed in a shortened form as
b(t) = U 1(t) o b(0) o U(2),
where .
U(t) = Pexp (;_L/ f;‘H;;(t)dt)
0

is defined by a path-ordered exponential, that is,

Uit)=1+ %/0 (frH3(t) o U(7))dr.

Indeed, such a solution for U(t) exists as deg (4 fFHs(7)) > 1.

It remains to prove the last assertion of the theorem, for which we need the following lemma.

Lemma 36. For any solution a(t), also Dia(t) is a solution.
Proof. We have

d d i i i _da i
%(Dta) == <Va+ h[w,a}) =Va+ ﬁ[%,a] + ﬁ['yt,a] = Dta + ﬁ[fyt,a].

Since a(t) is a solution, we can substitute for %% to obtain

d % ) 1.
5 (Dea) = —Dux,Dia — 5 [DeH(t), o] — S [H(2), Dea] + 2 [t a]
= — (ux, Dy + Dyix,) Dya — %[H(t), Dya),

using that D? = 0 and the fact that Dy H —, is central by the first property of the Hamiltonian. [

Finally, if a(t) is a solution, then so is D;a(t) by the above lemma, so whenever Dya(0) = 0 it follows

from the uniqueness of the solution that D;a(t) = 0 for all ¢. O

10



Corollary 37. Let D be time-independent, and let H(t) € I'(Wp) be a flat section with scalar
leading term Hy(t). Then for any a(0) € T'(Wp) there exists a unique solution a(t) € I'(Wp), and
the map A(t) : a(0) — a(t) is an automorphism of Wp.

Proof. The difference H(t) — Hy(t) satisfies the properties of the Hamiltonian, and so the result

follows from the above theorem. O
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