
Deformation Quantization
Jesse Vogel

based on Chapter 5 of Deformation Quantization and Index Theory by B. Fedosov

Let (M,ω) be a symplectic manifold, and let Z = C∞(M)J~K be the linear space of formal power

series

a =

∞∑
k=0

~kak, with ak ∈ C∞(M).

Definition 1. Deformation quantization of C∞(M) refers to an associative product ? on Z,

called a star product, satisfying

1. (formal deformation) a ? b mod ~ = ab for all a, b ∈ C∞(M).

2. (locality) for any a, b ∈ Z, we have a ? b =
∑∞
k=0 ~kck, where ck depends on ∂αai∂

βbj with

i+ j + |α|+ |β| ≤ k.

3. (correspondence principle) for all a, b ∈ Z, we have

[a, b] = a ? b− b ? a = −i~{a0, b0}+O(~2),

where {·, ·} denotes the Poisson associated to ω.

Remark 2. Note that deformation quantization differs from Weyl quantization by the fact that the

Planck constant ~ is no longer a positive number, but a formal parameter.

The Formal Weyl Algebras Bundle

Definition 3. The formal Weyl algebra bundle is the bundle W = Ŝym(T ∗M ⊗C)J~K. Locally,

its sections are of the form

a =
∑

k,|α|≥0

~kak,αyα,

where yα = (y1)α1 · · · (y2n)α2n , with yi a basis for T ∗M , and ak,α complex-valued functions on M .

Definition 4. The Weyl product of two sections a, b ∈ Γ(W ) is given (fiberwise) by

a ◦ b = exp

(
− i~

2
ωij

∂

∂yi
∂

∂zj

)
a(y)b(z)

∣∣∣∣
z=y

=

∞∑
k=0

(
− i~

2

)k
1

k!
ωi1j1 · · ·ωikjk ∂ka

∂yi1 · · · ∂yik
∂kb

∂yj1 · · · ∂yjk
.

Lemma 5. The center of Γ(W ) with respect to the Weyl product is Z.

Proof. Take any a in the center of Γ(W ). If we take b = yk for some k, then

a ◦ b = ayk − i~
2
ωik

∂a

∂yi
and b ◦ a = ayk − i~

2
ωkj

∂a

∂yj
,
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so

0 = [a, b] = −i~ωik ∂a
∂yi

.

Varying over k, we find that ∂a
∂yi = 0 for all i, so a ∈ Z. Conversely, it is easy to see that Z lies in

the center of W .

We grade the bundle W by setting deg yi = 1 and deg ~ = 2. This yields a filtration

Γ(W ) ⊃ Γ(W1) ⊃ Γ(W2) ⊃ · · ·

Similarly, the bundles of differential forms W ⊗Λq are graded, where the degree of any pure q-form

is zero. The Weyl product can be extended to W ⊗Λ using the wedge product ∧, where the yi and

dxi commute. The commutator of forms a ∈ Γ(W ⊗ Λq1) and b ∈ Γ(W ⊗ Λq2) is

[a, b] = a ◦ b− (−1)q1q2b ◦ a.

Similar to Lemma 5, the center of Γ(W ⊗ Λ) with respect to the Weyl product is Z ⊗ Λ.

Notation 6. For any a ∈ Γ(W ⊗ Λ), we write a0 = a|y=0 and a00 = a|y=0,dx=0. Furthermore, for

any a ∈ Γ(W ), we write σ(a) for a0 = a|y=0.

Definition 7. Define operations δ and δ∗ on Γ(W ⊗ Λ) by

δ : Γ(Wp ⊗ Λq)→ Γ(Wp−1 ⊗ Λq+1), a 7→ dxk ∧ ∂a

∂yk
,

δ∗ : Γ(Wp ⊗ Λq)→ Γ(Wp+1 ⊗ Λq−1), a 7→ ykι∂
xk
a.

In particular, δ lowers the degree by one, while δ∗ raises the degree by one.

Lemma 8. The operations δ and δ∗ do not depend on the choice of local coordinates, and satisfy

(i) δ2 = (δ∗)2 = 0,

(ii) (δδ∗ + δ∗δ)(a) = (p+ q)a for a monomial a = yi1 · · · yipdxj1 ∧ · · · ∧ dxjq .

(iii) δ(a ◦ b) = (δa) ◦ b+ (−1)q1a ◦ (δb) for a ∈ Γ(W ⊗ Λq1) and b ∈ Γ(W ⊗ Λq2).

(iv) δa = − i
~ [ωijy

idxj , a].

Proof. Straightforward.

Definition 9. Let a ∈ Γ(W ⊗ Λ), and write apq for (p, q)-homogeneous part. Then define

δ−1apq =

{
1
p+q δ

∗apq if p+ q > 0,

0 otherwise.

In particular, using Lemma 8(ii), any a ∈ Γ(W ⊗ Λ) has a Hodge–De Rham decomposition

a = a00 + δδ−1a+ δ−1δa. (1)

Recall that there exists a symplectic connection ∇ on M . Tensorially, there is an induced connection

on W ⊗ Λ, also denoted by ∇.
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Lemma 10.

(i) ∇(a ◦ b) = ∇a ◦ b+ (−1)q1a ◦ ∇b for a ∈ Γ(W ⊗ Λq1).

(ii) ∇(η ∧ a) = dη ∧ a+ (−1)qη ∧∇a for η ∈ Γ(Λq).

Proof. Follows from the definition of the Weyl product ◦ and the fact that ∇ preserves ω.

Let us work in Darboux local coordinates, with Γkij the Christoffel symbols. Recall that for a

symplectic connection the numbers Γijk = ωi`Γ
`
jk are completely symmetric in ijk. Although it is

cumbersome to write out, it is straightforward to find that

∇a = da+
i

~

[
1

2
Γijky

iyjdxk, a

]
,

and we write Γ = 1
2Γijky

iyjdxk for the local 1-form with values in W .

Now, we want to consider more general (symplectic) connections. Consider connections of the form

Da = ∇a+
i

~
[γ, a] = da+

i

~
[Γ + γ, a],

where γ ∈ Γ(W ⊗ Λ1), a global 1-form. Note that γ is determined by D only up to a central one-

form, since it appears in a commutator. To enforce uniqueness we impose the Weyl normalization

condition, requiring γ0 = γ|y=0 = 0 (like a gauge condition).

Lemma 11. Let ∇ be a symplectic connection on M . Then

∇δa+ δ∇a = 0

and

∇2a =
i

~
[R, a]

where R = 1
4Rijk`y

iyjdxk ∧ dx`, with Rijk` is the curvature tensor of ∇.

Proof. Follows from the expression of ∇ and δ as above. Note that the latter equation is a compact

form of the Ricci identity.

Definition 12. Let D be a connection on W of the form D = ∇ + i
~ [γ, ·] with γ0 = 0. Then the

curvature of D is defined as

Ω = R+∇γ +
i

~
γ2.

Lemma 13. We have

(i) (Bianchi identity) DΩ = ∇Ω + i
~ [γ,Ω] = 0,

(ii) (Ricci identity) D2a = i
~ [Ω, a].

Proof. By definition of D and Ω, we have

DΩ = ∇R+∇2γ +
i

~
[∇γ, γ] +

i

~
[γ,R] +

i

~
[γ,∇γ] +

(
i

~

)2

[γ, γ2].

By the Bianchi identity for ∇, we have ∇R = 0. Furthermore, obviously [γ, γ2] = 0, and ∇2γ =
i
~ [R, γ] as seen earlier. Therefore, DΩ = 0. Part (ii) is straightforward.
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Abelian Connections and Quantization

Definition 14. A connection D of W is abelian if

D2a =
i

~
[Ω, a] = 0

for all a ∈ Γ(W ⊗ Λ), that is, if the curvature of the connection is a central form.

We will show there exists an abelian connection of the form

D = ∇− δ +
i

~
[r, ·] = ∇+

i

~
[ωijy

idxj + r, ·],

where ∇ is a fixed symplectic connection, and r ∈ Γ(W3 ⊗ Λ1) a globally defined one-form, with

Weyl normalization r0 = 0. Computing the curvature of D gives

Ω = −1

2
ωijdx

i ∧ dxj +R− δr +∇r +
i

~
r2.

It suffices to find an r satisfying

δr = R+∇r +
i

~
r2,

so that Ω = −ω is indeed central.

Theorem 15. The above equation has a unique solution r such that deg r ≥ 2 and δ−1r = 0.

Proof. From (1) follows that any such r has r = δ−1δr, as r00 = 0 and δδ−1r = 0. Applying δ−1

yields

r = δ−1R+ δ−1
(
∇r +

i

~
r2
)
.

Since ∇ preserves the filtration on W ⊗ Λ, and δ−1 raises the degree by 1, one obtains a unique

solution by the iteration method. Conversely, one can show that this solution yields an abelian

connection (again using the iteration method).

Remark 16. Explicitly, the iterating method yields

r =
1

8
Rijk`y

iyjykdx` +
1

20
∇mRijk`yiyjykymdx` + · · ·

Definition 17. Let D be an abelian connection on W . We define WD ⊂ W to be the subbundle

of flat sections with respect to D, that is, Da = 0. Note that Γ(WD) is a subalgebra of Γ(W ) with

respect to the Weyl product because of Lemma 10.

Theorem 18. For any a0 ∈ Z, there exists a unique section a ∈ Γ(WD) such that σ(a) = a0.

Proof. Rewrite the equation Da = 0 as

δa = (D + δ)a,
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and note that D+ δ = ∇+ i
~ [r, ·] does not lower degree since deg r ≥ 2. Applying δ−1, we find using

the (1) that

a = a0 + δ−1δa = a0 + δ−1(D + δ)a, (∗)

where we used δδ−1a = 0 as a ∈ Γ(W ). Since δ−1 raises degree, we can solve this equation (uniquely)

via iterations. Conversely, if a is a solution of (∗), then σ(a) = a0 since σ ◦ δ−1 = 0. Now,

δ−1Da = δ−1(D + δ)a− δ−1δa = a− a0 − δ−1δa = δδ−1a = 0.

Since D is abelian, we have D(Da) = 0, or δDa = (D + δ)Da, and applying δ−1 gives

Da = δ−1(D + δ)Da.

Solve by iterations to get Da = 0.

Remark 19. By iterations, we can construct the section a ∈ Γ(WD) from its symbol a0 = σ(a),

a = a0 + ∂ia0y
i +

1

2
∂i∂ja0y

iyj +
1

6
∂i∂j∂ka0y

iyjyk − 1

24
Rijk`ω

`m∂ma0y
iyjyk + · · ·

If the curvature tensor R is zero, we have

a =

∞∑
k=0

1

k!
∂i1 · · · ∂ika0yi1 · · · yik .

Definition 20. The bijection between Γ(WD) and Z = C∞(M)J~K allows to define a star product

on Z, given by

a ? b = σ(Q(a) ◦Q(b)),

where Q : Z → WD, called the quantization procedure, is the inverse to σ. One can check that this

star product satisfies the properties of Definition 1. The subalgebra Γ(WD) is called the quantum

algebra.

Example 21. Let M = R2n with ω = 1
2ωijdx

i ∧ dxj a constant symplectic form on M . The

connection

D0a = da+
i

~
[ωijy

idxj , a] or D0 = d− δ,

is abelian with curvature

Ω = −ω.

Now the corresponding quantum algebra is given by

Γ(WD0) =

{
a ∈ Γ(W ) :

∂a

∂xi
− ∂a

∂yi
= 0

}
.

That is, any a ∈ Γ(WD0) is of the form

a =
∑
|α|≥0

1

|α|!
∂αby

α,

for some b ∈ Z = C∞(R2n)J~K. Note that the star product now corresponds to the Weyl product.

Remark 22. Later it will be shown that any WD is locally isomorphic to WD0(R2n).
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Theorem 23. The cohomology groups of

· · · → Γ(W ⊗ Λp)
D−→ Γ(W ⊗ Λp+1)→ · · ·

are trivial for p > 0.

Proof. We can extend the quantization procedure to an isomorphism Q : Γ(W ⊗Λp)
∼−→ Γ(W ⊗Λp)

via

Qa = a+ δ−1(D + δ)Qa.

Indeed, by the iterating method there is a unique solution, and the inverse is given by

Q−1a = a− δ−1(D + δ)a.

One can show that

Q−1D + δQ−1 = 0,

by substituting for Q−1, and using (1). Then it follows that D = −QδQ−1, so we can replace the

complex with −δ, and then the result follows from the Hodge–De Rham decomposition. Namely,

for any a ∈ Γ(W ⊗ Λp), write a = a00 + δδ−1a+ δ−1δa. If δa = 0, that is,

δa = δa00 + δδ−1δa = δa00 + (δa− δ−1δ2a) = δa00 + δa = 0,

then a = a00+δδ−1a+δ−1δa = a00−δ−1δa00+δδ−1a = δ(δ−1a00+δ−1a) lies in the image of δ, so the

sequence is exact for p > 0. Note that we used that p > 0 in the line where δδ−1a+ δ−1δa = a.

Corollary 24. Any equation Da = b with b ∈ Γ(W ⊗ Λp) and p > 0 has a solution if and only if

Db = 0. The solution may be taken in the form

a = D−1b = −Qδ−1Q−1b.

Generalizations

Note that in the above, the symplectic form ω pops up in two places: in the Weyl multiplication rule,

and as the curvature of the abelian connection D. In this section we will make them distinct. This

is convenient when when we have to vary symplectic structures: we may fix the Weyl multiplication

and vary the curvature.

Let L be a symplectic vector bundle over M of dimension 2n with a fixed symplectic structure ω and

symplectic connection ∇L. We assume that L is isomorphic to TM , but not canonically. Denote by

θ : TM → L

a bundle isomorphism, and by

δ : L∗ → T ∗M

a dual isomorphism. Introducing a local symplectic frame (e1, . . . , e2n) for L yields a dual frame

(e1, . . . , e2n) for L∗, and a frame θ1 = δ(e1), . . . , θ2n = δ(e2n) for T ∗M , with corresponding vector
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fields X1, . . . , X2n giving a dual frame for TM . The form ω on L can be transported to TM giving

a non-degenerate 2-form on M

Ω0 = −1

2
ωijθ

i ∧ θj ,

but note that it need not be closed. We will use θ to vary the symplectic structure on TM .

Lemma 25. Let Ω(t) be a family of non-degenerate 2-forms on M with Ω(0) = Ω0 = − 1
2ωijθ

i ∧ θj.
Then there exists a family θ(t) of isomorphisms such that Ω(t) = − 1

2ωijθ(t)
i ∧ θ(t)j.

Proof. Omitted. See [1, Lemma 5.3.1].

Analogous to the previous section, we make some definitions.

Definition 26. Let E be a complex vector bundle over M with connection ∇E , and let A =

Hom(E , E) (the coefficient bundle).

� The formal Weyl bundle with coefficients in A is the bundle

W (L,A) = Ŝym(L∗)J~K⊗A.

� Using the same rule as in Definition 3, we can define Weyl multiplication on W (L,A), but now

the coefficients are taken in A, which means the multiplication may be non-commutative.

� The connections ∇L and ∇E induce a connection ∇ on W (L,A).

� In a local symplectic frame of L, we can write

∇a = da+
i

~

[
1

2
Γijy

iyj , a

]
+ [ΓE , a] and ∇2a =

i

~

[
1

2
Rijy

iyj , a

]
+ [RE , a] ,

so we define the curvature of ∇ to be

R =
1

2
Rijy

iyj − i~RE ∈ Γ(W (L,A)⊗ Λ2).

� Consider more general connections on W (L,A) of the form

D = ∇+
i

~
[γ, a],

for some globally defined γ ∈ Γ(W (L,A) ⊗ Λ1). (Note that there are no unique ∇ and γ

representing D, although we can always choose an arbitrary symplectic connection ∇, and

then γ is well-defined up to some scalar 1-form ∆γ ∈ Γ(Λ1)J~K.) The curvature of D (with

respect to ∇ and γ) is defined by

Ω = ∇γ +
i

~
γ2 +R ∈ Γ(W (L,A)⊗ Λ2).

� Define operators

δ : Γ(W (L,A)p ⊗ Λq)→ Γ(W (L,A)p−1 ⊗ Λq+1), a 7→ θk ∧ ∂a

∂yk
,

δ∗ : Γ(W (L,A)p ⊗ Λq)→ Γ(W (L,A)p+1 ⊗ Λq−1), a 7→ ykιXka.

In particular, note that δ agrees with L∗ → T ∗M on linear forms.
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� The construction of δ−1, the Bianchi identity and Ricci identity (Lemma 13), the Hodge–De

Rham decomposition (1), all remain valid.

Theorem 27. Let Ω = Ω0 + ~Ω1 + ~2Ω2 + · · · be a closed 2-form, and θ : TM → L a bundle

isomorphism such that Ω0 = − 1
2ωijθ

i ∧ θj. Then for any section µ ∈ Γ(W (L,A)) with deg(µ) ≥ 3

and µ|y=0 = 0 there exists a unique section r ∈ Γ(W (L,A)⊗Λ1) with deg(r) ≥ 2 such that δ−1r = µ,

and the corresponding connection D = ∇− δ + i
~ [r, ·] is abelian with curvature Ω.

Proof. Omitted. See [1, Theorem 5.3.3].

Remark 28. The construction of D as in the theorem depends smoothly on the parameters. That

is, if Ω(t) is a family of closed 2-forms with non-degenerate leading term Ω0(t), and a family µ(t)

with deg µ(t) ≥ 3 and µ(t)|y=0 = 0, there exists a family r(t) satisfying the requirements.

Having constructed the abelian connection D, we define a quantum algebra with twisted coefficients

WD(L,A) in the same way as before. Theorems 18 and 23 and Corollary 24 remain valid for the

bundle W (L,A). In particular, may define a quantization procedure

Γ(A)J~K
Q−→
←−
σ

Γ(WD(L,A)).

The Heisenberg Equation

Consider the Heisenberg equation in WD = WD(L,A),

da

dt
+
i

~
[H(t), a] = 0, (2)

with H(t) ∈ Γ(WD) a given flat section, and a(t) ∈ Γ(WD) an unknown flat section. If H(t) and

a(t) are obtained via quantization, coming from symbols H0(t) and a0(t), then the leading term of

the equation reads
d

dt
a0(t) + {H0, a0} = 0,

which corresponds to the Louiville equation in classical mechanics. That is, the Heisenberg equation

can be seen as the quantum analogue of the Liouville equation.

Consider a family of abelian connections on W (L,A),

Dt = ∇+
i

~
[γt, ·] = ∇− δt +

i

~
[r(t), ·],

where γt = ωijy
iθ(t)j + r(t) with deg(r(t)) ≥ 2, and θ(t) : TM → L is a family of bundle isomor-

phisms. Furthermore, let H(t) be a section of W (L,A), called the Hamiltonian, satisfying

(1) λ := DtH(t)− γ̇(t) lies in Λ1J~K,

(2) there exists a vector field Xt such that deg (ιXtΓ(t) +H(t)) ≥ 2.

Now consider the equation

da

dt
+ (ιXtDt +DtιXt) a+

i

~
[H(t), a] = 0. (3)
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Remark 29. When D is time-independent and a ∈ Γ(WD), the above equation reduces to (2).

Namely, in this case ιXta = 0 and Da = 0, so (ιXtDt +DtιXt) a = 0. Furthermore, λ is closed

since dλ = Dλ = D2H = 0, as D is abelian, so locally we can write λ = −dH0(t) for some scalar

function H0(t). Since H0(t) is central, we can replace H(t) with H(t) + H0(t), which is flat as

D(H(t) +H0(t)) = 0 by the first property of the Hamiltonian.

Definition 30. Let W+ ⊃W be the bundle whose sections are of the form

a =
∑

2k+|α|≥0

~kak,αyα,

where k is allowed to be negative, as long as the total degree 2k + |α| is non-negative.

Remark 31. Note that the fibers W+
x are still algebras with respect to the Weyl multiplication,

and the connections ∇ and D are well-defined on W+.

Lemma 32. Let a ∈ Γ(W+) with Da = 0, then a ∈ Γ(WD). That is, a does not contain negative

powers of ~.

Proof. Note that σ(a) must only have non-negative powers of ~, and thus σ(a) ∈ Z. By Theorem

18, a flat section is determined by σ(a), so it follows that a ∈ Γ(WD).

Assume that the vector field Xt defines a flow ft : M →M for t ∈ [0, 1]. (Generally this is only true

for small t and x ∈M ranging over a compact set.)

Theorem 33. For any initial a(0) ∈ Γ(W⊗Λ), equation (3) has a unique solution a(t) ∈ Γ(W⊗Λ).

Moreover, if a(0) ∈ Γ(WD0
), then a(t) ∈ Γ(WDt).

Proof. Substituting Dt = ∇+ i
~ [γt, ·], we can rewrite (3) as

da

dt
+ (ιXt∇+∇ιXt) a+

i

~
[H(t) + ιXtγt, a] = 0.

By the second property of the Hamiltonian, we know deg (H(t) + ιXtγt) ≥ 2, so we write

H(t) + ιXtγt = H2(t) +H3(t) =
1

2
Hij(t)y

iyj + ~H(t) +H3(t),

where H(t) is a section of A and degH3(t) ≥ 3. We define a pullback f∗t : W ⊗ Λ → W ⊗ Λ as

follows. On differential forms it is the usual pullback, and on sections a ∈ Γ(W ) we set

(f∗t a)(x, y) = v−1t a(ft(x), σt(y))vt,

where σt : Lx → Lft(x) is a linear symplectic lifting of ft, and vt : E → Eft(x) an isomorphism of

bundles, lifting ft. Now we will see how these lifts are obtained.

Lemma 34. There exist such liftings σt and vt such that for any a ∈ Γ(W ⊗ Λ),

d

dt
(f∗t a) = f∗t

(
(ιXt∇+∇ιXt)a+

i

~
[H2(t), a]

)
.
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Proof. For scalar differential forms, the above equation follows from Cartan’s formula, so it suffices

to prove the equation for a ∈ Γ(W ). See [1, Lemma 5.4.4].

Now, for any solution a(t) of (3), we have that b(t) = f∗t a(t) satisfies

d

dt
b(t) +

i

~
[f∗t H3, b]

= f∗t

(
da

dt
+ (ιXt∇+∇ιXt) a+

i

~
[H2(t), a]

)
+ f∗t

(
i

~
[H3(t), a]

)
= 0,

and conversely, any such b(t) gives a(t) = (f∗t )−1b(t) a solution of (3). Hence, it suffices to solve for

b(t),

b(t) = b(0)− i

~

∫ t

0

[f∗τH3(τ), b(τ)]dτ,

which can be done via iterations. Indeed these iterations converge as deg(f∗t H3(t)) ≥ 3.

Remark 35. The solution b(t) can be expressed in a shortened form as

b(t) = U−1(t) ◦ b(0) ◦ U(t),

where

U(t) = Pexp

(
i

~

∫ t

0

f∗t H3(t)dt

)
is defined by a path-ordered exponential, that is,

U(t) = 1 +
i

~

∫ t

0

(f∗τH3(τ) ◦ U(τ))dτ.

Indeed, such a solution for U(t) exists as deg
(
i
~f
∗
τH3(τ)

)
≥ 1.

It remains to prove the last assertion of the theorem, for which we need the following lemma.

Lemma 36. For any solution a(t), also Dta(t) is a solution.

Proof. We have

d

dt
(Dta) =

d

dt

(
∇a+

i

~
[γt, a]

)
= ∇ȧ+

i

~
[γt, ȧ] +

i

~
[γ̇t, a] = Dt

da

dt
+
i

~
[γ̇t, a].

Since a(t) is a solution, we can substitute for da
dt to obtain

d

dt
(Dta) = −DtιXtDta−

i

~
[DtH(t), a]− i

~
[H(t), Dta] +

i

~
[γ̇t, a]

= − (ιXtDt +DtιXt)Dta−
i

~
[H(t), Dta],

using that D2
t = 0 and the fact that DtH− γ̇t is central by the first property of the Hamiltonian.

Finally, if a(t) is a solution, then so is Dta(t) by the above lemma, so whenever D0a(0) = 0 it follows

from the uniqueness of the solution that Dta(t) = 0 for all t.
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Corollary 37. Let D be time-independent, and let H(t) ∈ Γ(WD) be a flat section with scalar

leading term H0(t). Then for any a(0) ∈ Γ(WD) there exists a unique solution a(t) ∈ Γ(WD), and

the map A(t) : a(0) 7→ a(t) is an automorphism of WD.

Proof. The difference H(t) − H0(t) satisfies the properties of the Hamiltonian, and so the result

follows from the above theorem.
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