Symplectic Geometry

JESSE VOGEL

— SYMPLECTIC BUNDLES —

Definition 1. A symplectic vector space is a real vector space V with a skew-symmetric non-

degenerate bilinear map w : V x V' — R, called the symplectic form.
We may represent w by the matrix = (w;;) so that
w(v,w) = wiviw! = v Quw.

By definition w;; = —wj; and det 2 # 0.

Proposition 2. Any symplectic vector space is even-dimensional, and there exists a basis {e1, ..., e}
such that
0 1
-1 0
0 =
0 1
-1 0

Proof. Let e; # 0 be any vector. Since w is non-degenerate, there exists a vector v for which
w(ey,v) # 0, and we take e; = v/w(e1,v). Now V decomposes as W & WL, where W is the subspace

spanned by e; and es, and
W+ ={veV:www)=0foral we W}
This splitting can be obtained from the projection
mw V=W, v —w(es,v)er +wler,v)es.

According to this splitting the matrix {2 has the form

0 1
Q=|-1 0 )
Q/
where ' denotes the restriction of  to W+, and we continue by induction. O

Definition 3. A symplectic bundle is a real vector bundle 7 : E — M with a smooth section w

of /\2 E* (the symplectic form) such that (F,,w,) is a symplectic vector space for all z € M.

There is a close relation between complex Hermitian spaces and real symplectic spaces. Let £ — M
be an n-dimensional complex bundle with a Hermitian form h(—,—). Let L be the realification of
E. Then we can write

h(u,v) = g(u,v) + iw(u,v),



where g and w are real bilinear forms on L. Since h(v,u) = h(u,v), the form g(u,v) is symmetric,
while w(u,v) is skew-symmetric, defining a Riemannian metric and symplectic form on L, respec-
tively. Moreover, we have a complex structure J on L given by multiplication by ¢ on E. Note
that

ig(u,v) —w(u,v) =1 h(u,v) = h(u,iv) = g(u, Jv) + iw(u, Jv),

from which follows that

g(u,v) = w(u, Jv).

Definition 4. A complex structure J is positive if the bilinear form w(u, Jv) is symmetric and

positive definite (so that g(u,v) := w(u, Jv) defines a metric).

Proposition 5. For any symplectic bundle L, there exists a positive complex structure J € Hom(L, L).

Any two such structures are homotopic.

Proof. Let A : L — L be given by g(u,v) = w(u, Av). Then g(u, A=) = w(u,v) = —w(v,u) =
—g(A™ u,v), and hence

g(u, A7) = —g(A™u, A7) = g(A™ %, 0),

which shows that A2 is self-adjoint w.r.t. ¢ and negative-definite. Let B = (—A~2)'/2 and set
J = AB. Since A and B commute, we have

J?=A’B? = —~A7?A% = 1,
so J is a complex structure. It is positive because
w(u, Jv) = w(u, ABv) = g(u, Bv) > 0

since B is positive-definite w.r.t. g¢g. Any two positive complex structures are homotopic via a

homotopy for the Riemannian metrics. O

Corollary 6. Any symplectic bundle is the realification of a Hermitian bundle. Any two positive

complex structures are isomorphic.

— SYMPLECTIC MANIFOLDS —

Definition 7. A symplectic manifold is a manifold M with a closed non-degenerate 2-form w on
M, called the symplectic form.

Example 8. The standard example is M = R?" with coordinates ¢*,...,q¢", p1,...,pn and

w= idqi A dp;.
i=1

The second standard model is M = C™ with coordinates z1, ..., z, and

w:—izn:df/\dz.
i=1



Any symplectic form w defines a canonical orientation and volume element w™.

Example 9. On a compact symplectic manifold w cannot be exact. Namely, if w = dA, then

/w":/ dA AW =0,
M M

but the left-hand side cannot be zero since w” is an orientation form.

The form w defines a bundle isomorphism
W TM —T*M, X w(X,—),

identifying vector fields and one-forms. The vector fields corresponding to exact one-forms are called
Hamiltonian vector fields. The vector fields corresponding to closed one-forms are called locally

Hamiltonian. Notation-wise, for a function H € C*° (M) we have

dH = w(Xy,—).

A symplectic form yields a Poisson algebra structure on C*° (M), given by

{f7 g} = W(Xfan) = Xf(g).

Clearly the bracket is anti-symmetric, and {f, —} = X is derivation. The Jacobi-identity follows

from dw = 0.
Definition 10. A symplectomorphism is a diffeomorphism f: M — M with f*w = w.

Proposition 11. The flow of a Hamiltonian vector field (time-dependent in general) is a symplec-

tomorphism.

Proof. Let X (t) be a (time-dependent) Hamiltonian vector field, i.e. w(X(t),—) = dH(t), and let
f¢ be its flow, i.e. fi(z) = X (fi(x),t). Then

d * * *
aft w= ft ,CX(t)w = ft (dLX(t)w + LX(t)dw) =0,
since dw = 0 and vxyyw = dH(t). O

Proposition 12. Any smooth family f; of symplectomorphisms is generated by a locally Hamiltonian
vector field.

Proof. Define the generating vector field
X(u= ()5 f7
u=(f; gt
This vector field is indeed locally Hamiltonian as
d * *
0= %ft w=f; L:X(t)wa

so that L = d(w(X (), -)) = 0. -



Example 13 (Classical mechanics). Let @ ~ R™ be an n-dimensional smooth manifold (configura-
tion space), and M = T*@Q ~ R?" with standard coordinates ¢',...,q",p1,...,pn. The tautological

1-form or Louiville 1-form is given by
0= pidg’,
i=1

and the corresponding canonical symplectic form is

w=—df = zn:dqi A dp;.

i=1
The vector field corresponding to a Hamiltonian function is

0OH OH
Xy= (2, 22
H (apza aql>7

from which we recognize Hamilton’s equations.

Definition 14. Let H be a Hamiltonian function. An integral of motion (w.r.t. H) is a function
f with {H, f} = Xg(f) = 0. In particular, it is constant on any trajectory generated by Xp. Note
that H itself is a integral of motion (conservation of energy). Note that the integrals of motion form
a sub-Poisson algebra of C*°(M).

— THE DARBOUX THEOREM —

Theorem 15 (Darboux’s theorem). Let (M,w) be a symplectic manifold. Then for any pointx € M,
there exist local coordinates ¢*,...,q", p1,...,pn such that w is given by DIy dq® A dp;.

Proof. Locally around z, we can write w = %wijdxi Adx?. Consider wy = %wij(x)dxi Adz?t, which is
also a symplectic form in the same neighborhood of . Moreover, for a sufficiently small neighborhood

around x, we have a family of symplectic forms
wt)=(1—-two +tw, te]o,1].

Since w — wy is closed, using Poincaré’s lemma we can locally around z write w(t) = w — wy = —dA
for some 1-form A. Since w — wy vanishes at x, we may choose A to vanish at x up to second order.
Now let X (t) be the vector field defined by ¢xyw(t) = A, and let ¢; be the flow of X (t) around .
Since pi(x) = x for all ¢ € [0,1], the flow ¢; exists on the whole interval ¢ € [0,1] sufficiently close

to x. Now,

G100 = o1 (P50 4 L) = o (25 + dlxu(®)) = o (-ar+ ax) =0,

using the Cartan formula. This implies that pjw = piw(1) = Eiw(0) = wg, so ¢ is the desired
diffeomorphism. Finally, by a linear change of variables the form wy can be reduced to the canonical

form. O

Theorem 16 (More general Darboux). Let N be a compact submanifold of a manifold M and
let wo,wy be two symplectic forms on a neighborhood of N. If wo|y = wi|n, then there exist two
neighborhoods U,V of N and a diffeomorphism f : U — V such that f and df are the identity on
N, and f*wy = wp.



— THE GENERATING FUNCTION —

Proposition 17. Let 2° and y® be coordinates on R*™, such that y = f(x) for some symplectomor-
phism f : R2" — R?". Set z = % and assume that this defines x as an implicit function of z.

Then there exists a function S(z) such that

Proof. Tt suffices to check that the right-hand side is closed, and indeed

d <w (y;x,dz>> = %w(dy—da:,dz) = i w(dy, dy) —w(dz,dz) +w(dy,dz) —w(dz,dy) | =0.

=0, as f is symplectomorphism =0

O

The function S(z) is called a (symmetrized) generating function of the symplectomorphism. If we

know it, we can reconstruct f. Namely,

T __ 1]

x 2 t+w 9
. . - 05(2)
L N ¥

Yy =z —w ERE

If the first defines z as an implicit function of x, we substitute this in the second equation to get the

map f. By the same argument as above we find that this f is again a symplectomorphism.

Proposition 18. Any symplectomorphism is locally homotopic to the identity.

— SYMPLECTIC CONNECTIONS —

Definition 19. Let £ — M be a symplectic bundle. A symplectic connection is a connection

V on FE preserving the symplectic form w, that is
(Vxw)(u,v) = X(w(u,v)) —w(Vxu,v) —w(u, Vxv) =0
for any sections u,v € I'(E) and vector field X.

A symplectic connection on a symplectic manifold (M, w) is a torsion-free affine connection preserving

the symplectic form.

Proposition 20. There exists a symplectic connection on any symplectic manifold.

Proof. Let V be any torsion-free connection (e.g. the Levi-Civita connection), and try a connection
of the form V' = V + 4T, with 6" = 6I'"j;, a tensor field symmetric in jk. Then from

Z(w(X,Y)) = (Vzw)(X,Y) +w(VzX,Y) + w(X,VzY)
and a similar expression for V', we obtain

(VW)(X,Y) = (Vu)(X,Y) —w(dT(Z,X),Y) —w(X,d0(Z,Y)),



which we want to be zero, that is

Viwij = we; 0T, + wiedT ik = 6T j5 — 6T jige. (1)
We impose an additional condition on T that 6I'(;j;) = 0. Then
oL, = 6Fijk_% (6Tijk + 0L ki + 0 kij) = % (6Lijk — 6Fjik)+é (6Likj — 0Tkis) = %vkwij+évg’wik
does the trick. It satisfies (1) since

1
5F¢jk7(5r‘jik = (kaij + ijik — kaji — Viwjk) = kaijJrg (ijik + V,;wkj + kaji) = kaij,

1
3
using that dw = 0 and the fact that V is torsion-free. O

Remark 21. From the homogeneous equation corresponding to (1), we see that any two symplectic

connections differ by a completely symmetric tensor 6I';.
Theorem 22. At any point g, there exists a local Darboux coordinate system centered at xo such

that T';;5(0) =0 and

Tk ()2’ 2l 2"

vanishes at © = 0 up to infinite order. Two such systems differ up to infinite order by a linear

symplectic change of variables.

— KIRILLOV FORM ON COADJOINT ORBITS —

Example 23. Let G be a Lie group and g its corresponding Lie algebra. Any coadjoint orbit
O, = {Adp : g € G} can be described via

G/G, > 0,
g~ Adjpu.

There is a symplectic structure on O,, given by the Kirillov form
wy(adyv,adyv) = v([X,Y]).
Note that there is an isomorphism

9/91/ = TUOM
X o5 adiw = v([X, ),

which shows both that w is well-defined, and that w is non-degenerate. To show that w is closed,

pullback w to G, and show it is closed (even exact) there. Use the Maurer—Cartan form.



