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– Symplectic Bundles –

Definition 1. A symplectic vector space is a real vector space V with a skew-symmetric non-

degenerate bilinear map ω : V × V → R, called the symplectic form.

We may represent ω by the matrix Ω = (ωij) so that

ω(v, w) = ωijv
iwj = vTΩw.

By definition ωij = −ωji and det Ω 6= 0.

Proposition 2. Any symplectic vector space is even-dimensional, and there exists a basis {e1, . . . , e2n}
such that

Ω =



0 1

−1 0

. . .

0 1

−1 0


.

Proof. Let e1 6= 0 be any vector. Since ω is non-degenerate, there exists a vector v for which

ω(e1, v) 6= 0, and we take e2 = v/ω(e1, v). Now V decomposes as W ⊕W⊥, where W is the subspace

spanned by e1 and e2, and

W⊥ = {v ∈ V : ω(v, w) = 0 for all w ∈W}.

This splitting can be obtained from the projection

πW : V →W, v 7→ −ω(e2, v)e1 + ω(e1, v)e2.

According to this splitting the matrix Ω has the form

Ω =

 0 1

−1 0

Ω′

 ,

where Ω′ denotes the restriction of Ω to W⊥, and we continue by induction.

Definition 3. A symplectic bundle is a real vector bundle π : E → M with a smooth section ω

of
∧2

E∗ (the symplectic form) such that (Ex, ωx) is a symplectic vector space for all x ∈M .

There is a close relation between complex Hermitian spaces and real symplectic spaces. Let E →M

be an n-dimensional complex bundle with a Hermitian form h(−,−). Let L be the realification of

E. Then we can write

h(u, v) = g(u, v) + iω(u, v),

1



where g and ω are real bilinear forms on L. Since h(v, u) = h(u, v), the form g(u, v) is symmetric,

while ω(u, v) is skew-symmetric, defining a Riemannian metric and symplectic form on L, respec-

tively. Moreover, we have a complex structure J on L given by multiplication by i on E. Note

that

ig(u, v)− ω(u, v) = i h(u, v) = h(u, iv) = g(u, Jv) + iω(u, Jv),

from which follows that

g(u, v) = ω(u, Jv).

Definition 4. A complex structure J is positive if the bilinear form ω(u, Jv) is symmetric and

positive definite (so that g(u, v) := ω(u, Jv) defines a metric).

Proposition 5. For any symplectic bundle L, there exists a positive complex structure J ∈ Hom(L,L).

Any two such structures are homotopic.

Proof. Let A : L → L be given by g(u, v) = ω(u,Av). Then g(u,A−1v) = ω(u, v) = −ω(v, u) =

−g(A−1u, v), and hence

g(u,A−2v) = −g(A−1u,A−1v) = g(A−2u, v),

which shows that A−2 is self-adjoint w.r.t. g and negative-definite. Let B = (−A−2)1/2 and set

J = AB. Since A and B commute, we have

J2 = A2B2 = −A−2A2 = −1,

so J is a complex structure. It is positive because

ω(u, Jv) = ω(u,ABv) = g(u,Bv) > 0

since B is positive-definite w.r.t. g. Any two positive complex structures are homotopic via a

homotopy for the Riemannian metrics.

Corollary 6. Any symplectic bundle is the realification of a Hermitian bundle. Any two positive

complex structures are isomorphic.

– Symplectic Manifolds –

Definition 7. A symplectic manifold is a manifold M with a closed non-degenerate 2-form ω on

M , called the symplectic form.

Example 8. The standard example is M = R2n with coordinates q1, . . . , qn, p1, . . . , pn and

ω =

n∑
i=1

dqi ∧ dpi.

The second standard model is M = Cn with coordinates z1, . . . , zn and

ω = −i
n∑
i=1

dz ∧ dz.
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Any symplectic form ω defines a canonical orientation and volume element ωn.

Example 9. On a compact symplectic manifold ω cannot be exact. Namely, if ω = dλ, then∫
M

ωn =

∫
M

d(λ ∧ ωn−1) = 0,

but the left-hand side cannot be zero since ωn is an orientation form.

The form ω defines a bundle isomorphism

ω[ : TM → T ∗M, X 7→ ω(X,−),

identifying vector fields and one-forms. The vector fields corresponding to exact one-forms are called

Hamiltonian vector fields. The vector fields corresponding to closed one-forms are called locally

Hamiltonian. Notation-wise, for a function H ∈ C∞(M) we have

dH = ω(XH ,−).

A symplectic form yields a Poisson algebra structure on C∞(M), given by

{f, g} = ω(Xf , Xg) = Xf (g).

Clearly the bracket is anti-symmetric, and {f,−} = Xf is derivation. The Jacobi-identity follows

from dω = 0.

Definition 10. A symplectomorphism is a diffeomorphism f : M →M with f∗ω = ω.

Proposition 11. The flow of a Hamiltonian vector field (time-dependent in general) is a symplec-

tomorphism.

Proof. Let X(t) be a (time-dependent) Hamiltonian vector field, i.e. ω(X(t),−) = dH(t), and let

ft be its flow, i.e. ḟt(x) = X(ft(x), t). Then

d

dt
f∗t ω = f∗t LX(t)ω = f∗t (dιX(t)ω + ιX(t)dω) = 0,

since dω = 0 and ιX(t)ω = dH(t).

Proposition 12. Any smooth family ft of symplectomorphisms is generated by a locally Hamiltonian

vector field.

Proof. Define the generating vector field

X(t)u = (f−1t )∗
d

dt
f∗t u.

This vector field is indeed locally Hamiltonian as

0 =
d

dt
f∗t ω = f∗t LX(t)ω,

so that LX(t)ω = d(ω(X(t),−)) = 0.
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Example 13 (Classical mechanics). Let Q ' Rn be an n-dimensional smooth manifold (configura-

tion space), and M = T ∗Q ' R2n with standard coordinates q1, . . . , qn, p1, . . . , pn. The tautological

1-form or Louiville 1-form is given by

θ =

n∑
i=1

pidq
i,

and the corresponding canonical symplectic form is

ω = −dθ =

n∑
i=1

dqi ∧ dpi.

The vector field corresponding to a Hamiltonian function is

XH =

(
∂H

∂pi
,−∂H

∂qi

)
,

from which we recognize Hamilton’s equations.

Definition 14. Let H be a Hamiltonian function. An integral of motion (w.r.t. H) is a function

f with {H, f} = XH(f) = 0. In particular, it is constant on any trajectory generated by XH . Note

that H itself is a integral of motion (conservation of energy). Note that the integrals of motion form

a sub-Poisson algebra of C∞(M).

– The Darboux Theorem –

Theorem 15 (Darboux’s theorem). Let (M,ω) be a symplectic manifold. Then for any point x ∈M ,

there exist local coordinates q1, . . . , qn, p1, . . . , pn such that ω is given by
∑n
i=1 dq

i ∧ dpi.

Proof. Locally around x, we can write ω = 1
2ωijdx

i ∧dxj . Consider ω0 = 1
2ωij(x)dxi ∧dx1, which is

also a symplectic form in the same neighborhood of x. Moreover, for a sufficiently small neighborhood

around x, we have a family of symplectic forms

ω(t) = (1− t)ω0 + tω, t ∈ [0, 1].

Since ω − ω0 is closed, using Poincaré’s lemma we can locally around x write ω̇(t) = ω − ω0 = −dλ
for some 1-form λ. Since ω − ω0 vanishes at x, we may choose λ to vanish at x up to second order.

Now let X(t) be the vector field defined by ιX(t)ω(t) = λ, and let ϕt be the flow of X(t) around x0.

Since ϕt(x) = x for all t ∈ [0, 1], the flow ϕt exists on the whole interval t ∈ [0, 1] sufficiently close

to x. Now,

d

dt
ϕ∗tω(t) = ϕ∗t

(
∂ω(t)

∂t
+ LX(t)ω(t)

)
= ϕ∗t

(
∂ω(t)

∂t
+ d(ιX(t)ω(t))

)
= ϕ∗t (−dλ+ dλ) = 0,

using the Cartan formula. This implies that ϕ∗1ω = ϕ∗1ω(1) = ϕ∗0ω(0) = ω0, so ϕ1 is the desired

diffeomorphism. Finally, by a linear change of variables the form ω0 can be reduced to the canonical

form.

Theorem 16 (More general Darboux). Let N be a compact submanifold of a manifold M and

let ω0, ω1 be two symplectic forms on a neighborhood of N . If ω0|N = ω1|N , then there exist two

neighborhoods U, V of N and a diffeomorphism f : U → V such that f and df are the identity on

N , and f∗ω1 = ω0.
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– The Generating Function –

Proposition 17. Let xi and yi be coordinates on R2n, such that y = f(x) for some symplectomor-

phism f : R2n → R2n. Set z = x+y
2 and assume that this defines x as an implicit function of z.

Then there exists a function S(z) such that

dS(z) = ω

(
y − x

2
, dz

)
.

Proof. It suffices to check that the right-hand side is closed, and indeed

d

(
ω

(
y − x

2
, dz

))
=

1

2
ω(dy−dx, dz) =

1

4

 ω(dy, dy)− ω(dx, dx)︸ ︷︷ ︸
=0, as f is symplectomorphism

+ω(dy, dx)− ω(dx, dy)︸ ︷︷ ︸
=0

 = 0.

The function S(z) is called a (symmetrized) generating function of the symplectomorphism. If we

know it, we can reconstruct f . Namely,

xi = zi + ωij
∂S(z)

∂zj
,

yi = zi − ωij ∂S(z)

∂zj
.

If the first defines z as an implicit function of x, we substitute this in the second equation to get the

map f . By the same argument as above we find that this f is again a symplectomorphism.

Proposition 18. Any symplectomorphism is locally homotopic to the identity.

– Symplectic Connections –

Definition 19. Let E → M be a symplectic bundle. A symplectic connection is a connection

∇ on E preserving the symplectic form ω, that is

(∇Xω)(u, v) = X(w(u, v))− ω(∇Xu, v)− ω(u,∇Xv) = 0

for any sections u, v ∈ Γ(E) and vector field X.

A symplectic connection on a symplectic manifold (M,ω) is a torsion-free affine connection preserving

the symplectic form.

Proposition 20. There exists a symplectic connection on any symplectic manifold.

Proof. Let ∇ be any torsion-free connection (e.g. the Levi-Civita connection), and try a connection

of the form ∇′ = ∇+ δΓ, with δΓ = δΓijk a tensor field symmetric in jk. Then from

Z(ω(X,Y )) = (∇Zω)(X,Y ) + ω(∇ZX,Y ) + ω(X,∇ZY )

and a similar expression for ∇′, we obtain

(∇′ω)(X,Y ) = (∇ω)(X,Y )− ω(δΓ(Z,X), Y )− ω(X, δΓ(Z, Y )),
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which we want to be zero, that is

∇kωij = ω`jδΓ
`
ik + ωi`δΓ

`
jk = δΓijk − δΓjik. (1)

We impose an additional condition on δΓ that δΓ(ijk) = 0. Then

δΓijk = δΓijk−
1

3
(δΓijk + δΓjki + δΓkij) =

1

3
(δΓijk − δΓjik)+

1

3
(δΓikj − δΓkij) =

1

3
∇kωij+

1

3
∇jωik

does the trick. It satisfies (1) since

δΓijk−δΓjik =
1

3
(∇kωij +∇jωik −∇kωji −∇iωjk) = ∇kωij+

1

3
(∇jωik +∇iωkj +∇kωji) = ∇kωij ,

using that dω = 0 and the fact that ∇ is torsion-free.

Remark 21. From the homogeneous equation corresponding to (1), we see that any two symplectic

connections differ by a completely symmetric tensor δΓijk.

Theorem 22. At any point x0, there exists a local Darboux coordinate system centered at x0 such

that Γijk(0) = 0 and

Γijk(x)xixjxk

vanishes at x = 0 up to infinite order. Two such systems differ up to infinite order by a linear

symplectic change of variables.

– Kirillov Form on Coadjoint Orbits –

Example 23. Let G be a Lie group and g its corresponding Lie algebra. Any coadjoint orbit

Oµ = {Ad∗gµ : g ∈ G} can be described via

G/Gµ
∼−→ Oµ

g 7→ Ad∗gµ.

There is a symplectic structure on Oµ given by the Kirillov form

ων(ad∗Xν, ad∗Y ν) = ν([X,Y ]).

Note that there is an isomorphism

g/gν
∼−→ TνOµ

X 7→ ad∗Xν = ν([X,−]),

which shows both that ω is well-defined, and that ω is non-degenerate. To show that ω is closed,

pullback ω to G, and show it is closed (even exact) there. Use the Maurer–Cartan form.
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