Symplectic Geometry

Jesse Vogel

- Symplectic Bundles -

Definition 1. A symplectic vector space is a real vector space V with a skew-symmetric nondegenerate bilinear map $\omega: V \times V \rightarrow \mathbb{R}$, called the symplectic form.

We may represent ω by the matrix $\Omega=\left(\omega_{i j}\right)$ so that

$$
\omega(v, w)=\omega_{i j} v^{i} w^{j}=v^{T} \Omega w
$$

By definition $\omega_{i j}=-\omega_{j i}$ and $\operatorname{det} \Omega \neq 0$.
Proposition 2. Any symplectic vector space is even-dimensional, and there exists a basis $\left\{e_{1}, \ldots, e_{2 n}\right\}$ such that

$$
\Omega=\left(\begin{array}{ccccc}
0 & 1 & & & \\
-1 & 0 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
& & & -1 & 0
\end{array}\right) .
$$

Proof. Let $e_{1} \neq 0$ be any vector. Since ω is non-degenerate, there exists a vector v for which $\omega\left(e_{1}, v\right) \neq 0$, and we take $e_{2}=v / \omega\left(e_{1}, v\right)$. Now V decomposes as $W \oplus W^{\perp}$, where W is the subspace spanned by e_{1} and e_{2}, and

$$
W^{\perp}=\{v \in V: \omega(v, w)=0 \text { for all } w \in W\}
$$

This splitting can be obtained from the projection

$$
\pi_{W}: V \rightarrow W, \quad v \mapsto-\omega\left(e_{2}, v\right) e_{1}+\omega\left(e_{1}, v\right) e_{2}
$$

According to this splitting the matrix Ω has the form

$$
\Omega=\left(\begin{array}{ccc}
0 & 1 & \\
-1 & 0 & \\
& & \Omega^{\prime}
\end{array}\right)
$$

where Ω^{\prime} denotes the restriction of Ω to W^{\perp}, and we continue by induction.
Definition 3. A symplectic bundle is a real vector bundle $\pi: E \rightarrow M$ with a smooth section ω of $\bigwedge^{2} E^{*}$ (the symplectic form) such that $\left(E_{x}, \omega_{x}\right)$ is a symplectic vector space for all $x \in M$.

There is a close relation between complex Hermitian spaces and real symplectic spaces. Let $E \rightarrow M$ be an n-dimensional complex bundle with a Hermitian form $h(-,-)$. Let L be the realification of E. Then we can write

$$
h(u, v)=g(u, v)+i \omega(u, v)
$$

where g and ω are real bilinear forms on L. Since $h(v, u)=\overline{h(u, v)}$, the form $g(u, v)$ is symmetric, while $\omega(u, v)$ is skew-symmetric, defining a Riemannian metric and symplectic form on L, respectively. Moreover, we have a complex structure J on L given by multiplication by i on E. Note that

$$
i g(u, v)-\omega(u, v)=i h(u, v)=h(u, i v)=g(u, J v)+i \omega(u, J v)
$$

from which follows that

$$
g(u, v)=\omega(u, J v)
$$

Definition 4. A complex structure J is positive if the bilinear form $\omega(u, J v)$ is symmetric and positive definite (so that $g(u, v):=\omega(u, J v)$ defines a metric).

Proposition 5. For any symplectic bundle L, there exists a positive complex structure $J \in \operatorname{Hom}(L, L)$. Any two such structures are homotopic.

Proof. Let $A: L \rightarrow L$ be given by $g(u, v)=\omega(u, A v)$. Then $g\left(u, A^{-1} v\right)=\omega(u, v)=-\omega(v, u)=$ $-g\left(A^{-1} u, v\right)$, and hence

$$
g\left(u, A^{-2} v\right)=-g\left(A^{-1} u, A^{-1} v\right)=g\left(A^{-2} u, v\right)
$$

which shows that A^{-2} is self-adjoint w.r.t. g and negative-definite. Let $B=\left(-A^{-2}\right)^{1 / 2}$ and set $J=A B$. Since A and B commute, we have

$$
J^{2}=A^{2} B^{2}=-A^{-2} A^{2}=-1
$$

so J is a complex structure. It is positive because

$$
\omega(u, J v)=\omega(u, A B v)=g(u, B v)>0
$$

since B is positive-definite w.r.t. g. Any two positive complex structures are homotopic via a homotopy for the Riemannian metrics.

Corollary 6. Any symplectic bundle is the realification of a Hermitian bundle. Any two positive complex structures are isomorphic.

- Symplectic Manifolds -

Definition 7. A symplectic manifold is a manifold M with a closed non-degenerate 2-form ω on M, called the symplectic form.

Example 8. The standard example is $M=\mathbb{R}^{2 n}$ with coordinates $q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}$ and

$$
\omega=\sum_{i=1}^{n} d q^{i} \wedge d p_{i}
$$

The second standard model is $M=\mathbb{C}^{n}$ with coordinates z_{1}, \ldots, z_{n} and

$$
\omega=-i \sum_{i=1}^{n} d \bar{z} \wedge d z
$$

Any symplectic form ω defines a canonical orientation and volume element ω^{n}.
Example 9. On a compact symplectic manifold ω cannot be exact. Namely, if $\omega=d \lambda$, then

$$
\int_{M} \omega^{n}=\int_{M} d\left(\lambda \wedge \omega^{n-1}\right)=0
$$

but the left-hand side cannot be zero since ω^{n} is an orientation form.

The form ω defines a bundle isomorphism

$$
\omega^{b}: T M \rightarrow T^{*} M, \quad X \mapsto \omega(X,-)
$$

identifying vector fields and one-forms. The vector fields corresponding to exact one-forms are called Hamiltonian vector fields. The vector fields corresponding to closed one-forms are called locally Hamiltonian. Notation-wise, for a function $H \in C^{\infty}(M)$ we have

$$
d H=\omega\left(X_{H},-\right)
$$

A symplectic form yields a Poisson algebra structure on $C^{\infty}(M)$, given by

$$
\{f, g\}=\omega\left(X_{f}, X_{g}\right)=X_{f}(g)
$$

Clearly the bracket is anti-symmetric, and $\{f,-\}=X_{f}$ is derivation. The Jacobi-identity follows from $d \omega=0$.

Definition 10. A symplectomorphism is a diffeomorphism $f: M \rightarrow M$ with $f^{*} \omega=\omega$.
Proposition 11. The flow of a Hamiltonian vector field (time-dependent in general) is a symplectomorphism.

Proof. Let $X(t)$ be a (time-dependent) Hamiltonian vector field, i.e. $\omega(X(t),-)=d H(t)$, and let f_{t} be its flow, i.e. $\dot{f}_{t}(x)=X\left(f_{t}(x), t\right)$. Then

$$
\frac{d}{d t} f_{t}^{*} \omega=f_{t}^{*} \mathcal{L}_{X(t)} \omega=f_{t}^{*}\left(d \iota_{X(t)} \omega+\iota_{X(t)} d \omega\right)=0
$$

since $d \omega=0$ and $\iota_{X(t)} \omega=d H(t)$.
Proposition 12. Any smooth family f_{t} of symplectomorphisms is generated by a locally Hamiltonian vector field.

Proof. Define the generating vector field

$$
X(t) u=\left(f_{t}^{-1}\right)^{*} \frac{d}{d t} f_{t}^{*} u
$$

This vector field is indeed locally Hamiltonian as

$$
0=\frac{d}{d t} f_{t}^{*} \omega=f_{t}^{*} \mathcal{L}_{X(t)} \omega
$$

so that $\mathcal{L}_{X(t)} \omega=d(\omega(X(t),-))=0$.

Example 13 (Classical mechanics). Let $Q \simeq \mathbb{R}^{n}$ be an n-dimensional smooth manifold (configuration space), and $M=T^{*} Q \simeq \mathbb{R}^{2 n}$ with standard coordinates $q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}$. The tautological 1 -form or Louiville 1-form is given by

$$
\theta=\sum_{i=1}^{n} p_{i} d q^{i}
$$

and the corresponding canonical symplectic form is

$$
\omega=-d \theta=\sum_{i=1}^{n} d q^{i} \wedge d p_{i}
$$

The vector field corresponding to a Hamiltonian function is

$$
X_{H}=\left(\frac{\partial H}{\partial p_{i}},-\frac{\partial H}{\partial q^{i}}\right)
$$

from which we recognize Hamilton's equations.
Definition 14. Let H be a Hamiltonian function. An integral of motion (w.r.t. H) is a function f with $\{H, f\}=X_{H}(f)=0$. In particular, it is constant on any trajectory generated by X_{H}. Note that H itself is a integral of motion (conservation of energy). Note that the integrals of motion form a sub-Poisson algebra of $C^{\infty}(M)$.

- The Darboux Theorem -

Theorem 15 (Darboux's theorem). Let (M, ω) be a symplectic manifold. Then for any point $x \in M$, there exist local coordinates $q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}$ such that ω is given by $\sum_{i=1}^{n} d q^{i} \wedge d p_{i}$.

Proof. Locally around x, we can write $\omega=\frac{1}{2} \omega_{i j} d x^{i} \wedge d x^{j}$. Consider $\omega_{0}=\frac{1}{2} \omega_{i j}(x) d x^{i} \wedge d x^{1}$, which is also a symplectic form in the same neighborhood of x. Moreover, for a sufficiently small neighborhood around x, we have a family of symplectic forms

$$
\omega(t)=(1-t) \omega_{0}+t \omega, \quad t \in[0,1] .
$$

Since $\omega-\omega_{0}$ is closed, using Poincaré's lemma we can locally around x write $\dot{\omega}(t)=\omega-\omega_{0}=-d \lambda$ for some 1-form λ. Since $\omega-\omega_{0}$ vanishes at x, we may choose λ to vanish at x up to second order. Now let $X(t)$ be the vector field defined by $\iota_{X(t)} \omega(t)=\lambda$, and let φ_{t} be the flow of $X(t)$ around x_{0}. Since $\varphi_{t}(x)=x$ for all $t \in[0,1]$, the flow φ_{t} exists on the whole interval $t \in[0,1]$ sufficiently close to x. Now,

$$
\frac{d}{d t} \varphi_{t}^{*} \omega(t)=\varphi_{t}^{*}\left(\frac{\partial \omega(t)}{\partial t}+\mathcal{L}_{X(t)} \omega(t)\right)=\varphi_{t}^{*}\left(\frac{\partial \omega(t)}{\partial t}+d\left(\iota_{X(t)} \omega(t)\right)\right)=\varphi_{t}^{*}(-d \lambda+d \lambda)=0
$$

using the Cartan formula. This implies that $\varphi_{1}^{*} \omega=\varphi_{1}^{*} \omega(1)=\varphi_{0}^{*} \omega(0)=\omega_{0}$, so φ_{1} is the desired diffeomorphism. Finally, by a linear change of variables the form ω_{0} can be reduced to the canonical form.

Theorem 16 (More general Darboux). Let N be a compact submanifold of a manifold M and let ω_{0}, ω_{1} be two symplectic forms on a neighborhood of N. If $\left.\omega_{0}\right|_{N}=\left.\omega_{1}\right|_{N}$, then there exist two neighborhoods U, V of N and a diffeomorphism $f: U \rightarrow V$ such that f and df are the identity on N, and $f^{*} \omega_{1}=\omega_{0}$.

- The Generating Function -

Proposition 17. Let x^{i} and y^{i} be coordinates on $\mathbb{R}^{2 n}$, such that $y=f(x)$ for some symplectomorphism $f: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$. Set $z=\frac{x+y}{2}$ and assume that this defines x as an implicit function of z. Then there exists a function $S(z)$ such that

$$
d S(z)=\omega\left(\frac{y-x}{2}, d z\right)
$$

Proof. It suffices to check that the right-hand side is closed, and indeed
$d\left(\omega\left(\frac{y-x}{2}, d z\right)\right)=\frac{1}{2} \omega(d y-d x, d z)=\frac{1}{4}(\underbrace{\omega(d y, d y)-\omega(d x, d x)}_{=0, \text { as } f \text { is symplectomorphism }}+\underbrace{\omega(d y, d x)-\omega(d x, d y)}_{=0})=0$.

The function $S(z)$ is called a (symmetrized) generating function of the symplectomorphism. If we know it, we can reconstruct f. Namely,

$$
\begin{aligned}
x^{i} & =z^{i}+\omega^{i j} \frac{\partial S(z)}{\partial z^{j}} \\
y^{i} & =z^{i}-\omega^{i j} \frac{\partial S(z)}{\partial z^{j}}
\end{aligned}
$$

If the first defines z as an implicit function of x, we substitute this in the second equation to get the map f. By the same argument as above we find that this f is again a symplectomorphism.

Proposition 18. Any symplectomorphism is locally homotopic to the identity.

- Symplectic Connections -

Definition 19. Let $E \rightarrow M$ be a symplectic bundle. A symplectic connection is a connection ∇ on E preserving the symplectic form ω, that is

$$
\left(\nabla_{X} \omega\right)(u, v)=X(w(u, v))-\omega\left(\nabla_{X} u, v\right)-\omega\left(u, \nabla_{X} v\right)=0
$$

for any sections $u, v \in \Gamma(E)$ and vector field X.
A symplectic connection on a symplectic manifold (M, ω) is a torsion-free affine connection preserving the symplectic form.

Proposition 20. There exists a symplectic connection on any symplectic manifold.

Proof. Let ∇ be any torsion-free connection (e.g. the Levi-Civita connection), and try a connection of the form $\nabla^{\prime}=\nabla+\delta \Gamma$, with $\delta \Gamma=\delta \Gamma^{i}{ }_{j k}$ a tensor field symmetric in $j k$. Then from

$$
Z(\omega(X, Y))=\left(\nabla_{Z} \omega\right)(X, Y)+\omega\left(\nabla_{Z} X, Y\right)+\omega\left(X, \nabla_{Z} Y\right)
$$

and a similar expression for ∇^{\prime}, we obtain

$$
\left(\nabla^{\prime} \omega\right)(X, Y)=(\nabla \omega)(X, Y)-\omega(\delta \Gamma(Z, X), Y)-\omega(X, \delta \Gamma(Z, Y))
$$

which we want to be zero, that is

$$
\begin{equation*}
\nabla_{k} \omega_{i j}=\omega_{\ell j} \delta \Gamma_{i k}^{\ell}+\omega_{i \ell} \delta \Gamma_{j k}^{\ell}=\delta \Gamma_{i j k}-\delta \Gamma_{j i k} \tag{1}
\end{equation*}
$$

We impose an additional condition on $\delta \Gamma$ that $\delta \Gamma_{(i j k)}=0$. Then
$\delta \Gamma_{i j k}=\delta \Gamma_{i j k}-\frac{1}{3}\left(\delta \Gamma_{i j k}+\delta \Gamma_{j k i}+\delta \Gamma_{k i j}\right)=\frac{1}{3}\left(\delta \Gamma_{i j k}-\delta \Gamma_{j i k}\right)+\frac{1}{3}\left(\delta \Gamma_{i k j}-\delta \Gamma_{k i j}\right)=\frac{1}{3} \nabla_{k} \omega_{i j}+\frac{1}{3} \nabla_{j} \omega_{i k}$
does the trick. It satisfies (1) since
$\delta \Gamma_{i j k}-\delta \Gamma_{j i k}=\frac{1}{3}\left(\nabla_{k} \omega_{i j}+\nabla_{j} \omega_{i k}-\nabla_{k} \omega_{j i}-\nabla_{i} \omega_{j k}\right)=\nabla_{k} \omega_{i j}+\frac{1}{3}\left(\nabla_{j} \omega_{i k}+\nabla_{i} \omega_{k j}+\nabla_{k} \omega_{j i}\right)=\nabla_{k} \omega_{i j}$, using that $d \omega=0$ and the fact that ∇ is torsion-free.

Remark 21. From the homogeneous equation corresponding to (1), we see that any two symplectic connections differ by a completely symmetric tensor $\delta \Gamma_{i j k}$.

Theorem 22. At any point x_{0}, there exists a local Darboux coordinate system centered at x_{0} such that $\Gamma_{i j k}(0)=0$ and

$$
\Gamma_{i j k}(x) x^{i} x^{j} x^{k}
$$

vanishes at $x=0$ up to infinite order. Two such systems differ up to infinite order by a linear symplectic change of variables.

- Kirillov Form on Coadjoint Orbits -

Example 23. Let G be a Lie group and \mathfrak{g} its corresponding Lie algebra. Any coadjoint orbit $\mathcal{O}_{\mu}=\left\{\operatorname{Ad}_{g}^{*} \mu: g \in G\right\}$ can be described via

$$
\begin{aligned}
G / G_{\mu} & \xrightarrow{\sim} \mathcal{O}_{\mu} \\
g & \mapsto \operatorname{Ad}_{g}^{*} \mu .
\end{aligned}
$$

There is a symplectic structure on \mathcal{O}_{μ} given by the Kirillov form

$$
\omega_{\nu}\left(\operatorname{ad}_{X}^{*} \nu, \operatorname{ad}_{Y}^{*} \nu\right)=\nu([X, Y])
$$

Note that there is an isomorphism

$$
\begin{aligned}
\mathfrak{g} / \mathfrak{g}_{\nu} & \xrightarrow{\sim} T_{\nu} \mathcal{O}_{\mu} \\
X & \mapsto \operatorname{ad}_{X}^{*} \nu=\nu([X,-]),
\end{aligned}
$$

which shows both that ω is well-defined, and that ω is non-degenerate. To show that ω is closed, pullback ω to G, and show it is closed (even exact) there. Use the Maurer-Cartan form.

