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1 Motivations from classical and quantum mechanics

This section is mainly based on Chapter 2 and Chapter 3 of Hall’s book Quantum theory for mathe-
maticians [1].

1.1 Classical mechanics

1.1.1 Some conventions

In this section, we make some conventions beforehand:

• In classical mechanics, an observable is assumed to be a real-valued function f ∈ C∞(Rn),
where Rn is the phase space;

• Newton’s law in the case Rn is formulated as mẍ(t) = F (x(t), ẋ(t)), where F is the force.

• The force F ∈ C∞(Rn) is conserved i.e. the gradient of the potential energy V is the opposite
of the force: −∇V (x) = F (x).

1.1.2 Hamiltonian mechanics and Poisson bracket

In Hamiltonian mechanics, we think of the energy function as a function of position and momentum,
rather than position and velocity. We refer to it as the Hamiltonian of the system.
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If a particle in Rn has the energy defined as the sum of kinetic energy and potential energy V (x),
then the Hamiltonian is defined by

H(x, p) =
1

2m

!

j

pj + V (x)

From the Hamiltonian, we can obtain Newton’s law:

"
∂H
∂pj

=
pj
m = vj =

dxj

dt

− ∂H
∂xj

= −∂V (x)
∂xj

= Fj .
(1)

We call the equations (1) Hamilton’s equation.

Definition 1 (Poisson bracket). Let f and g be two smooth functions on R2n, where an element of
R2n is thought of as a pair (x, p), with x ∈ R2n representing the position of a particle and p ∈ Rn

represents the momentum. Then the Poisson bracket of f and g, denoted {f, g}, is the function on
R2n given by

{f, g} =

n!

j=1

(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj
)

Remark 1. Note that for the position function xj and momentum function pj we have

{xi, xj} = 0 = {pi, pj}, {xj , pi} = δi,j

As we have seen in the last talk, the Poisson bracket with the first fixed input can be viewed as
an operator of derivation, and the Poisson bracket satisfies the Jacobi identity:

Proposition 1 ([1, Proposition 2.23]). For f, g, h ∈ C∞(R2n), we have

• {f, g + λh} = {f, g}+ λ{f, h} for all λ ∈ R;

• {f, g} = −{g, f};

• {f, gh} = {f, g}h+ g{f, h};

• {f, {g, h}} = {{f, g}, h}+ {g, {f, h}};

Proposition 2 ([1, Proposition 2.25]). If (x(t), p(t)) is a solution to Hamilton’s equation, then for
any smooth function f on R2n we have

d

dt
f(x(t), p(t)) = {f,H}(x(t), p(t))

Proof. Follows by using the chain rules and Hamilton’s equations.

Remark 2. Observe that Proposition 2 includes Hamiltons equations themselves as special cases, by
taking f(x, p) = xj and by taking f(x, p) = pj .

Definition 2 (Conserved quantity). We call a smooth function f on R2n a conserved quantity if
f(x(t), p(t)) is independent of t for each solution (x(t), p(t)) of Hamilton’s equations.

Then we have f is conserved if and only if {f,H} = 0. In particular the Hamiltonian H itself is
a conserved quantity.
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1.2 Quantum mechanics

There are two key ingredients to quantum theory, both of which arose from experiments.
The first ingredient is wave-particle duality which means that the objects are observed to have

wavelike and particlelike behavior. From this aspect, the wave functions become the main character
in quantum theory.

The second one is the probabilistic behavior which means that it is impossible to predict ahead of
time what the precise outcome of an experiment will be. The best one can do is to predict a certain
probability of the outcome of an experiment.

To combine the two ingredients, we consider a wave function ψ : R → C, and let time t fixed.
Then the function |ψ(x)|2 is supposed to be the probability density for the position of the particle.
That means the probability that the particle belongs to some set E ⊂ R is given by the quantity

#

E
|ψ(x)|2dx.

Here we actually require that
$
R |ψ(x)|2dx = 1 i.e. ψ is a unit vector in L2(R). Therefore, we then

have the expectation value of the position will be

E(x) =

#

R
x|ψ(x)|2dx, (2)

provided the integral converges.
The basic idea in quantum theory is to express the expectation value using operators on some

Hilbert space H and the inner product of H.
Let us consider the case of the position function. We set the underlying Hilbert space to be L2(R)

and define the position operator x̂ : Dom(x̂) ⊂ L2(R) → L2(R) by

(x̂ψ)(x) = xψ(x),

and the expectation value of x is expressed in the inner product

E(x) = (ψ, x̂ψ) =

#

R
x|ψ(x)|2dx, (3)

which gives the expected value of the position of the particle as above equation (2).
The quantum version of the observable momentum function is motivated by the de Broglie hy-

pothesis.

Proposition 3 (de Broglie hypothesis). If the wave function of a particle has spatial frequency k,
then the momentum p of the particle is

p = !k,
where ! is the Planck’s constant.

Indeed, the de Broglie hypothesis means that a wave function of the form eikx represents a particle
with momentum !k. As the function eikx is not integrable over R, let us instead consider the domain
as a circle. Hence the normalized wave function becomes eikx/2π. One can see immediately that
{eikx/2π : k ∈ Z} forms an orthogonal basis of L2([0, 2π]) and thus for any unit vector ψ in L2([0, 2π])
we have

ψ(x) =
!

k

ake
ikx/2π, such that

!

i

|ak|2 = 1.

For the linear combination of eikx/2π, the momentum is no longer definite. Instead, one should
interpret it as follows: the particle has momentum !k with probability |ak|2. Therefore we have

E(p) =
!

k

!k · |ak|2.

3



In an analogy with equation (3), the momentum operator p̂ must satisfy the following

E(p) = (ψ, p̂ψ).

Hence the reasonable definition of the momentum operator is

p̂ = −i!
d

dx
.

So we can formulate the following definitions.

Definition 3 (Position and momentum operator). The position operator X and momentum operator
P are the operators defined as

x̂ : Dom(x̂) ⊂ L2(R) → L2(R),ψ(x) &→ xψ(x)

p̂ : Dom(p̂) ⊂ L2(R) → L2(R),ϕ &→ −i!
dψ

dx
,

since the operators x̂ and p̂ are unbounded, we have to specify the domain of each. We call the
operator x̂ and p̂ the quantization of observables x and p.

Remark 3. A little calculation gives that

[x̂, p̂] = x̂p̂− p̂x̂ = i!I = −i!{x, p}, (4)

which is called the correspondence principle of quantum mechanics.

1.2.1 Axioms of quantum mechanics

Physicists stipulate the following axioms for quantum mechanics.

Axiom 1. The state of the system is represented by a unit vector ψ in an appropriate Hilbert space
H. If ψ1 and ψ2 are two unit vectors in H with ψ1 = cψ2 for some constant c ∈ C, then ψ1 and ψ2

represent the same physical state.

Axiom 2. To each real-valued function f on the classical phase space we associate a self-adjoint
operator f̂ (an operator A is self-adjoint if A = A∗, where A∗ is the unique operator such that
(Ax, y) = (x,A∗y)) on a Hilbert space H.

Axiom 3. If a quantum system is in a state described by a unit vector ψ ∈ H, the probability
distribution for the measurement of some observable f satisfies

E(fm) = (ψ, (f̂)mψ).

In particular, the expectation value for a measurement of f is given by

E(f) = (ψ, f̂ψ),

which we abbreviate as 〈f̂〉ψ

Axiom 4. Suppose a quantum system is initially in a state ψ and that a measurement of an observable
f is performed. If the result of the measurement is the number λ ∈ R, then immediately after the
measurement, the system will be in a state ψ′ that satisfies

f̂ψ′ = λψ′.

The passage from ψ to ψ′ is called the collapse of the wave function. Here f̂ is the self-adjoint
operator associated to f by Axiom 2.
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Motivated by the relation between the energy and temporal frequency (E = !ω, where ω is the
temporal frequency) proposed by Planck, the last Axiom for quantum mechanics is the so-called
Schrödinger equation.

Axiom 5. The time-evolution of the wave function ψ in a quantum system is given by the Schrödinger
equation,

dψ

dt
=

1

i!
Ĥψ(t).

Here Ĥ is the operator corresponding to the classical Hamiltonian H by means of Axiom 2.

Finally, recall the Proposition 2 indicating the derivative of any observable f is equal to the
Poisson bracket {f,H}. The corresponding result in quantum version is the following.

Proposition 4 ([1, Proposition 3.14]). Suppose ψ is a solution of Schrödinger equation and A is a
self-adjoint operator on H. Assuming certain domain conditions hold, we have

d

dt
〈A〉ψ(t) =

d

dt
(ψ(t), Aψ(t)) = (ψ(t),

1

i!
[A, Ĥ]ψ(t)) = 〈 1

i!
[A, Ĥ]〉ψ(t)

2 The Weyl Quantization

This section is mainly based on [2, Chapter 4].
We have seen the “quantization” of position and momentum in the previous section. For an

arbitrary observable, we shall use the Weyl quantization scheme.

2.1 Preliminaries

Definition 4 (Fourier transform). Let f ∈ L2(Rn), the Fourier transform of f is

F(f)(ξ) =

#

Rn

e−2πiξxf(x)dx,

and the Fourier inverse transform is

F−1(f)(x) =

#

Rn

e2πixξf(ξ)dξ.

Definition 5 (Schwartz class). The Schwartz class S(Rn) is the set of all smooth complex valued
functions f on Rn such that for all α,β ∈ Nn there are constants Cα,β such that

|xαDβ
xf | ≤ Cα,β

for all x ∈ Rn. This is equivalent to assuming there exist estimates of the form:

|Dβ
xf(x)| ≤ Cm,β(1 + |x|)m for all (m,β),

where β = (β1, . . . ,βn) ∈ Nn and Dβ
xf(x) = ( ∂

∂x1
)β1 . . . ( ∂

∂xn
)βnf(x).

If we set the seminorm pα,β(f) := supx∈Rn |xαDβ
xf(x)|, the Schwartz class becomes a complete

locally convex topological vector space. Then the Fourier transform becomes a homeomorphism from
S(Rn) to itself.
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2.1.1 Gaussian integrals

In this section, we shall list the integrals that we will frequently use in Weyl quantization.

Lemma 1 (Gaussian integral, [2, Lemma 3.1.1]). Let ϕ(x) = (x,Ax)+(a, x)+a0 = xtAx+atx+a0
be a quadratic function on Rn, where A is a complex symmetric matrix with a positive definite real
part, a as a complex vector and a0 a complex constant. Then

I :=

#
e−ϕ(x)dx = πn/2(detA)−1/2e−ϕ(z0),

where z0 ∈ Cn is a stationary point for ϕ i.e. a solution of ∂ϕ/∂xi = 0, and

(detA)−1/2 = (det(B + iC))−1/2

is understood as a continuous branch of the function (det(B + iC))−1/2 on the interval t ∈ [0, 1], with
a positive initial value at t = 0.

Proof. Since the proof is standard, we only sketch the proof: since z0 is a stationary point, we can
write

ϕ(x) = ϕ(z0) + (x− z0)
tA(x− z0).

Then do the diagonalization for the term (x− z0)
tA(x− z0) and integral it.

The next corollaries are based on the Lemma 1, so we shall omit their proofs.

Corollary 1 ([2, Corollary 3.1.2]). Let A = εB2 + iC, where B is a positive definite matrix and C
is non-degenerate matrix. Then we have

I = lim
ε→0

#
(−xt(εB2

i C)x− atx− a0)dx = πn/2| detC|−1/2e−ϕ(z0) exp

%
− iπ

4
sgn(C)

&
,

where z0 is a stationary point of the function ϕ(x) = ixtCx + atx + a0 and sgn(C) denotes the
difference of the number of positive eigenvalues and the number of negative eigenvalues.

Corollary 2 ([2, Corollary 3.1.3]). Let f(x) be a polynomial. Under the assumptions of 1,

I =

#
f(x)e−ϕ(x)dx = πn/2(detA)−1/2e−ϕ(z0) exp

%
1

4
(∂τ , A

−1∂τ )

&
f(z0 + τ)|τ=0,

where the exponential function is understood as a formal expansion.

2.2 Symbol classes and the composition formula

In quantum mechanics, as introduced in the first section, we would like to transfer the classical
observable i.e. real smooth function to the operator on some Hilbert space. We call this process
quantization. We have seen the quantization of position and momentum. In this section, we shall
introduce Weyl quantization.

Let R2n
x = Rn

q × Rn
p be the phase space of classical mechanics. There is a standard symplectic

form
ω = dq1 ∧ dp1 + . . . dqn ∧ dpn,

where x = (x1, . . . , x
2n) = (q1, p1, . . . , q

n, pn) turning R2n into a symplectic space.
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Definition 6. A function a(x, h) ∈ C∞(R2n×(0, 1]) belongs to the symbol class Σm
h if for any integer

N ≥ 0 there is a decomposition

a(x, h) = a0(x) + ha1(x) + · · ·+ hN−1aN−1(x) + hNrN (x, h),

where

|a(α)k (x)| ≤ Cα,k

'
1 + |x|2

m−2k−|α|

and

|r(α)N (x, h)| ≤ CN,α

'
1 + |x|2

m−2N−|α|

uniformly with respect to h ∈ (0, 1].

We omit the subscript h whenever h is fixed. The union of all Σm
h over m is denoted by Σh, and

the intersection of all Σm
h is denoted by Σ−∞

h .
Now, we define the Weyl quantization.

Definition 7. Let h ∈ (0, 1) and a(q, p) be a reasonable smooth function(sometimes in Σm) on R2n

, the Weyl quantization A of a(q, p), denoted by

A = â = Op(a(q, p)) = a(q,−ih
∂

∂q
),

is the operator on S(Rn), defined by the following

(Au)(q) = (2πh)−n

#

R2n

exp

%
i

h
p(q − q′)

&
a

%
q + q′

2
, p

&
u(q′)dq′dp (5)

where u(q) ∈ S(Rn) and p(q− q′) is the abbreviation of the standard inner product of p and q− q′ on
Rn. The function a(x) is called the (Weyl) symbol of the operator A.

Example 1. Consider a = qi and a = pi i.e. take a as position function and momentum function.
Then we have

Op(qi)u = qiu and Op(pi)u = −ih
∂u

∂qi

which are exactly the quantization of position and momentum functions. More precisely, for position
function qi, we have

(2πh)−n

#
e

i
h
p(q−q′)a

%
q + q′

2
, p

&
u(q′)dpdq′

= (2πh)−n

#
e

i
h
p(q−q′) · q

i + qi
′

2
· u(q′)dpdq′

= (2πh)−n

#
e

i
h
pq(

#
e−

i
h
pq′ q

i′

2
· u(q′)dq′)dp+ (2πh)−n

#
e

i
h
pq(

#
e−

i
h
pq′ q

i

2
· u(q′)dq′)

= (2πh)−n

#
e

i
h
pqF ′(

pi

2
· u(p))dp+ qi · (2πh)−n

#
e

i
h
pqF ′(u(p))dq′)

= qiu(q),

where F ′ denotes the Fourier transform with coefficient i
h in the power of exponential and the last

equality is due to the inverse Fourier transform. For the momentum function, one can use the same
method and integrating by parts to show that the quantization of the momentum function pi gives
−ih ∂u

∂qi
.
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Proposition 5 ([2, Proposition 3.1.7]). If a(x) ∈ Σm, then the operator A = Op(a) maps S(Rn)
continuously to itself.

Let us consider the adjoint of the operator A. Let u, v ∈ S(Rn), we have

(v,Au) = (2πh)−n

#
exp

%
i

h
p(q − q′)

&
a

%
q + q′

2
, p

&
u(q′)v̄(q)dq′dpdq,

which gives the adjoint A∗ has symbol ā(x). Then any operator having real symbol is self-adjoint,
which agrees with the axiom of quantum mechanics.

Definition 8 (Integral operator). An integral operator is an operator of the form:

(Tf)(x) =

# t2

t1

K(t, x)f(t)dt.

We call the function K(t, x) the kernel of the operator.

Then, back to the Weyl quantization, by performing change of variables, we have

(v,Au) = (2πh)−n

#
a(x)Ku,v(x)dx,

where q + q′ = 2s, q − q′ = t and Ku,v(x) = Ku,v(s, p) =
$
exp

(
i
hpt

)
u(s − t/2)v̄(s + t/2)dt, which

belongs to S(R2n) and it is the symbol of the one-dimensional operator *Ku,v := u(v, ·).
For the symbol a(x) in Σ−∞, the Weyl quantization may be represented as an integral operator

with kernel function

K(q, q′) = (2πh)−n

#
exp

%
i

h
p(q − q′)

&
a

%
q + q′

2
, p

&
dp. (6)

If we perform a change of variables again, we get

K

%
s+

t

2
, s− t

2

&
= (2πh)−n

#
exp

%
i

h
pt

&
a(s, p)dp.

Then by the Fourier inversion formula, we get

a(s, p) =

#
exp

%
− i

h
pt

&
K

%
s+

t

2
, s− t

2

&
dt.

Definition 9. We define the trace of the operator A = Op(a) for a ∈ Σ−∞ as

trA =

#
K(q, q)dq = (2πh)−n

#
a(x)dx,

where K is the kernel of Weyl quantization and the last equality follows from (6).

Proposition 6 ([2, Proposition 3.1.8]). Let A1, A2 be Weyl quantization with symbols a1(x), a2(x) ∈
Σ−∞. Then

trA1A2 = (2πh)−n

#
a1(x)a2(x)dx.

In particular, the trace does not depend on the order of composition of operators.
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Proof. Using formula (6) for the kernels K1 and K2, we obtain

trA1A2 =

#
K1(q, q

′)K2(q
′, q)dqdq′

= (2πh)−2n

#
exp

%
− i

h
(p1 − p2)(q − q′)

&
a1

%
q + q′

2
, p1

&
a2

%
q′ + q

2
, p2

&
dqdq′dp1dp2

Performing the change of variables p1 − p2 = u, we have

trA1A2 = (2πh)−2n

#
a2(s, p2)dsdp2

#
exp

%
i

h
tu

&
a1(s, p2 + u)dudt

Finally, the Fourier integral formula

(2πh)−n

#
exp

%
i

h
tu

&
a1(s, p+ u)dudt = a1(s, p)

completes the proof.

Now, we introduce the composition formula for the Weyl quantizations.

Theorem 1 ([2, Theorem 3.2.1]). Let A = Op(a) and B = Op(b) be Weyl quantizations with symbols
a(x), b(x) ∈ Σ−∞. Then AB is also a Weyl quantization with Weyl symbol

c(x) = (πh)−2n

#

R4n

exp

%
2i

h
ω(t, τ)

&
a(x+ t)b(x+ τ)dtdτ,

where ω(u, r; v, s) = rv − su.

Proof. We sketch the proof below.

(ABu)(q) = (A(Bu))(q)

= (2πh)−n

#
exp

%
i

h
p1(q − q1)

&
a

%
q + q1

2
, p1

&
(Bu)(q1)dq1dp1

= (2πh)−2n

#
exp

%
i

h
(p1(q − q1) + p2(q1 − q2))

&
a

%
q + q1

2
, p1

&
b

%
q1 + q2

2
, p2

&
u(q2)dq2dp1dp2

Thus the kernel of AB is given by

K(q1, q2) = (2πh)−2n

#
exp

%
i

h
(p1(q − q1) + p2(q1 − q2))

&
a

%
q + q1

2
, p1

&
b

%
q1 + q2

2
, p2

&
dq1dp1dp2

By using Fourier inversion formula, we can obtain

c(x) = (πh)−2n

#

R4n

exp

%
2i

h
ω(t, τ)

&
a(x+ t)b(x+ τ)dtdτ

is the symbol of AB.

Similarly, for the symbols a, b in Σma
h and Σmb

h respectively, we have the following theorem.

Theorem 2 ([2, Theorem 3.2.2]). The operator Op(a)Op(b) has symbol c in Σma+mb
h given by

c(x, h) =
!

k<N

1

k!
(
−ih

2
)k(ω−1(∂z, ∂τ ))

ka1(x+ t)a2(x+ τ)|t=τ=0 + hNRN (x, h), (7)

where RN ∈ Σma+mb−2N
h .
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In particular, for the linear functions, we have the corollary below.

Corollary 3 ([2, Proposition 3.2.4]). Let a =
+2n

i=1 αix
i be a linear function, then Op(a)◦Op(a) · · ·◦

Op(a) = Op(ak).

Proof. First notice that {a, ak} = {a, ak−1} = . . . {a, a} = 0 by the following calculation:

{a, ak} =
!

i,j

∂a

∂xi

∂ak

∂xj
− ∂a

∂xj

∂ak

∂xi

=
!

i,j

∂a

∂xi

∂a · ak−1

∂xj
− ∂a

∂xj

∂a · ak−1

∂xi

=
!

i,j

∂a

∂xi
(αj +

∂ak−1

∂xj
)− ∂a

∂xj
(αi +

∂ak−1

∂xi
)

=
!

i,j

∂a

∂xi

∂ak−1

∂xj
− ∂a

∂xj

∂ak−1

∂xi

= {a, ak−1}

Then by the equation (7) we obtain that Op(a) ◦ Op(ak−1) = ak − ih
2 {a, a

k−1} = ak. Applying an
induction argument completes the proof.

2.3 Gaussian symbols

In this section, we consider a special class of symbols.

Definition 10. A function a ∈ Σ−∞ is called a Gaussian symbol if it has the form

a = c · e−
1
h
g(x,x),

where g(x, x) = xtGx is a complex quadratic form with positive definite real part and c is a constant.

The composition of Gaussian symbols is also a Gaussian symbol:

Proposition 7 ([2, Proposition 3.3.1]). The class of Gaussian symbols is closed under composition:

Op

%
exp

%
−1

h
g1(x, x)

&&
◦Op

%
exp

%
−1

h
g2(x, x)

&&
= Op

%
c · exp

%
−1

h
g3(x, x)

&&
,

where

G3 = G1 − (G1 − iΩ)(G1 − ΩG−1
2 Ω)−1(G1 + iΩ), (8)

and

c =
,

detG2 det
(
G1 − Ω−1

2 Ω
)
,

where gi(x, x) = xtGix.

Corollary 4 ([2, Corollary 3.3.3]). Any Gaussian symbol may be represented as a composition of
two other Gaussian symbols.

Proof. The idea of this proof is to assume Gaussian symbol with the matrix G can be written as the
composition of two other Gaussian symbols, one of which has the matrix λ · G with λ > 0. Then
substitute G3 = G and G1 = λ ·G in equation (8). One can obtain G2 by solving the equation.

Example 2. Let us consider the Gaussian symbol of the form pε(x) = e−
!
h
|x|2. We have that pε → 1

as ε → 0. By the proposition above, we have that Op(pε1)Op(ε2) = (1 + ε1ε2)
−nOp(pε3) where

ε3 =
ε1+ε2
1+ε1ε2

.

Lemma 2 ([2, Lemma 3.3.4]). The set {Op(pε)(u) : u ∈ S(Rn), ε > 0} is dense in S(Rn).

10



2.4 Operators in L2(Rn)

Theorem 3 ([2, Theorem 3.4.1]). The operator A = Op(a) with a ∈ Σ0
h is bounded in L2(Rn)

uniformly with respect to h ∈ (0, 1].

Definition 11 (Hilbert–Schmidt operator). An operator A is called a Hilbert–Schmidt operator if
there is an orthonormal basis {ei} in H, such that

‖A‖22 :=
!

i

‖Aei‖2 < ∞. (9)

The subspace consisting of Hilbert–Schmidt operators is denoted by L2(H).

Definition 12 (Trace class operator). An operator A is called a trace class operator if there exists
two Hilbert–Schmidt operators B,C such that A = BC. The norm

‖A‖1 := inf
B,C∈L2(H):A=BC

‖B‖2‖C‖2,

is called a trace norm. The subspace consisting of trace class operators is denoted by L1(H).

We list the following properties of L1(H) and L2(H) without proofs. The proof can be found in
[3, Section 2.4] .

Proposition 8 ([2, Proposition 3.4.4]). Hilbert–Schmidt operators have the following properties:

• the sum (9) does not depend on the choice of basis;

• if A ∈ L2(H) then A∗ ∈ L2(H) and ‖A‖2 = ‖A∗‖2;

• if A ∈ L2(H) then A is compact;

• the space L2(H) is a Hilbert space with the inner product (A,B)2 =
+

i(Aei, Bei);

• the space L2(H) is a two-sided ideal in L(H) and ‖BAC‖2 ≤ ‖B‖‖A‖2‖C‖ for any A ∈
L2(H), and B,C ∈ L(H);

• Let s2i > 0 be the nonzero eigenvalues of A∗A. Then ‖A‖22 =
+

i s
2
i where the sum counts for

multiplicities.

Proposition 9 ([2, Proposition 3.4.5]). Trace class operators have the following properties:

• The space L1(H) is a Banach space with respect to the norm ‖ · ‖1;

• If A ∈ L1(H), then A∗ ∈ L1(H) with the same trace norm;

• The space L1(H) is a two-sided ideal in L(H) and ‖BAC‖1 ≤ ‖B‖‖A‖1‖C‖ for any A ∈
L1(H), and B,C ∈ L(H);

• Define a trace of an operator A ∈ L1(H) by trA = (B,C∗)2, where B,C ∈ L2(H), A = BC.
Then tr is a bounded linear functional on L1(H);

• For any orthonormal basis {ei}, we have trA =
+

i(Aei, ei);

• Let s2i > 0 be the nonzero eigenvalues of A∗A. Then ‖A‖2 =
+

i si where the sum is over
multiplicities;

• If λi are nonzero eigenvalues of A, then trA =
+

i λi where the sum is over multiplicities.
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The last property of trace class operators is known as Lidskij’s theorem [4, Proposition A.3.3],
it has an important corollary:

Corollary 5 ([2, Corollary 3.4.6]). If A,B are two operators such that AB ∈ L1(H) and BA ∈
L1(H), then trAB = trBA.

Proof. If λ ∕= 0 is an eigenvalue of AB with eigenvector eλ, then (AB − λ)eλ = 0 and Beλ ∕= 0.
Ap[plying B to both sides gives that

B(AB − λ)eλ = (BA− λ)Beλ,

thus we have λ is also an eigenvalue for BA with the eigenvector Beλ.
If (AB − λ)keλ = 0 for some k ∈ N>1, then by the same argument, one can show that (BA −

λ)kBeλ = 0 as well. Therefore, all nonzero eigenvalues (taking into account their multiplicities) of
AB are eigenvalues of BA and vice versa, which completes the proof.

Note that in the finite dimensional case, the trace of an operator coincides with the usual definition
of operator trace. In particular, if dim(H) = n, then the trace of the identity I is n.

This has a interesting consequence:

Corollary 6. The canonical relation [A,B] = −i!I does not hold in L1(H).

Proof. We have on the one hand,

tr(AB −BA) = trAB − trBA = 0,

which means that the commutator has zero trace. On the other hand, the trace of −i!I is clearly
nonzero.

Finally, let us consider a natural question: how to determine whether an operator obtained
through Weyl quantization is trace class (or Hilbert–Schmidt). If so, how can we estimate the
corresponding norms and does there exists any relation between the trace of the symbol and the
trace of the corresponding operator? The following theorem gives the answer.

Theorem 4 ([2, Proposition 3.4.7]). If a ∈ Σm, and A = Op(a), then

1. A ∈ L2(L
2(Rn)) for m < −n and

‖A‖22 = (2πh)−n

#
|a(x)|2dx,

2. A ∈ L1(L
2(Rn)) for m < −2n and

trA = (2πh)−n

#
a(x)dx.

Finally, from this theorem, we know that two traces coincide and we need not to distinguish them
anymore.
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