Intercity Number Theory Seminar

2015

RISC Seminar/Intercity Number Theory Seminar: Cryptologic Algorithms

6 February, CWI Amsterdam. Euler Room (Z009, ground floor). For abstracts, see the program.
10:30–11:00
Benjamin Wesolowski EPFL, Random Self-Reducibility of the Discrete Logarithm Problem in Genus 2
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
11:15–12:00
Rob Granger EPFL, A tale of two QPAs
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:45–14:15
Alina Dudeanu EPFL, Computing Denominators of Igusa Class Polynomials
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
14:15–14:45
Anja Becker EPFL, A Sieve Algorithm Based on Overlattices
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–15:30
Joppe Bos NXP Semiconductors, Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:45–16:30
Arjen Lenstra EPFL, Factorization Factories
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Intercity Number Theory Seminar

20 February, Leiden. Snellius building, Room B03.
11:30–12:30
Peter Bruin Universiteit Leiden, Computing modular Galois representations
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:45–14:45
Elisa Universiteit Leiden, A Gross-Zagier formula for dimension 3
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–16:00
Marta Pieropan Leibniz Universität Hannover, On the distribution of rational points on Fano varieties over number fields
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:15–17:15
Peter Stevenhagen Universiteit Leiden, Adelic points of elliptic curves
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Intercity Number Theory Seminar

13 March, Groningen. First two lectures in room 165, Bernoulliborg, last two lectures in room 105.
12:00–13:00
Ute Spreckels Oldenburg, On the primality of the order of CM abelian varieties over finite prime fields
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:30–14:30
Paul Helminck Groningen, Variations on some constructions by J-F. Mestre
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–16:00
Remke Kloosterman HU Berlin, An upper bound for the Mordell-Weil rank after Galois base change and a Chevalley-Weil formula for certain surfaces
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:15–17:15
Jaap Top Groningen, Lucas-Lehmer revisited
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Seminar Aachen-Köln-Lille-Siegen (AKLS) and Intercity Number Theory Seminar

24 April, Utrecht. BBG (Buys Ballot Gebouw), room 065 (ground floor)
14:00–15:00
Roelof Bruggeman Utrecht, Holomorphic automorphic forms and cohomology
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–16:00
Carel Faber Utrecht, On Teichmüller modular forms
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
17:00–18:00
Miranda Cheng Amsterdam, UvA, Optimal mock Jacobi forms
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Intercity Number Theory Seminar

8 May, UvA and VU Amsterdam. This seminar will be held at the Vrije Universiteit. Before lunch in room WN-P647 (W&N-building), after lunch in HG-08A05 (main building).
11:00–12:00
Lenny Taelman UvA, Complex multiplication and K3 surfaces over finite fields
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:00–14:00
Abhijit Laskar VU University Amsterdam, On local monodromy filtrations attached to motives
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
14:30–15:30
Ada Boralevi TU Eindhoven, Linear spaces of matrices of constant rank
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:00–17:00
Frits Beukers Utrecht, Finite hypergeometric functions
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Intercity Number Theory Seminar

27 May, Eindhoven. The first two talks are in Auditorium 12. The PhD defense of Rob Eggermont is in Auditorium 4.
13:30–14:20
Giorgio Ottaviani Firenze, The Waring decomposition of a polynomial and its uniqueness
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
14:30–15:20
Jochen Kuttler Alberta, Modules of differentials for Lie algebras
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:00–17:00
Rob Eggermont Eindhoven, PhD defense
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

DIAMANT Symposium

29 May, TBA. This is a two-day event: May 28 and 29.

North German Algebraic Geometry Seminar (NoGAGS) and 8th Belgian-Dutch Algebraic Geometry Day(s)

12 June, Nijmegen. The Program. This is a two-day event: June 11 and 12.

Intercity Number Theory Seminar

25 September, Leiden. Snellius building. Morning: B2, afternoon: 407/409.
11:30–12:30
Christopher Frei TU Graz, The Hasse norm principle for abelian extensions
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:30–14:30
Efthymios Sofos Universiteit Leiden, On the fibration method in analytic number theory
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–16:00
Alex Bartel Warwick University, Heuristics for Arakelov class groups
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:15–17:15
Maarten Derickx Universiteit Leiden, Galois closures over integrally closed domains
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Intercity Number Theory Seminar

16 October, Utrecht. Rode zaal in Ruppertgebouw, Leuvenlaan 21.
13:00–13:45
Martijn Kool Utrecht, Donaldson-Thomas invariants of local elliptic surfaces
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
14:00–14:45
Gert Heckman Nijmegen, Moduli of real genus 3 curves
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:15–16:00
Cor Kraaikamp Delft, Natural extensions and Nakada’s alpha-expansions
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:15–17:00
Frits Beukers Utrecht, A geodesic continued fraction using LLL
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

ANA2015 (Automatic Sequences, Number Theory, Aperiodic Order)

30 October, Delft. Room Pi in the EWI building. This is part of a 3-day event: please register.

Intercity Number Theory Seminar

6 November, UvA and VU Amsterdam. This seminar will be held at the Vrije Universiteit: the morning talk in HG-08A33 (main building) and the afternoon talks in WN-M607 (mathematics and physics building).
11:15–12:15
Arno Kret UvA, Galois representations for the general symplectic group
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:15–14:15
Rob de Jeu VU, Numerical experiments for p-adic L-functions
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
14:30–15:30
Lance Gurney UvA, Frobenius lifts and minimal models of CM elliptic curves
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:00–17:00
Jan Draisma TU/e & VU, Orthogonally decomposable tensors as semisimple algebras
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

DIAMANT Symposium

27 November, Lunteren. This is a two-day event: November 26-27

9th Belgian-Dutch Algebraic Geometry Day

11 December, Leiden. Snellius Building, room 407-409, of the Maths Dept. in Leiden. Organisers: Ben Moonen, Johannes Nicaise, Lenny Taelman, Bas Edixhoven.
13:30–14:30
David Holmes Leiden, Models of degenerating jacobians
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–16:00
Clément Dupont MPIM Bonn, Motives of bi-arrangements
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:30–17:30
Misha Verbitsky ULB (Brussels), HSE (Moscow), Transcendental Hodge algebra
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.

Geometry in Winter, A memorial symposium for Prof. dr. A.H.J.M. van de Ven

18 December, Leiden. Snellius building, room 312. For more information, including abstracts, see website.
11:00–11:45
Ekaterina Amerik Univ. de Paris Sud, Orsay, Some applications of the cone conjecture for hyperkaehler manifolds
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
13:00–13:45
Arnaud Beauville Univ. de Nice, Recent developments on stable rationality
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
14:00–14:45
Fabrizio Catanese Univ. Bayreuth, Interesting Variations of Hodge Structures and related algebraic surfaces
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
15:00–15:45
Klaus Hulek Univ. Hannover, Intermediate Jacobians of cubic threefolds and their degenerations
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.
16:00–16:45
Chris Peters Univ. Grenoble I and T.U. Eindhoven, Vector bundles and surfaces, a lifelong fascination
In December 2020, Peter Scholze posed a challenge to formally verify the main theorem on liquid ℝ-vector spaces, which is part of his joint work with Dustin Clausen on condensed mathematics. I took up this challenge with a team of mathematicians to verify the theorem in the Lean proof assistant. Half a year later, we reached a major milestone, and our expectation is that shortly we will have completed the full challenge. In this talk I will give a brief motivation for condensed/liquid mathematics, a demonstration of the Lean proof assistant, and discuss our experiences formalizing state-of-the-art research in mathematics.