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1 Vectors, Matrices, and Linear Spaces

1.1 Vectors in Euclidean Spaces

Definition. The space R", or Fuclidean n-space, is either (1) the collection

of all n-tuples of the form (z,zs,...,x,) where the z;’s are real numbers
(the n-tuples are called points), or (2) the collection of all n-tuples of the
form [z1, o, ..., 2z,] where the z;’s are real numbers (the n-tuples are called
vectors).

Definition. For ¥ € R", say ¥ = [x1, T2, - . -, Ty, the ith component of T is
X

Definition. Two vectors in R”, ¥ = [v1, va, ..., v,] and @ = [wy, wa, - . . , Wy

are equal if each of their components are equal. The zero vector, 0, in R" is
the vector of all zero components.

Definition 1.1. Let ¢ = [vy, v, ...,v,] and @ = [wy, wy, . . ., w,] be vectors
in R” and let € R be a scalar. Define

1. Vector addition: T+ 0 = [v1 + wy, vy + Wy, .. ., Uy + Wy,

2. Vector subtraction: ¥ — W = [v; — wy,ve — wo, ..., U, — W,], and

3. Scalar multiplication: r0 = [rvy,mve, ..., TU,].

Theorem 1.1. Properties of Vector Algebra in R”.

Let @, v, w € R™ and let r, s be scalars in R. Then

A1. Associativity of Vector Addition. (7 + ¥) + @ = @ + (T + W)

A2. Commutivity of Vector Addition. v+ @ = @ + ¢

A3. Additive Identity. 0+ 7 =7

A4. Additive Inverses. 7+ (—7) =0

S1. Distribution of Scalar Multiplication over Vector Addition.
(U + W) = rv+ ra

S2. Distribution of Scalar Addition over Scalar Multiplication.
(r+s)v=rv+ st

S3. Associativity. r(sv)) = (rs)v

S4. “Preservation of Scale.” 17 = ¢

Definition 1.2. Two nonzero vectors ¥, W € R" are parallel, denoted ' || o,
if one is a scalar multiple of the other. If ¥ = rw with » > 0, then ¢ and @
have the same direction and if ¥ = rw with r < 0 then ¢ and @ have opposite
directions.



Definition 1.3. Given vectors v1,0s,...,7; € R" and scalars ri,7s,...,
r, € R, the vector

k
7101 + ToUy —+ + + « + T4V = E 710
=1

is a linear combination of the given vectors with the given scalars as scalar
coefficients.

Definition. The standard basis vectors in R? are i = [1,0] and j = [0, 1].
The standard basis vectors in R® are

©=1[1,0,0],7 =[0,1,0], and k = [0,0,1].

Definition. In R", the rth standard basis vector, denoted é€,, is
é =10,0,...,0,1,0,...,0],
where the rth component is 1 and all other components are 0.

Notice. A vector b € R" can be uniquely expressed in terms of the standard
basis vectors:

b= (b1, by, ..., bo] = b161 +baéy + -+ buby = Y biéy.
=1

Definition. If ¥ € R" is a nonzero vector, then the line along v is the
collection of all vectors of the form 7% for some scalar r € R (notice 0 is on
all such lines). For two nonzero nonparallel vectors 7, € R", the collection
of all possible linear combinations of these vectors: r# + s where r,s € R,
is the plane spanned by ¥ and 0.

Definition. A column vector in R" is a representation of a vector as

8y
I

A row vector in R" is a representation of a vector as

T = [$1,$2,...,$n].
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The transpose of a row vector, denoted Z7, is a column vector, and conversely:

T
T T
T9 )
T
= [z1,Z2,...,2,], and [z1,29,...,2,] =
In T

Note. A linear combination of column vectors can easily be translated into
a system of linear equations:

1+—2_—1<:>r—2s:—1
13T 5 | T | 19 3r+5s = 19°

Definition 1.4. Let v7, 9, ...,v; € R". The span of these vectors is the set
of all linear combinations of them, denoted sp(v7, 03, . . ., U%):

sp(V1,09,...,0) = {rv1 +1eUs + -+ 1k | r1,79,..., 7 € R}

k
= E 0]
=1

T’1,T2,...,T‘kER} .



1.2 The Norm and Dot Product

Definition 1.5. Let ¢ = [v1,vs,...,v,] € R". The norm or magnitude of v
is

I8 = \fo? +0F 4o+

Theorem 1.2. Properties of the Norm in R".
For all ¥, € R™ and for all scalars » € R, we have:
1. ||#]] > 0 and ||#]| = 0 if and only if 7 = 0.

2. |7 = [rll5]]-

3. ||T+ @] < ||¥]| + ||«@]| (the Triangle Inequality).

Note. 1 and 2 are easy to see and we will prove 3 later in this section.

Definition. A vector with norm 1 is called a unit vector. When writing,
unit vectors are frequently denoted with a “hat”: i.

Definition 1.6. The dot product for ¥ = [v1, va, - .., v,] and & = [wy, wa, . . ., wy]

1S
n

V- W = vwy + vewy + - - - + vyw, = E vy,
=1

Notice. If we let § be the angle between nonzero vectors ¥ and w, then we
get by the Law of Cosines:

1917 + [11* = |57 — ]| + 21| ]| cos 0

or
20 - f = 2||9||||d|| cos 6
or
7.0
cosl = ——— (*)
(|91 {] |

Definition. The angle between nonzero vectors ¢ and w is

(i)
arccos ” .

[19]/]] @




Theorem 1.4. Schwarz’s Inequality.
Let ¢,w € R*. Then

|7+ ] < [|a] ||
Proof. This follows from (x) and the fact that —1 < cosf < 1. The book
gives an algebraic proof. QED

Theorem 1.3. Properties of Dot Products.

Let 4,7, € R* and let r € R be a scalar. Then

D1. Commut1v1ty of - : vV-w=-7.

D2. Distribution of - over vector Addition: @ - (¥ + W) = 4 - ¥+ 4 - .

D3. r(v- W) = (rv) - @ = ¥ - (rwd).

D4. 7-7>0and -7 =0 if and only if 7 = 0.

Definition. Two vectors 7, W € R™ are perpendicular or orthogonal, denoted
v L, if 7w = 0.

Theorem 1.5. The Triangle Inequality.

Let ¥, € R™. Then ||7+ || < ||7]| + |||

Proof.

|7+ @|)* = (T+ @) (T+ )
T-U+20- 0+ 0w
|)|” + 2||9|||||| + ||||*> by Schwarz Inequality

(17 + [1o]))*.

N

QED



1.3 Matrices and Their Algebra

Definition. A matriz is a rectangluar array of numbers. An m X n matrix
is a matrix with m rows and n columns:

a1 Q2 - Qip

G21 Qg2 - Q2p
A =lay] =

Am1 Qm2 " Omp

Definition 1.8. Let A = [a;;] be an m X n matrix and let B = [b;] be an
n x s matrix. The matriz product AB is the m x s matrix C = [¢;;] where
cij is the dot product of the ith row vector of A and the jth column vector

n
of B: Cij = Zk:l aikbkj.

Definition. The main diagonal of an n x n matrix is the set {aj1, ass,
.+, Gnn }. A square matrix which has zeros off the main diagonal is a diagonal
matriz. We denote the n x n diagonal matrix with all diagonal entires 1 as
7 (the n x n identity matriz).

Definition 1.9/1.10. Let A = [a;;] and B = [b;;] be m x n matices. The
sum A+ B is the m x n matrix C' = [¢;;] where ¢;; = a;; + b;j. Let r be a
scalar. Then rA is the matrix D = [d;;| where d;; = ra;;.

Definition 1.11. Matrix B is the transpose of A, denoted B = AT, if
bij = aj;. If A is a matrix such that A = A" then A is symmetric.

Example. If A is square, then A + AT is symmetric.

Note. Properties of Matrix Algebra.

Let A, B be m x n matrices and r, s scalars. Then
Commutative Law of Addition: A+ B=B+ A
Associative Law of Addition: (A+ B)+C = A+ (B+C)
Additive Identity: A+0 =0+ A = A (here “0” represents the m x n matrix
of all zeros)

Left Distribution Law: r7(A+ B) =rA+rB

Right Distribution Law: (r + s)A =74 + sA

Associative Law of Scalar Multiplication: (rs)A = r(sA)
Scalars “Pull Through”: (rA)B = A(rB) = r(AB)
Associativity of Matrix Multiplication: A(BC) = (AB)C
Matrix Multiplicative Identity: ZA = A = AT

8



Distributive Laws of Matrix Multiplication: A(B 4+ C) = AB 4+ AC and
(A+ B)C = AC + BC.

Note. Properties of the Transpose Operator.

ANYT=A (A+B)"=A"+B" (AB)" =BTA".



1.4 Solving Systems of Linear Equations

Definition. A system of m linear equations in the n unknowns x1, zs, ..., T,
is a system of the form:

a;1xy + aixy + - + A1pnTy = b1
a1y + G99y + -+ + AonLy = b2
Am1T1 + GpaZs + 0 A+ Qpp®y = bm

Note. The above system can be written as AZ = b where A is the coefficient
matriz and Z is the vector of variables. A solution to the system is a vector
§ such that As = b.

Defninition. The augmented matriz for the above system is

a1 G2 Qi | by

- a1 Gog -+ Qop | bo
[A]b] =

am1 OGm2 - Omnp bm

Note. We will perform certain operations on the augmented matrix which
correspond to the following manipulations of the system of equations:

1. interchange two equations,

2. multiply an equation by a nonzero constant,

3. replace an equation by the sum of itself and a multiple of another equation.

Definition. The following are elementary row operations:

1. interchange row ¢ and row j (denoted R; <> R;),

2. multiplying the ith row by a nonzero scalar s (denoted R; — sR;), and
3. adding the ith row to s times the jth row (denoted R, — R; + sR;).

If matrix A can be obtained from matrix B by a series of elementary row
operations, then A is row equivalent to B, denoted A ~ B or A — B.

Notice. These operations correspond to the above manipulations of the
equations and so:

10



Theorem 1.6. Invariance of Solution Sets Under Row Equivalence.
If [A | b] ~ [H | ¢] then the linear systems AZ = b and HZ = ¢ have the same
solution sets.

Definition 1.12. A matrix is in row-echelon form if

(1) all rows containing only zeros appear below rows with nonzero entries,
and

(2) the first nonzero entry in any row appears in a column to the right of
the first nonzero entry in any preceeding row.

For such a matrix, the first nonzero entry in a row is the pivot for that row.

Note. If an augmented matrix is in row-echelon form, we can use the method
of back substituton to find solutions.

Definition 1.13. A linear system having no solution is inconsistent. If it
has one or more solutions, it is consistent.

Note. Reducing a Matrix to Row-Echelon Form.

(1) If the first column is all zeros, “mentally cross it off.” Repeat this process
as necessary.

(2a) Use row interchange if necessary to get a nonzero entry (pivot) p in the
top row of the remaining matrix.

(2b) For each row R below the row containing this entry p, add —r/p times
the row containing p to R where r is the entry of row R in the column which
contains pivot p. (This gives all zero entries below pivot p.)

(3) “Mentally cross off” the first row and first column to create a smaller
matrix. Repeat the process (1) - (3) until either no rows or no columns
remain.

Note. The above method is called Gauss reduction with back substitution.

Note. The system AZ = bis equivalent to the system
TG} + Tady + -t Ty, = b

where a; is the ith column matrix of A. Therefore, A7 = b is consistent if
and only if b is in the span of di, d3, ..., d; (the columns of A).

Definition. A matrix is in reduced row-echelon form if all the pivots are 1
and all entries above or below pivots are 0.

Note. The above method is the Gauss-Jordan method.

11



Theorem 1.7. Solutions of A7 = b. .

Let AZ = b be a linear system and let [A | b] ~ [H | ¢] where H is in row-
echelon form.

(1) The system AZ = b is inconsistent if and only if [H | ] has a row with
all entries equal to 0 to the left of the partition and a nonzero entry to the
right of the partition.

(2) If AZ = b is consistent and every column of H contains a pivot, the
system has a unique solution.

(3) If A¥ = b is consistent and some column of H has no pivot, the system has
infinitely many solutions, with as many free variables as there are pivot-free
columns of H.

Definition 1.14. A matrix that can be obtained from an identity matrix
by means of one elementary row operation is an elementary matriz.

Theorem 1.8. Let A be an m X n matrix and let £ be an m x m elementary
matrix. Multiplication of A on the left by E effects the same elementary
row operation on A that was performed on the identity matrix to obtain E.

Proof for Row-Interchange. (This is page 71 number 52.) Suppose E
results from interchanging rows ¢ and j:

Ri<R;
7 -’ E.

Then the kth row of E is [0,0,...,0,1,0,...,0] where
(1) for k& & {i,7} the nonzero entry if the kth entry,
(2) for k& = i the nonzero entry is the jth entry, and

(3) for k = j the nonzero entry is the ith entry.
Let A = [a;], E = [eij], and B = [bj;] = EA. The kth row of B is

[blcb bkg, e ,b]m] and
bkl = Z Ekplpl-
p=1

Now if k& & {7, 7} then all ey, are 0 except for p = k and

n

b = E Cplpr = €rr = (1)ag, = ag.
p=1

Therefore for k ¢ {i,j}, the kth row of B is the same as the kth row of A.

12



If £ =4 then all ey, are 0 except for p = j and
n
b =ba =Y erplip = exjaz = ()aj = aj
p=1

and the ith row of B is the same as the jth row of A. Similarly, if £ = j then
all ey, are 0 except for p = ¢ and

n

by = il = E Crplpl = €kl = (l)az’l = Gy
p=1

and the jth row of B is the same as the ith row of A. Therefore
B=EA"2Y 4

QED

Note. If A is row equivalent to B, then we can find C such that CA = B
and C is a product of elementary matrices.

13



1.5 Inverses of Square Matrices

Definition 1.15. An n X n matrix A is snvertible if there exists an n X n
matrix C such that AC = CA =Z. If A is not invertible, it is singular.

Theorem 1.9. Uniqueness of an Inverse Matrix.
An invertible matrix has a unique inverse (which we denote A™1).

Proof. Suppose C' and D are both inverses of A. Then (DA)C =ZC =C
and D(AC) = DI = D. But (DA)C = D(AC) (associativity), so C = D.
QED

Theorem 1.10. Inverses of Products.
Let A and B be invertible n X n matrices. Then AB is invertible and
(AB)_1 =B 1AL

Proof. By associativity and the assumption that A~! and B~! exist, we
have:

(AB)(BT'A™) =[ABB A = (AT)A™' = AA™' =1T.

We can similarly show that (B~'A™')(AB) = Z. Therefore AB is invertible
and (AB)™ = B4, QED

Lemma 1.1. Condition for A7 = b to be Solvable for b.

Let A be an n X n matrix. The linear system Ax = b has a solution for every
choice of column vector b € R™ if and only if A is row equivalent to the n xn
identity matrix Z.

Theorem 1.11. Commutivity Property.
Let A and C' be n x n matrices. Then CA = T if and only if AC' = 7.

Proof. Suppose that AC' = Z. Then the equation AZ = b has a solution for
every column vector b € R*. Notice that £ = Cb is a solution because

—

Th = b.

A(Ch) = (AC)b

By Lemma 1.1, we know that A is row equivalent to the n x n identity matrix
7, and so there exists a sequence of elementary matrices Ey, Fy, ..., E; such
that (F;--- FyE1)A = Z. By Theorem 1.9, the two equations

(Et N EQEl)A =Zand AC =T

14



imply that E;--- E;E; = C, and so we have CA = 7. The other half of the
proof follows by interchanging the roles of A and C. QED

Note. Computation of Inverses.
If A = [a;;], then finding A~ = [z;;] amounts to solving for z;; in:

ay; Q12 - Qip T11 T12 - Tin
Q21 Q22 -+-- QA2p To1r T2 -+ Top

=7
anp1 Ap2 *°° App Tpl Tn2 - Tnn

If we treat this as n systems of n equations in n unknowns, then the aug-
mented matrix for these n systems is [A | Z]. So to compute A~

(1) Form [A | Z].

(2) Apply Gauss-Jordan method to produce the row equivalent [Z | C]. If
A~ exists, then A~ = C.

Note. In the above computations, C is just the product of the elementary
matrices that make up A=L.

Theorem 1.12. Conditions for A~! to Exist.

The following conditions for an n x n matrix A are equivalent:
(7) A is invertible.

(75) A is row equivalent to Z.

(i) AZ = b has a solution for each b (namely, 7 = A~'5).

(7v) A can be expressed as a product of elementary matrices.

(v) The span of the column vectors of A is R".

Note. In (iv) A is the left-to-right product of the inverses of the elementary
matrices corresponding to succesive row operations that reduce A to Z.

15



1.6 Homogeneous Systems, Subspaces and Bases

Definition. A linear system A7 = bis homogeneous if b = 0. The zero vector
Z = 0 is a trwial solution to the homogeneous system AZ = (0. Nonzero
solutions to Az = 0 are called nontrivial solutions.

Theorem 1.13. Structure of the Solution Set of A7 = 0.
Let AZ = 0 be a homogeneous linear system. If hy, ho, ..., h, are solutions,
then any linear combination

rihy + rohy 4 -+ roh

is also a solution.

Proof. Since hq, ho, ..., h, are solutions,

-

Ahy = Ahy=---= Ah, =0
and so
A(rihi+rsha+- - +Tphy) = 11 Ahy +r9 AR+ - -+ 1 Ay = 040+ - -+0 = 0.

Therefore the linear combination is also a solution. QED

Definition 1.16. A subset W of R" is closed under vector addition if for
all 4,7 € W, we have t + 7 € W. If r € W for all ¥ € W and for all
r € R, then W is closed under scalar multiplication. A nonempty subset W
of R” is a subspace of R™ if it is both closed under vector addition and scalar
multiplication.

Theorem 1.14. Subspace Property of a Span.

Let W = sp(wy, Wb, - .., W) be the span of £ > 0 vectors in R*. Then W is
a subspace of R". (The vectors wi, ws, ..., w are said to span or generate
the subspace.)

Definition. Given an m X n matrix A, the span of the row vectors of A is
the row space of A, the span of the column vectors of A is the column space
of A and the solution set to the system A% = 0 is the nullspace of A.

Definition 1.17. Let W be a subspace of R". A subset {7, w5, ..., wg} of
W is a basis for W if every vector in W can be expressed uniquely as a linear
combination of wy, ws, . . ., w.

16



Theorem 1.15. Unique Linear Combinations.
The set {wy, W, ..., w} is a basis for W = sp(u, W, . . ., wy) if and only if

T1w1+T2152+"'+Tkiﬁ'k=0

implies
7‘1:T2:"'=7‘k20.

Proof. First, if {uw), wy, ..., w;} is a basis for W, then each vector of W
can be uniquely written as a linear combination of these w;’s. Since 0 =
01} + 0ty + - - -+ 01}, and this is the unique way to write 0 in terms of the s,
then for any 711, + roty + - - - + W), = 0 we must have 7, = ry = - - -7, = 0.

Second, suppose that the only linear combination of w;s that gives 0 is
0w’ + 0wy + - - - + 0vg. We want to show that any vector of W is a unique
linear combination of the w;’s. Suppose for @ € W we have

w 011171 + 021172 + -+ CkUTk and

117 = dﬂl?l + d2u72 + -+ dk’UTk
Then

O=w—4 = e+ catily+ - + cxill
- (d1u7'1 + d2/u72 + ttt + deTk)

= (Cl — dl)wl + (62 — dg)?ﬁg + -+ (Ck — dk)UTk.
So each coefficient must be 0 and we have ¢; = d; for i = 1,2,...,k and W
can be written as a linear combination of j;’s in only one unique way.

QED

Theorem 1.16. Let A be an n X n matrix. The following are equivalent:
(1) AZ = b has a unique solution,

(2) A is row equivalent to Z,

(3) A is invertible, and

(4) the column vectors of A form a basis for R”.

Theorem 1.17. Let A be an m x n matrix. The following are equivalent:
(1) each consistent system AZ = b has a unique solution,

(2) the reduced row-echelon form of A consists of the n x n identity matrix
followed by m — n rows of zeros, and

(3) the column vectors of A form a basis for the column space of A.

17



Corollary 1. Fewer Equations than Unknowns
If a linear system AX = b is consistent and has fewer equations than un-
knowns, then it has an infinite number of solutions.

Corollary 2. The Homogeneous Case

(1) A homogeneous linear system AZ = 0 having fewer equations then un-
knowns has a nontrivial solution (i.e. a solution other than # = 0),

(2) A square homogeneous system AZ = 0 has a nontrivial solution if and
only if A is not row equivalent to the identity matrix.

Theorem 1.18. Structure of the Solution Set of A7 = b.

Let AZ = b be a linear system. Ifp is any particular solution of AZ = b and
h is a solution to AT = 0, then 7+ h is a solution of AT = b. In fact, every
solution of A:L‘ = b has the form p'+ h and the general solution is & = p'+ h
where Ah =0 (that is, h is an arbitrary element of the nullspace of A).

18



2 Dimension, Rank, and Linear Transforma-
tions

2.1 Independence and Dimension

Definition 2.1. Let {w], w0, . .., W} be a set of vectors in R*. A dependence
relation in this set is an equation of the form

7”11171+7“2’1172+"'+7'k117k=0

with at least one r; # 0. If such a dependence relation exists, then {w, W, ..., Wy}
is a linearly dependent set. A set of vectors which is not linearly dependent
is linearly independent.

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of R*. A subset {w}, w5, ..., w} of W is a basis for W
if and only if

(1) W = Sp(U?l, ’1172, - ,’UT]C) and

(2) the vector wi,w, ..., wy are linearly independent.

Note. The proof of Theorem 2.1 follows directly from the definitions of basis
and linear independence.

Theorem. Finding a Basis for W = sp(u, w5, . .., W).

Form the matrix A whose jth column vector is w};. If we row-reduce A to
row-echelon form H, then the set of all w; such that the jth column of H
contains a pivot, is a basis for W.

Theorem 2.2. Relative Sizes of Spanning and Independent Sets.
Let W be a subspace of R”. Let wy, w5, ..., w; be vectors in W that span W
and let v1,vs, ..., v, be vectors in W that are independent. Then k£ > m.

Corollary. Invariance of Dimension.
Any two bases of a subspace of R contains the same number of vectors.

Definition 2.2. Let W be a subspace of R”. The number of elements in a
basis for W is the dimension of W, denoted dim(W).

Theorem 2.3. Existence and Determination of Bases.

(1) Every subspace W of R" has a basis and dim(W) < n.

(2) Every independent set of vectors in R” can be enlarged to become a basis
of R".

19



is a subspace o and dim = k then

3) Wi b f R* and dim(W) = k th
(a) every independent set of k vectors in W is a basis for W, and
(b) every set of k vectors in W that spans W is a basis of W.

20



2.2 The Rank of a Matrix

Note. In this section, we consider the relationship between the dimensions
of the column space, row space and nullspace of a matrix A.

Theorem 2.4. Row Rank Equals Column Rank.
Let A be an m x n matrix. The dimension of the row space of A equals the
dimension of the column space of A. The common dimension is the rank of

A.

Note. The dimension of the column space is the number of pivots of A when
in row-echelon form, so by page 129, the rank of A is the number of pivots
of A when in row-echelon form.

Note. Finding Bases for Spaces Associated with a Matrix.

Let A be an m x n matrix with row-echelon form H.

(1) for a basis of the row space of A, use the nonzero rows of H,

(2) for a basis of the column space of A, use the columns of A corresponding
to the columns of H which contain pivots, and

(3) for a basis of the nullspace of A use H to solve HZ = 0 as before.

Theorem 2.5. Rank Equation.
Let A be m x n with row-echelon form H.
(1) The dimension of the nullspace of A is

nullity(A) = (# free variables in solution of A% = 0)
= (# pivot-free columns of H).
(2) rank(A) = (# of pivots in H).
(3) Rank Equation:

rank(A) + nullity(A) = # of columns of A.

Theorem 2.6. An Invertibility Criterion.
An n x n matrix A is invertible if and only if rank(A) = n.

Example. If A is square, then nullity(A) = nullity(AT).

Proof. The column space of A is the same as the row space of AT, so
rank(A) = rank(A”) and since the number of columns of A equals the number
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of columns of AT, then by the Rank Equation:
rank(A) + nullity(A) = rank(A”) + nullity(A™)

and the result follows. QED
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2.3 Linear Transformations of Euclidean Spaces

Definition. A linear transformation T : R* — R™ is a function whose

domain is R and whose codomain is R™, where
(1) T(d+ ) =T(u) + T (V) for all 4, v € R”, and
(2) T(ri) = rT(u) for all ¥ € R* and for all € R.

Note. Combining (1) and (2) gives
T(ri + sv) = rT(d) + sT(7)

for all 4,7 € R* and r,s € R. As the book says, “linear transformations
preserve linear combinations.”

Note. T(0) = T/(00) = 07'(0) = 0.

Theorem 2.7. Bases and Linear Transformations. o .

Let T : R® — R™ be a linear transformation and let B = {by,bs,...,b,} be a
basis for R”. For any vector ¥ € R, the vector T'(7) is uniquely determined
by T(bl)a T(b2), s aT(bn)

Proof. Let ¥ € R*. Then since B is a basis, there exist unique scalars
T1,T9,...,Ty such that

?7:7‘11)1 +7‘2b2+"'+7"nbn.
Since T is linear, we have

T(%) = T (by) + 12T (b3) + - - - + raT(by).

Since the coefficients r; are uniquely determined by ¥, it follows that the
value of T'(7) is completely determined by the vectors 7'(b;). QED
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Corollary. Standard Matrix Representation of Linear Transforma-
tions.

Let T : R* — R™ be linear, and let A be the m x n matrix whose jth col-
umn is 7'(¢;). Then T'(Z) = AZ for each ¥ € R*. A is the standard matriz
representation of T'.

Proof. For any matrix A, A¢; is the jth column of A. So if A is the matrix
described, then Aé; = T'(€;), and so T and the linear transformation 7’4 given
by T4 (%) = AZ agree on the standard basis {€1, €, ..., €,} of R*. Therefore
by Theorem 2.7, T'(¥) = A% for all ¥ € R". QED

Theorem /Definition. Let 7 : R* — R™ be a linear transformation with
standard matrix representation A.

(1) The range T[R"] of T is the column space of A.

(2) The kernel of T is the nullspace of A, denoted ker (7).

(3) If W is a subspace of R”, then T[W] is a subspace of R™ (i.e. T’ preserves
subspaces).

Notice. If A is the standard matrix representation for 7', then from the rank
equation we get:

dim(range T') + dim(ker 7') = dim(domain 7).

Definition. For a linear transformation 7', we define rank and nullity in
terms of the standard matrix representation A of T

rank(7") = dim(range T), nullity(7) = dim(ker 7).

Definition. If 7 : R* — R™ and 7" : R™ — R*, then the composition of T
and 1" is (T"oT) : R* — R* where (T" o T)Z = T'(T(Z)).

Theorem. Matrix Multiplication and Composite Transformations.
A composition of two linear transformations 7" and 7" with standard matrix
representation A and A’ yields a linear transformation 7" o T" with standard
matrix representation A’A.

Definition. If 7 : R* — R and there exists 7' : R* — R" such that
ToT'(Z) = Z for all T € R*, then T" is the inverse of T denoted T" = T~1.
(Notice that if T : R™ — R" where m # n, then T~! is not defined — there
are domain/range size problems.)
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Theorem. Invertible Matrices and Inverse Transformations.
Let 7 : R® — R" have standard matrix representation A: T'(¥) = AZ. Then
T is invertible if and only if A is invertible and T-1(Z) = A7
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2.4 Linear Transformations of the Plane (in brief)
Note. If A is a 2 x 2 matrix with rank 0 then it is the matrix
00
=[50
and all vectors in R? are mapped to 0 under the transformation with asociated
matrix A (We can view 0 as a 0 dimensional space). If the rank(A) = 1, then
the column space of A, which is the range of T}, is a one dimensional subspace

of R?. In this case, T4y projects a vector onto the column space. See page 155
for details.

Note. We can rotate a vector in R? about the origin through an angle 6 by
applying T4 where
A— [ cos —sinf }

sin 6 cosf

This is an example of a rigid transformation of the plane since lengths are
not changed under this transformation.

Note. We can reflect a vector in R? about the z-axis by applying Tx where

1 0
X = [ Lo } .
We can reflect a vector in R? about the y-axis by applying Ty where
-1 0
y = [ o ] .
We can reflect a vector in R? about the line y = x by applying T, where
01
20 1]

Notice that X, Y, and Z are elementary matrices since they differ from 7
by an operation of row scaling (for X and Y'), or by an operation of row
interchange (for 7).

Note. Transformation 74 where



is a horizontal expansionif r > 1, and is a horizontal contractionif 0 < r < 1.
Transformation Tg where
10
B =
o 7]

is a wvertical expansion if r > 1, and is a vertical contraction if 0 < r < 1.
Notice that A and B are elementary matrices since they differ from Z by an
operation of row scaling.

Note. Transformation 74 where

10
=[]
is a vertical shear (see Figure 2.2.16 on page 163). Transformation Tz where
1 r
o=[o1]

is a horizontal shear. Notice that A and B are elementary matrices since
they differ from Z by an operation of row addition.

Theorem. Geometric Description of Invertible Transformations of
R2.

A linear transformation 7' of the plane R? into itself is invertible if and only
if T' consists of a finite sequence of:

e Reflections in the z-axis, the y-axis, or the line y = z;

e Vertical or horizontal expansions or contractions; and

e Vertical or horizontal shears.

Proof. Each elementary operation corresponds to one of these types of
transformations (and conversely). Each of these transformations correspond
to elementary matrices as listed above (and conversely). Also, we know that
a matrix is invertible if and only if it is a product of elementary matrices
by Theorem 1.12(iv). Therefore T is invertible if and only if its associated
matrix is a product of elementary matrices, and so the result follows. QED
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2.5 Lines, Planes, and Other Flats

Definitions 2.4, 2.5. Let S be a subset of R and let @ € R*. The set
{Z+d |z € S} is the translate of S by @, and is denoted by S+d. The vector
d is the translation vector. A line in R" is a translate of a one-dimensional
subspace of R™.

Definition. If a line L in R" contains point (a1, as, ..., a,) and if vector d
is parallel to L, then d is a direction vector for L and @ = [aq, as, - . ., a,] is a
translation vector of L.

Note. With d as a direction vector and @ as a translation vector of a line,
we have L = {td + d | t € R}. In this case, ¢ is called a parameter and we
can express the line parametrically as a vector equation:

T=td+ad
or as a collection of component equations:

xry = td1+a1
To = td2+a2

T, = td,+ a,.

Definition 2.6. A k-flat in R" is a translate of a k-dimensional subspace of
R™. In particular, a 1-flat is a line, a 2-flat is a plane, and an (n — 1)-flat is
a hyperplane. We consider each point of R* to be a zero-flat.

Note. We can also talk abgut_’a tranﬁlate of a k-dimensional subspace W
of R". If a basis for W is {d;,ds, ...,dy}, then the k-flat through the point
(a1, as,...,a,) and parallel to W is

T=tdy +tody + -+ tpd, + @

where @ = [ay, as, .. .,a,] and tq,t, ..., tx € R are parameters. We can also
express this k-flat parametrically in terms of components.

Note. We can now clearly explain the geometric interpretation of solutions of
linear systems in terms of k-flats. Consider AZ = b, a system of m equations
in n unknowns that has at least one solution ¥ = p. By Theorem 1.18 on
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page 97, the solution set of the system consists of all vectors of the form
r=p+ k where h is a solutlon of the homogeneous system A7 = 0. Now
the solution set of A7 = 0 is a subspace of R", and so the solution of A% = b
is a k-flat (where £ is the nullity of A) passing through point (p1,pa, ..., Pn)
where p'= [p1, P2, - - -, Dnl-

29



3 Vector Spaces

3.1 Vector Spaces

Definition 3.1. A wvector space is a set V' of vectors along with an operation
of addition + of vectors and multiplication of a vector by a scalar (real
number), which satisfies the following. For all @, ¥, € V and for all , s € R:
(A1) (@+ 7))+ W =u+ (T+ W)

(A2) T+ W =w+7

(A3) There exists 0 € V such that 0 + 7
(A4) 7+ (—0) =0

(S1) r(0+ &) =rv + rad

(S2) (r+s)d=rv+ st

(S3) r(sv) = (rs)v

(S4) 17=7

7

Definition. 0 is the additive identity. —7 is the additive inverse of 7.

Example. Some examples of vector spaces are:

(1) The set of all polynomials of degree n or less, denoted P,,.

(2) All m x n matrices.

(3) The set of all functions integrable f with domain [0, 1] such that

1
/ |f(z)|? dz < co. This vector space is denoted L?[0, 1]:
0

[ 1s@p s <o}

Theorem 3.1. Elementary Properties of Vector Spaces.
Every vector space V satisfies:

(1) the vector 0 is the unique additive identity in a vector space,
(2) for each ¥ € V', —7 is the unique additive inverse of 7,

(3) if 4+ 7 =1+ W then ¥ =

(4) 07 =0forall 7€V,

(5) 70 = 0 for all scalars r € R,

(6) (—r)0 =r(—%) = —(r?) for all r € R and for all ¥ € V.

L*0,1] = {f

Proof of (1) and (3). Suppose that there are two additive identities, 0 and

30



0’. Then consider:

=1}

= 0+0 (since 0' is an additive identity)
= ("(since 0 is an additive identity).
Therefore, 0 = 0" and the additive identity is unique.

Suppose @ + ¥ = @ + w. Then we add — to both sides of the equation
and we get:

U+ 0+ (—U) =U+ 0+ (1)
T4 (0 — i) =0+ (4 — 1)
T+0=d+0
U=
The conclusion holds. QED
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3.2 Basic Concepts of Vector Spaces

Definition 3.2. Given vectors 07, 03,..., Uy € V and scalars ri,7q,...,7; €
R,

k
E 70 = U] + ToUs + - - - + T Uk
1=1
is a linear combination of v1,vs, ..., vy with scalar coefficients ri,ra, ..., 7.

Definition 3.3. Let X be a subset of vector space V. The span of X is
the set of all linear combinations of elements in X and is denoted sp(X). If
V = sp(X) for some finite set X, then V is finitely generated.

Definition 3.4. A subset W of a vector space V is a subspace of V if W is
itself a vector space.

Theorem 3.2. Test for Subspace.

A subset W of vector space V' is a subspace if and only if
v deW=rv7+deW,

(2) for all 7 € R and for all ¥ € W we have r' € W.

Defninition 3.5. Let X be a set of vectors from a vector space V. A
dependence relation in X is an equation of the form

k
Zm?l = 7U] 4 1ol + -+ 10 = 0
1=1
with some 7; # 0 and v; € X. If such a relation exists, then X is a linearly
dependent set. Otherwise X is a linearly independent set.

Definition 3.6. Let V be a vector space. A set of vectors in V' is a basis for
Vv if

(1) the set of vectors span V', and

(2) the set of vectors is linearly independent.

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis
for V if and only if each vector in V' can by uniquely expressed as a linear
combination of the vectors in set B.

Proof. Suppose that B is a basis for vector space V. Then by the first part
of Definition 3.6 we see that any vector v € V can be written as a linear
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combination of the elements of B, say
T = riby +roby 4 - - - + reby.

Now suppose that there is some other linear combination of the vectors in B
which represents @ (we look for a contradiction):

T = 816, + Soby + - - - + sby..
If we subtract these two representations of ¥ then we get that
6: (7"1 — 81)b1 + (7’2 — 82)b2 + - (Tk — Sk)bk.

By the second part of Definition 3.6, we know that r1 — sy =19 —s9 =--- =
rr — S = 0. Therefore there is only one linear combination of elements of B
which represent 7.

Now suppose that each vector in V' can be uniquley represented as a linear
combination of the elements of B. We wish to show that B is a basis. Clearly
B is a spanning set of V. Now we can write 0 as a linear combination of
elements of B by taking all coefficients as 0. Since we hypothesize that each
vector can be uniquely represented, then

0 = r1by + roby + - - - + 74y,
only for ;1 = r = --+ = r, = 0. Hence the elements of B are linearly
independent and so B is a basis. QED

Definition. A vector space is finitely generated if it is the span of some finite
set.

Theorem 3.4. Relative Size of Spanning and Independent Sets.
Let V' be a vector space. Let w7y, ws,...,w; be vectors in V' that span V and
let v1, 03, ..., v, be vectors in V' that are independent. Then k& > m.

Corollary. Invariance of Dimension for Finitely Generated Spaces.
Let V be a finitely generated vector space. Then any two bases of V' have
the same number of elements.

Definition 3.7. Let V be a finitely generated vector space. The number of
elements in a basis for V' is the dimension of V', denoted dim(V').
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3.3 Coordinatization of Vectors

Definition. An ordered basis (b1, bo,...,b,) is an “ordered set” of vectors
which is a basis for some vector space.

Definition 3.8. If B = (b:,b;, .. .,b:;) is an ordered basis for V and 7 =
r1b1 + 790y + - - - 4+ 7, by, then the vector [ry, 79, ...,7,] € R" is the coordinate
vector of U relative to B, denoted vp.

Note. To find vp:
(1) write the basis vectors as column vectors to form [by, bo, ..., b, | 7],
(2) use Gauss-Jordan elimination to get [Z | vp].

Definition. An isomorphism between two vector spaces V and W is a one-
to-one and onto function o from V' to W such that:
(1) if 01,03 € V then

a(v] + v5) = a(v7) + a(v3), and

(2) if ¥ € V and r € R then «a(r?d) = ra(v).
If there is such an «, then V and W are isomorphic, denoted V = W.

Note. An isomorphism is a one-to-one and onto linear transformation.

Theorem. The Fundamental Theorem of Finite Dimensional Vec-
tors Spaces.

If V is a finite dimensional vector space (say dim(V) = n) then V is isomor-
phic to R".

—

Proof. Let B = (b:, b;, ..., by) be an ordered basis for V and for # € V with
vp = [r1,79,...,7y| define a : V — R" as

a(V) =[r1,re, .., Tl

Then “clearly” « is one-to-one and onto. Also for ¢, € V suppose

v = [r1,72,...,7m] and Wy = [s1, S, - - -, Sy

and so
a(V+ W) = [r1+ 81,2+ S2,. .., Tn + Sy
= [ri,79, .oy n] +[51, 52, -, Snl

= «a(?7) + a(w).
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For a scalar t € R,

a(t0) = [tri,tre, ... try| = try, re, ..., 1] = ta(?).
So « is an isomorphism and V = R”. QED
Example. Prove the set {(z —a)", (z —a)"',...,(z — a),1} is a basis for
Py
Proof. Let v, 01, ..., v, be the coordinate vectors of 1, (z —a), ..., (z —a)"
in terms of the ordered basis {1,z,2?%,...,2"}. Form a matrix A with the

7;s as the columns:
A = [0g0] - - - Uy).

Notice that A is “upper triangular:’

(1 —a a* -+ (—a)"
0 1 —2a

A=10 0 1

0 0 0o - 1

and so the o are linearly independent. Since dim(7P,) = n + 1 and the set

{(x—a)",(z—a)" ..., (x —a),1}

is a set of n + 1 linearly independent vectors, then this set is a basis for P,.
QFED
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3.4 Linear Transformations

Note. We have already studied linear transformations from R" into R™.
Now we look at linear transformations from one general vector space to an-
other.

Definition 3.9. A function 7" that maps a vector space V into a vector
space V' is a linear transformation if it satisfies:

() T(@+9) =T(d@) + T(V), and (2) T(ri) = rT(d),

for all vectors u,v € V and for all scalars r € R.

Definition. For a linear transformation 7" : V' — V', the set V is the
domain of T and the set V' is the codomain of T. If W is a subset of V', then
TW]| ={T (W) | W € W} is the image of W under T'. T[V] is the range of
T. For W C V', T W' ={¢ €V | T(v) € W'} is the inverse image of W'
under T. TL[{0}] if the kernal of T, denoted ker(T).

Definition. Let V, V' and V" be vector spaces and let T : V' — V' and
T : V' — V" be linear transformations. The composite transformation
T'oT :V — V" is defined by (T" o T)(¥) = T'(T(¥)) for 7 € V.

Example. Let F' be the vector space of all functions f : R — R, and let D
be its subspace of all differentiable functions. Then differentiation is a linear
transformation of D into F'.

Theorem 3.5. Preservation of Zero and Subtraction

Let V and V' be vectors spaces, and let T': V' — V' be a linear transforma-
tion. Then

(1) T(0) = 0/, and

(2) T — ) = (i) — T(3%),

for any vectors v and v5 in V.

Proof of (1). Consider

QED

Theorem 3.6. Bases and Linear Transformations.

Let T : V — V' be a linear transformation, and let B be a basis for V. For
any vector ¥ in V', the vector T'(?¥) is uniquely determined by the vectors
T(b) for all b € B. In other words, if two linear transformations have the

36



same value at each basis vector b € B, then the two transformations have
the same value at each vector in V.

Proof. Let T and T be two linear transformations such that T'(b;) = T(b;)
for each vector b_; € B. Let ¥ € V. Then for some scalars ri,7o,...,7;, We
have .

T = riby + 1903 + - - - + Ty

Then

T@) = T(riby + roby + - - - + r407)
rT(by) + 12T (b) + - - - + 5T (V7
T (by) 4 raT(bs) + - - - + 1T (})
T(riby + roby + - - - + r407)

T (7).

Therefore T and T are the same tranformations. QED

Theorem 3.7. Preservation of Subspaces.

Let V and V' be vector spaces, and let T : V' — V' be a linear transformation.
(1) If W is a subspace of V, then T[W] is a subspace of V'.

(2) If W' is a subspace of V', then T—'[W’] is a subspace of V.

Theorem. Let T : V — V' be a linear transformation and let T(p) = b
for a particular vector p'in V. The solution set of T(Z) = b is the set
{F+h|heker(T)}.

Proof. (Page 229 number 46) Let 7 be a solution of T(#) = b. Then
T(5) = b. Let h be a solution of T(#) = (/. Then T'(h) = (7. Therefore

T(F+h) =T +T(h)=b+0 =b,

and so p+ k is indeed a solution. Also, if ¢'is any solution of T'(Z) = b then

§—p=nh,and §=p+ h. QED
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Definition. A transformation 7 : V — V' is one-to-one if T'(v1) = T(03)
implies that ] = v3 (or by the contrapositive, v7 # v implies T'(v7) # T'(v3)).
Transformation 7" is onto if for all v’ € V' thereis a ¢ € V such that 7'(7) = v'.

Corollary. A linear transformation 7" is one-to-one if and only if ker(7) =

{0}.

Proof. By the previous theorem, if ker(T) = {0}, then for all relevant b, the
equation 7'(Z) = b has a unique solution. Therefore 7" is one-to-one.

Next, if T" is one-to-one then for any nonzero vector Z, T'(Z) is nonzero.
Therefore by Theorem 3.5 Part (1), ker(7") = {0}. QED

Definition 3.10. Let V and V' be vector spaces. A linear transformation
T :V — V'is invertible if there exists a linear transformation 77! : V! — V
such that 77! o T is the identity transformation on V and T o T~! is the
identity transformation on V. Such 77! is called an inverse transformation
of T.

Theorem 3.8. A linear transformation 7' : V' — V' is invertible if and only
if it is one-to-one and onto V.

Proof. Suppose T is invertible and is not one-to-one. Then for some v] # v5
both in V, we have T(v}) = T(v3) = v'. But then 7' o T(¢v') = v} and
T 'oT() = v3, a contradiction. Therefore if T is invertible then T is
one-to-one.

From definition 3.10, if 7" is invertible then for any v’ € V' we must have
T-'(v') = @ for some 7 € V. Therefore the image of 7@ is v' € V' and T is
onto.

Finally, we need to show that if 7" is one-to-one and onto then it is invert-
ible. Suppose that T is one-to-one and onto V'. Since T is onto V', then for
each v/ € V' we can find 7 € V such that T(7) = v'. Because T is one-to-one,
this vector # € V is unique. Let 7! : V' — V be defined by T (/) = 7.
Then

(ToT M (W) =TT (V) =T(7) =/
and
(T eT) (@) =T {(T(@) =T () =7,

and so T o T ! is the identity map on V' and T o T is the identity map on
V.
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Now we need only show that 7! is linear. Suppose T(%;) = v/ and

—

T(v3) = vh. Then

Also
T (rol) = T T(0}) = T-HT(r6})) = roy = rT (o).

Therefore T! is linear. QED

Theorem 3.9. Coordinatization of Finite-Dimensional Spaces.
Let V be a finite-dimensional vector space with ordered basis B = (by, b, . . .,

b,). The map T : V — R" defined by T'(¢) = vp, the coordinate vector of ¥/
relative to B, is an isomorphism.

Theorem 3.10. Matrix Representations of Linear Transformations.
Let V and V' be finite-dimensional vector spaces and let B = (b:, by, ..., b:l)
and B' = (b_’;,b_’;, .. .,bfn) be ordered bases for V and V', respectively. Let
T :V — V' be a linear transformation, and let 7 : R® — R™ be the linear
transformation such that for each ¥ € V, we have T(v3) = T(¥)g. Then
the standard matrix representation of T is the matrix A whose jth column

—

vector is T'(b;) g, and T'(¥) g = Auvp for all vectors ' € V.

Definition 3.11. The matrix A of Theorem 3.10 is the matriz representation
of T relative to B, B'.

Theorem. The matrix representation of 7! relative to B’, B is the inverse
of the matrix representation of T relative to B, B'.
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3.5 Inner-Product Spaces

Note. In this section, we generalize the idea of dot product. We use this
more general idea to define length and angle.

Note. Motivated by the properties of dot product on R", we define the
following:

Definition 3.12. An inner product on a vector space V is a function that
associates with each ordered pair of vectors ¥, € V a real number, written
(v, W), satisfying the following properties for all @, ¥, @ € V and for all scalars
T

P1. Symmetry: (7, U

P2. Additivity: (@, + @) = (4, V) + (4, &),

P3. Homogeneity: (0, W) = (rd, &) = (¥, r),

P4. Positivity: (7, %) > 0, and (7, %) = 0 if and only if # = 0.

An inner-product space is a vector space V together with an inner product
on V.

Example. Dot product on R" is an example of an inner product: (¥, %) =
v - for U, w € R".

Example. Show that the space P of all polynomial functions with real
coefficients and domain 0 < z < 1 is an inner-product space if for p and ¢ in
Py, we define

(p,q) = /0 p(z)q(z) dz.

Definition 3.13. Let V be an inner-product space. The magnitude or norm
of a vector 7 € V is ||U|| = /(U, 7). The distance between ¥ and @ in an
inner-product space V' is d(¥, W) = ||t — ||

Theorem 3.11. Schwarz Inequality.
Let V' be an inner-product space, and let ¢, € V. Then

(7, @) < [|9][[] ]

Proof. Let r,s € R. Then by Definition 3.12
|ro + si||> = (ri+ s, 77 + s0f)
= 1%{(¥,7) + 2rs{T, %) + s*(w0, D)
0.

v
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Since this equation holds for all r,s € R, we are free to choose particular
values of 7 and s. We choose r = (W, W) and s = — (¥, W). Then we have

(@, BT, T) — 2(d, BT, B2 + (7, 7)(F, )

If (W, W) = 0 then &/ = 0 by Theorem 3.12 Part (P4), and the Schwarz
Inequality is proven (since it reduces to 0 > 0). If ||W||?* = (&, @) # 0,
then by the above inequality the other factor of inequality (13) must also be
nonnegative:
<’(17, 117><17, 17> - <67 ’(17)2 > 0.

Therefore

(@,w)* < (¥, 9)(w, @) = ||7]|||]|*.
Taking square roots, we get the Schwarz Inequality. QED
Theorem. The Triangle Inequality.
Let ¥,% € V (where V is an inner-product space). Then

17+ @il < |9]] + |-

Proof. We have

14+ 0]

< 1@ + 2||)|||@]| + ||]5])* (by Schwarz Inequality)

|
= (17 + |l]))?
Taking square roots, we have the Triangle Inequality. QFED

Definition. Let ¥, € V where V is an inner-product space. Define the
angle between vectors v and W as

(7, &)

f = arccos ————.
[[71]] ]

In particular, ¥ and & are orthogonal (or perpendicular) if (¥, @) = 0.
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4 Determinants

4.1 Areas, Volumes, and Cross Products

Note. Area of a Parallelogram.
Consider the parallelogram determined by two vectors @ and b. Its area is

A = Area = (base) x (height) = ||@]|||5]| sin #
= ||&@]|||5]|v/1 = cos? 6.

Squaring both sides:
A* = allPBlP (L = cos® )
= llal*el* — 1@ [lb]l* cos™ @
laPfiell® - @- 0)*.
Converting to components @ = [ay, az] and b = [by, by] gives

A2 = (G,lbg — G,le)Q

or A= ‘albg — a261|.

Definition. For a 2 x 2 matrix A = [ Zl 22 ] , define the determinant of
1 02
A as
det(A) = a1b2 — a2b1 = a2 .
b1 by

Definition. For two vectors b = [b1, bo, b3] and & = [c1, co, c3] define the cross
product of b and ¢ as

by b3

Cy C3

by by

C1 Cg

~ ~

1 —

by by

C1 C3

~

bxc=

Note. We can take dot products and find that bx¢is perpendicular to both
b and C.
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a; a9 as
Definition. For a 3 x 3 matrix A =

b1 by bz | define the determinant
Ci Co2 C3
as
a; a9 asg
by b by b by b
det(A)I b1 bg b3 = a1 2 3 — Q9 ! 3 + as L 2
Cy C3 C1 C3 1 C
Ci C2 C3

Note. We can now see that cross products can be computed using determi-
nants:

} 17k
bXC=|b by bs
Ci Co C3

Theorem. The area of the parallelogram determined by b and is ||b x .

Proof. We know from the first note of this section that the area squared is
A% = ||d]1b]] = (¢- b)?. In terms of components we have

A? = (¢ + 5+ c3) (b3 + b5 + b3) — (ciby + coby + c3b3)?
Multiplying out and regrouping we find that

2 2

by b3

Co C3

A2 — bl b3

C1 C3

2

by bo
C1 Co
Taking square roots we see that the claim is verified.

QED

Theorem. The volume of a box determined by vectors d, 5, CE€

R,

is
V = |a1(b203 — b302) — ag(blcg - bgcl) + ag(b162 - b201)| = |Ei gX 5]

Proof. Consider the box determined by d, 5, ¢ € R®. The volume of the box

is the height times the area of the base. The area of the base is ||b x &| by
the previous theorem. Now the height is

L o

b ] cosg| W< el costl _ 1B 2)-a
5% al 5 x al
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(Notice that if b x € is in the opposite direction as given in the illustra-
tion above, then 6 would be greater than 7/2 and cos @ would be negative.
Therefore the absolute value is necessary.) Therefore

(bxd-d

V = (Area of base)(height) = [|b x é'||| B d

=|(bx &) -l
QED

—

Note. The volume of a box determined by @,b,¢ € R® can be computed in
a similar manner to cross products:

a; Qa2 as
= ‘ det(A)| = bl b2 b3
€1 C2 C3

Theorem 4.1. Properties of Cross Product.

Let @,b,¢ € R3.

(1) Anticommutivity: b x é= —Zx b

(2) Nonassociativity of x: @ x (b x & # (@ x b) x & (That is, equality does

not in general hold.)

(3) Distributive Properties: @ x (b+ &) = (@ x b) + (@ x &)
(@+b)xc=(@x2) + (bx?

(4) Perpendicular Property: b- (bx &) = (b x &) -é=0

(5) Area Property: ||bx &|| = Area of the parallelogram determined by b and

¢

(6) Volume Property: @-(bx &) = (@xb)-& = +Volume of the box determined

by a, 5, and €.

(T a@x(bxd)= (@ b— (@ b)é

Proof of (1). We have
by b

Cy C3

by b

C1 C3

by by

C1 Co
= (b263 - 1)302)2 — (blcg — b301)3 + (blcg - bgcl)]/{\?
= - ((bgCQ — szg)’z - (6301 — blcg)j + (b2Cl - blCQ)]%)

~ ~

bxc =

_ Cy C3 |~ C1 Cg Co |3
- (b2 by R T k)
= —Zxb
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4.2 The Determinant of a Square Matrix

Definition. The minor matriz A;; of an nxn matrix A is the (n—1) x (n—1)
matrix obtained from it by eliminating the ¢th row and the jth column.

Definition. The determinant of A;; times (—1)"™/ is the cofactor of entry
a;j in A, denoted a;;.

Definition 4.1. The determinant of a 1 x1 matrix is its single entry. Let n >
1 and assume the determinants of order less than n have been defined. Let
A = [a;;] be an nxn matrix. The cofactor of a;; in Ais aj; = (—1)"*7 det(Ay).
The determinant of A is

n
! ! ! !
det(A) = a110q, + a12019 +---+ 1,01, = E A1;Qq;-
=1

Theorem 4.2. General Expansion by Minors.
The determinant of A can be calculated by expanding about any row or
column:

det(A) = aran, + arotry + - Arndy,
= 1507, + A5y + ¢+ UpsUny,
forany 1 <r<norl<s<n.
Proof. Use mathematical induction.

Theorem. Properties of the Determinant.
Let A be a square matrix:

1. det(A) = det(AT).

2. If H is obtained from A by interchanging two rows, then det(H) =
—det(A).

3. If two rows of A are equal, then det(A) = 0.

4. If H is obtained from A by multiplying a row of A by a scalar r, then
det(H) = rdet(A).

5. If H is obtained from A by adding a scalar times one row to another row,
then det(H) = det(A).
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Proof of 2. We will prove this by induction. The proof is trivial for n = 2.
Assume that n > 2 and that this row interchange property holds for square
matrices of size smaller that n xn. Let A be an n xn matrix and let B be the
matrix obtained from A by interchanging the ith row and the rth row. Since
n > 2, we can choose a kth row for expansion by minors, where & ¢ {r,i}.
Consider the cofactors

(=1)**7|Ag;| and (=1)**7|By;|.

These numbers must have opposite signs, by our induction hypothesis, since
the minor matrices Ay; and By, have size (n — 1) x (n — 1), and By, can

be obtained from Aj; by interchanging two rows. That is, |By;| = —|Ak,|.
Expanding by minors on the kth row to find det(A) and det(B), we see that
det(A) = — det(B). QED

Note. Property 1 above implies that each property of determinants stated
for “rows” also holds for “columns.”

Theorem 4.3. Determinant Criterion for Invertibility.
A square matrix A is invertible if and only if det(A) # 0.

Theorem 4.5 The Multiplicative Property.
If A and B are n X n matrices, then det(AB) = det(A) det(B).
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4.3 Computation of Determinants and Cramer’s Rule

Note. Computation of A Determinant.
The determinant of an n x n matrix A can be computed as follows:

1. Reduce A to an echelon form using only row (column) addition and row
(column) interchanges.

2. If any matrices appearing in the reduction contain a row (column) of
zeros, then det(A) = 0.

3. Otherwise,
det(A) = (—1)" - (product of pivots)

where 7 is the number of row (column) interchanges.
Theorem 4.5. Cramer’s Rule.

Consider the linear system AZ = b, where A = [a;j] is an n x n invertible
matrix,

X1 bl
T o b
F=| 7| andb=| ’
‘/L"n bn

The system has a unique solution given by

- det (Bk,)
~ det(A)

Tk fork=1,2,...,n,

where By is the matrix obtained from A by replacing the kth column vector

of A by the column vector b.

Proof. Since A is invertible, we know that the linear system AZ = b has
a unique solution by Theorem 1.16. Let Z be this unique solution. Let X,
be the matrix obtained from the n x n identity matrix by replacing its kth
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column vector by the column vector Z, so

100 - 2, 00 -+ 07

010 - 29 00 -0

001 -« 23 00 -0
X, = :

000 -« 2 00 -+ 0

000 -+ 2, 00 -+ 1|

We now compute the product AXy If j # k, then the jth column of AX} is
the product of A and the jth column of the identity matrix, which is just
the jth column of A. If j = k, then the jth column of AX, is AZ = b. Thus
AXjy is the matrix obtained from A by replacing the kth column of A by the
column vector b. That is, AX}, is the matrix By, described in the statement of
the theorem. From the equation AX; = By and the multiplicative property
of determinants, we have

det(A) - det(Xy) = det(By).

Computing det(Xy) by expanding by minors across the kth row, we see that
det(Xy) = zx and thus det(A) - xx = det(By). Because A is invertible, we
know that det(A) # 0 by theorem 4.3, and so x; = det(By)/det(A) as
claimed. QED

Note. Recall that a;; is the determinant of the minor matrix associated with
element a;; (i.e. the cofactor of a;j).

Definition. For an n x n matrix A = [a;;], define the adjoint of A as
adj(4) = (4)"
where A’ = [a;;].

Theorem 4.6. Property of the Adjoint.
Let A be n x n. Then

(adj(A))A = Aadj(A) = (det(A))T.

Corollary. A Formula for A~!.
Let A be n x n and suppose det(A) # 0. Then

1 :
AT = madj(/l).
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Note. If A = [ CCL _ab ] and det(a) = ad — be, so

a0



5 Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

Definition 5.1. Let A be an n x n matrix. A scalar A is an eigenvalue of A
if there is a nonzero column vector ¥ € R" such that A7 = Av. The vector ¢
is then an eigenvector of A corresponding to A.

Note. If A7 = A\ then AT — A7 =0 and so (A — AZ)7 = 0. This equation
has a nontrivial solution only when det(A — A\Z) = 0.

Definition. det(A—AZ) is a polynomial of degree n (where A is nxn) called
the characteristic polynomial of A, denoted p()), and the equation p(\) =0
is called the characteristic equation.

Theorem 5.1. Properties of Eigenvalues and Eigenvectors.
Let A be an n X n matrix.

1. If ) is an eigenvalue of A with @ as a corresponding eigenvector, then \*
is an eigenvalue of A*, again with ¥ as a corresponding eigenvector, for
any positive integer k.

2. If A is an eigenvalue of an invertible matrix A with ¢ as a corresponding
eigenvector, then \ # 0 and 1/) is an eigenvalue of A~!, again with ¥
as a corresponding eigenvector.

3. If X is an eigenvalue of A, then the set E) consisting of the zero vector
together with all eigenvectors of A for this eigenvalue A is a subspace
of n-space, the eigenspace of .

Proof of (2). By definition, A # 0. If A is an eigenvalue of A with eigenvector
7, then A7 = M. Therefore A7'AT = A7\ or ¥ = M™%, So A™'0 =
(1/A)¥ and 1/) is an eigenvalue of A™1. QED

Definition 5.2. Eigenvalues and Eigenvectors.

Let T be a linear transformation of a vector space V into itself. A scalar A
is an eigenvalue of T if there is a nonzero vector ¥ € V' such that T'(7) = A7
The vector v is then an eigenvector of T' corresponding to A.
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5.2 Diagonalization

Note. In this section, the theorems stated are valid for matrices and vectors
with complex entries and complex scalars, unless stated otherwise.

Theorem 5.2. Matrix Summary of Eigenvalues of A.

Let A be an n x n matrix and let Ay, Ay, ..., A, be (possibly complex) scalars
and v1, v, ..., v, be nonzero vectors in n-space. Let C' be the n x n matrix
having v; as jth column vector and let

A 00 0
0 A O 0
D=|0 0 X 0
0 0 0 An |

Then AC = CD if and only if Ay, Ag,..., A, are eigenvalues of A and vj is
an eigenvector of A corresponding to A; for j =1,2,...,n.

Proof. We have

i A 00 0
: 0 X O 0
CD = 0 vy - Un 0 0 X 0
) | 0 0 0 Ao |
= AL Aol e Aty
Also,
AC=A| v; vy --- 1,
Therefore, AC = CD if and only if Av; = A;v;. QED

Note. The n x n matrix C' is invertible if and only if rank(C) = n — that is,
if and only if the column vectors of C' form a basis of n-space. In this case,
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the criterion AC' = C'D in Theorem 5.2 can be written as D = C~'AC. The
equation D = C~1AC transforms a matrix A into a diagonal matrix D that
is much easier to work with.

Definition 5.3. Diagonalizable Matrix.

An n xn matrix A is diagonalizable if there exists an invertible matrix C' such
that C~'AC = D is a diagonal matrix. The matrix C is said to diagonalize
the matrix A.

Corollary 1. A Criterion for Diagonalization.
An nxn matrix A is diagonalizable if and only if n-space has a basis consisting
of eigenvectors of A.

Corollary 2. Computation of A*.

Let an n X n matrix A have n eigenvectors and eigenvalues, giving rise to the
matrices C and D so that AC = CD, as described in Theorem 5.2. If the
eigenvectors are independent, then C is an invertible matrix and C~'AC =
D. Under these conditions, we have A* = CD*C~!.

Proof. By Corollary 1, if the eigenvectors of A are independent, then A is
diagonalizable and so C is invertible. Now consider

A¥ = (CDCH(CDC™Y)---(CDCY

k fa?:rtors
cD(C'C)D(C*C)D(CC)---(CtC)DC ™
CDIDID---IDC™!
= CDDD---DC '=CDFC!

k factors
QED
Theorem 5.3. Independence of Eigenvectors.
Let A be an nxn matrix. If 01, v, ..., v, are eigenvectors of A corresponding
to distinct eigenvalues A1, Ay, ..., A,, respectively, the set {v7, 03, ..., v,} is

linearly independent and A is diagonalizable.

Proof. We prove this by contradiction. Suppose that the conclusion is false
and the hypotheses are true. That is, suppose the eigenvectors v, v, ..., vy,
are linearly dependent. then one of them is a linear combination of its pre-
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decessors (see page 203 number 37). Let v} be the first such vector, so that
U = d107 + doU3 + -+ - + dp_1Up—1 (2)
and {v7,03,...,0x_1} is independent. Multiplying (2) by Az, we obtain
AUk = di A0 + doAg0s + -« - + dig—1 A U1 (3)
Also, multiplying (2) on the left by the matrix A yields
AUk = di A 0] + dodoVs + - - - 4 dp—1 Ag—1 U1 (4),
since Av; = \;v;. Subtracting (4) from (3), we see that
0= di( M — AT+ da(Ng — X) T + - - - 4+ d_1 (A — Me1)Tr1-

But this equation is a dependence relation since not all d;’s are 0 and the \’s
are hypothesized to be different. This contradicts the linear independence of
the set {01, 05, ..., Uk_1}. This contradiction shows that {01, v3, ..., v, } is in-
dependent. From Corollary 1 of Theorem 5.2 we see that A is diagonalizable.
QFED

Definition 5.4. An n X n matrix P is similar to an n X n matrix () if there
exists an invertible n x n matrix C such that C~'PC = Q.

Definition. The algebraic multiplicity of an eigenvalue \; of A is its multi-
plicity as a root of the characteristic equation of A. Its geometric multiplicity
is the dimension of the eigenspace E},.

Theorem. The geometric multiplicity of an eigenvalue of a matrix A is less
than or equal to its algebraic multiplicity.

Theorem 5.4. A Criterion for Diagonalization.
An n X n matrix A is diagonalizable if and only if the algebraic multiplicity
of each (possibly complex) eigenvalue is equal to its geometric multiplicity.

Theorem 5.5. Diagonalization of Real Symmetric Matrices.

Every real symmetric matrix is real diagonalizable. That is, if A is an n x n
symmetric real matrix with real-number entries, then each eigenvalue of A is
a real number, and its algebraic multiplicity equals its geometric multiplicity.

Note. The proof of Theorem 5.5 is in Chapter 9 and uses the Jordan canon-
ical form of matrix A.
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6 Orthogonality

6.1 Projections

Note. We want to find the projection p of vector Fon sp(@). We see that p’
is a multiple of @. Now (1/||@]|)@ is a unit vector having the same direction
as d, so p is a scalar multiple of this unit vector. We need only find the
appropriate scalar, which is ||F|| cos6. If 7 is in the opposite direction of @
and 0 € [r/2,3r/2], then the appropriate scalar is again given by ||F]| cos#.

Thus . -
[Fl|cos @, [|F]|[|@]] cos®

ﬁ: b d C_I:: b d bd
]l lalllal

We use this to motivate the following definition.

- F.('_I”—’
a:—» —
a-a

Definition. Let @,b € R* The projection p ofg on sp(a) is

S
ST}

p=—a.

S
L

Definition 6.1. Let W be a subspace of R”. The set of all vectors in R"
that are orthogonal to every vector in W is the orthogonal complement of W
and is denoted by W+.

Note. To find the orthogonal complement of a subspace of R":
1. Find a matrix A having as row vectors a generating set for W.

2. Find the nullspace of A — that is, the solution space of A% = 0. This
nullspace is W+.

Theorem 6.1. Properties of W+.
The orthogonal complement W= of a subspace W of R” has the following
properties:

1. W+ is a subspace of R".
2. dim(W+) = n — dim(W).
3. (WhHlt=w.
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4. Each vector b € R" can be expressed uniquely in the form b= I_)'W + ng_
for by € W and by, € W

Proof of (1) and (2). Let dim(W) = k, and let {v7,03,...,0,} be a
basis for W. Let A be the k X n matrix having v; as its ¢th row vector for
i=1,2,... k.

Property (1) follows from the fact that W+ is the nullspace of matrix A
and therefore is a subspace of R™.

For Property (2), consider the rank equation of A:

rank(A) + nullity(A) = n.

Since dim(W) = rank(A) and since W+ is the nullspace of A, then dim(W+) =
n — dim(W). QED

]_?eﬁnjtion 6.2. Let b € R", and let W be a_‘subspace of R*. Let E =
by + by, be as described in Theorem 6.1. Then by, is the projection of b on
wW.

Note. To find the projection of b on W, follow these steps:

1. Select a basis {01, 03, ..., 0;} for the subspace W.

2. Find a basis {Uk1, Uky2, ..., } for W,

3. Find the coordinate vector 7 = [rq,ro,...,r,] of b relative to the basis
(01,03, ...,0;,) so that

b=rv] +1ro03 + -+ 1rUp.
4. Then by = rv] + roUs + - - - + 1 Vg

Note. We can perform projections in inner product spaces by replacing the
dot products in the formulas above with inner products.

Example. Consider the inner product space Pjg,1 of all polynomial functions
defined on the interval [0, 1] with inner product

(p(2), a(2)) = / p(2)q(x) dz.

Find the projection of f(z) = x on sp(1) and then find the projection of x
on sp(1)+.
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6.2 The Gram Schmidt Process

Definition. A set {01, 3, ...,0;} of nonzero vectors in R" is orthogonal if
the vectors v; are mutually perpendicular — that is, if v; - ¥ = 0 for 7 # j.

Theorem 6.2. Orthogonal Bases.

Let {v1,v3,...,0;} be an orthogonal set of nonzero vectors in R*. Then
this set is independent and consequently is a basis for the subspace sp(v1, 03,
ey Uk)-

Proof. Let j be an integer between 2 and k. Consider
’U_J" = Sl’U_i + 82?)_5 +-- 4 Sj—lﬁj—l-

If we take the dot product of each side of this equation with v then, since the
set of vectors is orthogonal, we get v;-0; = 0, which contradicts the hypothesis
that v; # 0. Therefore no v; is a linear combination of its predecessors and
by Exercise 37 page 203, the set is independent. Therefore the set is a basis
for its span. QED

Theorem 6.3. Projection Using an Orthogonal Basis.
Let {v1,v3,...,7;} be an orthogonal basis for a subspace W of R", and let
b € R*. The projection of b on W is

- 5-‘1 5-1}3 5-1}‘1;
bw = o—=V1 + 5=V + -+ Uk
U1 - U1 Vg - U2 Vg - Vg

Proof. We know from Theorem 6.1 that b= l_)‘w_‘—|- ng_ where gvy is the
projection of b on W and by, . is the projection of b on W+. Since by, € W
and {v7,03,...,v;} is a basis of W, then

bW:Tl’U_i+7'2’U_é+"'+Tk’U_];

for some scalars 1,7y, ..., .. We now find these r;’s. Taking the dot product
of b with v; we have

b-v; = (bw-9)+ (b - ;)
(1101 - 05 + 1905 - 0 + -« + 10k - 0;) + 0

TiU; * U
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Therefore r; = (b- ;) /(7 - 5;) and so

Substituting these values of the r;’s into the expression for by yields the
theorem. QED

Definition 6.3. Let W be a subspace of R*. A basis {¢i,¢3, ..., ¢z} for W
is orthonormal if

1. ¢;-g; =0 for i # j, and

2. ¢-q=1.

That is, each vector of the basis is a unit vector and the vectors are pairwise
orthogonal.

Note. If {¢i, ¢, --.,dr} is an orthonormal basis for W, then

—

bw=0-@)G + 0GB+ -+ (b- Gi) G-

Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem.
Let W be a subspace of R", let {d3, d3,...,dr} be any basis for W, and let

W; =sp(ai, a,...,d;) for j =1,2,...,k.
Then there is an orthonormal basis {¢i, ¢, ..., qgr} for W such that W, =
Sp(q_i’ q_é7 R ’q_,;')'

Note. The proof of Theorem 6.4 is computational. We summarize the proof
in the following procedure:

Gram-Schmidt Process.

To find an orthonormal basis for a subspace W of R":

1. Find a basis {d}, d3, ..., d;} for W.

2. Let v1 = aj. For j =1,2,...,k, compute in succession the vector v; given
by subtracting from a; its projection on the subspace generated by its
predecessors.

3. The v} so obtained form an orthogonal basis for W, and they may be
normalized to yield an orthonormal basis.
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Note. We can recursively describe the way to find v as:

- - j U1, G- U2 aj - V-1
Uj:a'j_<_. SVt o=l +t U1 ] .
V1 U1 V2 - V2 Vj—1-Vj1

If we normalize the 0; as we go by letting ¢; = (1/||v||)v;, then we have

—

0 = dj — (@G- @)@ + (@ - @) + - + (@ - G-1)Fj1)-

Corollary 2. Expansion of an Orthogonal Set to an Orthogonal
Basis.

Every orthogonal set of vectors in a subspace W of R" can be expanded if
necessary to an orthogonal basis of W.
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6.3 Orthogonal Matrices
Definition 6.4. An n x n matrix A is orthogonal if ATA =T.

Note. We will see that the columns of an orthogonal matrix must be unit
vectors and that the columns of an orthogonal matrix are mutually orthog-
onal (inspiring a desire to call them orthonormal matrices, but this is not
standard terminology).

Theorem 6.5. Characterizing Properties of an Orthogonal Matrix.
Let A be an n X n matrix. The following conditions are equivalent:

1. The rows of A form an orthonormal basis for R”.
2. The columns of A form an orthonormal basis for R™.

3. The matrix A is orthogonal — that is, A is invertible and A=! = AT,

Proof. Suppose the columns of A are vectors di,ds,...,d,. Then A is
orthogonal if and only if

[\;l

T « e « e ; ; ;
I=A"A= . aiy Gy -+ Ay
a'fl

and we see that the diagonal entries of the product are @ - a; = 1 therefore
each vector is a unit vector. All off-diagonal entries of Z are 0 and so for
© # j we have a; - d;j = 0. Therefore the columns of A are orthonormal
(and conversely if the columns of A are orthonormal then A”A = 7). Now
AT = A7'if and only if A is orthogonal, so A is orthogonal if and only if
AAT =T or (AT)TAT = . So A is orthogonal if and only if AT is orthogonal,
and hence the rows of A are orthonormal if and only if A is orthogonal. QED

Theorem 6.6. Properties of A¥ for an Orthogonal Matrix A.
Let A be an orthogonal n X n matrix and let & and ¢ be any column vectors
in R”. Then

2. ||AZ]| = ||#]], and
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3. The angle between nonzero vectors ¥ and ¥ equals the angle between A%
and Ay.

Proof. Recall that 7 - = (#1)7. Then since A is orthogonal,
[(A) - (AP)] = (AZ)TAF = F ATAF = T = G = [ -

and the first property is established.
For the second property,

|AZ|| = VAZ - AT = Vi %= ||

Since dot products and norms are preserved under multiplication by A,
then the angle

cos™? (ﬂ) =cos™" < (A7) - (A7) ) .
NN V(AZ) - (AZ) /(A7) - (A7)
QED

Theorem 6.7. Orthogonality of Eigenspaces of a Real Symmetric
Matrix.

Eigenvectors of a real symmetric matrix that correspond to different eigen-
values are orthogonal. That is, the eigenspaces of a real symmetric matrix
are orthogonal.

Proof. Let A be an nxn symmetric matrix, and let v; and v3 be eigenvectors
corresponding to distinct eigenvalues A\; and \g, respectively. Then

Avy = A7 and Avy = Aq05.
We need to show that v] and v3 are orthogonal. Notice that
A0 - 13) = (M) - v = (A0) - vy = (Av})T 03 = (UETAT)UE.

Similarly
[A2(01 - 13)] = 0L Av.

Since A is symmetric, then A = AT and

A (07 - 03) = Ag(07 - 03) or (A1 — o) (07 - 03) = 0.
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Since A\; — Ay # 0, then it must be the case that v] - v5 = 0 and hence v7 and
vy are orthogonal. QED

Theorem 6.8. Fundamental Theorem of Real Symmetric Matrices.
Every real symmetric matrix A is diagonalizable. The diagonalization C~tAC
D can be achieved by using a real orthogonal matrix C.

Proof. By Theorem 5.5, matrix A has only real roots of its characteristic
polynomial and the algebraic multiplicity of each eigenvalue is equal to its
geometric multiplicity. Therefore we can find a basis for R® which consists
of eigenvectors of A. Next, we can use the Gram-Schmidt process to create
an orthonormal basis for each eigenspace. We know by Theorem 6.7 that the
basis vectors from different eigenspaces are perpendicular, and so we have
a basis of mutually orthogonal eigenvectors of unit length. As in Section
5.2, we make matrix C' by using these unit eigenvectors as columns and we
have that C~'AC = D where D consists of the eigenvalues of A. Since the
columns of C' form an orthonormal set, matrix C'is a real orthogonal matrix,
as claimed. QFED

Note. The converse of Theorem 6.8 is also true. If D = C~*AC is a diagonal
matrix and C'is an orthogonal matrix, then A is symmetric (see Exercise 24).
The equation D = C~*AC is called the orthogonal diagonalization of A.

Definition 6.5. A linear transformation 7" : R* — R" is orthogonal if it
satisfies T'(v)) - T'(wW) = ¢ - o for all ¥, @ € R".

Theorem 6.9. Orthogonal Transformations vis-a-vis Matrices.
A linear transformation 7" of R” into itself is orthogonal if and only if its
standard matrix representation A is an orthogonal matrix.

Proof. By definition, 7" preserves dot products if and only if it is orthog-
onal, and so its standard matrix A must preserve dot products and so by
Theorem 6.5 A is orthogonal. Conversely, we know that the columns of A
are T(€1),T(€3),...,T(€,) where € is the jth unit coordinate vector of R,
by Theorem 3.10. We have

I O T A
T(el) 'T(ej) =€ € = { 1 if Zi:?]

and so the columns of A form an orthonormal basis of R*. So A4 is an
orthogonal matrix. QED
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7 Change of Basis

7.1 Coordinatization and Change of Basis

Recall. Let B = {b_i,b;, .. b »} be an ordered basis for a vector space V.
Recall that if ¥ € V and ¥ = lel + T'ng + -4 T‘nbn, then the coordinate
vector of ¥ relative to B is Ug = [r1,79,. .. ,rn].

Definition. Let Mg be the matrix having the vectors in the ordered basis
B as column vectors. This is the basis matriz for B:

2 1]

MB:\‘bl b2 an

Note. We immediately have that Mpvp = ¥. If B’ is another ordered basis
of R*, then similarly Mg vp = ¢ and so ¥ = Mpvp = Mpgvg. Since the
columns of Mp are basis vectors for R” (and so independent), then

g = My Mpip.

Notice that this equation gives a relationship between the expression of @
relative to basis B and the expression of ¥ relative to basis B’. We can
define Cp g = M ,;,IM p and then C can be used to convert ¥ into vz by
multiplication: ¥p = Cpg pv'g. We can show that C' = M l;,lM g is the unique
matrix which can accomplish this conversion (see Page 48 number 41(b)).

Definition 7.1. Let B and B’ be ordered bases for a finite dimensional
vector space V. The change-of-coordinates matriz from B to B' is the unique
matrix Cg g such that Cp pilg = Up.

Note. Of course we can convert ¥z to Up using C~*: vz = C ¥ In terms
of the change-of-coordinates matrix, we have Cp p = C BB

Note. Finding the Change-of-Coordinates Matrix from B to B’ in
R".

Let B = (b1,bs,...,by) and B' = (b by ..., b, ) be ordered bases of R".
The change-of-coordinates matrix from B to B’ is the matrix Cp g obtained
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by the row reduction

bl bg bn b—i b2 b_,; N[Z|CB7BI].

Note. Recall that the coordinate vector (b;)p of b; relative to B' is found
by reducing the augmented matrix [Mp | b;]. So all n coordinate vectors

—

(bj)p can be found at once by reducing the augmented matrix [Mp | Mp].
Therefore

Com=| B G - ()w
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7.2 Matrix Representations and Similarity

Theorem 7.1. Similarity of Matrix Representations of 7.

Let T be a linear transformation of a finite-dimensional vector space V' into
itself, and let B and B’ be ordered bases of V. Let Rp and Rp be the matrix
representations of T relative to B and B’, respectively. Then

Rp = C'RpC

where C' = Cp p is the change-of-coordinates matrix from B’ to B. Hence,
Rp and Rp are similar matrices.

Theorem. Significance of the Similarity Relationship for Matrices.
Two n x n matrices are similar if and only if they are matrix representations
of the same linear transformation 7" relative to suitable ordered bases.

Proof. Theorem 7.1 shows that matrix representations of the same trans-
formation relative to different bases are similar. Now for the converse. Let
A be an n X n matrix representing transformation 7', and let F' be similar
to A, say F' = C 'AC. Since C is invertible, its columns are independent
and form a basis for R*. Let B be the ordered basis having as jth vector
the jth column vector of C'. Then C is the change-of-coordinates matrix
from B to the standard ordered basis E. That is, C' = Cpg. Therefore
F =C7'AC = Cg pAC3 i is the matrix representation of T relative to basis
B. QFED

Note. Certain properties of matrices are independent of the coordinate
system in which they are expressed. These properties are called coordinate-
independent. For example, we will see that the eigenvalues of a matrix are
coordinate-independent quantities.

Theorem 7.2. Eigenvalues and Eigenvectors of Similar Matrices.
Let A and R be similar nxn matrices, so that R = C~'AC for some invertible
n x n matrix C. Let the eigenvalues of A be the (not necessarily distinct)
numbers Ay, Ao, ..., A\p.

1. The eigenvalues of R are also Ay, Ag, ..., A,.

2. The algebraic and geometric multiplicity of each \; as an eigenvalue of A
remains the same as when it is viewed as an eigenvalue of R.

3. If v; € R" is an eigenvector of the matrix A corresponding to JA;, then
C~'v; is an eigenvector of the matrix R corresponding to ;.
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Proof of (1). The characteristic equation for matrix R is det(R — AZ) and

SO
det(R—AZ) = det(C'AC — \T)
= det(C 'AC - XC'0O)
= det(C™H(A - A\T)0)
det(C ') det(A — AT) det(C) by Theorem 4.4
1

= Setie det(4 - Page 262 1
det(C) det( AZ) det(C) by Page 262 number 3

= detA— M.

Therefore the characteristic equation of R and A are the same, and so R and
A have the same eigenvalues. QED

Definition. The geometric multiplicity of an eigenvalue A\ of a transforma-
tion T is the dimension of the eigenspace E) = {¥ € V | T(¥) = Av}. The
algebraic multiplicity A is the algebraic multiplicity of the A\ as a root of the
characteristic polynomial of T (technically, the characteristic polynomial of
the matrix which represents 7).

Definition 7.2. A linear transformation 7" of a finite-dimensional vector
space V into itself is diagonalizable if V' has an ordered basis consisting of
eigenvectors of 7.
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