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0. Introduction

The topic of formal groups becomes important when we want to deal with reduction of elliptic curves.
Let R be a discrete valuation ring with field of fractions K and residue class field k, and suppose we
are given a Weierstrafl equation

E:y? + ayzy + asy = @ + aga® + asx + ag, a; € R.

If the discriminant of E' is not in the maximal ideal m of R, it makes sense to look at the solutions of
the reduced curve E over k obtained by reducing the a; modulo m. It turns out that there are natural
group homomorphisms

E(K) =~ E(R) — E(k),

and that the situation is relatively simple if we assume that R is a complete discrete valuation ring.
We recall the definition of completeness of a ring with respect to an ideal.

Definition. Let A be a ring and [ an ideal of A. Consider A as a topological ring by defining the
sets I D I? D I? D --- to be a basis of open neighbourhoods of 0. Then A is called complete with
respect to I if A is Hausdorff (equivalently, ()~ I"™ = 0) and complete with respect to this topology.
It amounts to the same to say that A is complete with respect to I if the natural homomorphism of
topological rings

A —limA/T",

where each A/I™ has the discrete topology, is an isomorphism.

If we assume that R is complete with respect to its maximal ideal, it turns out that we can
construct a short exact sequence

0— E(m) — E(K)— E(k) — 0,

where E(m) is a group that will be defined in the next section.



1. Parametrisation of an elliptic curve
Let (E,O) be an elliptic curve over a field k. We embed E in P? as a Weierstraf§ curve
Y2Z + a1 XYZ 4+ asYZ? = X3+ aa X% Z + au X 2% + a6 Z°>
with O = (0:1:0). We choose affine coordinates (z,w) on the open part D(Y) of P?, placing O at
the origin of our coordinate system:
z=-X/Y, w=-2Z/Y;

after dividing by Y3, the equation of the curve becomes

—w + a1zw + a3w2 =23 a222w — a4zw2 — a6w3.

We put
f =22+ a1z2w + asz*w + agw? + aszw® + agw® € klz, w]
and write the Weierstrafl equation as
w= f(z,w).
We want to ‘solve’ this equation for w as a power series in z. To do this, we generalise things a bit by
considering the above equation as a polynomial equation in the variable w over the ring
A = Z[a/la az,as, a4, a/ﬁ] [[Z]]a
which is the completion of the polynomial ring Z[a1, as, as, a4, ag, z] with respect to the ideal (z). We
put
F=-234(1-a1z—az®)w — (a3 + as2)w? — agw® € Afw]
and apply the following version of Hensel’s lemma to find a zero of F.

Hensel’s lemma. Let A be a ring which is complete with respect to an ideal I, and let F € Aw)
be a polynomial. If for some m > 1 we have

FO)eI™ and F'(0)=1 (mod I),
then there is an element o € I"™ with F(«) = 0, and the recursion
wo =0, wpy1 =w, — F(wy,) forn>0
converges to «. If moreover A is a domain, « is the unique zero of F in I.
Proof. We first note that the assumption F'(0) € I"™ implies that F(z) € I"™ for all z € I"™, and by
induction on n it follows immediately that w, € I'™ for all n > 0. Next we prove by induction on n

that
Wpt1 = w,  (mod I™*t™) for n > 0.

For n = 0, this is just the assumption F'(0) € I"™. Now suppose that the congruence holds for n — 1,
and write
F(x) = F(y) = (z = y)(F'(0) + 2G(x,y) + yH(z,y))
where G, H € Alxz,y] are certain polynomials. Then
wy, — F(wy)) — (wp—1 — F(wn-1))
) = (F(wn) = F(wn-1))
) (wn - wn—l)(Fl(O) + wnG(wn; wn—l) + ’LUn_1H(’LUn, wn—l))
= (wp, — wp_1)(1 — F'(0) — w,G(wn, wn_1) — wn_1 H(wp, w,_1)).
This is in I™*" because w, — wn_1 € I™*T"~! by the induction hypothesis and because the second
factor is in I. The completeness of A with respect to I implies that the sequence {wy, } >0 converges to
a unique element « € A, which is in I"™ because all the w,, are. The sequence {F(wy,)}n>0 converges
to F(«), and taking the limit of the relation wp+1 = w, — F(wy) as n — oo shows that F'(a) = 0.
If A is a domain and «, 3 € I are zeros of F', then the equality
0=F(a) = F(B) = (o = B)(F'(0) + aG(e, ) + BH (v, B))
shows that either & = 8 or F'(0) = —aG(«,3) — BH(a, ) € I. The second possibility contradicts
our assumption F'(0) — 1 € I, so a = 3, and we conclude that « is the unique zero of F' in I. O

]
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Carrying out the first few steps of the recursion gives us the following power series expansion of

w in terms of z:
w=23(14 a1z + (a? + a2)2® + (a3 + 2a1az + az)z® +-- ).

Now let K be the field of fractions of an integral local k-algebra A which is complete with respect
to its maximal ideal m. Then the power series w(z) (or any power series with coefficients in A, for
that matter) converges for all z € m. This gives us an injective map

m — E(K)
z (2 =1:w(z)),
or (in terms of the coordinates z and w)
m — E(K)
z = (z,w(2)).
The above version of Hensel’s lemma shows that the image of this map is equal to the set of points
(z,w) in E(K) with z,w € m.

For z € m, it is also possible to express the usual coordinates (z,y) of the point (z,w(z)) in terms

of formal Laurent series in z. Since x = X/Z = z/w(z) and y = Y/Z = —1/w(z), we get
r=2"21-a12—axz® —azz>+--)
y=—231—a1z —asz® —azz®>+---).

Our next goal is to express the group operation of E in terms of the parameter z. The group
operation will then give us a map

Yrmxm—m.

)

Computing ¥ is a matter of writing down the formulas for the “chord and tangent” algorithm in the
coordinates (z,w). Recall that if E is embedded into P? via a Weierstrafl equation, then the points
of E lying on any line in P? add to zero. If z;, 23 are in m, then the slope of the line through the
points (z1,w(z1)) and (22, w(z2)) is
w(z1) — w(z2)

zZ1 — %2
= (a1 + 2122+ 25) + aa (& + 2iz2 + 2125 + 23) + (0] + a2) (2] + 2i22 + 2725 + 2125 +25) +

the last expression is valid also when z; = z5. The equation of this line is

A=

w=Az4+v withv=w — Az1 = ws — A29;

substituting this into the equation for the elliptic curve, we obtain a cubic equation in z whose three
roots are z1, zo and the z-coordinate of a third point, say z3. The coefficient of the quadratic term of
this equation gives us —(z1 + 22 + 23), and we obtain
A + asv + asA? + 2a4 v + 3ag v

1+ as )\ + ag )2 +a6)\3 '
We first consider the special case where z; = z, 23 = 0. Making use of A = w(z)/z and v = 0, we find
the following formula for i(z), the z-coordinate of the inverse of the point (z,w(z)):

P aw(z)/z + as(w(z)/2)
TF 02w(2)/7 + aa(w(2) )2 + ao(@() /2
=—z—aa2* — a2 — (a} +a3)z? —ai(ad + 3a3)2° + -

23 = —Z1 — 29 —
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The z-coordinate of the sum of the two points (z1,w(z1)) and (22, w(z2)) is now
(21, 22) = i(23)
=21 + 20 — a12122 — ag(23 20 + 2125) — (2a325 20 — (a1ag — 3a3) 2325 + 2a32125) + - - -
The binary operation ¥ makes m into an Abelian group with neutral element 0 and inverse operation
1. We denote this group by F(m). As the power series ¥ defining the group structure does not depend

on m, it makes sense to study it on its own, for example as a power series over Z[ay, as, as, a4, ag). It
is an instance of a formal group law.



2. Formal groups
We fix a ring R.

Definition. A formal group law over R is a power series
F e R[z,y]]

satisfying the following axioms:

(1) F=x+y (mod (z,y)?).

(2) Associativity: F(z, F(y,z)) = F(F(z,y),
(3) Neutral element: F(z,0) =« and F(0,y)
(4) Commutativity: F(z,y) = F(y, z).

(5) Existence of inverse: F(z,i(x)) = 0 for some unique power series

= y_

i=—x+- - € R[]

The formal group § defined by F' is the rule that associates to an R-algebra which is complete with
respect to an ideal I the group §(I) with underlying set I and whose group operation is given by the
power series [.

Implicit function theorem. Let F' € R[[z,y]] be a power series of the form
F=ax+by+--- withbe R*.

Then there exists a unique power series g € R][x]] such that F(z, g(z)) = 0.

Proof. We have to show that there exists a unique sequence of polynomials g, € R[z], with g, of
degree at most n, such that

gn+1 = gn  (mod (z)"")

and
F(z,9,(2)) =0 (mod (z)"T1).

For n =1 it is clear that we must take gy = —x. To define g, for n > 2, we note that g, has to be of
the form g,_1 + Az™ with A € R. Since

F(z,gn—1(z) + Az™) = F(z, gn—1(z)) + bAz™
= cpa” +bAz™  (mod (ac)"“)
for some ¢,, € R. From this we see that the only possibility is A = —b"'¢,. We conclude that

g=—T —cox® —c3x® — -

is the unique solution of F(z, g(z)) = 0. O

Corollary. (Inversion of series) Let R be a ring, and let
f=ax+--- € R[]

be a power series. If a € R*, there is a unique power series g € R|[x]] such that f(g(z)) = z, and it
also satisfies g(f(x)) = «.

Proof. We apply the inverse function theorem to F'(x,y) =  — f(y) to obtain a unique power series
g(x) with F(z,g(z)) = — f(g(z)) = 0. We do the same for g instead of f to get a unique power
series h with g(h(x)) = x; now

9(f(2)) = 9(f(g(h(2)))) = g(h(x)) = . O



Proposition. Let F' € R[[z,y]] be a power series satisfying the axioms (1) and (2) above. Then F
also satisfies (3) and (5).

Proof. We will show that F(z,0) = z; the proof that F(0,y) = y is completely similar. Write
F(z,0) = x4+ a2 + azx® +- - -; we will prove by complete induction on n that az = az = --- = a,, = 0.
For n = 1, there is nothing to prove. Assuming the statement for some n > 1, we have

F(SC,F(0,0)) :F(SC,O) ::L'+an+1;p"+1+...,
while
F(F(x,O),O) = F(.T + an$"+1 4. .’0) — ($ + anxn-l-l) + an+1$n+1 TR

since the two must be equal because of associativity, we conclude that a,,+1 = 0.
The existence of a unique inverse follows directly from the implicit function theorem applied to
F(z,y). O

It can be shown that if R contains no torsion nilpotents (elements x # 0 such that 2™ = 0 and
nx = 0 for some m,n > 0), then (4) also follows from the first two axioms. The properties (1) and
(3) are equivalent to saying that

F =2+ y+ zy - (power series in x and y).
Some important examples of formal group laws are:
(i) The additive formal group law over Z: G, = x + y.

(ii) The multiplicative formal group law over Z: G, = (1 4+ 2)(14+y) — 1=z +y + zy.
(iii) The formal group law ¥ associated to addition of points on an elliptic curve.

Definition. A homomorphism of formal groups from § to & over R is a power series f € R[[x]],
without constant term, such that

[ (z,y)) = G(f(2), f(y))-

Important examples of homomorphisms are the endomorphisms [m] of a formal group §, defined
recursively for all m € Z in the following way:

In particular, we see that [1](z) = « and [—1](z) = i(z).

Proposition. For all m € Z, we have
[m](z) =mx+---.
Proof. We use induction on m. The case m = 0 is trivial; for m > 0 we have
[m](z) = F(m —1](z),z) =(m -z +z+---=ma+---,

and the case m < 0 is similar.



3. Groups associated to a formal group law

Let S be an R-algebra which is complete with respect to an ideal I. Then, because F has no constant
term, the power series F'(x,y) converges to an element of I for all z,y € I. It follows immediately
from the properties (2)—(5) that the set I equipped with the operation (z,y) — F(x,y) is an Abelian
group; we denote it by F(I).

If S is complete with respect to I, then it is also complete with respect to I™ for all n > 1, and
theideals I D I2D 12D ... gives rise to a chain of subgroups

FI)2FIH) 23U 2.

We make F(I) into a topological group by declaring these subgroups to be a basis for the open
neighbourhoods of 0.

Let S and T be two R-algebras which are complete with respect to ideals I and J, and let
f:S — T be an R-algebra homomorphism with f(I) C J. Then it is straightforward to check that f
is continuous, and that the map

$(f):3(1) — §(J)

which is equal to f on the underlying sets is a continuous group homomorphism. This makes §
into a functor from a suitable “category of ideals of complete R-algebras” to the category of Abelian
topological groups.

Proposition. Let F' be a formal group over law R, and let S be an R-algebra which is complete with
respect to an ideal I. Then for each n > 1, the map

S’(I")/%(I”Jrl) N In/InJrl

defined as the identity on the underlying sets is a group isomorphism. Furthermore, if S is a local
ring with maximal ideal I, then the order of any torsion element of §(I) is a power of p, where p is
the residue characteristic of S. (If p = 0, this means that §(I) is torsion-free.)

Proof. We know that the map in the first assertion is bijective, so it suffices to show that it is a
homomorphism. This is clear because

F(z,y)=x+y (mod I)*

for all z,y € I"™.
For the second assertion, we have to show that there are no torsion elements of order m for any
m not divisible by p, i.e. for any m not in the maximal ideal of S. We view [m] as a power series with
coefficients in S; because
[m] =mz—+---

and m € S*, the lemma on inversion of series shows that there exists a power series g € S[[x]] without
constant term such that g([m](z)) = x. Therefore the map [m] is injective on F(I), which was to be
proved.



