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Abstract. We give algorithms for computing with divisors on projective

curves over finite fields, and with their Jacobians, using the algorithmic rep-

resentation of projective curves developed by Khuri-Makdisi. We show that
various desirable operations can be performed efficiently in this setting: decom-

posing divisors into prime divisors; computing pull-backs and push-forwards

of divisors under finite morphisms, and hence Picard and Albanese maps on
Jacobians; generating uniformly random divisors and points on Jacobians;

computing Frobenius maps; and finding a basis for the l-torsion of the Picard
group for prime numbers l different from the characteristic of the base field.

Introduction

Let X be a complete, smooth, geometrically connected curve of genus g over a
field k. We fix a line bundle L on X of degree at least 2g + 1. Then X can be
represented by means of the finite-dimensional k-vector spaces of global sections
of the first few powers of L. Effective divisors on X can be represented as linear
subspaces of these k-vector spaces . Using this representation of X and of divisors
on it, Khuri-Makdisi [12] has developed algorithms for computing with divisors and
elements of the Picard group. Taking advantage of some improvements to this basic
idea, described in [13], his algorithms are currently the fastest known algorithms for
general curves, asymptotically as the genus increases and measured in operations
in k. A notable feature of this framework is that equations for X play a negligible
role.

In the present article, we concentrate on the case where the field k is finite.
Theorems A and B below summarise our main results. We assume that curves
and divisors are represented as in §§ 2.1 and 2.2 below, respectively. We write
LX for the line bundle giving the projective embedding of X. If D is an effective
divisor on a curve X, we may represent D as the k-vector space Γ(X,L⊗iX (−D))
(see § 2.2), where i is bounded by some fixed linear function of (degD)/(degLX).
For simplicity, we assume in both theorems that this convention is respected. The

curve is given to the algorithms in the form of a certain finite k-algebra S
(h)
X ,

defined in § 2.1 below; we implicitly assume that h is large enough with respect to
the degrees of the divisors involved.

Theorem A. There exist probabilistic algorithms that solve the following problems
for projective curves X over a finite field k, with expected running time (measured
in operations in k) as indicated.
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(1) Given an effective divisor D on X, compute the decomposition of D as a
linear combination of prime divisors as a list of pairs (P,mP ), where P is
a prime divisor and mP is the multiplicity of P in D, in time polynomial
in degLX and degD. (Algorithm 2.4.)

(2) Given a finite extension k′ of k and an effective divisor D on Xk′ , compute
the image of D under the Frobenius map over k in time polynomial in
degLX , degD and [k′ : k]. (Algorithm 3.1.)

(3) Given the zeta function of X and a non-negative integer d such that the
set of effective divisors of degree d on X is non-empty, generate a uni-
formly random element of this set in time polynomial in degLX and d.
(Algorithm 3.5.)

(4) Given a finite extension k′ of k and an element x ∈ Pic0Xk′ , compute the
image of x under the Frobenius map over k in time polynomial in degLX
and [k′ : k]. (Algorithm 3.6.)

(5) Given the zeta function of X, generate a uniformly random element of PicX
in time polynomial in degLX . (Algorithm 3.7.)

(6) Given a positive integer n dividing #k× and elements x, y ∈ Pic0X with
ny = 0, compute the element [x, y]n ∈ µn(k), where µn(k) denotes the group
of n-th roots of unity in k and

[ , ]n : (PicX)/nPicX × (PicX)[n]→ µn(k)

denotes the Frey–Rück pairing, in time polynomial in degLX and log n.
(Algorithm 3.9.)

(7) Given the zeta function of X and a prime number l different from the
characteristic of k, compute an Fl-basis for (PicX)[l] in time polynomial
in degLX and l. (Algorithm 3.12.)

Theorem B summarises our main results about finite morphisms between pro-
jective curves. Such morphisms are assumed to be represented as in § 2.5 below; in
particular, if f : X → Y is such a morphism, then LX is isomorphic to f∗LY . To
explain the running times in this theorem, we note that degLX = degLY · deg f .
In fact, this theorem holds also for other fields; see the corresponding algorithms
for the more general statements.

Theorem B. There exist probabilistic algorithms that solve the following problems
for morphisms f : X → Y between projective curves over a finite field k, with
expected running time (measured in operations in k) as indicated.

(1) Given an effective divisor D on X, compute the image f(D) on Y in time
polynomial in degLX and degD. (Algorithm 2.5.)

(2) Given an effective divisor E on Y , compute the pull-back f∗E in time
polynomial in degLX and degE. (Algorithm 2.6.)

(3) Given an effective divisor D on X, compute the push-forward f∗D in time
polynomial in degLX and degD. (Algorithm 2.7.)

(4) Given an element y ∈ PicY , compute (Pic f)(y) in time polynomial in
degLX . (Algorithm 2.13.)

(5) Given an element x ∈ PicX and a rational point O ∈ X(k), compute
(Alb f)(x) in time polynomial in degLX . (Algorithm 2.14.)

The paper is organised as follows. In the preliminary Section 1 we consider some
computational problems related to finite algebras over a field; these are needed
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in the other two sections. In Section 2 we recall Khuri-Makdisi’s algorithms for
projective curves over arbitrary base fields, and we describe a number of extensions.
Some of our algorithms require that we are able to efficiently compute primary
decompositions of finite k-algebras. This condition is fulfilled, for example, if k is
a finite field or a number field. We give algorithms for decomposing a divisor as
a linear combination of prime divisors, computing pull-backs and push-forwards of
divisors under finite morphisms, and computing Picard and Albanese maps induced
by finite morphisms. We also consider some more technical problems that are
needed in the rest of the paper. In Section 3 we describe the rest of our algorithms,
which are specific to curves over finite fields. In particular, we show how to compute
the Frobenius map on points of the curve, and of its Jacobian, over finite extensions
of the base field, how to generate uniformly random effective divisors of a given
degree and uniformly random points of the Jacobian (given the zeta function of the
curve), and how to compute Frey–Rück pairings on the Jacobian. By combining
the above methods, we also show that if we know the zeta function of the curve, the
methods of Couveignes [5] for computing Kummer maps of order l and for finding
a basis for the l-torsion of the Picard group, where l is a prime number different
from the characteristic of the base field, can be extended to our situation.

Remarks. (1) When the field k is finite, measuring the running time in field oper-
ations is essentially the same as measuring it in bit operations. However, if k is a
number field, it is impossible to avoid numerical explosion of the data describing the
divisors during computations, so that the running time in bit operations is much
worse than that counted in field operations. Using lattice reduction algorithms to
reduce the size of the data between operations should not be expected to solve this
problem; see Khuri-Makdisi [13, page 2214].

(2) Many of the algorithms we describe are probabilistic. All of these are of the
Las Vegas type. This means that the running time depends on certain random data
generated during the execution of the algorithm, but that the outcome is guaranteed
to be correct. The epithet Las Vegas distinguishes such algorithms from those of the
Monte Carlo type, where the randomness influences the correctness of the outcome
instead of the running time.

(3) The algorithms mentioned in this paper have a running time that is bounded
by some polynomial in various quantities that are indicated in each case. Obtaining
more detailed estimates should not be difficult, but has at the time of writing not
yet been done.

(4) The algorithms presented in this paper are relevant for computations with
curves of large genus over finite fields. The author’s interest in such computations
was raised by the search for an algorithm for efficiently computing coefficients of
modular forms. In the book [9], Edixhoven, Couveignes and others describe such an
algorithm for modular forms for the group SL2(Z). In the author’s thesis [3], their
methods are generalised to modular forms for other groups Γ1(n). The method
in each case is to compute two-dimensional modular Galois representations over
finite fields. The basic problem one needs to solve is to find explicit realisations of
group schemes over Q of the form J [m] with J the Jacobian of a modular curve
and m a maximal ideal of the corresponding Hecke algebra. As a scheme, J [m]
can be embedded into the affine line over Q; the image then gets a group scheme
structure described by polynomials over Q. To compute J [m] efficiently, these
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rational data are approximated either over the complex numbers or modulo suffi-
ciently many small prime numbers. The complex method has already been used by
Bosman [2] in actual computations. The method using finite fields was described
by Couveignes [5] for the modular curves X1(5l) with l a prime number. The com-
putations in this case can be done using singular plane models for these curves.
For more general modular curves X, it is natural to embed X as a smooth curve
in a higher-dimensional projective space via the line bundle of modular forms of
weight 2; this is the approach used in [3]. Using modular symbols [20], one can
compute q-expansions of these modular forms and the zeta function of X. This
directly gives a representation of X tailored for our algorithms, without having to
write down equations.

Acknowledgements. I would like to thank Johan Bosman, Claus Diem, Bas Edix-
hoven, Robin de Jong, Kamal Khuri-Makdisi and Hendrik Lenstra for useful com-
ments, conversations and correspondence on topics related to this paper.

1. Algorithms for computing with finite algebras

In this section, we describe some techniques for solving two computational prob-
lems about finite algebras over a field. The first is how to find the primary decom-
position of such an algebra; the second is how to reconstruct such an algebra from
a certain kind of bilinear map between modules over it.

The algebras to which we are going to apply these techniques in the next section
are of the form Γ(E,OE), where E is an effective divisor on a smooth curve over a
field k. In this section, however, we place ourselves in the more general setting of
arbitrary finite commutative k-algebras.

1.1. Primary decomposition and radicals. Let k be a perfect field. We assume
that we have a way to represent elements of k, to perform field operations in k and
to test whether an element in our representation is zero. We assume furthermore
that have a (probabilistic) algorithm to factor polynomials f ∈ k[x] in an (expected)
number of operations in k that is bounded by a polynomial in the degree of f .

In this situation, there are (probabilistic) algorithms that, given a finite k-
algebra A in the form of its multiplication table with respect to some k-basis,
find the primary decomposition of A in an (expected) number of operations in k
that is bounded by a polynomial in [A : k]. Such algorithms have been known for
some time, but do not seem to be easily available in published form; see Khuri-
Makdisi’s preprint [13, draft version 2, § 7]. For an algorithm to find the primary
decomposition of arbitrary (not necessarily commutative) finite algebras over finite
fields, see Eberly and Giesbrecht [8].

1.2. Reconstructing an algebra from a perfect bilinear map. Let A be a
commutative ring. If M , N and O are free A-modules of rank one and

µ : M ×N → O

is an A-bilinear map, we say that µ is perfect if it induces an isomorphism

M ⊗A N
∼−→ O

of free A-modules of rank 1.
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Now let k be a field, and let a finite commutative k-algebra A be specified
implicitly in the following way. We are given k-vector spaces M , N and O of the
same finite dimension, together with a k-bilinear map

µ : M ×N → O

We assume there exists a commutative k-algebra A such that M , N and O are free
A-modules of rank 1 and µ is a perfect A-bilinear map. The following observation
implies that A is the unique k-algebra with this property, and also shows how to
compute A as a subalgebra of EndkM , provided we are able to find a generator
of N as an A-module. We note that the roles of M and N can also be interchanged.

Lemma 1.1. In the above situation, let g be a generator of the A-module N . The
ring homomorphism A → EndkM sending a to multiplication by a is, as an A-
linear map, the composition of

A
∼−→ N

a 7−→ ag

and

N −→ EndkM

n 7−→ µ( , g)−1 ◦ µ( , n).

In particular, the image of A in EndkM equals the image of the second map.

Proof. This is a straightforward verification. �

In the case where k is a finite field, a way to find a generator for N as an A-
module is simply to pick random elements g ∈ N until we find one that generates
N . Since µ is perfect, checking whether g generates N comes down to checking
whether µ( , g) : M → O is an isomorphism. In particular, we can do this without
knowing A.

To get a reasonable expected running time for this approach, we need to ensure
that N contains sufficiently many elements n such that N = An. Since N is free of
rank 1, the number of generators equals the number of units in A. Let us therefore
estimate under what conditions a random element of A is a unit with probability
at least 1/2. Write d for the degree of A over k. Decomposing A into a product
of finite local k-algebras, and noting that the proportion of units in a finite local
k-algebra is equal to the proportion of units in its residue field, we see that

#A×

#A
≥ (#k×)d

#kd
=

(
1− 1

#k

)d
;

equality occurs if and only if A is a product of d copies of k. Now it is not hard to
show that

#k ≥ 2d =⇒
(

1− 1

#k

)d
≥ 1

2
.

Taking a finite extension k′ of k of cardinality at least 2d, we therefore see that a
random element of Ak′ is a unit with probability at least 1/2. There are well-known
algorithms to generate such an extension, such as that of Rabin [17], which runs
in probabilistic polynomial time and simply tries random polynomials until it finds
one that is irreducible, and the deterministic algorithm of Adleman and Lenstra [1].
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Algorithm 1.2 (Reconstruct an algebra from a bilinear map). Let k be a finite
field, let A be a finite k-algebra, and let

µ : M ×N → O

be a perfect A-bilinear map between free A-modules of rank 1. Given the coefficients
of µ with respect to some k-bases of M , N and O, this algorithm outputs a k-basis
for the image of A in EndkM , consisting of matrices with respect to the given basis
of M .

1. Choose an extension k′ of k of degree
⌈

log max{2[A:k],q}
log q

⌉
. Let M ′, N ′, O′ and µ′

denote the base extensions of M , N , O and µ to k′.

2. Choose a uniformly random element g ∈ N ′.
3. Check whether µ′( , g) : M ′ → O′ is an isomorphism; if not, go to step 2.

4. For n ranging over a k′-basis of N ′, compute the endomorphism

an = µ′( , g)−1 ◦ µ′( , n) ∈ Endk′M
′.

Let A′ ⊆ Endk′M
′ denote the k′-span of the an.

5. Output a basis for the k-vector space EndkM ∩A′.

Analysis. It follows from Lemma 1.1 that A′ equals the image of k′⊗kA in Endk′M .
This implies that the basis returned by the algorithm is indeed a k-basis for the
image of A in EndkM . Because of the choice of k′, steps 2 and 3 are executed at
most twice on average. It is therefore clear that the expected running time of the
algorithm, measured in operations in k, is polynomial in [A : k]. �

If k is infinite (or finite and sufficiently large), we have the following variant. Let
Σ be a finite subset of k, and let V be a k-vector space of dimension d with a given
basis v1, . . . , vd. Consider the set

VΣ = {
d∑
i=1

σivi | σ1, . . . , σd ∈ Σ}

of Σ-linear combinations of v1, . . . , vd. Choosing the σi uniformly randomly in Σ,
we get the uniform distribution on VΣ. If H1, . . . , Hl are proper linear subspaces
of V , then a uniformly random element of VΣ lies in at least one of the Hi with
probability at most l/#Σ. Now if A is a finite commutative k-algebra, it contains
at most [A : k] maximal ideals. This implies that if Σ is a finite subset of k with
#Σ ≥ 2[A : k], then a Σ-linear combination of any k-basis of A is a unit with
probability at least 1/2. This leads to the following variant of Algorithm 1.2.

Algorithm 1.3 (Reconstruct an algebra from a bilinear map). Let k be a field, let
A be a finite k-algebra, and let

µ : M ×N → O

be a perfect A-bilinear map between free A-modules of rank 1. Suppose that we can
pick uniformly random elements of some subset Σ of k with #Σ ≥ 2[A : k]. Given
the coefficients of µ with respect to some k-bases of M , N and O, this algorithm
outputs a k-basis for the image of A in EndkM , consisting of matrices with respect
to the given basis of M .

1. Choose a uniformly random Σ-linear combination g of the given basis of N .

2. Check whether µ( , g) : M → O is an isomorphism; if not, go to step 1.
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3. For n ranging over a k-basis of N , compute the endomorphism

an = µ( , g)−1 ◦ µ( , n) ∈ EndkM,

and output the an.

Analysis. This works for the same reason as Algorithm 1.2. �
Let us sketch how to solve the problem if k is an arbitrary field. Let p be the

characteristic of k. If p = 0 or p ≥ 2[A : k], we can apply Algorithm 1.3 with
Σ = {0, 1, . . . , 2[A : k]− 1}. Otherwise, we consider the subfield k0 of k generated
by the coefficients of the multiplication table of A over k. Then A is obtained by
base extension to k of the finite k0-algebra A0 defined by the same multiplication
table. We can check whether k0 is a finite field with #k0 < 2[A : k] by checking
whether each coefficient of the multiplication table satisfies a polynomial of small
degree. If this is the case, then we compute an Fp-basis and multiplication table
for k0 and apply Algorithm 1.2 to A0 over k0. Otherwise we obtain at some point a
finite subset Σ of k, with #Σ ≥ 2[A : k], consisting of polynomials in the coefficients
of the multiplication table. We then apply Algorithm 1.3 to A over k with this Σ.

2. Computing with divisors on a curve

In [12] and [13], Khuri-Makdisi developed a collection of algorithms for comput-
ing efficiently with divisors on a curve over a field. These include algorithms for
computing in the Picard group of a curve. Many of the results of this section can
be found in [12] and [13]. In contrast, §§ 2.6, 2.9 and 2.10 seem to be new.

The curves we consider are complete, smooth and geometrically connected curves
over a field k. In this section, the base field is arbitrary, although for some of
the algorithms we assume that given a finite k-algebra we can find its primary
decomposition. In Section 3, we will study a few computational problems particular
to curves over finite fields.

2.1. Representing the curve. Let X be a complete, smooth, geometrically con-
nected curve over a field k. We fix a line bundle L on X such that

degL ≥ 2g + 1.

Then L is very ample (see for example Hartshorne [11, IV, Corollary 3.2(b)]), so it
gives rise to a closed immersion

iL : X → PΓ(X,L)

into a projective space of dimension degL − g. (We write PV for the projective
space of hyperplanes in a k-vector space V .) The assumption that degL ≥ 2g + 1
implies moreover that the multiplication maps

µi,j : Γ(X,L⊗i)⊗k Γ(X,L⊗j) −→ Γ(X,L⊗(i+j)).

are surjective for all i, j ≥ 0, or equivalently that the embedding iL is projectively
normal. This is a classical theorem of Castelnuovo [4, no. 5], Mattuck [15, page 194]
and Mumford [16, page 55]. Below we will state a more general result due to Khuri-
Makdisi [12, Lemma 2.2].

Remark. In the context of projective embeddings, the line bundle L is usually
denoted by OX(1). However, we often need to deal with line bundles of the
form L⊗i(D) for a divisor D, and the author does not like the notation OX(i)(D).
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We write SX for the homogeneous coordinate ring of X with respect to the
embedding iL. There is a canonical injective homomorphism

SX →
⊕
i≥0

Γ(X,L⊗i)

of graded k-algebras, which is an isomorphism by the fact that iL is projectively
normal; see Hartshorne [11, Chapter II, Exercise 5.14]. It turns out that in order to
compute with divisors on X, we do not need to know the complete structure of SX .

For all h ≥ 0, we define the finite graded k-algebra S
(h)
X as the quotient of SX by

the ideal generated by homogeneous elements of degree greater than h. Specifying

S
(h)
X is equivalent to giving the k-vector spaces Γ(X,L⊗i) for 1 ≤ i ≤ h together

with the multiplication maps µi,j for i+ j ≤ h.
When speaking of a projective curve X in the remainder of this section, we will

assume without further mention that X is a complete, smooth and geometrically
connected curve of genus g ≥ 0, and that a line bundle L of degree at least 2g + 1
has been chosen. We will often write LX for this line bundle and gX for the genus
of X to emphasise that they are part of the data.

In the algorithms in this section, the curve X is part of the input in the guise

of the graded k-algebra S
(h)
X for some sufficiently large h. A lower bound for h is

specified in each case. One way to specify the multiplication in S
(h)
X is to fix a basis

for each of the spaces Γ(X,L⊗i), and to give the matrices for multiplication with
each basis element. However, as explained by Khuri-Makdisi [13], a more efficient
representation is to choose a trivialisation of L (and hence of its powers) over an
effective divisor of sufficiently large degree or, even better, at sufficiently many
distinct rational points of X, so that the multiplication maps can be computed
pointwise.

Remarks. (1) The integers g and degL can of course be stored as part of the data
describing X. However, they can also be extracted from the dimensions of the
k-vector spaces Γ(X,L) and Γ(X,L⊗2); this follows easily from the Riemann–Roch
formula.

(2) If the degree of L is at least 2g + 2, then the homogeneous ideal defining the
embedding iL is generated by homogeneous elements of degree 2, according to a
theorem of Fujita and Saint-Donat; see Lazarsfeld [14, § 1.1]. This makes it possible

to deduce equations for X from the k-algebra S
(2)
X . However, we will not need to

do this.

(3) The way of representing curves and divisors described in [12] and [13] is es-
pecially suited for modular curves. Namely, we can represent a modular curve X
using the projective embedding given by a line bundle of modular forms, and com-

puting the k-algebra S
(h)
X for a given h comes down to computing q-expansions of

modular forms of a suitable weight to a sufficiently large order. This can be done
using modular symbols; see Stein [20]. If the modular curve has at least 3 cusps
(which is the case, for example, for X1(n) for all n ≥ 5), then we can restrict our-
selves to modular forms of weight 2, for which the formalism of modular symbols
is particularly simple [20, Chapter 3].

2.2. Representing divisors. Let X be a projective curve of genus g in the sense
of § 2.1. To represent divisors on X, it is enough to consider effective divisors, since
every divisor is a difference of two effective divisors.
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If i is a positive integer, D is an effective divisor and confusion is impossible, we
will use the abbreviation

Γ(L⊗iX (−D)) = Γ(X,L⊗iX (−D)).

Consider an effective divisor D on X such that LX(−D) is generated by global
sections. In terms of the projective embedding, this means that D is the intersection
of X and a linear subvariety of PΓ(LX), or equivalently that D is defined by a
system of linear equations. We represent D as the subspace Γ(LX(−D)) of Γ(LX)
consisting of sections vanishing on D. The codimension of Γ(LX(−D)) in Γ(LX)
is equal to the degree of D.

A sufficient condition for the line bundle LX(−D) to be generated by global
sections is

(1) degD ≤ degLX − 2g;

see for example Hartshorne [11, IV, Corollary 3.2(a)]. However, in general not every
subspace of codimension at most degLX − 2g in Γ(LX) is of the form Γ(LX(−D))
for an effective divisor D of the same degree.

Remark. This way of representing divisors comes down, for divisors of degree d ≤
degLX − 2g, to embedding the d-th symmetric power of X into the Grassmann
variety parametrising subspaces of codimension d in Γ(LX) and viewing divisors of
degree d as points on this Grassmann variety.

It will often be necessary to consider divisors D of degree larger than the bound
degLX − 2g of (1). In such cases we can represent D as a subspace of Γ(L⊗iX ) for
i sufficiently large such that

(2) degD ≤ idegLX − 2g,

provided of course that we know S
(h)
X for some h ≥ i.

Khuri-Makdisi’s algorithms rest on the following two results. The first is a
generalisation of the theorem of Castelnuovo, Mattuck and Mumford mentioned
above. It says in effect that to compute the space of global sections of the tensor
product of two line bundles of sufficiently large degree, it is enough to multiply
global sections of those line bundles.

Lemma 2.1 (Khuri-Makdisi [12, Lemma 2.2]). Let X be a complete, smooth, ge-
ometrically connected curve of genus g over a field k, and let M and N be line
bundles on X whose degrees are at least 2g + 1. Then the canonical k-linear map

Γ(X,M)⊗k Γ(X,N ) −→ Γ(X,M⊗OX N )

is surjective.

The second result shows how to find the space of global sections of a line bun-
dle that vanish on a given effective divisor, where this divisor is represented as a
subspace of global sections of a second line bundle.

Lemma 2.2 (Khuri-Makdisi [12, Lemma 2.3]). Let X be a complete, smooth, geo-
metrically connected curve of genus g over a field k, let M and N be line bundles
on X such that N is generated by global sections, and let D be any effective divisor
on X. Then the inclusion

(3) Γ(X,M(−D)) ⊆
{
s ∈ Γ(X,M)

∣∣ sΓ(X,N ) ⊆ Γ(X,M⊗N (−D))
}

is an equality.
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Thanks to these two lemmata, one can give algorithms to do basic operations on
divisors; see [12, § 3]. For example, we can add, subtract and intersect divisors of
sufficiently small degree, and we can test whether a given subspace of Γ(L⊗iX ) is of

the form Γ(L⊗iX (−D)) for some effective divisor D. See also Algorithm 2.10 below
for an example where Lemmata 2.1 and 2.2 are used.

2.3. Deflation and inflation. A method used in [13] to speed up the algorithms is
deflation of subspaces. Suppose we want to compute the space Γ(X,M(−D)) using

(3) in the case where M = L⊗iX and N = L⊗jX (−E) with i and j positive integers
and where D and E are effective divisors satisfying (2). On the right-hand side
of (3), we may replace Γ(X,N ) by any basepoint-free subspace; this is clear from
the proof of [12, Lemma 2.3]. It turns out that there always exists such a subspace
of dimension O(log(degN )), and a subspace of dimension 2 exists if the base field is
either infinite or finite of sufficiently large cardinality. Moreover, one can efficiently
find such a subspace by random trial; see [13, Proposition/Algorithm 3.7].

Remark. This random search for small basepoint-free subspaces is the reason why
the algorithms in [13] are probabilistic, as opposed to those in [12].

Suppose we are given a basepoint-free subspace W of Γ(L⊗iX (−D)) for some i

and D such that Γ(L⊗iX (−D)) is basepoint-free. Then we can reconstruct the com-

plete space Γ(L⊗iX (−D)) from W . This procedure is called inflation. To describe
how this can be done, we first state the following slight generalisation of a result of
Khuri-Makdisi [13, Theorem 3.5(2)].

Lemma 2.3. Let X be a complete, smooth, geometrically connected curve of genus g
over a field k, and let M and N be line bundles on X. Let V be a non-zero sub-
space of Γ(X,M), and let D be the common divisor of the elements of V . If the
inequality

−degM+ degN + degD ≥ 2g − 1

is satisfied, the canonical k-linear map

(4) V ⊗k Γ(X,N ) −→ Γ(X,M⊗OX N (−D))

is surjective.

Proof. We note that M(−D) is generated by global sections, since we can view V
as a subspace of Γ(X,M(−D)) and the elements of V have common divisor 0 as
sections of M(−D). We also note that degM≥ degD. Therefore the assumption
on the degrees of M, N and D implies the inequalities

degN ≥ 2g − 1

and
deg(M⊗N (−D)) ≥ 2g − 1.

After extending the field k, we may assume it is infinite. Then there exist elements
s, t ∈ V with common divisor D; see [13, Lemma 4.1]. The space

sΓ(X,N ) + tΓ(X,N )

lies in the image of (4), so it suffices to show that

dimk(sΓ(X,N ) + tΓ(X,N )) = dimk Γ(X,M⊗N (−D)).

Write
div s = D + E and div s = D + F
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where E and F are disjoint effective divisors. Then we have

dimk(sΓ(X,N ) + tΓ(X,N )) = 2 dimk Γ(X,N )− dimk(sΓ(X,N ) ∩ tΓ(X,N ))

= 2 dimk Γ(X,N )− dimk Γ(X,M⊗N (−D − E − F ))

= 2 dimk Γ(X,N )− dimk Γ(X,M∨ ⊗N (D)).

The last equality follows from the fact that multiplication by st induces an isomor-
phism

M∨(D)
∼−→M(−D − E − F ).

Using the fact that the various line bundles have degrees at least 2g − 1, we see
that

dimk(sΓ(X,N ) + tΓ(X,N )) = 2(1− g + degN )− (1− g + degM∨ ⊗N (D))

= 1− g + degM+ degN − degD

= dimk Γ(X,M⊗N (−D)).

This finishes the proof. �

To find the inflation of a basepoint-free subspace W of Γ(L⊗iX (−D)), we choose
a positive integer j such that

(j − i) degLX + degD ≥ 2g − 1.

By Lemma 2.3 we can then compute Γ(L⊗(i+j)
X (−D)) as the image of the bilinear

map

W ⊗k Γ(L⊗jX ) −→ Γ(L⊗(i+j)
X ).

Then we compute

Γ(L⊗iX (−D)) =
{
s ∈ Γ(L⊗iX )

∣∣ sΓ(L⊗jX ) ⊆ Γ(L⊗(i+j)
X (−D))

}
using Lemma 2.2. We note that for this last step we can use a small basepoint-free
subspace of Γ(L⊗jX ) computed in advance.

2.4. Decomposing divisors into prime divisors. Let X be a complete, smooth,
geometrically connected curve of genus g over a field k, with a projective embedding
via a line bundle L as in § 2.1. The problem we are now going to study is how to
find the decomposition of a given divisor on X as a linear combination of prime

divisors. We will see below that this can be done if we are given the algebra S
(h)
X

for sufficiently large h and if we are able to compute the primary decomposition of
a finite commutative k-algebra. It is known that this is possible in the case where
k is perfect and we have an algorithm for factoring polynomials in one variable
over k; see § 1.1.

Let i be a positive integer, and let D be an effective divisor such that

degD ≤ i degL − 2g + 1.

We view D as a closed subscheme of X via the canonical closed immersion

jD : D → X.

For every line bundle M on X, the k-vector space Γ(D, j∗DM) is in a natural way
a free module of rank one over Γ(D,OD). The multiplication map

µi,i : Γ(X,L⊗i)× Γ(X,L⊗i) −→ Γ(X,L⊗2i)
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descends to a bilinear map

µDi,i : Γ(D, j∗DL⊗i)× Γ(D, j∗DL⊗i) −→ Γ(D, j∗DL⊗2i)

of free modules of rank 1 over Γ(D,OD). This map is perfect in the sense of § 1.2.

We now assume that the graded k-algebra S
(h)
X as in § 2.1 is given for some

h ≥ 2. From the subspace Γ(X,L⊗i(−D)) of Γ(X,L⊗i) we can then determine
Γ(D, j∗DL⊗i) as a k-vector space by means of the short exact sequence

(5) 0 −→ Γ(X,L⊗i(−D)) −→ Γ(X,L⊗i) −→ Γ(D, j∗DL⊗i) −→ 0.

(Note that exactness on the right follows from the assumption that degL⊗i(−D) ≥
2g − 1.) Similarly, we can compute Γ(D, j∗DL⊗2i) from Γ(X,L⊗2i(−D)) using the
same sequence with i replaced by 2i. We can then determine the bilinear map µDi,i
induced by µi,i by standard methods from linear algebra.

We then use the method described in § 1.2 to compute the k-algebra Γ(D,OD)
together with its action on Γ(D, j∗DL⊗i). Next we find the primary decomposition
of Γ(D,OD), say

Γ(D,OD) ∼= A1 ×A2 × · · · ×Ar,
where each factor Ai is a finite local k-algebra with maximal ideal Pi; we assume
the field k is such that we can do this (see § 1.1). Such a prime ideal Pi corresponds
to a prime divisor in the support of D, and the corresponding multiplicity equals

mi =
[Ai : k]

[Ai/Pi : k]
.

Algorithm 2.4 (Decomposition of a divisor). Let X be a projective curve over a
field k. Let i be a positive integer, and let D be an effective divisor such that

degD ≤ i degLX − 2gX + 1.

Suppose that we have a (probabilistic) algorithm to compute the primary decom-
position of a finite commutative k-algebra A with (expected) running time poly-

nomial in [A : k], measured in operations in k. Given the k-algebra S
(2i)
X and the

subspaces Γ(X,L⊗iX (−D)) of Γ(X,L⊗iX ) and Γ(X,L⊗2i
X (−D)) of Γ(X,L⊗2i

X ), this al-
gorithm outputs the decomposition of D as a linear combination of prime divisors
as a list of pairs (P,mP ), where P is a prime divisor and mP is the multiplicity
of P in D.

1. Compute the spaces Γ(D, j∗DL
⊗i
X ) and Γ(D, j∗DL

⊗2i
X ) using (5) and the analo-

gous short exact sequence with 2i in place of i.

2. Compute the k-bilinear map µDi,i from µi,i.

3. Using the method described in § 1.2, compute a k-basis for Γ(D,OD) as a
linear subspace of Endk Γ(D, j∗DL

⊗i
X ), where elements of the latter k-algebra

are expressed as matrices with respect to some fixed basis of Γ(D, j∗DL
⊗i
X ).

4. Compute the multiplication table of Γ(D,OD) on the k-basis of Γ(D,OD)
found in the previous step.

5. Find the primary decomposition of Γ(D,OD).

6. For each local factor A computed in the previous step, let PA denote the
maximal ideal of A, output the inverse image of PA ·Γ(D, j∗DL

⊗i
X ) in Γ(X,L⊗iX )

and the integer [A : k]
/

[A/PA : k].
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Analysis. The correctness of the algorithm follows from the above discussion. It
is straightforward to check that the running time is polynomial in i and degLX ,
measured in operations in k. �

A special case of this algorithm is when D is the intersection of X with a hy-

persurface of degree i − 1. Let s be a non-zero section of L⊗(i−1)
X defining this

hypersurface. The subspaces that are used in this algorithm can then be computed
as

Γ(X,L⊗iX (−D)) = sΓ(X,LX) and Γ(X,L⊗2i
X (−D)) = sΓ(X,L⊗(i+1)

X ).

2.5. Finite morphisms between curves. Let us now look at finite morphisms
between curves. A finite morphism

f : X → Y

of complete, smooth, geometrically connected curves induces two functors

f∗ : {line bundles on Y } → {line bundles on X}

and

Nf : {line bundles on X} → {line bundles on Y }.
Here f∗N denotes the usual inverse image of the line bundle N on Y , and NfM is
the norm of the line bundle M on X under the morphism f .

Let us briefly explain the notion of the norm of a line bundle. The norm functor
is a special case (that of Gm-torsors) of the trace of a torsor for a commutative
group scheme under a finite locally free morphism; see Deligne [19, exposé XVII,
nos 6.3.20–6.3.26]. We formulate the basic results for arbitrary finite locally free
morphisms of schemes

f : X → Y.

In this situation there exists a functor

Nf : {line bundles on X} → {line bundles on Y }

together with a collection of homomorphisms

NLf : f∗L → NfL

of sheaves of sets, for all line bundles L on X, functorial under isomorphisms of line
bundles on X, sending local generating sections on X to local generating sections
on Y and such that the equality

NLf (xl) = Nf (x) ·NLf (l)

holds for all local sections x of f∗OX and l of f∗L. Here Nf : f∗OX → OY denotes
the usual norm map for a finite locally free morphism. Moreover, the functor Nf

together with the collection of the NLf is unique up to unique isomorphism. Instead
of Nf we also write NX/Y if the morphism f is clear from the context.

The basic properties of the norm functor are the following (see [19, exposé XVII,
no 6.3.26]):

(1) the functor Nf is compatible with any base change Y ′ → Y ;
(2) if L1 and L2 are two line bundles on X, there is a natural isomorphism

Nf (L1 ⊗OX L2) ∼= NfL1 ⊗OY NfL2;
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(3) if X
f−→ Y

g−→ Z are finite locally free morphisms, there is a natural
isomorphism

Ng◦f
∼−→ Ng ◦Nf .

Furthermore, there is a functorial isomorphism

(6) NfL
∼−→ HomOY (detOY f∗OX ,detOY f∗L);

see Deligne [19, exposé XVIII, no 1.3.17], and compare Hartshorne [11, IV, Exer-
cise 2.6].

We now consider projective curves X and Y as defined in § 2.1. Suppose we have
a finite morphism

f : X → Y

with the property that f is induced by a graded homomorphism

f# : SY → SX

between the homogeneous coordinate rings of Y and X, or equivalently by a mor-
phism of the corresponding affine cones over X and Y . Then f# induces an iso-
morphism

f∗LY
∼−→ LX

of line bundles on X; see Hartshorne [11, Chapter II, Proposition 5.12(c)]. In
particular, this implies

degLX = deg f · degLY .

We represent a finite morphism f : X → Y by the k-algebras S
(h)
X and S

(h)
Y for

some h ≥ 2, together with the k-algebra homomorphism

f# : S
(h)
Y → S

(h)
X

induced by f# : SY → SX , given as a collection of linear maps Γ(Y,L⊗iY ) →
Γ(X,L⊗iX ) compatible with the multiplication maps on both sides.

In the following, when we mention a finite morphism f : X → Y between projec-

tive curves, we assume that the k-algebras S
(h)
X and S

(h)
Y and the homomorphism

f# : S
(h)
Y → S

(h)
X are given for some h ≥ 2. In the algorithms below, we will indicate

when necessary how large h must be.

Remark. The homomorphism f# gives rise to an injective k-linear map

Γ(Y,LY )→ Γ(X,LX).

Given this map we can reconstruct S(Y ) as a subalgebra of S(X) by noting that
S(Y ) is generated as a k-algebra by Γ(Y,LY ).

2.6. Images, pull-backs and push-forwards of divisors. Let us consider a
finite morphism f : X → Y between complete, smooth, geometrically connected
curves over a field k. Such a morphism f induces various maps between the groups
of divisors on X and on Y .

First, for an effective divisor D on X, we write f(D) for the schematic image
of D under f . The definition implies that the ideal sheaf OY (−f(D)) is the inverse
image of f∗OX(−D) under the natural map OY → f∗OX .
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Second, for any divisor D on X, we have the “push-forward” f∗D of D by f ;
see Hartshorne [11, IV, Exercise 2.6]. If P is a prime divisor on X, then its im-
age f(P ) under f is a prime divisor on Y , the residue field k(P ) is a finite extension
of k(f(P )), and f∗P is given by the formula

(7) f∗P = [k(P ) : k(f(P ))] · f(P ).

The residue field extension degree at P can simply be computed as

[k(P ) : k(f(P ))] =
[k(P ) : k]

[k(f(P )) : k]

=
degP

deg f(P )
.

Third, for any divisor E on Y , we have the “pull-back” f∗E of E by f ; see for
example Hartshorne [11, page 137]. If Q is a prime divisor on Y , then f∗Q is given
by the formula

(8) f∗Q =
∑

P : f(P )=Q

e(P ) · P

where P runs over the prime divisors of X mapping to Q and e(P ) denotes the
ramification index of f at P .

We extend both f∗ and f∗ to arbitrary divisors on X and Y by linearity. Note
that (7) and (8) imply the well-known formula

f∗f
∗E = (deg f)E

for any divisor E on Y . Furthermore, if E is an effective divisor on Y , we have an
equality

f∗E = E ×Y X
of closed subschemes of X, and if IE denotes the ideal sheaf of E, then its inverse
image f−1IE is the ideal sheaf of f∗E.

Remark. The map D 7→ f(D) is not in general linear in D. We do not extend it to
the divisor group on X, and in fact will only need schematic images of prime divisors
on X in what follows. In contrast, the maps f∗ and f∗ are linear by definition.

Now let f be a finite morphism between projective curves in the sense of § 2.5.
In particular, we have a homomorphism f# : SY → SX of graded k-algebras. We
will give algorithms to compute the image and the push-forward of a divisor on X
as well as the pull-back of a divisor on Y .

Algorithm 2.5 (Image of a divisor under a finite morphism). Let f : X → Y be a
finite morphism between projective curves, let i be a positive integer, and let D be

an effective divisor on X. Given the k-algebras S
(i)
X and S

(i)
Y , the homomorphism

f# : S
(i)
Y → S

(i)
X and the subspace Γ(X,L⊗iX (−D)) of Γ(X,L⊗iX ), this algorithm

outputs the subspace Γ(Y,L⊗iY (−f(D))) of Γ(Y,L⊗iY ).

1. Output the inverse image of the subspace Γ(X,L⊗iX (−D)) of Γ(X,L⊗iX ) under

the linear map Γ(Y,L⊗iY )→ Γ(X,L⊗iX ).

Analysis. The definition of f(D) implies that the line bundle L⊗iY (−f(D)) equals

the inverse image of f∗L⊗iX (−D) under the natural map L⊗iY → f∗L⊗iX . Taking

global sections, we see that Γ(Y,L⊗iY (−f(D))) is the inverse image of Γ(X,L⊗iX (−D))
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under the natural map Γ(Y,L⊗iY )→ Γ(X,L⊗iX ). It is clear that the algorithm needs
a number of operations in k that is polynomial in degLX and i. �

Remark. In the above algorithm, we have not placed any restrictions on the degrees
of D and f(D). However, f(D) is not uniquely determined by Γ(Y,L⊗iY (−f(D)))
if its degree is too large.

The algorithm to compute pull-backs that we will now give is based on the fact
that the pull-back of an effective divisor E is simply the fibred product E ×Y X,
viewed as a closed subscheme of X. In particular, the algorithm does not have to
compute the ramification indices, so instead we can use it to compute ramification
indices. Namely, if P is a prime divisor on X, we see from (8) that the ramification
index at P equals the multiplicity with which P occurs in the divisor f∗(f(P )).

Algorithm 2.6 (Pull-back of a divisor under a finite morphism). Let f : X → Y
be a finite morphism between projective curves. Let i and j be positive integers,
and let E be an effective divisor on Y such that

deg f · degE ≤ i degLX − 2gX , degE ≤ i degLY − 2gY

and

(j − i) degLX + deg f · degE ≥ 2gX − 1.

(If we take j ≥ i+1, the last equality does not pose an extra restriction on E.) Given

the k-algebras S
(i+j)
X and S

(i+j)
Y , the k-algebra homomorphism f# : S

(i+j)
Y → S

(i+j)
X

and the subspace Γ(Y,L⊗iY (−E)) of Γ(Y,L⊗iY ), this algorithm outputs the subspace

Γ(X,L⊗iX (−f∗E)) of Γ(X,L⊗iX ).

1. Compute the image W of Γ(Y,L⊗iY (−E)) under the linear map

f# : Γ(Y,L⊗iY )→ Γ(X,L⊗iX ).

2. Compute the space Γ(X,L⊗i+jX (−f∗E)) as the product of W and Γ(X,L⊗jX )
(see Lemma 2.3).

3. Compute Γ(X,L⊗iX (−f∗E)) using Lemma 2.2, and output the result.

Analysis. The ideal in SY defining E is generated by the linear forms vanishing
on E, and the ideal of SX defining f∗E is generated by the pull-backs of these
forms. This shows that f∗E is defined by the forms in W . In the second and third
step, we compute the space of all forms vanishing on f∗E, i.e. the inflation of W .
That the method described is correct was proved in § 2.3. The running time is
clearly polynomial in degLX , i and j. �

Algorithm 2.7 (Push-forward of a divisor under a finite morphism). Let f : X →
Y be a finite morphism between projective curves over a field k, let i be a positive
integer, and let D be an effective divisor on X such that

degD ≤ i degLX − 2gX − 1 and degD ≤ i degLY − 2gY .

Suppose that we have a (probabilistic) algorithm to compute the primary decompo-
sition of a finite commutative k-algebra A with (expected) running time polynomial

in [A : k], measured in operations in k. Given the k-algebras S
(2i)
X and S

(2i)
Y , the

homomorphism f# : S
(2i)
Y → S

(2i)
X and the subspace Γ(X,L⊗iX (−D)) of Γ(X,L⊗iX ),

this algorithm outputs the subspace Γ(Y,L⊗iY (−f∗D)) of Γ(Y,L⊗iY ).
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1. Compute Γ(X,L⊗2i
X (−D)) as the product of Γ(X,L⊗iX ) and Γ(X,L⊗iX (−D))

(see Lemma 2.1).

2. Find the decomposition of D as a linear combination
∑
P nPP of prime divisors

using Algorithm 2.4.

3. For each prime divisor P in the support of D, compute Γ(Y,L⊗i(−f(P ))) using
Algorithm 2.5, and compute [k(P ) : k(f(P ))].

4. Compute the space Γ(Y,L⊗iY (−f∗D)), where

f∗D =
∑
P

nP [k(P ) : k(f(P ))]f(P ),

and output the result.

Analysis. The correctness of the algorithm follows from the definition of f∗. Its
(expected) running time is polynomial in degLX and i, measured in field operations
in k. �

2.7. The norm functor for effective divisors. Let X be a complete, smooth,
geometrically connected curve over a field k, and let E be an effective divisor on X.
We view E as a closed subscheme of X, finite over k. In § 3.6 below, we will
need an explicit description of the norm functor NE/k (for the canonical morphism
E → Spec k) from § 2.5. We view NE/k as a functor from free OE-modules of rank 1
to k-vector spaces of dimension 1.

Let M be a line bundle on X. We abbreviate

Γ(E,M) = Γ(E, j∗EM)

and

NE/kM = NE/k(j∗EM),

where jE is the closed immersion of E into X. Suppose we have two line bundles
M+ andM−, both of degree at least degE+2g−1, together with an isomorphism

M∼= HomOX (M−,M+).

Then we can compute Γ(E,M−) and Γ(E,M+) using the short exact sequences

0 −→ Γ(X,M±(−E)) −→ Γ(X,M±) −→ Γ(E,M±) −→ 0,

and we can express NE/k via the isomorphism

(9) NE/kM∼= Homk

(
detk Γ(E,M−),detk Γ(E,M+)

)
deduced from (6). We fix k-bases of Γ(E,M−) and Γ(E,M+). From the induced
trivialisations of detk Γ(E,M±) we then obtain a trivialisation of NE/kM.

We now consider three line bundlesM, N and P together with an isomorphism

µ : M⊗OX N
∼−→ P.

By the linearity of the norm functor, µ induces an isomorphism

(10) NE/kM⊗k NE/kN
∼−→ NE/kP.

As above, we choose isomorphisms

M∼= HomOX (M−,M+), N ∼= HomOX (N−,N+), P ∼= HomOX (P−,P+)
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on X, where M±, N± and P± are line bundles of degree at least degE + 2g + 1.
We fix bases of the six k-vector spaces

Γ(E,M±), Γ(E,N±), Γ(E,P±).

Then (9) gives trivialisations of NE/kM, NE/kN and NE/kP. Under these trivial-

isations, the isomorphism (10) equals multiplication by some element λ ∈ k×.
To find an expression for λ, we choose generators α±M and α±N of Γ(E,M±) and

Γ(E,N±). To these we associate the isomorphisms

αM : Γ(E,M−)
∼−→ Γ(E,M+) and αN : Γ(E,N−)

∼−→ Γ(E,N+)

sending α−M to α+
M and α−N to α+

N , respectively. Viewing αM and αN as generators
of Γ(E,M) and Γ(E,N ) and applying the isomorphism

µ : Γ(E,M)⊗Γ(E,OE) Γ(E,N )
∼−→ Γ(E,P)

to αM ⊗ αN we obtain a generator of Γ(E,P), which we can identify with an
isomorphism

αP : Γ(E,P−)
∼−→ Γ(E,P+).

We define δM as the determinant of the matrix of αM with respect to the chosen
bases. Under the given trivialisations of NE/kM, the element NME/kαM corresponds

to δM. The same goes for N and P. On the other hand, the isomorphism (10)
maps NME/kαM ⊗NNE/kαN to NPE/kαP . We conclude that we can express λ as

(11) λ =
δP

δMδN
.

Let us turn the above discussion into an algorithm. Let X be a projective curve
over k, embedded via a line bundle L as in § 2.1, and let E be an effective divisor
on X. For simplicity, we restrict to the case where

degE = degL.

We consider line bundles

M = L⊗i(−D1) and N = L⊗j(−D2),

where i and j are non-negative integers and D1 and D2 are effective divisors such
that

degD1 = idegL and degD2 = j degL.

We take

M− = N− = P− = L⊗2

and

M+ = L⊗(i+2)(−D1), N+ = L⊗(j+2)(−D2),

P+ = L⊗(i+j+2)(−D1 −D2).

Algorithm 2.8 (Linearity of the norm functor). Let X be a projective curve over
a field k, and let E, D1 and D2 be effective divisors on X such that

degE = degL, degD1 = idegL, degD2 = j degL.
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Given the k-algebra S
(i+j+4)
X , bases for the k-vector spaces

Γ(X,L⊗2), Γ(X,L⊗(i+2)),

Γ(X,L⊗(j+2)(−D2)), Γ(X,L⊗(i+j+2)(−D1 −D2)),

Γ(E,L⊗2), Γ(E,L⊗(i+2)(−D1)),

Γ(E,L⊗(j+2)(−D2)), Γ(E,L⊗(i+j+2)(−D1 −D2))

and the matrices of the quotient maps

Γ(X,L⊗2) −→ Γ(E,L⊗2),

Γ(X,L⊗(i+2)(−D1)) −→ Γ(E,L⊗(i+2)(−D1)),

Γ(X,L⊗(j+2)(−D2)) −→ Γ(E,L⊗(j+2)(−D2)),

Γ(X,L⊗(i+j+2)(−D1 −D2)) −→ Γ(E,L⊗(i+2)(−D1))

with respect to the given bases, this algorithm outputs the element λ ∈ k× such
that the diagram

k
t1⊗t2−→∼ NE/kL⊗i(−D1)⊗k NE/kL⊗j(−D2)

λ
y∼ y∼
k

t3−→∼ NE/kL⊗(i+j)(−D1 −D2)

is commutative. Here

t1 : k
∼−→ NE/kL⊗i(−D1), t2 : k

∼−→ NE/kL⊗j(−D2),

t3 : k
∼−→ NE/kL⊗(i+j)(−D1 −D2)

are the trivialisations defined by (9) using the given bases.

1. Compute the spaces

Γ(E,L⊗(i+4)(−D1)) and Γ(E,L⊗(i+j+4)(−D1 −D2))

and the multiplication maps

Γ(E,L⊗2)× Γ(E,L⊗(i+2)(−D1))→ Γ(E,L⊗(i+4)(−D1)),

Γ(E,L⊗(i+2)(−D1))× Γ(E,L⊗(j+2)(−D2))→ Γ(E,L⊗(i+j+4)(−D1 −D2)),

Γ(E,L⊗2)× Γ(E,L⊗(i+j+2)(−D1 −D2))→ Γ(E,L⊗(i+j+4)(−D1 −D2)).

2. Apply the probabilistic method described in § 1.2 to the bilinear maps just
computed to find generators β0, β1 and β2 of the free Γ(E,OE)-modules
Γ(E,L⊗2), Γ(E,L⊗(i+2)(−D1)) and Γ(E,L⊗(j+2)(−D2)) of rank 1.

(Note that we do not need the k-algebra structure on Γ(E,L⊗2). If k is small,
we may have to extend the base field, but it is easy to see that this is not a
problem.)
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3. Compute the matrix (with respect to the given bases) of the isomorphism α1

defined by the commutative diagram

Γ(E,L⊗2)
α1−→∼ Γ(E,L⊗(i+2)(−D1))∥∥ ∼

y·β0

Γ(E,L⊗2)
·β1−→∼ Γ(E,L⊗(i+4)(−D1)),

of the isomorphism α2 defined by the similar diagram for L⊗j(−D2) instead
of L⊗i(−D1) and of the isomorphism α3 defined by the commutative diagram

Γ(E,L⊗2)
α3−→∼ Γ(E,L⊗(i+j+2)(−D1 −D2))

α1

y∼ ∼
y·β0

Γ(E,L⊗(i+2)(−D1))
·β2−→∼ Γ(E,L⊗(i+j+4)(−D1 −D2)).

4. Compute the elements δ1, δ2 and δ3 of k× as the determinants of the matrices
of α1, α2 and α3 computed in the previous step.

5. Output the element
δ3
δ1δ2

∈ k×.

Analysis. We note that β0 plays the role of α−M, α−N and α−P in the notation of the
discussion preceding the algorithm, and that β1, β2 and β1β2/β0 play the roles of
α+
M, α+

N and α+
P . This means that α1, α2 and α3 are equal to αM, αN and αP . It

now follows from (11) that the output of the algorithm is indeed equal to λ. It is
clear that the algorithm runs in (probabilistic) polynomial time in degL, i and j
(measured in field operations in k). �

2.8. Computing in the Picard group of a curve. We now turn to the question
of computing with elements in the Picard group of a curve X, using the opera-
tions on divisors described in the first part of this section. We only consider the
group Pic0X of isomorphism classes of line bundles of degree 0. This group can be
identified in a canonical way with a subgroup of rational points of the Jacobian va-
riety of X. If X has a rational point, then this subgroup consists of all the rational
points of the Jacobian.

We will only describe Khuri-Makdisi’s medium model of Pic0X relative to a fixed
line bundle L of degree

degL ≥ 2g + 1,

but at the same time

degL ≤ c(g + 1)

for some constant c ≥ 1, as described in [12, § 5].

Remark. Khuri-Makdisi starts with a divisor D0 whose degree satisfies the above
inequalities and takes L = OX(D0). This is of course only a matter of language.
Another difference in notation is that Khuri-Makdisi writes L0 for L and uses the
notation L for L⊗2

0 (in the medium model) or L⊗3
0 (in the large and small models,

which we do not describe here).
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We represent elements of Pic0X by effective divisors of degree degL as follows:
the isomorphism class of a line bundle M of degree 0 is represented by the divisor
of some global section of the line bundle Hom(M,L) of degree degL, i.e. by any
effective divisor D such that

M∼= L(−D).

It follows from the inequality degL ≥ 2g that we can represent any effective di-
visor D of degree degL by the subspace Γ(X,L⊗2(−D)) of codimension degL
in Γ(X,L⊗2).

There are a few basic operations:

• membership test : given a subspace W of codimension degL in Γ(X,L⊗2),
decide whether W represents an element of Pic0X, i.e. whether W is of the
form Γ(X,L⊗2(−D)) for an effective divisor D of degree degL.
• zero test : given a subspace W of codimension degL in Γ(X,L⊗2), decide

whether W represents the zero element of Pic0X.
• zero element : output a subspace of codimension degL in Γ(X,L⊗2) repre-

senting the element 0 ∈ Pic0X.
• addflip: given two subspaces of Γ(X,L⊗2) representing elements x, y ∈

Pic0X, compute a subspace of Γ(X,L⊗2) representing the element −x− y.

From the “addflip” operation, one immediately gets negation (−x = −x − 0),
addition (x + y = −(−x − y)) and subtraction (x − y = −(−x) − y). Clearly, one
can test whether two elements x and y are equal by computing x − y and testing
whether the result equals zero.

Remark. With regard to actual implementations of the above algorithms, we note
that some of the operations can be implemented in a more efficient way than by
composing the basic operations just described. We refer to [13] for details.

By Khuri-Makdisi’s results in [13], the above operations can be implemented
using randomised algorithms with expected running time of O(g3+ε) for any ε > 0,
measured in operations in the field k. This can be improved to O(g2.376) by means
of fast linear algebra algorithms. (The exponent 2.376 is an upper bound for the
complexity of matrix multiplication.)

Multiplication by a positive integer n can be done efficiently by means of an
addition chain for n. This is a sequence of positive integers (a1, a2, . . . , am) with
a1 = 1 and am = n such that for each l > 1 there exist i(l) and j(l) in {1, 2, . . . , l−1}
such that al = ai(l) + aj(l). (We consider the indices i(l) and j(l) as given together
with the addition chain.) The integer m is called the length of the addition chain.
Since the “addflip” operation in our set-up takes less time than addition, it is
more efficient to use an anti-addition chain, which is a sequence of (not necessarily
positive) integers (a0, a1, . . . , am) such that

al =


0 if l = 0;

1 if l = 1;

−ai(l) − aj(l) if 2 ≤ l ≤ m
and am = n; the i(l) and j(l) are given elements of {0, 1, . . . , l − 1} for 2 ≤ l ≤ m.

It is well known that for every positive integer n there is an addition chain
of length O(log n), and there are algorithms (such as the binary method used in
repeated squaring) to find such an addition chain in time O((log n)2). We leave it
to the reader to write down a similar algorithm for finding an anti-addition chain.
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For later use, we give versions of the “zero test” and “addflip” algorithms that
are identical to those given by Khuri-Makdisi, except that some extra information
computed in the course of the algorithm is part of the output.

Algorithm 2.9 (Zero test). Let X be a projective curve over a field k, and let

x be an element of Pic0X. Given the k-algebra S
(2)
X and a subspace Γ(L⊗2

X (−D))

of Γ(L⊗2
X ) representing x, this algorithm outputs false if x 6= 0 (i.e. if the line

bundle LX(−D) is non-trivial). If LX(−D) is trivial, the algorithm outputs a pair
(true, s), where s is a global section of LX with divisor D.

1. Compute the space

Γ(LX(−D)) =
{
s ∈ Γ(LX)

∣∣ sΓ(LX) ⊆ Γ(L⊗2
X (−D))

}
.

(The truth of this equality follows from Lemma 2.2.)

2. If Γ(LX(−D)) = 0, output false. Otherwise, output (true, s), where s is any
non-zero element of the one-dimensional k-vector space Γ(LX(−D)).

Algorithm 2.10 (Addflip). Let X be a projective curve over a field k, and let x

and y be elements of Pic0X. Given the k-algebra S
(5)
X and subspaces Γ(L⊗2

X (−D))

and Γ(L⊗2
X (−E)) of Γ(L⊗2

X ) representing x and y, this algorithm outputs a subspace

Γ(L⊗2
X (−F )) representing −x− y, as well as a global section s of L⊗3

X such that

div s = D + E + F.

1. Compute Γ(L⊗4
X (−D − E)) as the product of Γ(L⊗2

X (−D)) and Γ(L⊗2
X (−E))

(see Lemma 2.1).

2. Compute the space

Γ(L⊗3
X (−D − E)) =

{
s ∈ Γ(L⊗3

X )
∣∣ sΓ(LX) ⊆ Γ(L⊗4

X (−D − E))
}

(see Lemma 2.2).

3. Choose any non-zero s ∈ Γ(L⊗3
X (−D − E)). Let F denote the divisor of s as a

global section of L⊗3
X (−D − E).

4. Compute the space

Γ(L⊗5
X (−D − E − F )) = sΓ(L⊗2

X ).

5. Compute the space

Γ(L⊗2
X (−F )) =

{
t ∈ Γ(L⊗2

X )
∣∣ tΓ(L⊗3

X (−D − E)) ⊆ Γ(L⊗5
X (−D − E − F ))

}
(see again Lemma 2.2).

6. Output the space Γ(L⊗2
X (−F )) and the section s ∈ Γ(L⊗3

X ).

2.9. Descent of elements of the Picard group. Let X be a projective curve
over a field k in the sense of § 2.1, and let O be a k-rational point of X. Let x be
an element of Pic0X, and letM be a line bundle representing x. Let rLX ,Ox be the
greatest integer r such that

Γ(HomOX (M,LX(−rO))) 6= 0.

Then Γ(HomOX (M,LX(−rLX ,Ox O))) is one-dimensional, so there exists a unique
effective divisor R such that

M∼= LX(−R− rLX ,Ox O).
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We define the (LX , O)-normalised representative of x as the effective divisor

RLX ,Ox = R+ rLX ,Ox O

of degree degLX ; it is a canonically defined divisor (depending on O) with the
property that x is represented by LX(−RLX ,Ox ).

Remark. Since for any line bundle N we have

degN ≥ g =⇒ Γ(N ) 6= 0

and

degN < 0 =⇒ Γ(N ) = 0,

the integer rLX ,Ox satisfies

degLX − gX ≤ rLX ,Ox ≤ degLX .

Algorithm 2.11 (Normalised representative). Let X be a projective curve over a
field k, and let O be a k-rational point of X. Let x be an element of Pic0X, and

let RLX ,Ox be the (LX , O)-normalised representative of x. Given the k-algebra S
(4)
X ,

the space Γ(L⊗2
X (−O)) and a subspace of Γ(L⊗2

X ) representing x, this algorithm

outputs the integer rLX ,Ox and the subspace Γ(L⊗2
X (−RLX ,Ox )) of Γ(L⊗2

X ).

1. Using the negation algorithm, find a subspace Γ(L⊗2
X (−D)) of Γ(L⊗2

X ) repre-
senting −x. Put r = degLX .

2. Compute the space Γ(L⊗2
X (−rO)), then compute the space Γ(L⊗4

X (−D − rO))

as the product of Γ(L⊗2
X (−D)) and Γ(L⊗2

X (−rO)), and then compute the space

Γ(L⊗2
X (−D − rO)) =

{
t ∈ Γ(L⊗2

X )
∣∣ tΓ(L⊗2

X ) ⊆ Γ(L⊗4
X (−D − rO))

}
.

3. If Γ(L⊗2
X (−D − rO)) = 0, decrease r by 1 and go to step 2.

4. Let s be a non-zero element of Γ(L⊗2
X (−D − rO)). Compute

Γ(L⊗4
X (−D −RLX ,Ox )) = sΓ(L⊗2

X ),

and then compute

Γ(L⊗2
X (−RLX ,Ox )) =

{
t ∈ Γ(L⊗2

X )
∣∣ tΓ(L⊗2

X (−D)) ⊆ Γ(L⊗4
X (−D −RLX ,Ox ))

}
,

5. Output rLX ,Ox = r and Γ(L⊗2
X (−RLX ,Ox )).

Analysis. It follows from the definition of RLX ,Ox that this algorithm is correct. It
is straightforward to check that its running time, measured in operations in k, is
polynomial in degLX . �

Now let k′ be a finite extension of k, and write

X ′ = X ×Spec k Spec k′.

Consider the natural group homomorphism

i : Pic0X → Pic0X ′.

It is injective since a line bundle L of degree 0 on X is trivial if and only if Γ(X,L) 6=
0, and this is equivalent to the corresponding condition over k′.

Let x′ be an element of Pic0X ′. We now explain how to use normalised repre-
sentatives to decide whether x′ lies in the image of i, and if so, to find the unique
element x ∈ Pic0X such that x′ = i(x).
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Algorithm 2.12 (Descent). Let X be a projective curve over a field k, and let O
be a k-rational point of X. Let k′ be a finite extension of k, write

X ′ = X ×Spec k Spec k′,

and let LX′ denote the base extension of the line bundle LX to X ′. Let x′ be an

element of Pic0X ′. Given the k-algebra S
(4)
X , the spaces

Γ(X,L⊗2
X (−rO)) for degLX − gX ≤ r ≤ degLX

and a subspace of Γ(X ′,L⊗2
X′ ) representing x′, this algorithm outputs false if x′ is

not in the image of the canonical map

i : Pic0X → Pic0X ′.

Otherwise, the algorithm outputs (true,Γ(X,L⊗2
X (−D))), where Γ(X,L⊗2

X (−D))

represents the unique element x ∈ Pic0X such that i(x) = x′.

1. Compute the (LX′ , O)-normalised representative R
LX′ ,O
x′ of x′.

2. Compute the k-vector space

V = Γ(X ′,L⊗2
X′ (−Rx)) ∩ Γ(X,L⊗2

X ).

3. If the codimension of V in Γ(X,L⊗2
X ) is less than degLX , output false; oth-

erwise, output (true, V ).

Analysis. In step 3, we check whether RLX ,Ox is defined over k or, equivalently,
whether x is defined over k. If this is the case, the space V equals Γ(X,L⊗2

X (−Rx)),

where x is the unique element of Pic0X such that i(x) = x′. This shows that the
algorithm is correct; its running time, measured in operations in k and k′, is clearly
polynomial in degLX . �

2.10. Computing Picard and Albanese maps. A finite morphism

f : X → Y

between complete, smooth, geometrically connected curves over a field k induces
two group homomorphisms

Pic f : Pic0 Y → Pic0X and Alb f : Pic0X → Pic0 Y,

called the Picard and Albanese maps, respectively. In terms of line bundles, they
can be described as follows. The Picard map sends the class of a line bundle N
on Y to the class of the line bundle f∗N on X, and the Albanese map sends the
class of a line bundle M on X to the class of the line bundle NfM on Y .

Alternatively, these maps can be described in terms of divisor classes as follows.
The group homomorphisms

f∗ : Div0X → Div0 Y and f∗ : Div0 Y → Div0X

between the groups of divisors of degree 0 on X and Y respect the relation of linear
equivalence on both sides. The Picard map sends the class of a divisor E on Y
to the class of the divisor f∗E on X, and the Albanese map sends the class of a
divisor D on X to the class of the divisor f∗D on Y .

Let us now assume that f : X → Y is a finite morphism of projective curves in
the sense of § 2.5; in particular, we are given an isomorphism f∗LY

∼−→ LX . Using
the following algorithms, we can compute the maps Pic f and Alb f . The algorithm
for the Albanese map actually only reduces the problem to a different one, namely
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that of computing traces in Picard groups with respect to finite extensions of the
base field. If A is an Abelian variety over a field k and k′ is a finite extension of k,
then the trace of an element y ∈ A(k′) is defined by

trk′/k y = [k′ : k]i
∑
σ

σ(y),

where σ runs over all k-embeddings of k′ into an algebraic closure of k and [k′ : k]i
is the inseparable degree of k′ over k. Computing traces is a problem that can be
solved at least for finite fields, as we will see in § 3.4.

Algorithm 2.13 (Picard map). Let f : X → Y be a finite morphism of pro-

jective curves, and let y be an element of Pic0 Y . Given the k-algebras S
(4)
X

and S
(4)
Y , the homomorphism f# : S

(4)
Y → S

(4)
X and a subspace Γ(Y,L⊗2

Y (−E))

of Γ(Y,L⊗2
Y ) representing y, this algorithm outputs a subspace of Γ(X,L⊗2

X ) repre-

senting (Pic f)(y) ∈ Pic0X.

1. Compute the subspace Γ(X,L⊗2
X (−D)) for the divisor D = f∗E using Algo-

rithm 2.6 (taking i = j = 2 in the notation of that algorithm), and output the
result.

Analysis. Since (Pic f)(y) is represented by the line bundle LX(−f∗D), the correct-
ness of this algorithm follows from that of Algorithm 2.6. Furthermore, the running
time of Algorithm 2.6, measured in operations in k, is polynomial in degLX for fixed
i and j; therefore, the running time of this algorithm is also polynomial in degLX .
�

Algorithm 2.14 (Albanese map). Let f : X → Y be a finite morphism of projec-
tive curves over a field k. Let x be an element of Pic0X, and let O be a k-rational
point of Y . Suppose that we have a (probabilistic) algorithm to compute the pri-
mary decomposition of a finite commutative k-algebra A with (expected) running
time polynomial in [A : k], measured in operations in k. Suppose furthermore
that for any finite extension k′ of k and any element y ∈ Pic0(Yk′), we can com-
pute trk′/k y in time polynomial in degLY and [k′ : k], measured in operations

in k. Given the k-algebras S
(6)
X and S

(6)
Y , the homomorphism f# : S

(6)
Y → S

(6)
X , the

space Γ(Y,L⊗2
Y (−O)) and a subspace Γ(X,L⊗2

X (−D)) of Γ(X,L⊗2
X ) representing x,

this algorithm outputs a subspace of Γ(Y,L⊗2
Y ) representing (Alb f)(x) ∈ Pic0 Y .

1. Compute Γ(X,L⊗4
X (−D)) as the product of Γ(X,L⊗2

X ) and Γ(X,L⊗2
X (−D)).

2. Find the decomposition of D as a linear combination
∑
P nPP of prime divisors

using Algorithm 2.4.

3. For each P occurring in the support of D:

4. Compute the base changes Xk(P ) and Yk(P ).

5. Decompose the divisor Pk(P ) on Xk(P ) as a linear combination of prime
divisors using Algorithm 2.4 and pick a rational point P ′ in it.

6. Compute the space Γ(Yk(P ),L⊗2
Y (−f(P ′)−(degLY −1)O)); this represents

an element yP ′ ∈ Pic0(Yk(P )).

7. Compute the element yP = trk(P )/k yP ′ of Pic0 Yk(P ). Apply Algorithm 2.12

to get a representation for yP as an element of Pic0 Y .

8. Compute the element y =
∑
P nP yP of Pic0(Y ).
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9. Output the element y−(deg f)(degLY −1)y0 of Pic0 Y , where y0 is the element
of Pic0 Y represented by Γ(Y,L⊗2

Y (−(degLY )O)).

Analysis. The definition of yP ′ implies that

yP ′ = [LY (−f(P ′)− (degLY − 1)O)],

the definition of yP , together with the definition of the trace, implies that

yP = [L⊗[k(P ):k]
Y (−f∗P − [k(P ) : k](degLY − 1)O)]

and the definition of y, together with the fact that degLX = (deg f)(degLY )
implies that

y = [L⊗ degLX
Y (−f∗D − (degLX)(degLY − 1)O)]

= [L⊗ deg f
Y (−f∗D)] + (deg f)(degLY − 1)[LY (−(degLY )O)].

Together with the definition of y0, this shows that

y − (deg f)(degLY − 1)y0 = [L⊗ deg f
Y (−f∗D)]

= NfLX(−D),

and therefore that the output of the algorithm is indeed (Alb f)(x). Our computa-
tional assumptions imply that the running time is polynomial in degLX , measured
in field operations in k. �

3. Curves over finite fields

In this section we give algorithms for computing with divisors on a curve over
a finite field. After some preliminaries, we show how to compute the Frobenius
map on divisors and how to choose uniformly random divisors of a given degree.
Then we show how to perform various operations in the Picard group of a curve
over a finite field, such as choosing random elements, computing the Frey–Rück
pairing and finding a basis of the l-torsion for a prime number l. Several results
in this section, especially those in § 3.7, § 3.8 and § 3.9, are variants of work of
Couveignes [5].

From now on, we will measure running times of algorithms in bit operations
instead of field operations. We note that the usual field operations in a finite field k
can be done in time polynomial in log #k.

Let k be a finite field of cardinality q, and let X be a complete, smooth, geo-
metrically connected curve of genus g over k. The zeta function of X is the power
series in Z[[t]] defined by

ZX =
∑

D∈Eff X

tdegD ==
∞∑
n=0

(# EffnX)tn

∥∥ ∥∥
∏

P∈PDivX

1

1− tdegP
==

∞∏
d=1

(1− td)−# PDivdX .

Here Eff X and PDivX are the sets of effective divisors and prime divisors on X,
respectively; a superscript denotes the subset of divisors of the indicated degree.
The following properties of the zeta function are well known.
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(1) The power series ZX can be written as a rational function

(12) ZX =
LX

(1− t)(1− qt)
for some LX = 1+a1t+· · ·+a2g−1t

2g−1+qgt2g ∈ Z[t].

(2) The factorisation of LX over the complex numbers has the form

(13) LX =

2g∏
i=1

(1− αit) with |α1| = . . . = |α2g| =
√
q.

(3) The polynomial LX satisfies the functional equation

(14) qgt2gLX(1/qt) = LX(t).

From the definition of ZX and from (12) it is clear how one can compute the num-
ber of effective divisors of a given degree on X starting from the polynomial LX . We
now show how to extract the number of prime divisors of a given degree from LX .
Taking logarithmic derivatives in the definition of ZX and the expression (12), we
obtain

(15)
Z′X
ZX

=
1

t

∞∑
n=1

(∑
d|n

d ·# PDivdX

)
tn =

L′X
LX

+
1

1− t
+

q

1− qt
.

From LX we can compute the coefficients of this power series. We can then compute
# PDivdX using the Möbius inversion formula. More explicitly, taking logarithmic
derivatives in the factorisation (13), we obtain Newton’s identity

L′X/LX = −
∞∑
n=0

sn+1t
n,

where the sn are the power sums

sn =

2g∑
i=1

αni ∈ Z (n ≥ 0).

Expanding the right-hand side of (15) in a power series and comparing coefficients,
we get ∑

d|n

d# PDivdX = 1 + qn − sn,

or equivalently, by the Möbius inversion formula,

n# PDivnX =
∑
d|n

µ(n/d)(1 + qd − sd),

where µ is the usual Möbius function. We note that this simplifies to

(16) # PDivnX =

{
1 + q − s1 if n = 1;
1
n

∑
d|n µ(n/d)(qd − sd) if n ≥ 2.

Let J = Pic0
X/k denote the Jacobian variety of X. From the fact that the Brauer

group of k vanishes it follows that the canonical inclusion

Pic0X → J(k)

is an equality. In other words, every rational point of J can be identified with a
linear equivalence class of k-rational divisors of degree 0.
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From the functional equation (14) one can deduce that

# EffnX =
q1−g+n − 1

q − 1
LX(1) for n ≥ 2g − 1,

which in turn is equivalent to the “class number formula”

(17) #J(k) = # Pic0X = LX(1).

3.1. The Frobenius map. Let k be a finite field of cardinality q, and let X
be a projective curve over k in the sense of § 2.1. We write d = degLX . Let
SymdX denote the d-th symmetric power of X over k, and let Grd Γ(X,L⊗2

X )
denote the Grassmann variety of linear subspaces of codimension d in the k-vector
space Γ(X,L⊗2

X ). Then we have a commutative diagram

Grd Γ(X,L⊗2
X ) ←− SymdX

Fq

y yFq

Grd Γ(X,L⊗2
X ) ←− SymdX

of varieties over k, where the vertical arrows are the q-power Frobenius morphisms.
Now let k′ be a finite extension of k, write

X ′ = X ×Spec k Spec k′,

and let D be an effective divisor on X ′. The commutativity of the above diagram
shows that the divisor (Fq)∗D onX ′ can be computed using the following algorithm.

Algorithm 3.1 (Frobenius map on divisors). Let X be a projective curve over a
finite field k of q elements. Let k′ be a finite extension of k. Let X ′ = X ×Spec k

Spec k′, and let LX′ be the base extension of the line bundle LX to X ′. Let i be
a positive integer, and let D be an effective divisor on X ′. Given the matrix M of
the inclusion map

Γ(X ′,L⊗iX′(−D)) −→ Γ(X ′,L⊗iX′)
with respect to any k′-basis of the left-hand side and the k′-basis induced from any
k-basis of Γ(X,L⊗iX ) on the right-hand side, this algorithm outputs the analogous
matrix for the inclusion map

Γ(X ′,L⊗iX′(−(Fq)∗D)) −→ Γ(X ′,L⊗iX′).

1. Apply the Frobenius automorphism of k′ over k to the entries of the matrix M ,
and output the result.

Analysis. It follows from the discussion preceding the algorithm that the output
is indeed equal to Γ(X ′,L⊗iX′(−(Fq)∗D)). The algorithm involves O((degL⊗iX )2)
computations of a q-th power of an element in k′, so the running time is polynomial
in degLX , i, log q and [k′ : k]. �

3.2. Choosing random prime divisors. Let X be a projective curve (in the
sense of § 2.1) over a finite field. Our next goal is to generate random effective
divisors of given degree on X. We start with an algorithm to generate random
prime divisors. For this we do not yet need to know the zeta function of X,
although we use its properties in the analysis of the running time of the algorithm.
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Algorithm 3.2 (Random prime divisor). Let X be a projective curve over a finite
field k. Let d and i be positive integers such that

d ≤ idegLX − 2gX .

Given d, i and the k-algebra S
(2i+2)
X , this algorithm outputs a uniformly dis-

tributed prime divisor P of degree d on X, represented as the subspace Γ(L⊗iX (−P ))

of Γ(L⊗iX ), provided PDivdX is non-empty. (If PDivdX = ∅, the algorithm does
not terminate.)

1. Choose a non-zero element s ∈ Γ(L⊗iX ) uniformly randomly, and let D denote
the divisor of s; this is a uniformly random hypersurface section of degree i
of X.

2. Compute the set IrrdD of (reduced) irreducible components of D of degree d
over k using Algorithm 2.4.

3. With probability # IrrdD
b(i degLX)/dc , output a uniformly random element P ∈ IrrdD

and stop.

4. Go to step 1.

Analysis. Let q denote the cardinality of k, and let H denote the set of divisors D
that are divisors of non-zero global sections of L⊗iX . By the Riemann–Roch formula,
the cardinality of H is

#H =
q1−g+i degL − 1

q − 1
.

When the algorithm finishes, the probability p(D,P ) that a specific pair (D,P ) has
been chosen is

p(D,P ) =
1

#H

# IrrdD

b(idegL)/dc
1

# IrrdD

=
q − 1

q1−g+i degL − 1

1

b(idegL)/dc
.

For all prime divisors P of degree d, the number of D ∈ H for which P is in the
support of D is equal to

#{D | P ∈ suppD} =
q1−g+i degL−d − 1

q − 1
,

so the probability p(P ) that a given P is chosen equals

p(P ) = #{D | P ∈ suppD} · p(D,P )

=
q1−g+i degL−d − 1

q1−g+i degL − 1

1

b(i degL)/dc
.
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This is independent of P and therefore shows that when the algorithm finishes, the
chosen element P ∈ PDivdX is uniformly distributed. Furthermore, the probabil-
ity p that the algorithm finishes in a given iteration is

p = # PDivdX · q
1−g+i degL−d − 1

q1−g+i degL − 1

1

b(i degL)/dc

=
# PDivdX

qd
q1−g+i degL − qd

q1−g+i degL − 1

1

b(i degL)/dc

≥ # PDivdX

qd
(1− q−1−gX )

d

i degL
.

We claim that the expected running time is polynomial in degL, i and log q, under
the assumption that PDivdX 6= ∅. We distinguish two cases:

qd/2 < 2σ0(d)(2gX + 1) and qd/2 ≥ 2σ0(d)(2gX + 1).

Here σ0(d) denotes the number of positive divisors of d. In the first case, we see
that

p > (2σ0(d)(2gX + 1))−2(1− q−1−gX )
d

i degL
.

In the second case, we deduce from (16) the following estimate for # PDivdX:

|d# PDivdX − qd| ≤
∑
e|d
e 6=d

qe +
∑
e|d

|se|

≤ (σ0(d)− 1)qd/2 + σ0(d) · 2gXqd/2

< σ0(d)(2gX + 1)qd/2

≤ 1

2
qd.

This implies that # PDivdX > qd/(2d), and hence

p >
1− q−1−gX

2i degL
.

In both cases we see that 1/p is bounded by a polynomial in degL and i, and we
conclude that the expected running time is bounded by a polynomial in degL, i
and log q. �

3.3. Choosing random divisors. As before, let X be a projective curve over a
finite field k. From now on we assume that we know the zeta function of X, or
equivalently the polynomial LX .

Below we will give an algorithm for generating uniformly random effective divi-
sors of a given degree on the curve X. These divisors will be built up from prime
divisors, so it will be useful to speak about the decomposition type of an effective
divisor D. This is the sequence of integers (l1, l2, . . .), where ld is the number of
prime divisors of degree d (counted with multiplicities) occurring in D.

One of the ingredients is the concept of m-smooth divisors and decomposition
types for integers m ≥ 0. An m-smooth divisor is a linear combination of prime
divisors whose degrees are at most m, and an m-smooth decomposition type of
degree n is an m-tuple (l1, . . . , lm) such that

∑m
d=1 ldd = n. For every m-smooth
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effective divisor D of degree n, we may view the decomposition type of D as an
m-smooth decomposition type, since only its first m coefficients are non-zero.

The algorithm that we will describe takes as input integers n ≥ 0 and m ≥ 1,
and outputs a uniformly random m-smooth effective divisor of degree n. Clearly,
all effective divisors of degree n are n-smooth, so that the algorithm can be used
with m = n to produce uniformly random effective divisors of degree n.

The first step is to generate the decomposition type of a uniformly random m-
smooth effective divisor of degree n. The method we use for doing this is described
by Diem in [6, page 150] and in [7]. The algorithm works by recursion on m. For
every m ≥ 1, we write Effn≤mX for the set of m-smooth effective divisors D of

degree n. Furthermore, for l ≥ 0 and m ≥ 1 we write Eff lm=mX for the set of
divisors of degree lm that are linear combinations of prime divisors of degree m.
We note that the set Effn≤mX can be decomposed as

(18) Effn≤mX =


Effn=1X if m = 1;
bn/mc⊔
l=0

Eff lm=mX × Effn−lm≤m−1X if m ≥ 2.

The cardinality of Eff lm=mX equals the number of ways to choose l elements from
the set PDivmX with repeats. For this we have the well-known formula

(19) # Eff lm=mX =

(
# PDivmX − 1 + l

l

)
.

Furthermore, from the description (18) of Effn≤mX we see that

(20) # Effn≤mX =


# Effn=1X if m = 1;
bn/mc∑
l=0

# Eff lm=mX ·# Effn−lm≤m−1X if m ≥ 2.

From these relations we can compute # Effn≤mX recursively, starting from the

numbers # PDivdX for 1 ≤ d ≤ m. An alternative way to describe these recurrence
relations is to use generating functions; see Diem [6, page 149] or [7, Lemma 3.14].

In order to generate decomposition types of uniformly random m-smooth divi-
sors of degree n, we define a probability distribution µnm on the set of m-smooth
decomposition types of degree n by defining µnm(l1, . . . , lm) as the probability that
a uniformly randomly chosen effective m-smooth divisor of degree n has decom-
position type (l1, . . . , lm). The algorithm now works as follows. We first select an
integer lm ∈ {0, 1, . . . , bn/mc}—the number of prime divisors of degree m (counted
with multiplicities) occurring in the decomposition—according to the marginal dis-
tribution νnm of the m-th coordinate. We then apply the algorithm recursively with
(n− lmm,m− 1) in place of (n,m).

The marginal distribution νnm of the coordinate lm in an m-tuple (l1, . . . , lm) dis-
tributed according to µnm is the following. If m = 1, then l1 = n with probability 1.
When m ≥ 2, the probability that lm equals a given l ∈ {0, 1, . . . , bn/mc} is

(21) νnm(l) =
# Eff lm=mX ·# Effn−lm≤m−1X

# Effn≤mX
(0 ≤ l ≤ bn/mc).
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We compute # Effn≤mX, as well as # Eff lm=m and # Effn−lm≤m−1X for 0 ≤ l ≤ bn/mc,
using (16), (19) and (20). We then generate a random lm ∈ {0, 1, . . . , bn/mc},
distributed according to νnm, in the following way. We subdivide the interval

I = {0, 1, . . . ,# Effn≤mX − 1}
into bn/mc + 1 intervals Il, with 0 ≤ l ≤ bn/mc and each Il having length

# Eff lm=mX ·# Effn−lm≤m−1X, we generate a uniformly random element x ∈ I, and we
select the unique l such that x ∈ Il.
Algorithm 3.3 (Decomposition type of a random divisor). Given the polyno-
mial LX for a curve X over a finite field and integers n ≥ 0 and m ≥ 1, this al-
gorithm outputs a random m-smooth decomposition type (l1, . . . , lm) of degree n,
distributed according to the distribution µnm.

1. If m = 1, output the 1-tuple (n) and stop.

2. Choose a random element lm ∈ {0, 1, . . . , bn/mc} according to the distribu-
tion νnm from (21).

3. Call the algorithm recursively with (n−lmm,m−1) in place of (n,m) to obtain
an (m− 1)-smooth decomposition type (l1, . . . , lm−1) of degree n− lmm.

4. Output the m-tuple (l1, . . . , lm).

Analysis. The correctness of the algorithm follows from the above discussion. Its
running time is polynomial in gX , n, m and log #k. �

The preceding algorithm reduces our problem to generating random linear com-
binations of l prime divisors of a given degree d. In other words, we have to pick
a random multiset of cardinality l from PDivdX. This can be done using the
following algorithm.

Algorithm 3.4 (Random multiset). Let S be a finite non-empty set of known
cardinality. Suppose we have algorithms to pick uniformly random elements of S
and to decide whether two such elements are equal. Given a non-negative integer l,
this algorithm outputs a uniformly random multiset of l elements from S.

1. Generate a uniformly random subset {x1, . . . , xl} of {1, 2, . . . , l+#S−1}, with
x1 < x2 < . . . < xl.

2. Define a multiset (y1, . . . , yl) of l elements from {0, 1, . . . ,#S−1} by yi = xi−i;
then y1 ≤ y2 ≤ . . . ≤ yl.

3. For each i with 1 ≤ i ≤ l, let ai be the number of elements of {0, 1, . . . ,#S−1}
that occur with multiplicity i in (y1, . . . , yl).

4. Generate a uniformly random sequence

s1
1, s

1
2, . . . , s

1
a1 , s2

1, s
2
2, . . . , s

2
a2 , . . . , sl1, s

l
2, . . . , s

l
al

of a1 + a2 + · · ·+ al distinct elements of S.

5. Output the multiset consisting of the elements sji of S, where sji occurs with
multiplicity j.

Analysis. By construction, (y1, . . . , yl) is a uniformly random multiset of l elements
chosen from {0, 1, . . . ,#S− 1}, so the “multiplicity vector” (a1, . . . , al) is the same
as that of a uniformly random multiset of l elements from S. The multiset generated
in the last step is uniformly random among the multisets with this “multiplicity
vector”. This implies that the result is a uniformly random multiset of l elements
from S, as required. �
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Combining Algorithms 3.2, 3.3 and 3.4, we obtain the following algorithm to
generate a uniformly random effective divisor of a given degree.

Algorithm 3.5 (Random divisor). Let X be a projective curve over a finite field k.
Given positive integers m and i, an integer n satisfying

0 ≤ n ≤ i degLX − 2gX ,

the graded k-algebra S
(2i+2)
X and the polynomial LX , this algorithm outputs a

uniformly random m-smooth effective divisor D of degree n on X, represented as
the subspace Γ(L⊗iX (−D)) of Γ(L⊗iX ).

1. Generate a random m-smooth decomposition type (l1, . . . , lm) of degree n using
Algorithm 3.3.

2. For d = 1, . . . ,m, generate a uniformly random linear combination Dd of ld
prime divisors of degree d on X using Algorithm 3.4 (with S = PDivdX, and

l = ld), where we use Algorithm 3.2 to generate random elements of PDivdX.

3. Compute the subspace Γ(LX(−D)) for the divisor D = D1 + · · · + Dm using
the addition algorithm described in § 2.2, and output Γ(LX(−D)).

Analysis. It follows from the above discussion that the algorithm outputs a uni-
formly random m-smooth divisor of degree n on X. The running time is polynomial
in m, n, i, degLX and log #k. �

Remark. In practice, the following method for picking a random effective divisor of
degree n is faster, but does not give a uniformly distributed output. We first choose
a uniformly random non-zero section s of Γ(X,L⊗i), where i is a non-negative
integer such that

idegL − n ≥ 2g + 1.

Then if the set of effective divisors D of degree n with D ≤ div s is non-empty, we
pick a uniformly random element from it; otherwise we keep going with a different
section s.

3.4. The Frobenius endomorphism of the Jacobian. As before, let k be a
finite field of cardinality q, and let X be a complete, smooth and geometrically
connected curve over k. Let J be the Jacobian variety of X, and let Fq denote the
Frobenius endomorphism of J . This is an isogeny of degree qg, induced from the
Frobenius map on X via Albanese functoriality.

We write X ′ = X ×Spec k Spec k′. The results of § 3.1 imply that for any finite

extension k′ of k, the endomorphism Fq of J(k′) = Pic0(X ′) can be computed by

applying Algorithm 3.1 to any subspace Γ(X ′,L⊗2
X′ (−D)) of the k′-vector space

Γ(X ′,L⊗2
X′ )
∼= k′ ⊗k Γ(X,L⊗2

X )

with D an effective divisor of degree degLX on X ′ such that LX′(−D) represents x.

Algorithm 3.6 (Frobenius endomorphism of the Jacobian). Let X be a projective
curve over a finite field k of q elements. Let k′ be a finite extension of k. Let
X ′ = X ×Spec k Spec k′, let x be an element of Pic0X ′, and let D be any effective
divisor of degree degLX on X ′ representing x. Given the matrix M of the inclusion
map

Γ(X ′,L⊗2
X′ (−D)) −→ Γ(X ′,L⊗2

X′ )
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with respect to any k′-basis of the left-hand side and the k′-basis induced from any
k-basis of Γ(X,L⊗2

X ) on the right-hand side, this algorithm outputs the analogous
matrix for the inclusion map

Γ(X ′,L⊗2
X′ (−D

′)) −→ Γ(X ′,L⊗2
X′ ),

where D′ is an effective divisor of degree degLX on X ′ representing Fqx.

1. Apply the Frobenius automorphism of k′ over k to the entries of the matrix M ,
and output the result.

Analysis. This is a special case of Algorithm 3.1, and in fact we get D′ = (Fq)∗D.
The running time of this algorithm is polynomial in degLX , log q and [k′ : k]. �

If O is a k-rational point of X, then we can compute the trace map

trk′/k : Pic0X ′ → Pic0X

in the following way. For x ∈ Pic0X ′, we compute a subspace of Γ(X ′,L⊗2
X′ )

representing the element

y =

[k′:k]−1∑
i=0

Fiqx ∈ Pic0X ′.

Now y is in fact the image of the element trk′/k x ∈ Pic0X under the inclusion

Pic0X → Pic0X ′, so we can apply Algorithm 2.12 to find a subspace of Γ(X,L⊗2
X )

representing trk′/k x.
In § 2.10, the problem of computing the Albanese map for a finite morphism of

curves was reduced to the problem of computing trace maps. Since we can solve
the latter problem, we can therefore compute Albanese maps for finite morphisms
of curves over finite fields.

3.5. Picking random elements of the Picard group. We now consider the
problem of picking uniformly random elements in the finite Abelian group J(k) =
Pic0X. We recall from § 2.8 that in the medium model of the Picard group, the
class of a line bundle M of degree 0 is represented by an effective divisor D of
degree degL such that M∼= L(−D). Consider the map

EffdegLX → Pic0X

D 7→ [L(−D)].

It follows from the Riemann–Roch theorem and the fact that degL ≥ 2gX − 1

that all fibres of this map have cardinality q1−g+degL−1
q−1 . This means that to pick a

uniformly random element of Pic0X it suffices to pick a uniformly random divisor
of degree degL.

Algorithm 3.7 (Random point of the Jacobian). Let X be a projective curve

over a finite field k. Given the k-algebra S
(6)
X , this algorithm outputs a uniformly

random element of J(k) = Pic0X, represented by a subspace of codimension degLX
in Γ(L⊗2

X ).

1. Using Algorithm 3.5 with i = 2 and m = n = degLX , generate a uniformly
random divisor D of degree degLX , represented by the subspace Γ(L⊗2

X (−D))

of Γ(L⊗2
X ), and output the result.
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Analysis. The correctness of the algorithm follows from that of Algorithm 3.5. Its
running time is polynomial in degLX and log #k. �

3.6. Computing Frey–Rück pairings. Let n be a positive integer. We assume
k contains a primitive n-th root of unity; this is equivalent to

n | #k× = q − 1

and implies that n is not divisible by the characteristic of k.
Let X be a complete, smooth, geometrically connected curve over k, and let J

be its Jacobian variety. The Frey–Rück pairing of order n on J(k) = Pic0X is a
bilinear map

[ , ]n : J [n](k)× J(k)/nJ(k)→ µn(k)

that is perfect in the sense that it induces isomorphisms

J [n](k)
∼−→ Hom(J(k)/nJ(k), µn(k))

and
J(k)/nJ(k)

∼−→ Hom(J [n](k), µn(k))

of Abelian groups. It can be defined as follows (see Frey and Rück [10] or Schae-
fer [18]). Let x and y be elements of J(k) such that nx = 0. Choose divisors D
and E such that x and y are represented by the line bundles OX(D) and OX(E),
respectively, and such that the supports of D and E are disjoint. By assumption,
there exists a rational function f on X such that nD = div(f); now [x, y]n is defined
as

[x, y]n = f(E)#k×/n.

Here f(E) is defined on k̄-valued points (where k̄ is an algebraic closure of k) by
function evaluation, and extended by linearity to a Gal(k̄/k)-equivariant homomor-
phism from the group of divisors on Xk̄ to k̄×.

Let us now give a slightly different interpretation of f(E) that brings us in
the right situation to compute [x, y]n. We consider an arbitrary non-zero rational
function f and an arbitrary divisor E such that the divisors

D = div(f)

and E have disjoint supports. Since f(E) is by definition linear in E, it suffices to
consider the case where E is an effective divisor. As in § 2.7, if M is a line bundle
on X, we abbreviate

NE/kM = NE/k(j∗EM),

where jE is the closed immersion of E into X. Since D and E have disjoint supports,
we have a canonical trivialisation

tD : k ∼= NE/kOX
∼−→ NE/kOX(D).

On the other hand, multiplication by f induces an isomorphism

NE/kf : NE/kOX(D)
∼−→ NE/kOX ∼= k.

of one-dimensional k-vector spaces. We claim that the composed isomorphism

(22) k
tD−→∼ NE/kOX(D)

NE/kf−→∼ k

is multiplication by f(E). This is true in the case where E is a single point,
since then NE/k is (canonically isomorphic to) the identity functor. We deduce the
general case from this by extending the base field to an algebraic closure of k and



36 PETER BRUIN

using the fact that both f(E) and the norm functor are linear in E. For the latter
claim, we refer to Deligne [19, exposé XVII, no 6.3.27].

Remark. The isomorphism (22) could be taken as a definition of f(E) for effective
divisors E.

Lemma 3.8. Let x and y be elements of J(k) with nx = 0, let M be a line bundle
representing x, and let E+ and E− be effective divisors such that OX(E+ − E−)
represents y. (In particular, M has degree 0, and E+ and E− have the same
degree.) For any pair of trivialisations

t± : k
∼−→ NE±/kM

of k-vector spaces and any trivialisation

s : OX
∼−→M⊗n

of line bundles on X, the isomorphism

k
(t+)n−→∼ NE+/kM⊗n

NE+/ks
−1

−→∼ k
NE−/ks−→∼ NE−/kM⊗n

(t−)−n−→∼ k

is multiplication by an element of k× whose (#k×/n)-th power equals [x, y]n.

(We have implicitly used the isomorphisms NE±/k(M⊗n) ∼= (NE±/kM)⊗n ex-
pressing the linearity of NE/k, and denoted both sides of the isomorphism by

NE±/kM⊗n.)

Proof. We fix a non-zero rational section h of the line bundle M such that the
divisor

D = div h

is disjoint from E±. Then we have canonical trivialisations

t±D : k
∼−→ NE±/kOX(D)

as above. Composing these with the isomorphism

NE±/kh : NE±/kOX(D)
∼−→ NE±/kM

induced by multiplication by h gives trivialisations

t±h = NE±/kh ◦ tD : k
∼−→ NE±/kM.

Now consider any isomorphism

s : OX
∼−→M⊗n

of line bundles on X, and define

f = s−1 ◦ hn : OX(nD)
∼−→ OX ;

then f can be viewed as a rational function with divisor nD. We now have com-
mutative diagrams

k
(t±D)n

−→∼ NE±/kOX(nD)
NE±/kf−→∼ k∥∥ ∼

yNE±/kh
n

∥∥
k

(t±h )n

−→∼ NE±/kM⊗n
NE±/ks

−1

−→∼ k.
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As noted above, the top row is multiplication by f(E±); by the commutativity of
the diagram, the same holds for the bottom row. Finally, we note that replacing
t±h by any pair of trivialisations

t± : k
∼−→ NE±/kM

changes the isomorphism in the bottom row of the above diagram by some n-th
power in k×. This implies that the isomorphism

k
(t±)n−→∼ NE±/kM⊗n

NE±/ks
−1

−→∼ k

equals multiplication by an element of k× whose (#k×/n)-th power is f(E±)#k×/n.
The lemma follows from this by the definition of [x, y]n. �

Algorithm 3.9 (Frey–Rück pairing). Let X be a projective curve over a finite
field k, let n be an integer dividing #k×, and let x and y be elements of J(k) with

nx = 0. Given the k-algebra S
(7)
X and subspaces Γ(L⊗2

X (−D)) and Γ(L⊗2
X (−E−))

of Γ(L⊗2
X ) representing x and y, this algorithm outputs the element [x, y]n ∈ µn(k).

1. Find an anti-addition chain (a0, a1, . . . , am) for n as described in § 2.8. In
particular, for each l with 2 ≤ l ≤ m we are given i(l) and j(l) in {0, 1, . . . , l−1}
such that

al = −ai(l) − aj(l).

2. Choose any non-zero global section u of LX , and let D0 denote its divisor.
Compute the space

Γ(L⊗2
X (−D0)) = uΓ(LX).

Write D1 = D.

3. Using Algorithm 2.10, find effective divisors D2, D3, . . . , Dm of degree degLX ,
where each Dl is represented as the space Γ(L⊗2

X (−Dl)), and non-zero global

sections s2, s3, . . . , sm of L⊗3
X such that the line bundle L⊗3

X (−Di(l)−Dj(l)−Dl)
is trivial and

div(sl) = Di(l) +Dj(l) +Dl.

4. Using Algorithm 2.9, verify that LX(−Dm) is trivial and find a non-zero global
section v of LX(−Dm).

5. Choose a non-zero global section w of LX , let E+ denote its divisor, and
compute

Γ(L⊗2
X (−E+)) = wΓ(LX).

6. For E ∈ {E+, E−}:
7. Compute the k-vector spaces

Γ(E,L⊗2),

Γ(E,L⊗3(−Dl)) for 1 ≤ l ≤ m,
Γ(E,L⊗4(−Di(l) −Dj(l))) for 2 ≤ l ≤ m.

Fix a k-basis of Γ(E,L⊗3(−D0)) by defining it as the image of the chosen
basis of Γ(E,L⊗2) under the multiplication map

u : Γ(E,L⊗2)
∼−→ Γ(E,L⊗3(−D0)).
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Notation: For 0 ≤ l ≤ m, define a trivialisation

tl(E) : k
∼−→ NE/kL(−Dl)
∼−→ Homk

(
detk Γ(E,L⊗2),detk Γ(E,L⊗3(−Dl))

)
using the given bases of Γ(E,L⊗2) and Γ(E,L⊗3(−Dl)). For 2 ≤ l ≤ m, define a
trivialisation

t′l(E) : k
∼−→ NE/kL⊗2(−Di(l) −Dj(l))

by (9) using the given bases of Γ(E,L⊗4(−Di(l) −Dj(l))) and Γ(E,L⊗2). For 2 ≤
l ≤ m, define a trivialisation

t′′l (E) : k
∼−→ NE/kL⊗3(−Dl −Di(l) −Dj(l))

by (9) using the given basis of Γ(E,L⊗2) and the basis of Γ(E,L⊗5(−Dl −Di(l) −Dj(l)))

obtained by multiplying the elements of this basis of Γ(E,L⊗2) by sl.

8. Put γ0(E) = γ1(E) = 1.

9. For l = 2, 3, . . . , m:

10. Using Algorithm 2.8, compute the elements λ
(1)
l (E) and λ

(2)
l (E) of k×

such that the diagrams

k
ti(l)(E)⊗tj(l)(E)

−→∼ NE/kL(−Di(l))⊗NE/kL(−Dj(l))

λ
(1)
l (E)

y∼ y∼
k

t′l(E)−→∼ NE/kL⊗2(−Di(l) −Dj(l))

and

k
tl(E)⊗t′l(E)−→∼ NE/kL(−Dl)⊗NE/kL⊗2(−Di(l) −Dj(l))

λ
(2)
l (E)

y∼ y∼
k

t′′l (E)−→∼ NE/kL⊗3(−Dl −Di(l) −Dj(l))

are commutative. Define λl(E) = λ
(1)
l (E)λ

(2)
l (E).

11. Put γl(E) =
λl(E)

γi(l)(E)γj(l)(E)
.

12. Compute δ(E) ∈ k× as the determinant of the matrix of the isomorphism

v : Γ(E,L2)
∼−→ Γ(E,L3(−Dm))

with respect to the given bases.

13. Output the element

(
γm(E−)δ(E−)

γm(E+)δ(E+)

)#k×/n

∈ k×.

Analysis.
Note that t′′l is induced by multiplication by sl.
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The element γl(E) of k× has the property that the diagram

k
tl−→∼ NE/kL(−Dl)

γl

y∼ ∼
yhl

k
tal−→∼ NE/kL(−D)⊗al

is commutative.
The definitions of hl, γl, γi(l), γj(l) and the property of λl that we have just

proved imply that

γl =
λl

γi(l)γj(l)
for l = 2, 3, . . . ,m.

The element λl ∈ k× has the property that the diagram

k
tl⊗ti(l)⊗tj(l)−→∼ NE/kL(−Dl)⊗NE/kL(−Di(l))⊗NE/kL(−Dj(l))

λl

y∼ y∼
k

t′′l−→∼ NE/kL⊗3(−Dl −Di(l) −Dj(l))

is commutative.
We recursively define rational sections h1, h2, . . . , hm of L⊗(al−1) by

hl =


u−1 for l = 0;

1 forl=1;

(hi(l)hj(l)sl)
−1 for l = 2, 3, . . . , m.

Then it follows immediately that each hl has divisor alD −Dl.
The rational section

s = hmv

of L⊗n has divisor nD and hence induces an isomorphism

s : OX
∼−→ L(−D)⊗n.

We define an isomorphism

(23) IEs,t : k
t(E)n−→∼ NE/kM⊗n

NE/ks
−1

−→∼ k.

It follows from the definitions of s, γm and IEs,t that the relation between v, tm, γm
and IEs,t is given by the commutativity of the diagram

k
IEs,t−→∼ k

γm

x∼ ∼
yNE/kv

k
tm−→∼ NE/kL(−Dm).

This proves that IEs,t is multiplication by 1/(γm(E)δ(E)).
The correctness of this algorithm follows from Lemma 3.8. The running time is

polynomial in degLX , log n and log #k. �
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3.7. Finding relations between torsion points. Let X be a projective curve
over a finite field k, represented as in § 2.1, let J be its Jacobian, and let l be a
prime number different from the characteristic of k. We will show how to find all
the Fl-linear relations between given elements of J [l](k). In particular, given a
basis (b1, . . . , bn) for a subspace V of J [l](k) and another point x ∈ J [l](k), this
allows us to check whether x ∈ V , and if so, express x as a linear combination of
(b1, . . . , bn).

Let k′ be an extension of k containing a primitive l-th root of unity. It is well
known that the problem just described can be reduced, via the Frey–Rück pairing,
to the discrete logarithm problem in the group µl(k

′). Algorithm 3.11 below makes
this precise. We begin with a bound on the number of elements needed to generate
a finite-dimensional vector space over a finite field with high probability.

Lemma 3.10. Let F be a finite field, and let V be an F-vector space of finite
dimension d. Let α be a real number with 0 < α < 1, and write

m =


0 if d = 0;

d− 1 +

⌈
log 1

1−α1/d

log #F

⌉
if d > 0.

If v1, . . . , vm are uniformly random elements of V , the probability that V is gen-
erated by v1, . . . , vm is at least α.

Proof. Fix a basis of V . The matrix of the linear map

Fm −→ V

(c1, . . . , cm) 7→
m∑
i=1

civi

is a uniformly random d × m-matrix over F. The probability that it has rank d
is the probability that its rows (which are uniformly random elements of Fm) are
linearly independent. This occurs with probability

p =
(#Fm − 1)(#Fm −#F) · · · (#Fm −#Fd−1)

#Fdm

≥ (#Fm −#Fd−1)d

#Fdm

=
(
1− (#F)−(m−d+1)

)d
The choice of m implies that p ≥ α. �

Remark. The integer m defined in Lemma 3.10 can be approximated independently
of α by d − 1 + log d

log #F , in the sense that for any fixed α the difference is bounded

for d ≥ 1.

Algorithm 3.11 (Relations between torsion points). Let X be a projective curve
over a finite field k, let J be its Jacobian, and let l be a prime number different from
the characteristic of k. Let x1, . . . , xn be elements of J [l](k). Given the k-algebra

S
(7)
X , the polynomial LX , and subspaces Γ(L⊗2

X (−Di)) of Γ(L⊗2
X ) representing xi
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for 1 ≤ i ≤ n, this algorithm outputs an Fl-basis for the kernel of the natural map

Σ: Fnl −→ J [l](k)

(c1, . . . , cn) 7−→
n∑
i=1

cixi.

The algorithm depends on a parameter α ∈ (0, 1).

1. Generate a minimal extension k′ of k such that k′ contains a primitive l-th
root of unity ζ. Let

λ : µl(k
′)
∼−→ Fl

denote the corresponding discrete logarithm, i.e. the unique isomorphism of
one-dimensional Fl-vector spaces sending ζ to 1.

2. Define an integer m ≥ 0 by

m =


0 if n = 0;

n− 1 +

⌈
log 1

1−α1/n

log l

⌉
if n > 0.

3. Choose m uniformly random elements y1, . . . , ym in J(k′) as described in § 3.5;
their images in J(k′)/lJ(k′) are again uniformly distributed.

4. Compute the m× n-matrix

M = (λ([yi, xj ]l)) (1 ≤ i ≤ m, 1 ≤ j ≤ n)

with coefficients in Fl, where the pairing [ , ]l is evaluated using Algorithm 3.9
and the isomorphism λ is evaluated using some algorithm for computing dis-
crete logarithms in µl(k

′).

5. Compute an Fl-basis (b1, . . . , br) for the kernel of M .

6. If Σ(b1) = . . . = Σ(br) = 0, output (b1, . . . , br) and stop.

7. Go to step 3.

Analysis. We write V for the image of Σ and V ′ for the quotient of J(k′)/lJ(k′) by
the annihilator of V under the pairing [ , ]l. Then we have an induced isomorphism

V
∼−→ HomFl(V

′, µl(k
′)).

Consider the map

Σ′ : Fml −→ V ′

(c1, . . . , cm) 7−→
m∑
i=1

ciyi.

Now we have a commutative diagram

Fnl −→ HomFl(F
m
l , µl(k

′))

Σ
y xf 7→f◦Σ′
V

∼−→ HomFl(V
′, µl(k

′))

We identify µl(k
′) with Fl using the isomorphism λ and equip HomFl(F

m
l , µl(k

′))
with the dual basis of the standard basis of Fml . Then the top arrow in the diagram
is given by the matrix M defined in step 4. This means that we have an inclusion

ker Σ ⊆ kerM.
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In step 6 we check whether this inclusion is an equality. The surjectivity of Σ implies
that this is the case if and only if the rightmost map in the diagram is injective,
i.e. if and only if Σ′ is surjective. Since dimFl V ≤ n, this happens with probability
at least α by Lemma 3.10. Therefore steps 3–7 are executed at most 1/α times on
average. This implies that (for fixed α) the running time is polynomial in gX , l, n
and log #k. �

Remarks. (1) If we know an upper bound for the dimension of the Fl-vector space
generated by the xi, then we can use this upper bound instead of n in the expression
for m in step 2.

(2) It matters little what algorithm we use for computing the discrete logarithm
in µl(k

′), since the running time of Algorithm 3.11 is already polynomial in l. For
example, we can simply tabulate the function λ.

3.8. The Kummer map on a divisible group. Let k be a finite field of cardinal-
ity q, and let l be a prime number. Let G be an étale l-divisible group over k. (The
étaleness is automatic if l is different from the characteristic of k.) We denote by
Fq : G→ G the (q-power) Frobenius endomorphism of G; this is an automorphism
because of the assumption that G is étale.

For any non-negative integer n such that all the points of G[ln] are k-rational,
the Kummer map of order ln on G over k is the homomorphism

K
G/k
ln : G(k)/lnG(k)→ G[ln](k)

x→ Fq(y)− y,

where y is any point of G over an algebraic closure of k such that the image of lny
in G(k)/lnG(k) equals x.

Let χ ∈ Zl[t] be the characteristic polynomial of the Frobenius automorphism
of G on the Tate module of G. Then the element t mod χ of Zl[t]/(χ) is invertible.
Let n be any non-negative integer, and let a be a positive integer such that

ta = 1 in (Zl[t]/(l
n, χ))×.

Then ta − 1 is divisible by ln in Zl[t]/(χ), and we let ha be the unique element
of Zl[t]/(χ) such that

ta − 1 = lnha ∈ Zl[t]/(χ).

By the Cayley–Hamilton theorem, Zl[t]/(χ) acts on G with t acting as Fq. The
above identity therefore implies that

Faq − 1 = lnha(Fq) on G.

Let ka be an extension of k with

[ka : k] = a.

Then G[ln] is defined over ka, and we can express the Kummer map over ka in
terms of the Frobenius endomorphism over k as

K
G/ka
ln : G(ka)/lnG(ka) −→ G[ln](ka)

x 7−→ ha(Fq)(x).

In § 3.9 we are going to apply this to a certain l-divisible subgroup of the l-power
torsion of the Jacobian of a projective curve over k.



COMPUTING IN PICARD GROUPS OF PROJECTIVE CURVES OVER FINITE FIELDS 43

3.9. Computing the l-torsion in the Picard group. Let X be a projective
curve over k, represented as in § 2.1, and let J be its Jacobian. Let Fq denote
the Frobenius endomorphism of J over k, and let χ ∈ Z[t] be the characteristic
polynomial of Fq.

Let l be a prime number different from the characteristic of k. We are going to
apply the results of § 3.8 to a certain l-divisible subgroup G of the group J [l∞] of
l-power torsion points of J . This G is defined as follows. Let f̄ = (t − 1)b be the
largest power of t− 1 dividing χ mod l, so that χ mod l has the factorisation

(χ mod l) = f̄ · f̄⊥

in coprime monic polynomials in Fl[t]. Hensel’s lemma implies that this factorisa-
tion can be lifted uniquely to a factorisation

χ = f · f⊥,
where f and f⊥ are coprime monic polynomials in Zl[t]. The Chinese remainder
theorem gives a decomposition

(24) Zl[t]/(χ)
∼−→ Zl[t]/(f)× Zl[t]/(f

⊥),

which in turn induces a decomposition

J [l∞] ∼= G×G⊥

of l-divisible groups. We note that G is of rank b and that f is the characteristic
polynomial of Fq on G. Let a be a positive integer such that

(25) ta = 1 in (Fl[t]/f̄)×,

let ha be the unique element of Zl[t]/(f) such that

(26) ta − 1 = lha ∈ Zl[t]/(f),

and let ka be an extension of degree a of k. All the points of G[l] are ka-rational,
and the b-dimensional Fl-vector space G[l](ka) is the generalised eigenspace corre-
sponding to the eigenvalue 1 of Fq inside the Fl-vector space of points of J [l] over
an algebraic closure of ka. In particular, we have the identity

J [l](k) = {x ∈ G[l](ka) | Fq(x) = x}.
As explained in § 3.8, the map

G(ka)/lG(ka)→ G[l](ka)

x 7→ ha(Fq)(x)

is well-defined and equal to the Kummer map

K
G/ka
l : G(ka)/lG(ka)→ G[l](ka)

of order l. It is in fact an isomorphism; this follows for example from the finiteness
of G(ka).

Let us now explain how to use the above results to generate uniformly random
elements of the Fl-vector space G[l](ka). We factor #J(ka) as

#J(ka) = lcama with ca ≥ 0, ma ≥ 1 and l - ma.

Let e be the idempotent in Zl[t]/(χ) corresponding to the element (1, 0) on the
right-hand side of (24). Composing the maps

(27) J(ka)
ma−→ J [l∞](ka)

e(Fq)−→ G(ka) −→ G(ka)/lG(ka)
ha(Fq)−→ G[l](ka)
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we get a surjective group homomorphism from J(ka) to G[l](ka). We can use
this map to convert uniformly random elements of J(ka) into uniformly random
elements of G[l](ka), provided we know e and ha to sufficient l-adic precision. It
is clear that to compute the Kummer map we only need to know the image of ha
in Zl[t]/(f, l) = Fl[t]/((t − 1)b). Since G(ka) can be identified with a subgroup
of #J(ka), it is annihilated by lca , and we have

J [l∞](ka) = J [lca ](ka) and G(ka) = G[lca ](ka).

This implies that it suffices to know e to precision O(lca).
Let us check that there is a reasonably small a for which (25) holds. For any

non-negative integer γ the identity

tl
γ

− 1 = (t− 1)l
γ

holds in Fl[t], and the right-hand side maps to zero in Fl[t]/(t− 1)b if and only if
lγ ≥ b. Since l is a prime number, we conclude that the order of t in Fl[t]/((t−1)b)
equals lγ , where γ is the least non-negative integer such that lγ ≥ b.

Algorithm 3.12 (Basis for the l-torsion of the Picard group). LetX be a projective
curve over a finite field k with q elements, let J be its Jacobian, and let l be a

prime number different from the characteristic of k. Given the k-algebra S
(7)
X and

the characteristic polynomial χ of the Frobenius endomorphism of J over k, this
algorithm outputs an Fl-basis for J [l](k) = (PicX)[l]. The algorithm depends on
a parameter α ∈ (0, 1).

1. Compute the greatest integer b such that (t − 1)b divides χ mod l in Fl(t).
Compute the non-negative integer r defined by

r =


0 if b = 0;

b− 1 +

⌈
log 1

1−α1/b

log l

⌉
if b ≥ 1.

2. Define a = lγ , where γ is the least non-negative integer such that lγ ≥ b.
Generate a finite extension ka of degree a of k. Factor #J(ka) as

#J(ka) = lcama with l - ma.

3. Lift the factorisation

(χ mod l) = f̄ · f̄⊥ in Fl[t],

where f̄ = (t− 1)b, to a factorisation

(χ mod lca) = f · f⊥

into coprime monic polynomials in (Z/lcaZ)[t]. Compute the image of the
idempotent e in (Z/lcaZ)[t]/(χ) using the extended Euclidean algorithm, and
compute the image of ha in Fl[t]/((t− 1)b) using the definition (26) of ha.

4. Generate r uniformly random elements of J(ka) as explained in § 3.5, and map
them to elements x1, . . . , xr ∈ G[l](ka) using the homomorphism (27).

5. Using Algorithm 3.11, compute a basis for the kernel of the Fl-linear map

Σ: Frl −→ G[l](ka)

(c1, . . . , cr) 7−→
r∑
i=1

cixi.



COMPUTING IN PICARD GROUPS OF PROJECTIVE CURVES OVER FINITE FIELDS 45

If the dimension of this kernel is greater than r − b, go to step 4.

6. Use the Fl-linear relations between x1, . . . , xr computed in the previous step
to find a subsequence (y1, . . . , yb) of (x1, . . . , xr) that is an Fl-basis of G[l](ka).

7. Let M be the matrix with respect to the basis (y1, . . . , yb) of the Fl-linear
automorphism of G[l](ka) induced by the Frobenius endomorphism Fq of J
over k. Compute M by computing Fq(yi) for i = 1, . . . , b using Algorithm 3.1
and then applying Algorithm 3.11 to express the Fq(yi) as linear combinations
of the yi.

8. Compute a basis for the kernel of M − I, where I is the b× b identity matrix.
Map the basis elements to elements z1, . . . , zt of G[l](ka) using the injective
homomorphism

Fbl −→ G[l](ka)

(a1, . . . , ab) 7−→
b∑
i=1

aiyi.

Output (z1, . . . , zt).

Analysis. As noted earlier, the definition of a implies that a equals the order of t
in (Fl[t]/(t − 1)b)×; furthermore, J [l](k) equals the kernel of Fq − id on G[l](ka).
The elements x1, . . . , xr of G[l](ka) are uniformly random by the fact that (27) is a
homomorphism. By Lemma 3.10, they generate the b-dimensional Fl-vector space
G[l](ka) with probability at least α. The definition of a also implies that

a ≤ max{1, 2gX l − 1},
while the “class number formula” (17) gives the upper bound

ca ≤
log #J(ka)

log l

≤
2gX log

(
1 + qa/2

)
log l

.

This shows that ca is bounded by a polynomial in gX , log q and l. For fixed α we
therefore reach step 6 in expected polynomial time in degLX , log q and l. In steps
6–8 we compute a basis for the kernel of Fq− id, which is J [l](k). We conclude that
the algorithm is correct and, for fixed α, runs in probabilistic polynomial time in
degLX , log q and l. �

Remark. The elements zj ∈ J [l](ka) output by the preceding algorithm are in fact
defined over k. In general, I do not know how to generate k-vector spaces (instead
of ka-vector spaces) representing them. However, if we know a k-rational point
on X, then we can use Algorithm 2.12 to accomplish this.
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