
Computing coefficients of modular forms
(Work in progress; extension of results of Couveignes, Edixhoven et al.)

Peter Bruin

Mathematisch Instituut, Universiteit Leiden

Théorie des nombres et applications

CIRM, Luminy, 30 November 2009

1

Introduction

Let k and n be positive integers, and let f be a modular form of weight k

for Γ1(n) , with q -expansion

f =
∑
m≥0

am(f)qm.

It is known that f is determined by the am(f) for

m ≤ k

12
[SL2(Z) : {±1}Γ1(n)].

Question: given these am(f) , is it possible to efficiently compute am(f) for

large m?

This only seems reasonable to ask when given the factorisation of m : the

recurrence relations for the am(f) suggest that one could otherwise factor

products of two large prime factors efficiently.

2

Introduction

We may assume f is a Hecke eigenform, normalised such that a1(f) = 1 .

Theorem 1 (tentative for n > 1): There is a (probabilistic) algorithm that,

given positive integers k and n with n square-free, a normalised eigenform f

of weight k for Γ1(n) , and an integer m > 0 in factored form, computes

am(f) . If the generalised Riemann hypothesis for number fields is true, the

algorithm runs in time polynomial in k , n and logm .

For n = 1 : proved by J.-M. Couveignes, S. J. Edixhoven, R. de Jong and

F. Merkl (preprint, 2006/2009; to appear in the Ann. Math. Studies series).

For n > 1 : work in progress, to appear in my thesis (2010).

Note: Our algorithm runs in time polynomial time in the input size, whereas

existing algorithms (modular symbols) are exponential in logm .

3

Reduction to eigenforms over finite fields

By the recurrence relation expressing am(f) in the ap(f) for p | m prime,

we are reduced to the problem of computing ap(f) for prime numbers p .

Write Q(f) for the number field generated by the am(f) . By Deligne’s bound

|σ(ap(f))| ≤ 2p(k−1)/2 for all σ:Q(f) → C , it suffices to compute

ap(f) modulo sufficiently many small primes λ of Q(f) .

Remark: We need the generalised Riemann hypothesis to ensure the exis-

tence of a sufficient supply of such λ , uniformly in Q(f) .

Theorem 2 (tentative for n > 1): There exists a (probabilistic) algorithm that,

given positive integers k and n with n square-free, a normalised eigenform f

over a finite field F and a prime number p , computes ap(f) in time polyno-

mial in k , n and log p .

4

Modular Galois representations

The strategy for computing ap(f) for an eigenform f over a finite field F is

to compute the Galois representation associated to f .

Let l be the characteristic of F . There exists a unique semi-simple continuous

representation

ρf : Gal(Q/Q) → GL2(F)

that is unramified outside nl and such that the Frobenius conjugacy class at a

prime p - nl has characteristic polynomial

t2 − ap(f)t+ ε(p)pk−1 ∈ F[t].

In particular, ap(f) is the trace of a Frobenius at p under ρf .

5

What we want to compute

Let Ef be the finite Galois extension of Q such that ρf factors as

ρf : Gal(Q/Q) � Gal(Ef/Q) � GL2(F).

Then by computing ρf we mean producing the following data:

• the multiplication table of Ef with respect to some Q -basis (b1, . . . , br)
of Ef ;

• for every element σ ∈ Gal(Ef/Q) , the matrix of σ with respect to the

basis (b1, . . . , br) and the element ρf (σ) ∈ GL2(F) .

If ρf is reducible, then it is associated to an Eisenstein series and is easy to

compute.

6

Modular Galois representations in Jacobians

From now on we assume that ρf : Gal(Q/Q) → GL2(F) is irreducible. Af-

ter twisting ρf by a power of the cyclotomic character, we may assume more-

over that

2 ≤ k ≤ l + 1.

Finally we may assume that F is generated by the am(f) .

Notation:

n′ =
{
n if k = 2;
nl if k > 2;

X1(n′) = modular curve for Γ1(n′)-structures;

J1(n′) = Jacobian of X1(n′);

g = genus(X1(n′)) = dim(J1(n′)).

7

Modular Galois representations in Jacobians

Let T1(n′) ⊆ End J1(n′) denote the Hecke algebra. By the work of various

people (Mazur, Ribet, Gross, . . .) there is a surjective homomorphism

T1(n′) → F

Tm 7→ am(f).

Let m ⊂ T1(n′) be its kernel. Then the F[Gal(Q/Q)] -module

J1(n′)[m](Q)

is non-zero and ‘usually’ isomorphic to ρf (in general it has a composition

chain consisting of copies of ρf).

8

Strategy for computing Galois representations

To find ρf , we are going to explicitly compute the F -vector space scheme

J1(n′)[m] over Q . We do this by choosing a suitable closed immersion

ι: J1(n′)[m] � A1
Q.

The image of ι is defined by some non-zero polynomial Pι ∈ Q[x] .

By “explicitly computing J1(n′)[m] ” we mean computing Pι together with a

collection of ring homomorphisms defining the F -vector space scheme struc-

ture on SpecQ[x]/(Pι) .

From these data we can compute ρf by standard methods (mostly factorisa-

tion of polynomials over Q).

9

Choosing a suitable map

Fix a point O ∈ X1(n′)(Q) . Assume for simplicity that the Abel–Jacobi map

Symg X1(n′) � J1(n′)

D 7→ [D − gO]

is an isomorphism above J1(n′)[m] . We choose a rational function

ψ: X1(n′) → P1(Q)

(e.g. a quotient of two modular forms of the same weight) Then we obtain a

map

ψ∗: Symg X1(n′) → Symg P1
Q
∼= Pg

Q.

We choose ψ such that ψ∗ is a closed immersion on the inverse image

of J1(n′)[m] under the Abel–Jacobi map.

10

Choosing a suitable map

We next choose a suitable rational map

λ:Pg
Q 99K A1

Q ⊂ P1
Q

that is a quotient of linear forms. We define our closed immersion

ι: J1(n′)[m] � A1
Q

as the arrow making the diagram

Symg X1(n′) � J1(n′) ⊃ J1(n′)[m]

ψ∗

y
Symg P1

Q
∼−→ Pg

Q

λ
99K A1

Q

commutative.

11

How to compute Pι

Recall that we want to compute (among other things) the polynomial Pι defin-

ing the image of the closed immersion

ι: J1(n′)[m] � A1
Q.

To compute Pι , we use numerical approximation together with a bound on the

heights of the coefficients of Pι ,

The polynomial Pι can be approximated either using computations over the

complex numbers (deterministically) or modulo many small prime numbers

(probabilistically).

12

How to compute Pι modulo prime numbers

For computing Pι modulo a prime number p , one needs to be able to compute

in the Jacobian of X1(n′) over finite fields of characteristic p : picking random

elements, computing the Frobenius map, evaluating Hecke operators, etc.

For n = 1 , one can use a (singular) plane model of X1(5l) over Fp with

singularities and apply algorithms by Couveignes for computing in the Jacobian

of such a curve.

For n ≥ 1 , one can use the projective embedding of X1(n′) defined by

modular forms of weight 2 and use algorithms of K. Khuri-Makdisi, Couveignes

(adapted to this situation), C. Diem and myself.

13

Computing in Jacobians of projective curves over finite fields

For n ≥ 5 , the line bundle L = ω2 of modular forms of weight 2 on X1(n)
over a field K (of characteristic not dividing n) gives a closed immersion

X1(n)K � PΓ(X1(n),L).

An effective divisor D with degD = degL can be represented as the sub-

space Γ(X1(n),L2(−D)) . To such a D we associate the point [L(−D)]
of J1(n)(K) .

Khuri-Makdisi has developed algorithms for computing with elements of the

Jacobian represented in this way. Based in part on work of Couveignes and of

Diem, I have shown that if K is finite, one can also compute Frobenius maps,

Hecke correspondences, Kummer maps and Frey–Rück pairings. These can

be used to compute J1(n′)[m] (i.e. compute Pι) modulo prime numbers.

14

Height bounds

We use Arakelov intersection theory on the arithmetic surface X1(n′) to find

bounds for the heights of the coefficients of the polynomial Pι . Intersection

numbers at infinite places can be expressed in terms of canonical Green func-

tions of the Riemann surfaces X1(n′)(C) .

We need to study the semi-stable reduction of X1(n′) , and find bounds for

canonical Green functions and for sup-norms of modular forms. Work of J. Jor-

genson and J. Kramer, using spectral theory of automorphic forms for Fuchsian

groups, implies that the latter quantities are bounded independently of n′ .

Using methods similar to that of Jorgenson and Kramer, I have found bounds

that could fairly easily be made explicit. These methods can be interpreted as

based on the fact that the Green function is the constant term of the resolvent

kernel of the Laplace operator.

15

Application: explicit realisations of Galois groups

The complex analytic method for computing modular Galois representations

has been used by J. Bosman to compute various explicit polynomials over Q
whose splitting fields have interesting Galois groups, such as SL2(F16) and

PSL2(F49) .

The algorithm is so far only practical in small cases. Instead of using explicit

height bounds, Bosman verified the results using the fact that Serre’s conjec-

ture is true.

We expect that combining these complex analytic algorithms with the algo-

rithms over finite fields (to be implemented) can be used to compute explicit

realisations of more Galois groups.

16

Application: representation numbers of lattices

Let L be an even integral lattice of rank k , write

rL(m) = #{x ∈ L | (x, x) = m},

and let

θL =
∑
m≥0

rL(2m)qm ∈ Z[q]

be the θ -series of L . Then θL is the q -expansion of a modular form of

weight k/2 for Γ1(n) , where n is the level of L .

Example: the Leech lattice (rank 24 and level 1). We know how to write its

θ -series as a linear combination of E12 and ∆ . Its representation numbers

can therefore be computed by the work of Couveignes, Edixhoven, de Jong

and Merkl.

17

Sums of squares

For L = Zk with (x, y) = 2
∑k
i=1 xiyi , the θ -series θZk is a modular

form of weight k/2 for the group Γ1(4) . From the identity

θZk = (θZ)k = (1 + 2q + 2q4 + 2q9 + · · ·)k

we can quickly compute the first few coefficients of θZk . This has the following

application to representing integers as sums of squares.

Expected theorem 3: There exists a (probabilistic) algorithm that, given an

even integer k ≥ 0 and an integer m ≥ 1 in factored form, computes the

number of ways in which m can be written as a sum of k squares, and that

runs in time polynomial in k and logm under the generalised Riemann hy-

pothesis for number fields.

18

A question about lattices

To compute coefficients of θ -series of a lattice in this way, one needs to input

the first few coefficients of the θ -series into the algorithm.

It is known that finding the length of the shortest vector in a lattice is already

a hard problem, but the proof of this does not seem to involve the level of

the lattice. This raises the following question about counting short vectors in

lattices.

Question: Does there exist an algorithm that, given a lattice L of rank k

and level n and an integer m , computes rL(m) in time polynomial in k , n

and m?

19

