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1. Elliptic curves over schemes

The notion of elliptic curves over arbitrary schemes is indispensable for the topic of moduli spaces.
Intuitively speaking, we can describe an elliptic curve over a scheme S as an “algebraic family” of
elliptic curves, one for each point of S.

Definition. Let k be an algebraically closed field. An elliptic curve over k is a pair (E, O) with
E a proper smooth curve over k which is connected and of genus 1, i.e. dimk H1(E,OE) = 1 (or
equivalently, by smoothness and Serre duality, dimk Ω1

E/k(E) = 1), and with O ∈ E(k) a rational
point.

Every elliptic curve (E, O) has in a natural the structure of a commutative group scheme
over k with unit O. Furthermore, it is known that E can be embedded in the projective plane
over k as the curve defined by a generalised Weierstrass equation

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3

with O corresponding to the point with projective coordinates (0 : 1 : 0).

Definition. Let S be a scheme. An elliptic curve over S is a proper smooth morphism of schemes
p: E → S whose fibres are geometrically connected curves of genus 1, together with a section
O ∈ E(S).

In other words, an elliptic curve over S is a morphism p: E → S which is finitely presented,
proper and flat, together with a section O ∈ E(S), such that the geometric fibres (together with
the points obtained by specialising O) are elliptic curves in the sense of the first definition. (The
finiteness of presentation follows from the conditions of finite type, separatedness and locally finite
presentation, which are implicit in the conditions of properness and smoothness.)

Elliptic curves “persist under base change”: if (p: E → S, O) is an elliptic curve, and S′ →
S is any morphism of schemes, then the scheme ES′ = E ×S S′, viewed as an S′-scheme, is
(together with the section OS′ : S′ → ES′) an elliptic curve over S′. This follows from the fact
that properness, smoothness, and the property of the geometric fibres being connected curves of
genus 1 are preserved under base change.

Example. Consider the affine scheme

S = SpecZ

[

1

2
, a, b,

1

4a3 + 27b2

]

,

and let E ⊂ P2
S be defined by

y2z = x3 + axz2 + bz3

together with the point O = (0 : 1 : 0). The pair (E, O) is an elliptic curve over S.

Like in the case of a field as the base scheme, an elliptic curve over an arbitrary scheme S
has a natural structure of commutative group scheme over S; see Deligne and Rapoport [2], II,
proposition 2.7, or Katz and Mazur [3], Theorem 2.1.2. It is no longer the case that every elliptic
curve E/S can be embedded in P2

S via a Weierstrass equation, but such an embedding does exist
over sufficiently small open subschemes of S; see [3], § 2.2.
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Definition. The category of elliptic curves, denoted by Ell, is defined as follows. The ob-
jects of Ell are elliptic curves (p: E → S, O) over variable base schemes S; we will often use
the abbreviation E/S. The morphisms from (p′: E′ → S′, O′) to (p: E → S, O) are the pairs
(f : S′ → S, g: E′ → E) such that the diagram

E′ g
−→ E

p′



y



yp

S′ f
−→ S

is Cartesian and the section OS′ : S′ → E′ induced by O equals O′. For the sake of brevity, we will
leave the requirement on O and O′ implicit from now on.

Remark . The category Ell is a smooth Deligne–Mumford stack for the fpqc-topology on the cat-
egory of schemes; see Deligne and Rapoport [2], III, théorème 2.5. In these notes we will not use
the language of stacks, but rather that of relatively representable moduli problems introduced by
Katz and Mazur [3].

Fact 1.1. Products exist in the category Ell, i.e. given two elliptic curves E → S and E′ → S′,
there exists an elliptic curve E′′ → S′′ with morphisms to E/S and E′/S′ such that the natural
map of sets

HomEll(F/T, E′′/S′′) → HomEll(F/T, E/S) × HomEll(F/T, E′/S′)

is an isomorphism for all elliptic curves F → T .

(The proof of this fact comes down to the representability of IsomS×S′(p∗1E, p∗2E
′) as a scheme; cf.

Deligne and Rapoport [2], III, théorème 2.5. It uses the theory of Hilbert schemes, which I don’t
know enough about to give the proof.)

2. Representable functors

Let C be a category, and let F : C → Sets be a contravariant functor. We say that F is representable
if there exists an object X of C such that F is isomorphic to the (contravariant) functor

hX : C → Sets

T 7→ HomC(T, X).

We also say that F is represented by the object X . It follows from Yoneda’s lemma that this object
is unique up to unique isomorphism.

Example. Let Sch be the category of schemes, and consider the functor

Gm:Sch → Sets

S 7→ OS(S)×.

This functor is representable by the affine scheme SpecZ[x, 1/x]. (In this example, the functor
Gm factors via the category of Abelian groups; this gives the representing scheme the structure of
a commutative group scheme.)

Example. Suppose products exist in the category C. If F : C → Sets and G: C → Sets are
represented by objects X and Y , respectively, then the functor

F × G: C → Sets

T 7→ F (T ) × G(T )

is represented by the product of X and Y .
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3. Moduli problems

Definition. A moduli problem (for elliptic curves) is a contravariant functor

P :Ell → Sets.

An element of P(E/S) is called a P-structure on the elliptic curve E over S. The category of
elliptic curves with P-structure, denoted by EllP , is defined as follows: the objects are the pairs
(E → S, α) with E → S an elliptic curve and α an element of P(E/S), and the morphisms from
(E′ → S′, α′) to (E → S, α) are the elements φ ∈ HomEll(E

′/S′, E/S) such that the function of
sets F (φ): F (E/S) → F (E′/S′) maps α to α′. There is a “forgetful functor”

FP :EllP → Ell

sending a pair (E → S, α) to the elliptic curve E → S.
Since P is a functor, we can ask the question whether it is representable. This turns out to be

a very useful thing to do. First of all, every elliptic curve E → S over some base scheme S defines
a representable moduli problem, namely

hE/S = HomEll( , E/S),

given by

hE/S(E′/S′) =

{

(

f : S′ → S, g: E′ → E
)

∣

∣

∣

∣

∣

the square

E′ g
−→ E



y



y

S′ f
−→ S

is Cartesian

}

for every elliptic curve E′ → S′. Imitating the terminology of P-structures introduced above in
the case P = hE/S , we will call an element of hE/S(E′/S′) an E/S-structure on E′/S′. We define
the category of elliptic curves with E/S-structure, denoted by EllE/S , by taking as objects the
Cartesian squares

E′ g′

−→ E


y



y

S′ f ′

−→ S

and by taking as morphisms from (E′′ → S′′, f ′′, g′′) to (E′ → S′, f ′, g′) the morphisms (f̂ , ĝ) ∈

HomEll(E
′′/S′′, E′/S′) such that f ′f̂ = f ′′ and g′ĝ = g′′ (i.e. giving a “commutative prism with

Cartesian squares”). This category is canonically isomorphic to EllhE/S , and the forgetful functor
FhE/S corresponds under this isomorphism to the functor

FE/S :EllE/S → Ell

sending a Cartesian diagram as above to E′/S′.
We can also talk about moduli problems for elliptic curves over B-schemes, where B is an

arbitrary base scheme (instead of Z); this makes no essential difference for the results we will
discuss (i.e. they remain valid if ‘scheme’ is replaced by ‘B-scheme’ in all relevant places). The
cases B = Z[1/n] and B = Z[1/n, ζn], with ζn a primitive n-th root of unity, and B = Fp, with p
a prime number, are often useful.
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4. An example of a representable moduli problem

Let [Γ(3)] be the moduli problem on Z[1/3]-schemes given by

E/S 7−→ { isomorphisms α: (Z/3Z)2S
∼
−→ E[n] }.

An element of [Γ(3)](E/S) is called a (full) level 3 structure on E. We are going to construct an
elliptic curve E3/M3 which represents [Γ(3)].

Let S be a Z[1/3]-scheme, and let (f : E → S, α) be an elliptic curve with level 3 structure.
We define

P = α(1, 0), Q = α(0, 1).

One can show (see Katz and Mazur [3], § 2.2) that locally on S, there exist functions x and y on E,
regular outside O and with poles of order 2 and 3 along O, respectively, such that y2 − x3 has a
pole of order at most 5 along O. Viewing (x : y : 1) as a morphism E → P2

S , we get (locally on S)
an embedding E →֒ P2

S given by a generalised Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We claim that x and y can be chosen uniquely such that the following conditions hold (in addition
to the condition that x and y satisfy a Weierstrass equation):

(1) (x(P ), y(P )) = (0, 0);

(2) the tangent line to E at P in P2
S (actually a family of lines over S) has equation y = 0;

(3) the tangent line to E at Q in P2
S has equation x + y = c for some c ∈ OS(S).

First of all, we change x and y by subtracting the functions x(P ) ∈ OS(S) and y(P ) ∈ OS(S),
respectively. This gives an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x

with P corresponding to (0, 0); note that a6 vanishes because (0, 0) is on the curve. The tangent
line to P is given by the equation

a3y = a4x,

and the fact that P is not annihilated by 2 in any fibre implies that the tangent line is nowhere
parallel to the y-axis, from which it follows that a3 is invertible. We can therefore change y by
subtracting (a4/a3)x; this eliminates a4, after which the fact that P is of order 3 (i.e. that the
line y = 0 intersects E in (0, 0) with multiplicity 3) forces a2 to vanish as well. Thus we get an
equation of the form

y2 + a1xy + a3y = x3. (∗)

At this point, the conditions (1) and (2) are satisfied, and the only change of coordinates which
preserves them is changing x by e2 and y by e3 for some element e ∈ OS(S)×. A calculation shows
that the discriminant of the Weierstrass equation (∗) equals (a3

1 − 27a3)a
3
3, so that both a3 and

a3
1 − 27a3 must be invertible.

Let (u, v) be the coordinates of Q, the second point of order 3. Notice that u and v have
non-zero value in all residue class fields of S: from u = 0 and (∗) we would get v = 0 or v = −a3,
hence Q = ±P , and from v = 0 and (∗) we would get u = 0, hence Q = P . This implies that u
and v are invertible.

The tangent line to E at Q is given by an equation of the form y + bx = c, since it is nowhere
parallel to the y-axis (as Q is nowhere of order 2). The requirement that this tangent line, for
which x − u is a local parameter at (u, v), has a triple intersection point with E implies that

x3 − (c − bx)2 − a1x(c − bx) − a3(c − bx) = (x − u)3.

Comparing coefficients of powers of x, we see that (u, v) is a point of order 3 on E if and only if











3u = b2 − a1b,

3u2 = 2bc − a1c + a3b,

u3 = c2 + a3c.
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Since u is invertible, the first equation shows that b is also invertible. We conclude that we can
choose x and y uniquely (by dividing by b2 and b3, respectively) such that the equation for the
tangent line becomes x + y = c, where now c = u + v since Q lies on the line. The condition for Q
to be a point of order 3 now reads











3u = 1 − a1,

3u2 = 2(u + v) − a1(u + v) + a3,

u3 = (u + v)2 + a3(u + v).

The first two equations are equivalent to

a1 = 1 − 3u and a3 = −3uv − u − v, (∗∗)

and the third can be rewritten as
u3 = −3uv(u + v).

Since u is invertible, this last equation is equivalent to

u2 + 3uv + 3v2 = 0.

Finally, we note that the u and v, which have so far only been defined locally, glue together to
elements of O×

S (S), since they are uniquely determined by (E, α).
Now let R3 be the ring

R3 = Z[u, v]

[

1

3
,
1

u
,

1

a3
,

1

a3
1 − 27a3

]

/

(u2 + 3uv + 3v2),

where a1 and a3 defined by (∗∗), let M3 be the affine scheme Spec R3, and let E3 the elliptic curve
over M3 given by the equation (∗). The points

P3 = (0, 0), Q3 = (u, v)

are of order 3, and Q3 6= ±P3, so we get a level 3 structure

α3: (Z/3Z)2S
∼
−→ E3[3]

with α3(1, 0) = P3 and α3(0, 1) = Q3. We want to show that E3/M3 represents [Γ(3)]. Let E/S
be any elliptic curve; we identify hE3/M3(E/S) with the set

{(f, g) | f : S → M3 a morphism of schemes, g: E
∼
−→ f∗E3}.

For f : E → M3, we write
f∗α3: (Z/3Z)2S

∼
−→ f∗(E3[3])

for the pull-back of α3 by f . Given (f, g) ∈ hE3/M3 (E/S) we can then view g−1 ◦ f∗α3 as an
isomorphism from (Z/3Z)2S to E[3]. The map

φE/S : hE3/M3(E/S) −→ [Γ(3)](E/S)

(f, g) 7−→ g−1 ◦ f∗α3,

is clearly functorial in E/S, and we have to prove that it is an isomorphism for all E/S. Given a
level 3 structure

α: (Z/3Z)2S
∼
−→ E[3]

on E, we define f : S → M3 by sending the elements u, v ∈ R3 to the functions u and v on S
associated to α via the construction above. Then both E and f∗E3 are given by the Weierstrass
equation (∗), so we get a canonical isomorphism g: E

∼
−→ f∗E3 for which g ◦ α = f∗α3 by the

construction of u and v. We put φ−1
E/S(α) = (f, g); it is clear that this is the desired inverse of φE/S .
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5. Relatively representable moduli problems

Definition. We say a moduli problem P ′ is relatively representable if for every elliptic curve E/S
the functor

P ′ ◦ FE/S :EllE/S → Sets

is representable.

Proposition 5.1. Let P ′ be a moduli problem. The following are equivalent:
(1) P ′ is relatively representable;
(2) for every representable moduli problem P , the functor

P ′ ◦ FP :EllP → Sets

is representable;
(3) for every representable moduli problem P , the simultaneous moduli problem

P × P ′:Ell → Sets

E/S 7→ P(E/S) × P ′(E/S)

is representable.

Proof . The equivalence of (1) and (2) is clear from the definitions. For (2) ⇐⇒ (3), let P be a
moduli problem represented by an elliptic curve E/S. If P ′ ◦FE/S :EllE/S → Sets is representable
by an object

E′ −→ E


y



y

S′ −→ S

then the object E′/S′ of Ell represents P × P ′. Conversely, if P × P ′ is representable by an
elliptic curve E′/S′, then Yoneda’s lemma gives a morphism E′/S′ → E/S corresponding to the
projection P×P ′ → P ; viewing this morphism as an object of EllE/S , we get a representing object
of P ′ ◦ FE/S .

Proposition 5.2. Every representable moduli problem is relatively representable.

Proof . Let P be a representable moduli problem. By Fact 1.1, P × P ′ is representable for every
representable moduli problem P ′, so P is relatively representable by the previous proposition.

Notation. If P is a representable moduli problem, we write EP → MP for the representing object
in Ell. If P is a relatively representable moduli problem and E → S is any elliptic curve, we write

EP;E/S −→ E


y



y

MP;E/S −→ S

for the representing object in EllE/S .

Let P be a representable moduli problem. The scheme MP is called the (fine) moduli scheme
associated to P , and the elliptic curve EP is called the universal elliptic curve over MP . If P is
a relatively representable moduli problem and E/S is any elliptic curve, then the moduli problem
P × hE/S is representable and MP;E/S is the moduli scheme associated to P × hE/S.

Exercise. Let P be a representable moduli problem. Show that the scheme MP represents the
functor from Sch to Sets which sends a scheme S to the set of isomorphism classes of pairs
(E/S, α) with E/S an elliptic curve and α ∈ P(E/S) a P-structure on E/S.
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6. Rigidity and representability

Definition. Let P be a moduli problem. For every elliptic curve f : E → S, the group

AutS(E) = {g: E
∼
−→ E | fg = f}

acts from the right on the set P(E/S) by functoriality of P . We say that P is rigid if AutS(E)
acts freely on P(E/S), i.e. if for every elliptic curve E/S and every α ∈ P(E/S), the only element
of AutS(E) fixing α is the identity.

Definition. If P is relatively representable, we say that P is affine (resp. étale, finite, or some
other property of morphisms of schemes) if for every elliptic curve E/S, the object MP;E/S is affine
(resp. étale, finite, . . .) over S.

An extremely useful criterion for representability is the following theorem.

Theorem 6.1. Let P be a relatively representable and affine moduli problem for elliptic curves
over Z-schemes. Then P is representable if and only if P is rigid. In this case, the moduli scheme
MP is affine, and if in addition P is étale, then MP is a smooth curve over Z.

Proof . See Katz and Mazur [3], § 4.7.

Exercise. Let P be a rigid moduli problem, and assume that the functor from Sch to Sets which
sends a scheme S to the set of isomorphism classes of pairs (E/S, α), with E/S an elliptic curve
and α ∈ P(E/S) a P-structure, is representable by a scheme M . Prove that there exists an elliptic
curve E/M (a so-called universal elliptic curve for the moduli problem P) such that the object
E/M of Ell represents P .

7. The moduli problems Γ(n), Γ1(n) and Γ0(n)

The moduli problems which are the most important in practice are those which classify elliptic
curves with “extra structure” attached to the n-torsion, where n is some positive integer. The
“extra structure” in these problems is known as level n structure. Specifically, we have the following
moduli problems on Z[1/n]-schemes (see § 3):

[Γ(n)]: E/S 7−→ { isomorphisms (Z/nZ)2S
∼
−→ E[n] };

[Γ1(n)]: E/S 7−→ { embeddings of group schemes (Z/nZ)S →֒ E[n] };

[Γ0(n)]: E/S 7−→ { subgroup schemes of E[n] locally isomorphic to Z/nZ }.

In the last line, ‘locally’ means locally for the étale topology on S: a subgroup scheme H of E[n]
is locally isomorphic to Z/nZ if and only if there exists a surjective étale morphism S′ → S such
that H ×S S′ is isomorphic to the constant group scheme Z/nZ over S′.

The fundamental results about these moduli problems are as follows:

Theorem 7.1. For all n ≥ 1, the moduli problems [Γ(n)], [Γ1(n)], [Γ0(n)] are relatively repre-
sentable and finite étale. Moreover, [Γ(n)] is representable for n ≥ 3, and its moduli scheme is a
smooth affine curve over SpecZ[1/n]. The same holds for [Γ1(n)] with n ≥ 4.

Proof . According to Katz and Mazur [3], Theorem 3.7.1, each of the above moduli problems is
relatively representable and finite étale. Furthermore, Γ(n) for n ≥ 3 and Γ1(n) for n ≥ 4 are rigid
by Corollaries 2.7.2 and 2.7.4 of [3], respectively, so Theorem 6.1 (which remains true if Z is replaced
by Z[1/n]) implies that they are representable by smooth affine curves over SpecZ[1/n].

Exercise. Show that the moduli problem [Γ0(n)] is not rigid for any n ≥ 1, and conclude that it
is not representable (cf. Theorem 6.1).
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8. Compactification

The moduli schemes resulting from these moduli problems, known as modular curves, are not
proper over SpecZ. This is a problem “in two directions”: the curves have only been defined over
the open subset SpecZ[1/n] of SpecZ, and moreover they are affine. Both observations pose an
obstacle in the way of developing a good theory of modular forms (although the requirement that
n be invertible mainly becomes a problem for the arithmetic theory). One way to get a proper
curve over Spec Z out of an affine modular curve Y over SpecZ[1/n] is by viewing the j-invariant
as a morphism

j: Y → A1
Z[1/n]

and by considering the normalisation of Y over the proper Z-scheme P1
Z
.

The problem with this approach is that it leads to rather messy computations because the
interpretation of the curve as a moduli scheme is lost. There are two things that must be generalised
in order to ‘compactify’ the affine modular curves in a ‘modular’ way:

(1) Together with elliptic curves in the usual sense, consider generalised elliptic curves, which are
either elliptic curves or polygons of projective lines. This is the approach taken by Deligne
and Rapoport [2]; Katz and Mazur [3] use the normalisation over the ‘compactified’ j-line P1

Z
.

(2) Allow so-called Drinfeld level structures as well as the ordinary level structures defined above.
This is done in [3], whereas the technique of normalisation is used in [2].

It is harder to do both generalisations simultaneously; there is a recent article by Conrad [1] in
which the theory of moduli of generalised elliptic curves with Drinfeld structures is developed.
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