Representation Theory of Finite Groups

Example solutions for the practice exam

1. Let $\phi: R \rightarrow S$ be a homomorphism of rings, and let M be a simple S-module. Let $\phi^{*} M$ be the Abelian group M viewed as an R-module via $(r, m) \mapsto \phi(r) m$ for $r \in R$ and $m \in M$.
(a) [Assume that ϕ is surjective. Show that $\phi^{*} M$ is simple.]

Since M is simple, we have $M \neq 0$. For any non-zero element $t \in M$, the sub- R module $R t=\{r t \mid r \in R\}$ equals $S t=\{s t \mid s \in S\}$ because ϕ is surjective. Since M is simple over S, we have $S t=M$. We conclude that every non-zero sub- R-module of $\phi^{*} M$ equals $\phi^{*} M$, so $\phi^{*} M$ is simple.
(b) [Give an example where ϕ is not surjective and $\phi^{*} M$ is not simple.]

Take $\phi: \mathbf{R} \rightarrow \mathbf{C}$ to be the inclusion and $M=\mathbf{C}$. Then ϕ is not surjective and M is not simple as an \mathbf{R}-module since it is isomorphic to $\mathbf{R} \oplus \mathbf{R}$.
(c) [Give an example where ϕ is not surjective, but where $\phi^{*} M$ is still simple.]

Take $\phi: \mathbf{C} \rightarrow \mathbf{C}[x]$ to be the inclusion and let $M=\mathbf{C}$ with the \mathbf{C}-action defined by letting x act as 0 . Then ϕ is not surjective, but M is simple as a \mathbf{C}-module since $M \neq 0$ and any non-zero element of M generates M.
2. Let G be a finite group, let $[G, G]$ be the commutator subgroup of G, and let $G_{\mathrm{ab}}=$ $G /[G, G]$ be the maximal Abelian quotient of G.
(a) [Let g be an element of G with $g \notin[G, G]$. Show that there exists a onedimensional representation of G on which g acts non-trivially. (Hint: one possibility is to use the group ring $\mathbf{C}\left[G_{\mathrm{ab}}\right]$. .)
It has been proved during the course that $\mathbf{C}\left[G_{\mathrm{ab}}\right]$ is isomorphic to $\prod_{i=1}^{r} \operatorname{Mat}_{n_{i}}(\mathbf{C})$ where n_{1}, \ldots, n_{r} are the dimensions of the irreducible representations of G_{ab}. Since G_{ab} is Abelian, all the n_{i} are equal to 1 , so $\mathbf{C}\left[G_{\mathrm{ab}}\right] \cong \mathbf{C}^{r}$ as \mathbf{C}-algebras. Let \bar{g} be the image of g in G_{ab}. Since $g \notin[G, G]$, we have $\bar{g} \neq 1$, so its image in at least one of the factors in the above product decomposition of $\mathbf{C}\left[G_{\mathrm{ab}}\right]$ is different from 1 . This means that \bar{g} acts non-trivially on the corresponding one-dimensional representation of G_{ab}. Viewing this representation as a representation of G via the canonical map $G \rightarrow G_{\mathrm{ab}}$, we obtain a one-dimensional representation of G on which g acts non-trivially.
(b) [Let V be an irreducible representation of G. Show that for every one-dimensional representation W of G, the representation $V \otimes_{\mathbf{C}} W$ is irreducible.]
We note that $V \neq 0$ and $\operatorname{dim}_{\mathbf{C}}\left(V \otimes_{\mathbf{C}} W\right)=\operatorname{dim}_{\mathbf{C}} V \cdot \operatorname{dim}_{\mathbf{C}} W=\operatorname{dim}_{\mathbf{C}} V$, hence $V \otimes_{\mathbf{C}} W \neq 0$. Let W^{\vee} be the dual representation of W; then $W \otimes W^{\vee}$ is the trivial representation. Let N be a subrepresentation of $V \otimes_{\mathbf{C}} W$. There is a short exact sequence

$$
0 \longrightarrow N \longrightarrow V \otimes_{\mathbf{C}} W \longrightarrow Q \longrightarrow 0
$$

of $\mathbf{C}[G]$-modules. Tensoring by W^{\vee} and using the isomorphism $\left(V \otimes_{\mathbf{C}} W\right) \otimes_{\mathbf{C}} W^{\vee} \cong$ $V \otimes_{\mathbf{C}}\left(W \otimes_{\mathbf{C}} W^{\vee}\right) \cong V$, we obtain a short exact sequence

$$
0 \longrightarrow N \otimes_{\mathbf{C}} W^{\vee} \longrightarrow V \longrightarrow Q \otimes_{\mathbf{C}} W^{\vee} \longrightarrow 0
$$

Since V is irreducible, either $N \otimes_{\mathbf{C}} W^{\vee}$ or $Q \otimes_{\mathbf{C}} W^{\vee}$ is the zero module. Hence either N or Q is the zero module. This shows that $V \otimes_{\mathbf{C}} W$ is irreducible.
(Alternative solution: show that the inner product of the character of $V \otimes_{\mathbf{C}} W$ with itself equals the inner product of the character of V with itself.)
(c) [Suppose that G has exactly one irreducible representation of dimension >1 (up to isomorphism), and let χ be the character of this representation. Show that all $g \in G$ with $g \notin[G, G]$ satisfy $\chi(g)=0$.]
Let V be the unique irreducible representation of G of dimension >1. By part (a), there is a one-dimensional representation W of G on which g acts non-trivially. Let $\epsilon: G \rightarrow \mathbf{C}$ be the character of this representation; then $\epsilon(g) \neq 1$. By part (b), the representation $V \otimes_{\mathbf{C}} W$ is irreducible. By assumption, it is isomorphic to V. Looking at the characters of these two representations, we see that $\chi \epsilon=\chi$. In particular, we get $\chi(g) \epsilon(g)=\chi(g)$. Since $\epsilon(g) \neq 1$, it follows that $\chi(g)=0$.
3. Let $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8 . (Recall the relations $(-1)^{2}=1, i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j$.)
In this question, you may only use general results about representations, as opposed to results on representations of the particular group Q.
(a) [Show that Q has exactly four irreducible representations of dimension 1 over \mathbf{C} (up to isomorphism), and give these explicitly.]
The one-dimensional representations of Q are homomorphisms $Q \rightarrow \mathbf{C}^{\times}$, so they factor via the largest Abelian quotient $Q_{\mathrm{ab}}=Q /[Q, Q]$ of Q. Note that $i j i^{-1} j^{-1}=$ $i j(-i)(-j)=i j i j=k^{2}=-1$, so $-1 \in[Q, Q]$. The subgroup $\{ \pm 1\}$ is normal (even central), and the quotient $Q /\{ \pm 1\}$ is isomorphic to the Abelian group V_{4}, so this is the largest Abelian quotient of Q. Let $a, b, c \in Q /\{ \pm 1\} \cong V_{4}$ be the images of i, j, k. A representation of V_{4} is uniquely determined by the images of a and b, which must be in $\{ \pm 1\}$. Hence the character table of V_{4} is

conj. class	$\{1\}$	$\{a\}$	$\{b\}$	$\{c\}$
size	1	1	1	1
	1	1	1	1
	1	1	-1	-1
	1	-1	1	-1
	1	-1	-1	1

Viewing these as representations of Q, we obtain exactly four one-dimensional representations of Q :

conj. class	$\{1\}$	$\{-1\}$	$\{ \pm i\}$	$\{ \pm j\}$	$\{ \pm k\}$
size	1	1	2	2	2
	1	1	1	1	1
	1	1	1	-1	-1
	1	1	-1	1	-1
	1	1	-1	-1	1

Let ζ be a fixed square root of -1 in \mathbf{C} (not denoted by i to avoid confusion). There is a representation $\rho: Q \rightarrow \mathrm{GL}_{2}(\mathbf{C})$ defined by

$$
\rho(i)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \rho(j)=\left(\begin{array}{cc}
\zeta & 0 \\
0 & -\zeta
\end{array}\right) .
$$

(b) [Compute $\rho(-1)$ and $\rho(k)$.]

We have

$$
\rho(-1)=\rho\left(i^{2}\right)=\rho(i)^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
\rho(k)=\rho(i j)=\rho(i) \rho(j)=\left(\begin{array}{cc}
0 & -\zeta \\
-\zeta & 0
\end{array}\right) .
$$

(c) [Show that ρ is irreducible.]

From the above matrices, we see that the character χ of ρ is

conj. class	$\{1\}$	$\{-1\}$	$\{ \pm i\}$	$\{ \pm j\}$	$\{ \pm k\}$
size	1	1	2	2	2
χ	2	-2	0	0	0

We obtain

$$
\langle\chi, \chi\rangle_{Q}=\frac{1}{8}\left(2^{2}+(-2)^{2}+0^{2}+0^{2}+0^{2}\right)=1 .
$$

This shows that ρ is irreducible.
(Alternative solution: a non-trivial subrepresentation of ρ must be a simultaneous one-dimensional eigenspace of $\rho(i)$ and $\rho(j)$; a computation shows that these matrices do not have any eigenspaces in common.)
(d) [Show that every irreducible representation of Q over \mathbf{C} is either one-dimensional or isomorphic to ρ.]
We have constructed five irreducible representations of Q. It has been proved during the course that the number of irreducible representations equals the number of conjugacy classes of Q, which is 5 . Therefore every irreducible representation of Q is isomorphic to one of the representations we have constructed.
(e) [Determine the decomposition of $\rho \otimes \rho \otimes \rho \otimes \rho$ as a direct sum of irreducible representations of Q.]
With χ as in part (c), the character of $\rho^{\otimes 4}=\rho \otimes \rho \otimes \rho \otimes \rho$ equals χ^{4}. Taking the inner product of χ^{4} with each of the five irreducible characters of Q shows that χ^{4} equals 4 times the sum of the four one-dimensional characters.

$$
\rho^{\otimes 4} \cong S_{1}^{\oplus 4} \oplus S_{2}^{\oplus 4} \oplus S_{3}^{\oplus 4} \oplus S_{4}^{\oplus 4}
$$

where the S_{i} are the four one-dimensional representations of Q up to isomorphism.
4. Let G be a finite group, and let k be a field (possibly of characteristic dividing \#G.)

Let $V=k[G]$, viewed as a k-linear representation of G via the action

$$
\begin{aligned}
G \times V & \longrightarrow V \\
(g, v) & \longmapsto g v g^{-1} .
\end{aligned}
$$

(a) [Show that the kernel of the group homomorphism $\rho: G \rightarrow \operatorname{Aut}_{k}(V)$ defined by the above action equals the centre $Z(G)$ of G.]
An element $g \in G$ is in the kernel of ρ if and only if it commutes with every element of V. Since V consists of the \mathbf{C}-linear combinations of elements of G, this is equivalent to commuting with every element of G, i.e. with g being in $Z(G)$.
Let c be the number of conjugacy classes of G, and let l be the length of V as a $k[G]$-module.
(b) [Prove the inequality $l \geq c$. (Hint: find non-trivial submodules of V.)]

Let G / \sim be the set of conjugacy classes of G. For each $C \in G / \sim$, let $k\langle C\rangle$ be the k-linear subspace of V spanned by the elements of C. Since G acts on V by conjugation, each $k\langle C\rangle$ is a non-trivial sub- $k[G]$-module of V, and V is the direct sum of the $k\langle C\rangle$. We obtain

$$
\operatorname{length}_{k[G]}(V)=\sum_{C \in G / \sim} \operatorname{length}_{k[G]} k\langle C\rangle \geq \#(G / \sim) .
$$

(c) [Bonus question: Show that if G is not Abelian, then l is strictly larger than c.] If G is not Abelian, then there is a conjugacy class C with $\# C>1$. Let $x=\sum_{g \in C} g$; then x is stable under conjugation, and hence $k x \subseteq k\langle C\rangle$ is a sub- $k[G]$-module that is neither zero nor equal to $k\langle C\rangle$. This implies length $k\langle C\rangle \geq 1$, so the inequality obtained in part (b) is strict.
5. [Let A_{5} be the alternating group of order 60 , and let $g=(12345) \in A_{5}$. We view the cyclic group C_{5} of order 5 as a subgroup of A_{5} by $C_{5}=\langle g\rangle \subset A_{5}$. Let $\zeta=\exp (2 \pi i / 5) \in \mathbf{C}$, and let V be the one-dimensional representation of C_{5} on which g acts as ζ. Determine the decomposition of $\operatorname{Ind}_{C_{5}}^{A_{5}} V$ as a direct sum of irreducible representations of A_{5}.]
Let ξ be the character of V, and let $\xi^{\prime}=\operatorname{ind}_{C_{5}}^{A_{5}}$ be the induced character (i.e. the character of $\operatorname{Ind}_{C_{5}}^{A_{5}} V$). By Frobenius reciprocity, for each irreducible character χ of A_{5}, we have

$$
\left\langle\chi, \xi^{\prime}\right\rangle_{A_{5}}=\left\langle\left.\chi\right|_{C_{5}}, \xi\right\rangle_{C_{5}} .
$$

Let $\chi_{1}, \ldots, \chi_{5}$ be the irreducible characters of A_{5}. Here is a table of the characters $\left.\chi_{i}\right|_{C_{5}}\left(\right.$ read off from the character table of A_{5} using the hint) and ξ of C_{5} :

conj. class	$\{1\}$	$\{g\}$	$\left\{g^{2}\right\}$	$\left\{g^{3}\right\}$	$\left\{g^{4}\right\}$
size	1	1	1	1	1
$\left.\chi_{1}\right\|_{C_{5}}$	1	1	1	1	1
$\left.\chi_{2}\right\|_{C_{5}}$	3	$-\zeta^{2}-\zeta^{3}$	$-\zeta-\zeta^{4}$	$-\zeta-\zeta^{4}$	$-\zeta^{2}-\zeta^{3}$
$\left.\chi_{3}\right\|_{C_{5}}$	3	$-\zeta-\zeta^{4}$	$-\zeta^{2}-\zeta^{3}$	$-\zeta^{2}-\zeta^{3}$	$-\zeta-\zeta^{4}$
$\left.\chi_{4}\right\|_{C_{5}}$	4	-1	-1	-1	-1
$\left.\chi_{5}\right\|_{C_{5}}$	5	0	0	0	0
ξ	1	ζ	ζ^{2}	ζ^{3}	ζ^{4}

We compute (using the identity $1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}=0$)

$$
\begin{aligned}
& \left\langle\left.\chi_{1}\right|_{C_{5}}, \xi\right\rangle=\frac{1}{5}\left(1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}\right)=0, \\
& \left\langle\left.\chi_{2}\right|_{C_{5}}, \xi\right\rangle=\frac{1}{5}\left(3-\left(\zeta^{3}+\zeta^{4}\right)-\left(\zeta^{3}+\zeta\right)-\left(\zeta^{4}+\zeta^{2}\right)-\left(\zeta+\zeta^{2}\right)\right)=1, \\
& \left\langle\left.\chi_{3}\right|_{C_{5}}, \xi\right\rangle=\frac{1}{5}\left(3-\left(\zeta^{2}+1\right)-\left(\zeta^{4}+1\right)-(1+\zeta)-\left(1+\zeta^{3}\right)\right)=0, \\
& \left\langle\left.\chi_{4}\right|_{C_{5}}, \xi\right\rangle=\frac{1}{5}\left(4-\zeta-\zeta^{2}-\zeta^{3}-\zeta^{4}\right)=1, \\
& \left\langle\left.\chi_{5}\right|_{C_{5}}, \xi\right\rangle=\frac{1}{5}(5+0+0+0+0)=1 .
\end{aligned}
$$

This shows that $\operatorname{Ind}_{C_{5}}^{A_{5}} V$ is the direct sum of the irreducible representations with characters χ_{2}, χ_{4} and χ_{5}.

