Representation Theory of Finite Groups

Example solutions for the practice exam

1. Let ¢: R — S be a homomorphism of rings, and let M be a simple S-module. Let
¢*M be the Abelian group M viewed as an R-module via (r,m) — ¢(r)m for r € R
and m € M.

(a) [Assume that ¢ is surjective. Show that ¢*M is simple.]

Since M is simple, we have M # 0. For any non-zero element ¢t € M, the sub-R-
module Rt = {rt | r € R} equals St = {st | s € S} because ¢ is surjective. Since M
is simple over S, we have St = M. We conclude that every non-zero sub-R-module
of ¢p*M equals ¢* M, so ¢* M is simple.

(b) [Give an example where ¢ is not surjective and ¢*M is not simple.]

Take ¢: R — C to be the inclusion and M = C. Then ¢ is not surjective and M is
not simple as an R-module since it is isomorphic to R & R.

(c) [Give an example where ¢ is not surjective, but where ¢*M is still simple.]

Take ¢: C — C|z] to be the inclusion and let M = C with the C-action defined by
letting « act as 0. Then ¢ is not surjective, but M is simple as a C-module since
M # 0 and any non-zero element of M generates M.

2. Let G be a finite group, let [G, G] be the commutator subgroup of G, and let G, =
G/|G,G] be the maximal Abelian quotient of G.

(a) [Let g be an element of G with g ¢ [G,G]. Show that there exists a one-
dimensional representation of G on which g acts non-trivially. (Hint: one possi-
bility is to use the group ring C[G,p].)]

It has been proved during the course that C[G,p| is isomorphic to [[;_; Mat,, (C)

where nq,...,n, are the dimensions of the irreducible representations of G,. Since

Gap is Abelian, all the n; are equal to 1, so C[Gy,p] = C” as C-algebras. Let g be the

image of g in G,p,. Since g ¢ [G, G], we have g # 1, so its image in at least one of the

factors in the above product decomposition of C[G,p] is different from 1. This means

that g acts non-trivially on the corresponding one-dimensional representation of G.

Viewing this representation as a representation of G via the canonical map G — G,

we obtain a one-dimensional representation of G on which g acts non-trivially.

(b) [Let V be an irreducible representation of G. Show that for every one-dimensional
representation W of G, the representation V ®@c W is irreducible.]
We note that V' # 0 and dimc(V ®@c W) = dimcV - dim¢ W = dimc V, hence
V @c W # 0. Let WV be the dual representation of W; then W @ WV is the trivial
representation. Let N be a subrepresentation of V' ®c W. There is a short exact
sequence
0 — N —=VecW —0—0

of C[G]-modules. Tensoring by WV and using the isomorphism (V @c W) @c WV =
V @c (W ®c WV) 2V, we obtain a short exact sequence

0—>NRcWY —V —QxcW' —0.

Since V is irreducible, either N ®c WY or Q ®c WV is the zero module. Hence either
N or @ is the zero module. This shows that V ®c W is irreducible.
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(Alternative solution: show that the inner product of the character of V ®c W with
itself equals the inner product of the character of V' with itself.)

(¢) [Suppose that G has exactly one irreducible representation of dimension > 1 (up
to isomorphism), and let y be the character of this representation. Show that all
g € G with g ¢ [G, G| satisty x(g) = 0.]

Let V' be the unique irreducible representation of G' of dimension > 1. By part (a),

there is a one-dimensional representation W of G on which g acts non-trivially. Let

€: G — C be the character of this representation; then e(g) # 1. By part (b), the

representation V ®c W is irreducible. By assumption, it is isomorphic to V. Looking

at the characters of these two representations, we see that ye = x. In particular, we

get x(g9)e(g) = x(g). Since €(g) # 1, it follows that x(g) = 0.

. Let @ = {£1, +i,+j, +k} be the quaternion group of order 8. (Recall the relations
(-1)2=1,2=42=k=—-1,ij = —ji=k, jk=—kj =i, ki=—ik =j.)

In this question, you may only use general results about representations, as opposed
to results on representations of the particular group Q.

(a) [Show that @ has exactly four irreducible representations of dimension 1 over C
(up to isomorphism), and give these explicitly.]

The one-dimensional representations of ) are homomorphisms @ — C*, so they
factor via the largest Abelian quotient Q., = Q/[Q, Q] of Q. Note that iji~1j~! =
ij(—i)(—j) = ijij = k* = —1, so —1 € [Q, Q]. The subgroup {41} is normal (even
central), and the quotient @)/{=£1} is isomorphic to the Abelian group Vj, so this is
the largest Abelian quotient of Q. Let a,b,c € Q/{£1} = V4 be the images of i, j, k.
A representation of Vj is uniquely determined by the images of a and b, which must
be in {+1}. Hence the character table of Vj is

conj. class {1} {a} {0} {c}
size 1 1 1 1
1 1 1 1

1 1 -1 -1

1 —1 1 -1
1 -1 -1 1

Viewing these as representations of @), we obtain exactly four one-dimensional repre-
sentations of Q):

conj. class {1} {-1} {£i} {£5} {£k}
size 1 1 2 2 2
1 1 1 1 1
1 1 1 -1 -1
1 1 -1 1 -1
1 1 —1 -1 1

Let ¢ be a fixed square root of —1 in C (not denoted by i to avoid confusion). There
is a representation p: Q — GLo(C) defined by

= (2 5) e=(5 %)

(b) [Compute p(—1) and p(k).]



We have Lo
p@nzmw:mwz(; J

and

ot = i) = o) = 7).

(c) [Show that p is irreducible.]
From the above matrices, we see that the character y of p is
conj. class {1} {-1} {£i} {£j} {£k}
size 1 1 2 2 2
x | 2 -2 0 0 0

We obtain

1
(X, X)g = §(22 + (=22 + 0%+ 0%+ 0%) = 1.

This shows that p is irreducible.

(Alternative solution: a non-trivial subrepresentation of p must be a simultaneous
one-dimensional eigenspace of p(i) and p(j); a computation shows that these matrices
do not have any eigenspaces in common.)

(d) [Show that every irreducible representation of @) over C is either one-dimensional
or isomorphic to p.]

We have constructed five irreducible representations of (). It has been proved dur-
ing the course that the number of irreducible representations equals the number of
conjugacy classes of @), which is 5. Therefore every irreducible representation of @ is
isomorphic to one of the representations we have constructed.

(e) [Determine the decomposition of p ® p ® p ® p as a direct sum of irreducible
representations of Q.]

With x as in part (c), the character of p®* = p® p ® p ® p equals x*. Taking the
inner product of x* with each of the five irreducible characters of @ shows that x*
equals 4 times the sum of the four one-dimensional characters.

p®t = $P g §9 @ St @ ST,
where the 5; are the four one-dimensional representations of ) up to isomorphism.

. Let G be a finite group, and let k be a field (possibly of characteristic dividing #G.)
Let V = k[G], viewed as a k-linear representation of G via the action

GxV —V
(9.v) — gug ™.
(a) [Show that the kernel of the group homomorphism p: G — Autg (V) defined by
the above action equals the centre Z(G) of G.]

An element g € G is in the kernel of p if and only if it commutes with every element
of V. Since V' consists of the C-linear combinations of elements of GG, this is equivalent
to commuting with every element of G, i.e. with g being in Z(G).

Let ¢ be the number of conjugacy classes of GG, and let [ be the length of V as a
k[G]-module.

(b) [Prove the inequality [ > ¢. (Hint: find non-trivial submodules of V)]
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Let G/ ~ be the set of conjugacy classes of G. For each C' € G/ ~, let k(C) be
the k-linear subspace of V' spanned by the elements of C'. Since G acts on V by
conjugation, each k(C) is a non-trivial sub-k[G]-module of V', and V' is the direct sum
of the k(C). We obtain

lengthyq) (V) = Y lengthyq k(C) > #(G/ ~).
CeG/~

(c) [Bonus question: Show that if G is not Abelian, then [ is strictly larger than c.|

If G is not Abelian, then there is a conjugacy class C with #C > 1. Let x = dec g;
then z is stable under conjugation, and hence kz C k(C) is a sub-k[G]-module that
is neither zero nor equal to k(C). This implies length £(C) > 1, so the inequality
obtained in part (b) is strict.

. [Let As be the alternating group of order 60, and let ¢ = (12345) € A;. We
view the cyclic group C5 of order 5 as a subgroup of A; by C5 = (g) C As. Let
¢ = exp(27i/5) € C, and let V' be the one-dimensional representation of C5 on which
g acts as (. Determine the decomposition of Indég V as a direct sum of irreducible
representations of As.]

Let € be the character of V, and let & = indéi be the induced character (i.e. the
character of Ind‘éf’ V). By Frobenius reciprocity, for each irreducible character x
5
of A5, we have
<X7§/>A5 = <X‘C'57§>05'
Let x1, ..., x5 be the irreducible characters of As. Here is a table of the characters
Xilcs (read off from the character table of A5 using the hint) and £ of Cs:

conj. class {1} {9} {g*} {9} {g"}
size 1 1 1 1 1
Xl‘C5 1 1 1 1 1
x2lcs 3 —¢*-¢ ¢ (-t -
x3lcs 3 —(-¢t -0 -3 -
X4lcs 4 -1 —1 -1 -1
X5|cs 5 0 0 0 0
el 1 ¢ ¢? ¢’ ¢t

We compute (using the identity 1+ ¢ + ¢% + (3 +¢* = 0)

(ilenn€) = S+ + ¢34 ¢ =0,

ezl €) = 2B — (P ¢H) — (B0 — (P4 (C+ ) =1,

5
@) () -0 -+ ) =0,

<X3|Csa£> 5
(alons€) = 54—~ =P = ¢ =1,
(Xslcs, &) = %(5+0+0+0+0) =1

This shows that Indéf) V' is the direct sum of the irreducible representations with
characters yo, x4 and xs.



