Representation Theory of Finite Groups Practice exam (3 hours)

Note:

- You may consult books and lecture notes. The use of electronic devices is not allowed.
- You may use results proved in the lecture or in the exercises, unless this makes the question trivial. When doing so, clearly state the results that you use.
- If you are unable to answer a subquestion, you may still use the result in the remainder of the question.
- Representations are taken to be over **C**, unless mentioned otherwise.
- (?? pt) **1.** Let $\phi: R \to S$ be a homomorphism of rings, and let M be a simple S-module. Let ϕ^*M be the Abelian group M viewed as an R-module via $(r, m) \mapsto \phi(r)m$ for $r \in R$ and $m \in M$.
 - (a) Assume that ϕ is surjective. Show that $\phi^* M$ is simple.
 - (b) Give an example where ϕ is not surjective and ϕ^*M is not simple.
 - (c) Give an example where ϕ is not surjective, but where ϕ^*M is still simple.
- (?? pt) **2.** Let G be a finite group, let [G, G] be the commutator subgroup of G, and let $G_{ab} = G/[G, G]$ be the maximal Abelian quotient of G.
 - (a) Let g be an element of G with $g \notin [G, G]$. Show that there exists a one-dimensional representation of G on which g acts non-trivially. (*Hint:* one possibility is to use the group ring $\mathbf{C}[G_{ab}]$.)
 - (b) Let V be an irreducible representation of G. Show that for every one-dimensional representation W of G, the representation $V \otimes_{\mathbf{C}} W$ is irreducible.
 - (c) Suppose that G has exactly one irreducible representation of dimension > 1 (up to isomorphism), and let χ be the character of this representation. Show that all $g \in G$ with $g \notin [G, G]$ satisfy $\chi(g) = 0$.

(?? pt) 3. Let Q = {±1,±i,±j,±k} be the quaternion group of order 8. (Recall the relations (-1)² = 1, i² = j² = k² = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.) In this question, you may only use general results about representations, as opposed

to results on representations of the particular group Q.

(a) Show that Q has exactly four irreducible representations of dimension 1 over C (up to isomorphism), and give these explicitly.

Let ζ be a fixed square root of -1 in **C** (not denoted by *i* to avoid confusion). There is a representation $\rho: Q \to \operatorname{GL}_2(\mathbf{C})$ defined by

$$\rho(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \rho(j) = \begin{pmatrix} \zeta & 0 \\ 0 & -\zeta \end{pmatrix}$$

- (b) Compute $\rho(-1)$ and $\rho(k)$.
- (c) Show that ρ is irreducible.
- (d) Show that every irreducible representation of Q over **C** is either one-dimensional or isomorphic to ρ .
- (e) Determine the decomposition of $\rho \otimes \rho \otimes \rho \otimes \rho$ as a direct sum of irreducible representations of Q.

(?? pt) 4. Let G be a finite group, and let k be a field (possibly of characteristic dividing #G.) Let V = k[G], viewed as a k-linear representation of G via the action

$$\begin{array}{c} G \times V \longrightarrow V \\ (g,v) \longmapsto gvg^{-1}. \end{array}$$

(a) Show that the kernel of the group homomorphism $\rho: G \to \operatorname{Aut}_k(V)$ defined by the above action equals the centre Z(G) of G.

Let c be the number of conjugacy classes of G, and let l be the length of V as a k[G]-module.

- (b) Prove the inequality $l \ge c$. (*Hint*: find non-trivial submodules of V.)
- (c) Bonus question: Show that if G is not Abelian, then l is strictly larger than c.
- (?? pt) 5. Let A_5 be the alternating group of order 60, and let $g = (12345) \in A_5$. We view the cyclic group C_5 of order 5 as a subgroup of A_5 by $C_5 = \langle g \rangle \subset A_5$. Let $\zeta = \exp(2\pi i/5) \in \mathbb{C}$, and let V be the one-dimensional representation of C_5 on which g acts as ζ . Determine the decomposition of $\operatorname{Ind}_{C_5}^{A_5} V$ as a direct sum of irreducible representations of A_5 . You may use the character table of A_5 :

conj. class	[(1)]	[(12)(34)]	[(123)]	[(12345)]	[(12354)]
size	1	15	20	12	12
	1	1	1	1	1
	3	-1	0	$-\zeta^2-\zeta^3$	$-\zeta-\zeta^4$
	3	-1	0	$-\zeta-\zeta^4$	$-\zeta^2-\zeta^3$
	4	0	1	-1	-1
	5	1	-1	0	0

(*Hint:* you may use without proof that the conjugacy classes of the powers of g in A_5 satisfy $[g] = [g^4] = [(1 \ 2 \ 3 \ 4 \ 5)]$ and $[g^2] = [g^3] = [(1 \ 2 \ 3 \ 5 \ 4)].)$