
Representation Theory of Finite Groups, spring 2019

Problem Sheet 4

25 Februari

In the following exercises, Sets (resp. Groups, Rings, . . . ) denotes the category of sets

(resp. groups, rings, . . . ), where the morphisms are the “standard” ones (i.e. maps of

sets, group homomorphisms, ring homomorphisms, . . . ), and composition is defined in

the “standard” way, i.e. (g ◦ f)(x) = g(f(x)) if f :X → Y and g:Y → Z are maps of sets

(resp. group homomorphisms, ring homomorphisms, . . . ).

1. Let G be a group. Recall that a (left) G-set is a pair (X,α), where X is a set and

α:G×X → X is a left action of G on X. (Often, one does not mention α explicitly

and abbreviates α(g, x) to gx.) A G-equivariant map from a G-set (X,α) to a G-

set (Y, β) is a map of sets f :X → Y such that for all g ∈ G and x ∈ X we have

f(α(g, x)) = β(g, f(x)). Show that there is a category GSets in which the objects are

the G-sets and the morphisms are the G-equivariant maps.

2. (Some examples of functors.) In each case, to show that there is a functor F : C → D

with the given effect on objects of C, start by defining F (f) for morphisms f in C.

(a) For every ring R, let R× be the unit group of R. Show that there is a functor

U :Rings → Groups such that U(R) = R× for every ring R.

(b) For every ring R, let R[x] be the polynomial ring in one variable over R. Show

that there is a functor P :Rings → Rings such that P (R) = R[x] for every

ring R.

(c) Let k be a field. Show that there is a functor R:Groups → Rings such that

R(G) = k[G] for every group G.

(d) Let G be a group. For every G-set X (see Exercise 1), let XG be the set of fixed

points, i.e. XG = {x ∈ X | gx = x for all g ∈ G}. Show that there is a functor

F :GSets → Sets such that F (X) = XG for every G-set X.

3. Let C, D and E be categories, and let F : C → D and G:D → E be functors. For every

object X of C, define an object H(X) of E by H(X) = G(F (X)). For every morphism

f :X → Y in C, define a morphism H(f) in MorE(X,Y ) by H(f) = G(F (f)). Show

that H is a functor from C to D. (The functor H is called the composition of G and F

and is denoted by GF or G ◦ F .)

4. Let C be a category, and let X be an object of C.

(a) For all objects Y of C, define a set hX(Y ) by

hX(Y ) = MorC(X,Y ).

For all morphisms f :Y → Y ′ in C, define a map of sets

hX(f):hX(Y ) −→ hX(Y ′)

g 7−→ f ◦ g.

Show that hX is a functor from C to Sets.
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(b) For all objects Y of C, define a set hX(Y ) by

hX(Y ) = MorC(Y,X).

For all morphisms f :Y → Y ′ in C, define a map of sets

hX(f):hX(Y ′) −→ hX(Y )

g 7−→ g ◦ f.

Show that hX is a contravariant functor from C to Sets (equivalently, a functor

from Cop to Sets).

5. Let G be a group, and let k be a field. For every G-set X (see Exercise 1), let kX be

the set of functions v:X → k, viewed as a k-vector space under pointwise addition

and scalar multiplication.

(a) For g ∈ G and v ∈ kX , define gv ∈ kX by

(gv)(x) = v(g−1x).

Show that this gives kX the structure of a k-linear representation of G, hence of

a k[G]-module.

(b) Let f :X → Y be a G-equivariant map. Show that the map

f∗: kY → kX

w 7→ w ◦ f

is k[G]-linear.

(c) For every G-set X, define a k[G]-module F (X) by F (X) = kX . For every G-

equivariant map f :X → Y , let F (f):F (Y ) → F (X) be the k[G]-linear map f∗

defined in (b). Show that F is a contravariant functor from GSets to k[G]Mod.

Definition. Let C be a category, and let X and Y be two objects of C.

A (categorical) product of X and Y in C is an object P of C, together with morphisms

p:P → X and q:P → Y , with the following property: for every object Z of C and every

pair of morphisms f :Z → X and g:Z → Y , there exists a unique morphism h:Z → P

such that p ◦ h = f and q ◦ h = g. Equivalently, (P, p, q) is a product of X and Y if and

only if for every object Z of C, the map of sets

MorC(Z,P ) −→ MorC(Z,X)×MorC(Z, Y )

h 7−→ (p ◦ h, q ◦ h)

is a bijection.

A (categorical) sum or coproduct of X and Y in C is an object S of C, together with

morphisms i:X → S and j:Y → S, with the following property: for every object Z of C

and every pair of morphisms f :X → Z and g:Y → Z, there exists a unique morphism

h:S → Z such that h ◦ i = f and h ◦ j = g. Equivalently, (S, i, j) is a sum of X and Y if

and only if for every object Z of C, the map of sets

MorC(S,Z) −→ MorC(X,Z)×MorC(Y, Z)

h 7−→ (h ◦ i, h ◦ j)

is a bijection.
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6. Let X and Y be sets.

(a) Show that the disjoint union X ⊔ Y , together with the canonical maps i:X →

X ⊔ Y and j:Y → X ⊔ Y , is a (categorical) sum of X and Y in Sets

(b) Show that the Cartesian product X×Y , together with the canonical maps p:X×

Y → X and q:X × Y → Y , is a (categorical) product of X and Y in Sets.

7. (a) Let G and H be groups, and let G×H be their product (according to the usual

definition, i.e. G × H is the product set with coordinatewise operations). Show

that G × H, together with the canonical projection maps p:G × H → G and

q:G×H → H, is a categorical product of G and H in Groups.

(b) Same question for the category of rings.

8. Let m and n be positive integers, and let d be their greatest common divisor. Let

i:Z/mZ → Z/dZ and j:Z/nZ → Z/dZ be the canonical ring homomorphisms. Show

that (Z/dZ, i, j) is a (categorical) sum of Z/mZ and Z/nZ in the category Rings.

(Taking m,n > 1 coprime, this shows that the sum of two non-zero rings can be the

zero ring.)

9. Let G = H = Z.

(a) Show that Z2, together with the group homomorphisms i:G → Z2 and j:H → Z2

defined by i(m) = (m, 0) and j(n) = (0, n), is a sum of G and H in the category

of Abelian groups.

(b) Let F = 〈g, h〉 be the (non-Abelian) free group on two generators. Show that

F , together with the group homomorphisms i:G → F and j:H → F defined by

i(m) = gm and j(n) = hn, is a sum of G and H in the category of groups.

(This shows that categorical notions like sums can depend heavily on the category.)

10. Let FinGrp be the category of finite groups (objects are finite groups, morphisms and

composition are as in Groups.) Let G = H = Z/2Z. For every positive integer n,

let Dn be the dihedral group of order 2n, defined using generators and relations by

Dn = 〈ρ, σ | ρn, σ2, (σρ)2〉.

(a) Show that for every n ≥ 1 there exist homomorphisms f :G → Dn and g:H → Dn

such that Dn is generated by the union of the images of f and g.

(b) Suppose that there exists a finite group S, together with group homomorphisms

i:G → S and j:H → S, such that (S, i, j) is a sum of G and H in FinGrp. Show

that for all n ≥ 1 there exists a surjective group homomorphism S → Dn.

(c) Conclude that G and H do not have a sum in FinGrp.
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