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4 March

1. Let C be a category equipped with the structure of an Abelian group on HomC(X,Y )

for all objects X and Y of C, such that composition of morphisms is bilinear. Let X

be an object of C.

(a) Show that the Abelian group EndC(X) = HomC(X,X) has a natural ring struc-

ture with composition as multiplication.

(b) Show that X is a zero object in C if and only if EndC(X) is the zero ring.

2. Let C be a category equipped with the structure of an Abelian group on HomC(X,Y )

for all objects X and Y of C, such that composition of morphisms is bilinear. Suppose

that X and Y are objects of C and (S, i, j) is a sum of X and Y .

(a) Show that there are unique morphisms p:S → X and q:S → Y satisfying p ◦ i =

idX , p ◦ j = 0, q ◦ i = 0 and q ◦ j = idY .

(b) Show that the morphism i ◦ p+ j ◦ q ∈ EndC(S) equals idS .

(c) Show that (S, p, q) is a product of X and Y in C.

Definition. An Abelian category is a category A, together with the structure of an

Abelian group on HomA(X,Y ) for all objects X and Y of A, such that the following

conditions are satisfied:

(1) Composition of morphisms is bilinear.

(2) There is a zero object in A.

(3) For all objects X and Y of A, there is an object S of A together with morphisms

i:X → S, j:Y → S, p:S → X and q:S → Y such that (S, i, j) is a sum of X and Y

and (S, p, q) is a product of X and Y .

(4) Every morphism in A has a kernel and a cokernel.

(5) For every morphism f :X → Y in A, let i: ker f → X and p:Y → coker f be the kernel

and cokernel of f . Then the unique morphism f̄ : coker i → ker p making the diagram

ker f
i

−→ X
f

−→ Y
p

−→ coker f

q



y

x

j

coim f := coker i
f̄

−→ ker p =: im f

commutative (the existence and uniqueness of f̄ was proved in the lecture) is an

isomorphism.

3. Let A be an Abelian category, and let f :X → Y be a morphism in A. Show that f

is an isomorphism if and only if 0 → X is a kernel of f and Y → 0 is a cokernel of f .

4. Let A be an Abelian category. Let X
f

−→ Y
g

−→ Z be a sequence of two morphisms

in A satisfying g ◦ f = 0. Let p:Y → coker f be the cokernel of f , let i: ker g → Y be

the kernel of g, and let j: im f = ker p → Y be the image of f , which is defined as the

kernel of p. Show that there is a unique morphism h: im f → ker g satisfying i◦h = j.
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Definition. A sequence X
f

−→ Y
g

−→ Z in an Abelian category is exact at Y if g ◦ f = 0

and the morphism h defined in Exercise 4 is an isomorphism. A sequence of morphisms

in A is exact if it is exact at every intermediate object.

5. Let R be a ring, and let L
f

−→ M
g

−→ N be a sequence of R-modules. Show that this

sequence is exact according to the above definition if and only if the “usual” image

of f equals the “usual” kernel of g (as submodules of M).

6. Let R be a ring, and let L
f

−→ M
g

−→ N be a sequence of R-modules. Show that this

sequence is exact if and only if it fits into a commutative diagram of R-modules and

R-linear maps

0


y

0 −→ J −→ L −→ K −→ 0

f
ց



y

M


y ց
g

0 −→ P −→ N −→ Q −→ 0


y

0

in which the two horizontal sequences and the vertical sequence are exact.

Definition. Let A and B be Abelian categories. A functor F :A → B is additive if

for all objects X,Y of A, the map F : HomA(X,Y ) −→ HomB(F (X), F (Y )) is a group

homomorphism. An additive functor F :A → B is

• exact if for every exact sequence X
f

−→ Y
g

−→ Z in A, the sequence

F (X)
F (f)
−→ F (Y )

F (g)
−→ F (Z) in B is exact.

• left exact if for every exact sequence 0 −→ X
f

−→ Y
g

−→ Z in A, the sequence

0 −→ F (X)
F (f)
−→ F (Y )

F (g)
−→ F (Z) in B is exact.

• right exact if for every exact sequence X
f

−→ Y
g

−→ Z −→ 0 in A, the sequence

F (X)
F (f)
−→ F (Y )

F (g)
−→ F (Z) −→ 0 in B is exact.

7. Let A and B be Abelian categories, and let F :A → B be an additive functor. Show

that the following statements are equivalent:

(1) The functor F is exact.

(2) The functor F is both left exact and right exact.

(3) For every short exact sequence 0 −→ X
f

−→ Y
g

−→ Z −→ 0 in A, the sequence

0 −→ F (X)
F (f)
−→ F (Y )

F (g)
−→ F (Z) −→ 0 in B is exact.

(Hint: You may use without proof that the result of Exercise 6 holds in any Abelian

category.)
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8. Let R be a ring, and let M be a left R-module.

(a) Show that M is projective if and only if the functor RHom(M, ):RMod → Ab

is exact.

(b) Show that M is injective if and only if the functor RHom( ,M):RMod
op → Ab

is exact.

(See Problem Sheet 2 for projective and injective modules.)

Definition. Let R be a ring, let M be a right R-module, let N be a left R-module, and

let A be an Abelian group. An R-bilinear map M × N → A is a map b:M × N → A

satisfiying the following identities for all r ∈ R, m,m′ ∈ M , and n, n′ ∈ N :

b(m+m′, n) = b(m,n) + b(m′, n)

b(m,n+ n′) = b(m,n) + b(m,n′)

b(mr, n) = b(m, rn).

The set of all R-bilinear maps M ×N → A is denoted by BilR(M,N,A). Note that this

is an Abelian group under pointwise addition, i.e.

(b+ b′)(m,n) = b(m,n) + b′(m,n).

9. Let R be a ring, let M be a right R-module, and let N be a left R-module. Recall

(as a special case of the generalities on bimodules treated in the lecture) that the

Abelian group Hom(M,A) of all group homomorphisms M → A is a left R-module

via (rf)(m) = f(mr), and that Hom(N,A) is a right R-module via (fr)(n) = f(rn).

(a) Show that there are canonical isomorphisms

BilR(M,N,A)
∼

−→ HomR(M,Hom(N,A))

and

BilR(M,N,A)
∼

−→ RHom(N,Hom(M,A))

of Abelian groups.

(b) Let S and T be two further rings, and suppose in addition that that M is an

(S,R)-bimodule and N is an (R, T )-bimodule. Show that BilR(M,N,A) has a

natural (T, S)-bimodule structure.

10. Let R be a ring, and let ι:R → R be an anti-automorphism of R, i.e. a ring isomor-

phism from R to itself except that the condition ι(xy) = ι(x)ι(y) that would have

to hold for a ring homomorphism is replaced by ι(xy) = ι(y)ι(x). Let M be a right

R-module. Show that the map

R×M −→ M

(r,M) 7−→ mι(r)

makes M into a left R-module.
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11. Let k be a field, and let G be a group. Define a map

ι: k[G] −→ k[G]
∑

g∈G

cgg 7−→
∑

g∈G

cgg
−1.

(a) Show that ι is an anti-automorphism of k[G] (see Exercise 10) that is compatible

with the k-algebra structure.

(b) LetM be a left k[G]-module, and let Homk(M,k) be the k-vector space of k-linear

maps M → k. Show that the map

k[G]×Homk(M,k) −→ Homk(M,k)

(r, f) −→ (m 7→ f(ι(r)m))

makes Homk(M,k) into a left k[G]-module.

(c) Let M and N be left k[G]-modules, and let Homk(M,N) be the k-vector space

of k-linear maps M → N . Show that the map

G×Homk(M,N) −→ Homk(M,N)

(g, f) 7−→ (m 7→ g(f(g−1m)))

can be extended uniquely to a left k[G]-module structure on Homk(M,N) in

such a way that the action of k is the “usual” scalar multiplication action of k on

Homk(M,N).
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