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Representation Theory of Finite Groups, spring 2019

Problem Sheet 5

4 March

Let C be a category equipped with the structure of an Abelian group on Home(X,Y)
for all objects X and Y of C, such that composition of morphisms is bilinear. Let X
be an object of C.

(a) Show that the Abelian group Ende(X) = Home (X, X) has a natural ring struc-

ture with composition as multiplication.

(b) Show that X is a zero object in C if and only if End¢(X) is the zero ring.

Let C be a category equipped with the structure of an Abelian group on Home (X, Y)
for all objects X and Y of C, such that composition of morphisms is bilinear. Suppose
that X and Y are objects of C and (S,%,7) is a sum of X and Y.

(a) Show that there are unique morphisms p: S — X and ¢: S — Y satisfying poi =
idx,poj=0,qo0i=0and goj=idy.

(b) Show that the morphism i op + j o ¢ € Ende(S) equals idg.

(¢) Show that (S,p,q) is a product of X and Y in C.

Definition. An Abelian category is a category A, together with the structure of an
Abelian group on Hom4(X,Y) for all objects X and Y of A, such that the following
conditions are satisfied:

(1)
(2)
(3)

(4)
(5)

Composition of morphisms is bilinear.
There is a zero object in A.

For all objects X and Y of A, there is an object S of A together with morphisms
X - 8,j:Y =585, p:S— X and ¢: S — Y such that (S,7,7) is a sum of X and YV
and (S, p,q) is a product of X and Y.

Every morphism in A has a kernel and a cokernel.

For every morphism f: X — Y in A, let i:ker f — X and p: Y — coker f be the kernel
and cokernel of f. Then the unique morphism f: coker i — ker p making the diagram

ker f o x Loy 2, coker f

ql ~ Tj
coim f := cokeri N kerp =:im f

commutative (the existence and uniqueness of f was proved in the lecture) is an
isomorphism.

Let A be an Abelian category, and let f: X — Y be a morphism in A. Show that f
is an isomorphism if and only if 0 — X is a kernel of f and Y — 0 is a cokernel of f.

Let A be an Abelian category. Let X i> Y 4 Zbea sequence of two morphisms
in A satisfying go f = 0. Let p: Y — coker f be the cokernel of f, let i:kerg — Y be
the kernel of g, and let j:im f = kerp — Y be the image of f, which is defined as the
kernel of p. Show that there is a unique morphism h:im f — ker g satisfying ioh = j.
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Definition. A sequence X i> Y %5 Z in an Abelian category is exact at Y if go f =0
and the morphism A defined in Exercise 4 is an isomorphism. A sequence of morphisms
in A is exact if it is exact at every intermediate object.

5. Let R be a ring, and let L i> M %5 N be a sequence of R-modules. Show that this
sequence is exact according to the above definition if and only if the “usual” image
of f equals the

“usual” kernel of g (as submodules of M).

6. Let R be aring, and let L i) M -5 N be a sequence of R-modules. Show that this

sequence is exact if and only if it fits into a commutative diagram of R-modules and
R-linear maps

0
l
0O —J — L — K — 0

P

g

L\

00— P — N —Q@ —0

l
0

in which the two horizontal sequences and the vertical sequence are exact.

Definition. Let A and B be Abelian categories. A functor F: A — B is additive if
for all objects X,Y of A, the map F:Hom4(X,Y) — Homp(F(X),F(Y)) is a group
homomorphism. An additive functor F: A — B is

e cxact if for every exact sequence X i) Y -4 Z in A, the sequence
F F(g
F(X)— ) g —2 F(Z) in B is exact.

e left exact if for every exact sequence 0 — X Ty S 7z A, the sequence
0 — FX) ™M pv) 29 F(2) in B is exact.

e r1ight exact if for every exact sequence X i> Yy 4 Z —0in A, the sequence
F F(g
F(X)— ) g —2 F(Z) — 0 in B is exact.

7. Let A and B be Abelian categories, and let F: A — B be an additive functor. Show
that the following statements are equivalent:

(1) The functor F' is exact.

(2) The functor F is both left exact and right exact.

(3) For every short exact sequence 0 — X i> Y 47 —0in A, the sequence
0— FX) ™M pyv) 29 F(2) — 0in B is exact.

(Hint: You may use without proof that the result of Exercise 6 holds in any Abelian
category.)



8. Let R be a ring, and let M be a left R-module.

(a) Show that M is projective if and only if the functor gHom(M, ): RkMod — Ab
is exact.

(b) Show that M is injective if and only if the functor gHom( , M): RMod® — Ab
is exact.

(See Problem Sheet 2 for projective and injective modules.)

Definition. Let R be a ring, let M be a right R-module, let N be a left R-module, and
let A be an Abelian group. An R-bilinear map M X N — Aisamap b: M x N — A
satisfiying the following identities for all r € R, m,m' € M, and n,n’ € N:

b(m +m/,n) = b(m,n) + b(m’,n)
b(m,n +n') = b(m,n) + b(m,n’)

b(mr,n) = b(m,rn).

The set of all R-bilinear maps M x N — A is denoted by Bilgr(M, N, A). Note that this
is an Abelian group under pointwise addition, i.e.

9.

10.

(b+b")(m,n) = b(m,n) + b'(m,n).

Let R be a ring, let M be a right R-module, and let N be a left R-module. Recall
(as a special case of the generalities on bimodules treated in the lecture) that the
Abelian group Hom(M, A) of all group homomorphisms M — A is a left R-module
via (rf)(m) = f(mr), and that Hom(V, A) is a right R-module via (fr)(n) = f(rn).

(a) Show that there are canonical isomorphisms
Bilg(M, N, A) — Homp(M,Hom(N, A))

and
Bilg(M, N, A) = gHom(N, Hom(M, A))

of Abelian groups.

(b) Let S and T be two further rings, and suppose in addition that that M is an
(S, R)-bimodule and N is an (R, T)-bimodule. Show that Bilg(M, N, A) has a
natural (7', .S)-bimodule structure.

Let R be a ring, and let 1: R — R be an anti-automorphism of R, i.e. a ring isomor-
phism from R to itself except that the condition t(zy) = ¢(x)i(y) that would have
to hold for a ring homomorphism is replaced by t(zy) = ¢(y)i(z). Let M be a right
R-module. Show that the map

RxM—M
(r, M) — mu(r)

makes M into a left R-module.



11. Let k be a field, and let G be a group. Define a map

(a)
(b)

1 k[G] — K[G]

Z Cqg —> Z cggfl.

geG geG
Show that ¢ is an anti-automorphism of k[G] (see Exercise 10) that is compatible
with the k-algebra structure.

Let M be a left k[G]-module, and let Homy (M, k) be the k-vector space of k-linear
maps M — k. Show that the map

k[G] x Homy(M, k) — Homy (M, k)
(r, f) — (m = f((r)m))

makes Homy (M, k) into a left k[G]-module.

Let M and N be left k[G]-modules, and let Homy (M, N) be the k-vector space
of k-linear maps M — N. Show that the map

G x Homy (M, N) — Homy (M, N)
(9.f) — (m = g(f(g~'m)))
can be extended uniquely to a left k[G]-module structure on Homy(M,N) in

such a way that the action of k£ is the “usual” scalar multiplication action of k£ on
Homy (M, N).



