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1. Let p be a prime number, let k be a field of characteristic p, and let G be a finite

group of order divisible by p. Let V be the one-dimensional k-linear subspace of k[G]

spanned by
∑

g∈G g.

(a) Show that V is a left k[G]-submodule of k[G].

(b) Let f : k[G] → V be a k[G]-linear map. Show that the kernel of f contains V .

(c) Deduce that the ring k[G] is not semi-simple.

2. Let D be a division ring, and let n be a positive integer. Show that the ring homo-

morphism D → Matn(D) sending each λ ∈ D to λI (where I is the identity matrix)

induces a ring isomorphism Z(D)
∼

−→ Z(Matn(D)).

3. Let R be a commutative ring. Show that R is semi-simple if and only if R is a finite

product of fields.

4. Let R be a ring. We say that R is right semi-simple if every right R-module is

semi-simple. Show that R is semi-simple if and only if R is right semi-simple.

5. Let k be a field, and let D be a division algebra over k such that [D : k] = dimk D

is finite. Prove that for every α ∈ D, the subalgebra k[α] =
∑

i≥0
kαi of D is a field

and is a finite extension of k.

6. Let R be a ring, let M1, . . . ,Mn be left R-modules, let M be the left R-module⊕n
i=1

Mi, and let E be the Abelian group
⊕n

i,j=1 RHom(Mj ,Mi).

(a) Show that there is a canonical isomorphism

φ:REnd(M)
∼

−→ E

of Abelian groups.

(b) Describe the unique ring structure on E for which φ is a ring isomorphism. (Hint:

think of matrix multiplication).

(c) Suppose M1 = . . . = Mn. Show that there is a canonical ring isomorphism

REnd(M)
∼

−→ Matn(REnd(M1)).

(d) Suppose that the R-modulesM1, . . . , Mn are simple and pairwise non-isomorphic.

Show that there is a canonical ring isomorphism

REnd(M)
∼

−→

n∏

i=1

REnd(Mi).
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7. Let A4 be the alternating group on 4 elements, and let k be an algebraically closed

field of characteristic not 2 or 3.

(a) Show that up to isomorphism, A4 has exactly four irreducible k-linear represen-

tations.

(b) Show that up to isomorphism, A4 has exactly three k-linear representations of

dimension 1 and exactly one irreducible k-linear representation of dimension 3.

8. Let S4 be the symmetric group on 4 elements, and let k be an algebraically closed

field of characteristic not 2 or 3.

(a) Show that up to isomorphism, S4 has exactly five irreducible k-linear representa-

tions.

(b) Show that up to isomorphism, S4 has exactly two k-linear representations of

dimension 1, exactly one irreducible k-linear representation of dimension 2 and

exactly two irreducible k-linear representations of of dimension 3.

(Hint for Exercises 7 and 8: it is not necessary to give any representation explicitly.)

9. Let S3 be the symmetric group of order 6, and let k be a field of characteristic not 2

or 3. Give an explicit k-algebra isomorphism

k[S3]
∼

−→ k × k ×Mat2(k).

10. Let D4 be the dihedral group of order 8, and let k be a field of characteristic different

from 2. Determine positive integers n1, . . . , nm and an explicit k-algebra isomorphism

k[D4]
∼

−→

m∏

i=1

Matni
(k).

11. Let Q be the quaternion group of order 8. Determine division algebras D1, . . . , Dm

over R, positive integers n1, . . . , nm and an explicit R-algebra isomorphism

R[Q]
∼

−→

m∏

i=1

Matni
(Di).

(Note that in Exercises 9, 10 and 11 the base field is not (necessarily) algebraically closed.)
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