Representation Theory of Finite Groups, spring 2019

Problem Sheet 7

25 March

- 1. Let p be a prime number, let k be a field of characteristic p, and let G be a finite group of order divisible by p. Let V be the one-dimensional k-linear subspace of k[G] spanned by $\sum_{g \in G} g$.
 - (a) Show that V is a left k[G]-submodule of k[G].
 - (b) Let $f: k[G] \to V$ be a k[G]-linear map. Show that the kernel of f contains V.
 - (c) Deduce that the ring k[G] is not semi-simple.
- **2.** Let *D* be a division ring, and let *n* be a positive integer. Show that the ring homomorphism $D \to \operatorname{Mat}_n(D)$ sending each $\lambda \in D$ to λI (where *I* is the identity matrix) induces a ring isomorphism $Z(D) \xrightarrow{\sim} Z(\operatorname{Mat}_n(D))$.
- **3.** Let R be a *commutative* ring. Show that R is semi-simple if and only if R is a finite product of fields.
- 4. Let R be a ring. We say that R is *right semi-simple* if every right R-module is semi-simple. Show that R is semi-simple if and only if R is right semi-simple.
- 5. Let k be a field, and let D be a division algebra over k such that $[D:k] = \dim_k D$ is finite. Prove that for every $\alpha \in D$, the subalgebra $k[\alpha] = \sum_{i\geq 0} k\alpha^i$ of D is a field and is a finite extension of k.
- **6.** Let *R* be a ring, let M_1, \ldots, M_n be left *R*-modules, let *M* be the left *R*-module $\bigoplus_{i=1}^n M_i$, and let *E* be the Abelian group $\bigoplus_{i,j=1}^n R \operatorname{Hom}(M_j, M_i)$.
 - (a) Show that there is a canonical isomorphism

$$\phi: {}_R\operatorname{End}(M) \xrightarrow{\sim} E$$

of Abelian groups.

- (b) Describe the unique ring structure on E for which ϕ is a ring isomorphism. (*Hint:* think of matrix multiplication).
- (c) Suppose $M_1 = \ldots = M_n$. Show that there is a canonical ring isomorphism

$$_R$$
End $(M) \longrightarrow Mat_n(_R$ End $(M_1)).$

(d) Suppose that the *R*-modules M_1, \ldots, M_n are simple and pairwise non-isomorphic. Show that there is a canonical ring isomorphism

$$_{R}\operatorname{End}(M) \xrightarrow{\sim} \prod_{i=1}^{n} {}_{R}\operatorname{End}(M_{i})$$

- 7. Let A_4 be the alternating group on 4 elements, and let k be an algebraically closed field of characteristic not 2 or 3.
 - (a) Show that up to isomorphism, A_4 has exactly four irreducible k-linear representations.
 - (b) Show that up to isomorphism, A_4 has exactly three k-linear representations of dimension 1 and exactly one irreducible k-linear representation of dimension 3.
- 8. Let S_4 be the symmetric group on 4 elements, and let k be an algebraically closed field of characteristic not 2 or 3.
 - (a) Show that up to isomorphism, S_4 has exactly five irreducible k-linear representations.
 - (b) Show that up to isomorphism, S_4 has exactly two k-linear representations of dimension 1, exactly one irreducible k-linear representation of dimension 2 and exactly two irreducible k-linear representations of of dimension 3.

(Hint for Exercises 7 and 8: it is not necessary to give any representation explicitly.)

9. Let S_3 be the symmetric group of order 6, and let k be a field of characteristic not 2 or 3. Give an explicit k-algebra isomorphism

$$k[S_3] \xrightarrow{\sim} k \times k \times \operatorname{Mat}_2(k).$$

10. Let D_4 be the dihedral group of order 8, and let k be a field of characteristic different from 2. Determine positive integers n_1, \ldots, n_m and an explicit k-algebra isomorphism

$$k[D_4] \xrightarrow{\sim} \prod_{i=1}^m \operatorname{Mat}_{n_i}(k).$$

11. Let Q be the quaternion group of order 8. Determine division algebras D_1, \ldots, D_m over **R**, positive integers n_1, \ldots, n_m and an explicit **R**-algebra isomorphism

$$\mathbf{R}[Q] \xrightarrow{\sim} \prod_{i=1}^{m} \operatorname{Mat}_{n_{i}}(D_{i}).$$

(Note that in Exercises 9, 10 and 11 the base field is not (necessarily) algebraically closed.)