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Abstract

We prove a p-adic version of the work by Gross and Zagier [GZ84] on the differences between singular moduli
by proving a set of conjectures by Giampietro and Darmon [GD22], who investigated the factorisation of a
rational invariant associated to a pair of CM-points on a genus zero Shimura curve, obtained as the ratio of
the CM-values of p-adic Θ-functions. As did Gross and Zagier, we give two proofs; an algebraic proof using
CM-theory, and more interestingly, also an analytic proof using p-adic infinitesimal deformations of Hilbert
Eisenstein series in the style of [DPV21, DPV23]. Since there are no explicit formulae for its cuspidal p-adic
deformations, we instead compute the Frobenius traces of the appropriate Galois deformation, and show their
modularity via an R = T theorem. This approach aims to bridge the gap between classical CM-theory and
the more recent p-adic advances in the theory of real multiplication.
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1 Introduction

In their paper [GZ84], Gross and Zagier studied the differences between singular moduli, which are the
CM-values of Klein’s j-function. For example,

j

(
1 +

√
−43

2

)
− j

(
1 +

√
−163

2

)
= 219 · 36 · 53 · 73 · 37 · 433. (1)

Aside from this number being rather smooth, one may observe that all its prime divisors are inert in both
Q(

√
−43) and Q(

√
−163). More precisely, all of these primes occur as the factor of a number of the form

43 · 163 − x2 for some |x| <
√
43 · 163, as the equality 43 · 163 − 92 = 16 · 433 exemplifies. These patterns

persist when repeating the experiment with other, possibly non-rational singular moduli if one takes the
norm down to Q. This paper studies factorisation phenomena that display a parallel with the observations
made and subsequently fully explained by Gross and Zagier in [GZ84].

The following notation will be used throughout. Fix two imaginary quadratic fields K1 and K2 with rings
of integers O1 and O2 respectively. Let D1, D2 < 0 denote their discriminants and assume that they are
coprime. We write wi = #O×

i for i ∈ {1, 2} and for any subset S ⊂ F , we let S+ ⊂ S denote the subset

of totally positive elements of S. Write D = D1D2 and let F = Q(
√
D) be the real quadratic field and

L = Q(
√
D1,

√
D2) be the biquadratic field completing the following field diagram:

Q

K2

L

K1 F

χ

As the field extension L/F is unramified at all finite places, it naturally induces a genus character
χ : Pic(F )+ → {±1}. We let DF denote the different ideal of F and we define

ρ(I) := #
{
J ⊂ OL | NmL

F (J) = I
}

for any ideal I ⊂ OF . Finally, for any number field M/Q we let GM := Gal(Q/M) denote its absolute Galois
group and H denotes the complex upper half plane.

1.1 The case of modular curves

Suppose that m is an integer supported at primes that are not inert in F/Q. Assume that there is a unique
prime ℓ both dividing m an odd number of times, say 2k+1 times, and with the additional property that any
prime ideal l of F above ℓ satisfies χ(l) = −1. Further, let {ci} be the set of exponents of primes dividing m
that split completely in L. Then we set

F (m) = ℓX where X = (k + 1)
∏

(ci + 1),

and simply F (m) = 1 for all other m ∈ Q. Finally, let τ1, τ2 ∈ H be CM-points of discriminants D1 and D2

respectively. Then Gross and Zagier proved in [GZ84] that

NmQ
(
j(τ1)− j(τ2)

) 8
w1w2 = ±

∏
x2<D

x2≡D mod 4

F

(
D − x2

4

)
. (2)

Gross and Zagier gave two proofs of this formula, and the dissimilarities between these proofs cannot be
overstated; whereas one made use of CM-theory, the other considered the diagonal restriction of a family
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E1,χ(s), indexed by a complex parameter s, specialising to the non-holomorphic parallel weight (1, 1) Hilbert
Eisenstein series attached to the character χ, explicitly defined by

E1,χ(z1, z2) =
∑

ν∈D−1,+
F

( ∑
I|(ν)DF

χ(I)

)
qσ1(ν)z1+σ2(ν)z2 =

∑
ν∈D−1,+

F

ρ(νDF )q
σ1(ν)z1+σ2(ν)z2 , (3)

where σ1, σ2 : F → R denote the two real embeddings of F . Even though this function vanishes identically, a
fact which has historically been referred to as Hecke’s sign error, the family E1,χ(s) is highly non-trivial and
proved to be of great arithmetic importance. More precisely, they studied its first derivative with respect to
the weight-parameter s, which must be a real analytic modular form of weight two for SL2(Z). One then
applies the holomorphic projection operator ehol to conclude that

ehol
(

d

ds
∆E1,χ(s)

∣∣∣
s=0

)
∈ M2(Γ0(1)) = {0}, (4)

where ∆ denotes the diagonal restriction operator. On the other hand, it is possible to explicitly compute the
Fourier coefficients of the expression on the left hand side, which with some careful analysis split up in two
terms; one equal to the logarithm of the norm of j(τ1)− j(τ2), and the other to the explicit formula that was
to be proved. Notably, this proof does not use any CM-theory whatsoever.

The work [GZ84] of Gross and Zagier sparked further investigations that can be found in [GZ86] and
[GKZ87]. The former gave a relation between the heights of Heegner divisor classes on the Jacobian of
modular curves and the first derivatives at s = 1 of the L-series of certain modular forms. The latter computed
the height pairings of two distinct Heegner divisor classes to show that related quantities can be suitably
combined to form the Fourier coefficients of a Jacobi form. These results expressed a strong analogy with
the work of [HZ76], which computed the intersection numbers of certain modular curves on Hilbert modular
surfaces and related these to the coefficients of a weight 2 modular form.

Later, by varying one of the discriminants instead, the heights of Heegner cycles were also shown in
[KRY04] to be connected to the derivative of a weight 3/2 Eisenstein series for SL2(Z). The Kudla program
aims to study the arithmetic properties of the first derivative certain Eisenstein series and to connect these
with a specific class of arithmetic cycles and the special values of certain L-functions. Another relevant
instance of a result in this direction can be found in [Sch09].

In view of these results, the work [GZ84] can be regarded as the X0(1)-case of the work done in [GZ86]
and [GKZ87], the height pairing on whose Jacobian vanishes by virtue of the curve being of genus zero.
Similarly, our main theorems will reflect the results in [GZ84] and we explain in Remark 3 below how this
result is to be interpreted in a more general framework as is done above.

1.2 The case of Shimura curves

Ever since the results of Gross and Zagier in [GZ84], people have searched for generalisations of these kinds
of factorisation phenomena. One place for such investigations has been the arithmetic of Shimura curves.
Choose some N ∈ N and write BN for the quaternion algebra over Q with discriminant N . Assuming that BN

is indefinite, it has a maximal order RN that is unique up to conjugation. Choosing a splitting BN → M2(R),
the subgroup R×

N,1 ⊂ R×
N consisting of all elements of unit norm can be regarded as acting on the complex

upper half plane H. The quotient XN = R×
N,1 \H is compact and called a Shimura curve of level N . It has a

model defined over Q and the Atkin-Lehner group WN , generated by commuting involutions wr for every
rational prime r | N , acts on it naturally. If N ∈ {6, 10, 22}, the curve XN is of genus 0, and as such, its
function field is generated by some function jN . In contrast to the modular curve case, there is no cusp that
we may use to normalise jN in a natural way. As such, there is no canonical choice for this function.

If all primes dividing N are inert in Ki for some i ∈ {1, 2}, we can find (optimal) embeddings Oi → RN

and for each such embedding, there is a unique point Pi in H fixed by the image of the embeddings under our
splitting BN → M2(R), called the CM-point associated with the embedding. By Shimura’s reciprocity law,
as explained on the first pages of [Shi67], the value jN (Pi) for a point Pi ∈ XN with complex multiplication
by Oi is defined over the Hilbert class field Hi of the field Ki.
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Elkies in [Elk98] numerically computed the CM-values for certain choices of a generator of the function
field of certain Atkin-Lehner quotients of XN , but not all values could be proved. However, the apparent
smoothness of the resulting numbers did not go unnoticed. Using the theory of Borcherds lifts, Errthum in
[Err11] was able to prove the correctness of many of Elkies’s computations, but no general conjectures as to
the general structure of the values were posed. Some further explicit computations for particular choices of
the generator of the function field can be found in [Voi09] and more general rational points on Atkin-Lehner
quotients are studied in [Cla03].

Instead of choosing a function jN , one may observe that the cross-ratio of its values is well-defined and
independent of any choices. We recall that for any distinct x, y, z, w in some field, the cross-ratio is defined as

[x, y, z, w] :=
z − x

z − y
· w − y

w − x
.

In 2022, Giampietro and Darmon in [GD22] conducted extensive numerical computations with the quantities

jN (P1)− jN (P2)

jN (P ′
1)− jN (P2)

· jN (P ′
1)− jN (P ′

2)

jN (P1)− jN (P ′
2)
,

where for a CM-point P on the curve XN , we write P ′ := wp(Frobp(P )) where Frobp denotes Frobenius at p
in the CM-field of definition for P . For example, Section 5 in [GD22] elaborates on the example of N = 6,
D1 = −43 and D2 = −163, in which it is computed that

NmF
Q

[
jN (P1)− jN (P2)

jN (P ′
1)− jN (P2)

· jN (P ′
1)− jN (P ′

2)

jN (P1)− jN (P ′
2)

]
=

(
2 · 29 · 257 · 277
73 · 137 · 241

)2

.

In parallel with Equation 1, one can check that all primes that occur on the right hand side are inert in
both K1 and K2. More strongly, they are even prime divisors of a number of the form 43 · 163 − x2 for
some |x| <

√
43 · 163, as the equality 43 · 163− 192 = 24 · 277 exemplifies. In fact, in this case, the authors

did conjecture a general formula for this quantity. If we let {a,−a, b,−b} denote the four square roots of
D = D1D2 modulo 2N , and define

δ(x) =

{
+1 if x ≡ ±a mod 2N ;

−1 if x ≡ ±b mod 2N,

then the following was conjectured in [GD22].

Theorem 1. For any pair of embeddings Oi → RN for i ∈ {1, 2}, it holds that

NmH1H2

Q

[
jN (P1)− jN (P2)

jN (P ′
1)− jN (P2)

· jN (P ′
1)− jN (P ′

2)

jN (P1)− jN (P ′
2)

] ±2
w1w2

= ±
∏

x2<D
x2≡D mod 4N

F

(
D − x2

4N

)δ(x)

.

The similarity with Equation 2 is apparent, even though, as our explicit examples show, the changed
argument of the F -function causes most of the primes occurring in the factorisations to be very different
in both cases. In the concluding section of [GD22], the computations from [Err11] are shown to all be in
accordance with the above result.

Using the p-adic uniformisation of Shimura curves, the authors of [GD22] related this quantity to one of a
p-adic nature as follows. From now on, we will write N = pq for certain rational primes p and q and we will
assume that both p and q are inert in both K1 and K2. This has the consequence that both p and q must
split in F/Q; we will denote these prime ideals as p1, p2 and q1, q2 respectively. Finally, we remark that pi
and qi must be inert in L/F for i ∈ {1, 2}, and as such, it holds that χ(pi) = χ(qi) = −1.

Let Hp = P1(Cp)\P1(Qp) denote the p-adic upper half plane and let Bq be the definite quaternion algebra
over Q with discriminant q. By choosing a splitting Bq → M2(Qp), we obtain an action of Bq on Hp. We
let Rq[1/p] be a maximal Z[1/p]-order in Bq and by Rq[1/p]

×
1 we will denote its units of unit norm. The
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quotient Rq[1/p]
×
1 \ Hp is again compact. By the celebrated theorem of Cerednik and Drinfeld, originally

proved in [Čer76, Dri76] and well explained in [BC91], over Cp it is isomorphic to XN , with the isomorphism
itself being defined over Qp2 , the unique quadratic unramified extension of Qp.

The function fields of such curves are generated by so-called Θ-functions, see [GvdP06]. Explicitly,

Θ(w1, w2; z) :=
∏

γ∈Rq [1/p]
×
1

z − γw1

z − γw2
.

If XN is of genus 0, this describes a rational function on the quotient Rq[1/p]
×
1 \Hp with divisor 2(w1)−2(w2),

the factor of 2 coming from the trivially acting element −1 ∈ Rq[1/p]
×
1 . For i ∈ {1, 2}, there exist (optimal)

embeddings Oi → Rq and for its image inside M2(Qp), there now exist two conjugate common fixed CM-points
in Hp. As explained in [GD22], if τi maps to Pi under the Cerednik-Drinfeld isomorphism, then τ ′i will map
to P ′

i . Comparing divisors, we obtain the equality∏
γ∈Rq [1/p]

×
1

[γτ1, γτ
′
1, τ2, τ

′
2] =

Θ(τ1, τ
′
1; τ2)

Θ(τ1, τ ′1; τ
′
2)

= [jN (P1), jN (P ′
1), jN (P2), jN (P ′

2)]
2.

The class group Pic(Ki) acts naturally on the set of embeddings Oi → Rq. Let π ∈ Rq be any quaternion
with Nm(π) = p; up to conjugation there exist precisely p+ 1 such elements by Lemma 12 in [GD22]. If we
now define

Θ(D1, D2) :=
∏

Pic(K1)·τ1
Pic(K2)·τ2

Θ(τ1, τ
′
1; τ2)

Θ(τ1, τ ′1; τ
′
2)

and Θp(D1, D2) :=
∏

Pic(K1)·τ1
Pic(K2)·τ2

Θ(τ1, τ
′
1;πτ2)

Θ(τ1, τ ′1;πτ
′
2)
,

we also claim the following p-adic version of Theorem 1.

Theorem 2. It holds that(
Θ(D1, D2)

Θp(D1, D2)

) ±2
w1w2

= ±
∏

x2<D
x2≡D mod 4N

F

(
D − x2

4N

)δ(x)

.

1.3 Parallels with RM-theory

In the spirit of the original paper by Gross and Zagier [GZ84], our approach to proving Theorems 1 and 2 is
two-fold. First we present a direct proof of Theorem 1 using CM-theory, which one could say is the standard
approach for problems of this nature. It is not surprising that such a proof exists, and in fact, using the
results from Phillips’s thesis [Phi15], the proof is rather straightforward.

Much more interesting is our second proof, which proves Theorem 2 directly, not relying on any CM-
theory whatsoever and is done purely by studying the infinitesimal p-adic deformation theory of the Galois
representation associated with the p-stabilised parallel weight (1, 1) Hilbert Eisenstein series

E
(p)
1,χ := (1− Vp1

)(1 + Vp2
)E1,χ.

Even though there are four choices for this p-stabilisation, we must choose one with opposite signs in order to

ensure that E
(p)
1,χ will be a p-adic cuspform. Theorem 2 will be a consequence of the claim that the ordinary

projection

eord
(

d

dϵ
∆E

(p)
1,χ(ϵ)

)
∈ S2(Γ0(N)),

must vanish, once more strengthening the parallels with the analytic proof in [GZ84] and Equation 4.
Our main motivation for this second proof, which constitutes the focus of this paper, originates from the

recent advancements in the theory of real multiplication. In [DV21], Darmon and Vonk proposed a p-adic
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analogue of the differences between singular moduli as studied in [GZ84]; a certain rigid meromorphic cocycle
for the group SL2(Z[1/p]), whose RM-values conjecturally display for real quadratic fields factorisations of
similar intricacy to those considered hitherto. Certain cases of these conjectures are proved in the forthcoming
work [DV23]. This emerging theory should be well connected with many other areas of mathematics, notable
among these the theory of Borcherds products and their ostensible connections to both p-adic heights and
intersection numbers of geodesics on Shimura curves. More recently, these constructions were generalised to
different quaternion algebras than the matrix algebra in [Geh20, GMX21], reflecting the step from modular
curves to Shimura curves as above, and to more general orthogonal groups in [DGL23].

Historically, the study of CM-theory has largely been facilitated by its connection to the geometry of
abelian varieties and the moduli spaces that govern them. The development of an analogous RM-theory is
complicated by the lack of such obvious connections to geometry. It is for this reason that the analytic proof
in [GZ84] is of particular interest, as its independence from CM-theory contrasted strongly with the other,
more algebraic, proof. Darmon, Pozzi and Vonk used similar ideas in [DPV21, DPV23], studying the ordinary
projection of the diagonal restriction of the first derivative with respect to the weight of a p-adic family of
Hilbert modular Eisenstein series attached to a more general odd character of the narrow class group of a
real quadratic field, explicitly computing the Fourier coefficients of its ordinary projection. These quantities
proved to be related to both Stark-Heegner points and Gross-Stark units, enriching the analogy between the
classical theory of complex multiplication and its extension to real quadratic fields. Recently, Dasgupta and
Kakde in [DK23a, DK23b] proved Brumer-Stark conjecture away from 2 and used these ideas to prove the
p-part of the integral Gross-Stark conjecture for the Brumer-Stark p-units in CM abelian extensions of a
totally real field using the theory of group ring valued Hilbert modular forms.

The present work serves as a direct p-adic transposition of the analytic proof by Gross and Zagier in
[GZ84] because we consider (an appropriate p-stabilisation of) the exact same Hilbert Eisenstein series E1,χ,
using techniques that have recently also been deployed in the study of RM-theory. Secondly, the fact that we
can give two proofs, one relying on the geometric moduli interpretation of the Shimura curve XN and one
not relying on geometry at all, is interesting in view of the (presently still) unknown geometric framework
within which the modern developments in RM-theory should best be described.

Thirdly, our work constitutes an occurrence of a non-archimedean instance of the Kudla program, which is
presently being investigated more intensively than ever. Even though it has classically been mostly studied in
an archimedean context, recent years have seen some instances of similar results in non-archimedean settings.
Examples of this include the results from [DPV21, DPV23], but also for instance the works [DT08] and
[LN19]. This emerging “p-adic Kudla program” still leaves much to be explored in the forthcoming years. It
is also for this reason that in the present work, we do not explore the possibly third approach using Borcherds
lifts in a similar style of [Err11] when proving the CM-values from [Elk98], even though the success of such
an approach should be expected as well.

1.4 Outline of the paper

In Section 2, we describe an approach that mirrors the ideas behind Gross and Zagier’s original algebraic
proof in [GZ84], exploiting the moduli interpretation of the Shimura curve XN and the theory of complex
multiplication. We appeal to the main result of the PhD thesis of Andrew Phillips [Phi15], which computes
the degree of certain refinements of the moduli stack of certain false elliptic curves, following ideas of Howard
and Yang in [HY12]. Using these results, the proof of Theorem 1 is rather straightforward.

The weight of our paper is concentrated in our second proof. For this, we follow the general strategy of
the main arguments presented in [DPV23] and [DV23], approaches that originated in [DLR15]. We study a

p-stabilisation E
(p)
1,χ of the same Hilbert Eisenstein series E1,χ as did Gross and Zagier in [GZ84]. The p-adic

convergence of the infinite product defining Θ(D1, D2) circumvents any regularisation arguments, facilitating
swift computations. In this sense, our work is a true p-adic transposition of the work of Gross and Zagier in
[GZ84]. Our second proof can be divided into three distinct steps, which we will now outline.

Since, unlike as in [GZ84], the q-expansion of a p-adic family passing through E
(p)
1,χ is not a-priori known,

we obtain such a family by deforming a rigidification ρη of the decomposable representation 1⊕ χ. More
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precisely, we will consider all nearly ordinary deformations, which are all such deformations for which the
decomposition groups Gpi ⊂ GF for i ∈ {1, 2} each fix a distinct line. This approach requires us to prove the
modularity of such deformations to construct the required family. In this respect our argument is rather
different from that of Gross and Zagier in [GZ84], because they already had all the q-expansions they would
need to carry out their arguments beforehand; in fact, this approach could not have possibly have worked in
their archimedean setting.

Therefore, Section 3 proves an R = T theorem, the first instance of which occurred in the proof
by Wiles of Fermat’s Last Theorem. Using similar methods as in Pozzi’s thesis [Poz19] and the works
[BDP22, BD16, BDS20, BC06], using fundamental results from Hida in [Hid89b, Hid89a], we construct a lift
of ρη to Hida’s cuspidal nearly ordinary Hecke algebra, though some additional care is required to circumvent
the difficulties of the cohomology groups H1(GF ,Qp(χ)) being 2-dimensional. Comparing the dimensions of
the Hecke algebra and the resulting deformation ring, the R = T theorem follows.

Finally, in Section 4, using a construction that associates to a quaternion an OL-ideal, we derive a bijection
between the elements of Rq[1/p]

×
1 and the set of ν ∈ (q1D−1

F )+ of p-power trace counted with a multiplicity
related to the function ρ that also appears in Equation 3. Then we consider one particular nearly ordinary

deformation and explicitly compute the infinitesimal family of deformations of E
(p)
1,χ that corresponds to

it. After taking its derivative with respect to the weight parameter and applying the ordinary projection
operator, we argue why the result must vanish identically. Ultimately, we conclude the proof of Theorem 2
by computing explicitly the coefficients of the (usually mostly theoretically used) ordinary projection and
equating the first of these coefficients to zero.

Remark 3. If we relax the condition that the Shimura curve XN be of genus zero, then the quotient
Θ(D1, D2)/Θp(D1, D2) from Theorem 2 can no longer be expected to be algebraic and indeed it generally
will not be, for it will consist of both an algebraic part, determined above, and a transcendental part given by
an appropriate p-adic height pairing on the Jacobian of the Shimura curve XN , which vanishes in the genus
zero case. Define for i ∈ {1, 2} the divisors on XN by the formulas

Di =
∑

[ci]∈Pic(Ki)

[ci] · (Pi − P ′
i ).

Let Tm denote the natural Hecke correspondence on the Jacobian of XN and let (−,−)p denote the p-adic
height pairing as computed in [Gro86, Wer96]. Even though Werner’s result in [Wer96] only pertains to the
quotient by Schottky groups, using the results from Section 4 of [vdP92], this may be extended to quotients
by groups such as Rq[1/p]

×
1 . In the author’s PhD thesis, an equality of the form

eord
(

d

dϵ
∆E

(p)
1,χ(ϵ)

)
=
∑
m≥1

(D1, TmD2)p qm ∈ S2(Γ0(N)).

will be proved. This p-adic instance of the Kudla program bears resemblance to various previous works in an
archimedean setting; most notably to Theorem V.1 in [GKZ87].

Acknowledgements: I would like to thank Jan Vonk for bringing this problem to my attention, for his
frequent conversations with me about the present work and also for his invaluable insights, without which
this endeavour would never have been initiated. This work was supported in part by the VIDI Grant 213.084
and the ERC Starting Grant 101076941.
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2 Algebraic proof

Relying on the results from the PhD thesis written by Andrew Phillips [Phi15], we present our first proof of
Theorem 1. The Shimura curve XN = R×

N,1 \ H is the coarse moduli space for isomorphism classes of false
elliptic curves (A, ι), where A is a complex abelian surface and ι : RN → End(A) is an embedding of algebras.
To formulate the main result from [Phi15], we describe the fine moduli space now.

2.1 Stacks and Arkelov degrees

A false elliptic curve over a scheme S is a pair (A, ι) where A → S is an abelian scheme of relative dimension
2 and ι : RN → EndS(A) is a ring homomorphism. For i ∈ {1, 2}, a false elliptic curve over an OL-scheme
S with complex multiplication by Oi is a triple (A, ι, κ) where (A, ι) is a false elliptic curve over S and
κ : Oi → EndRN

(A) is a ring map such that the action on the Lie algebra is through the natural structure
map Oi → OL → OS(S).

Let M be the algebraic stack, regular and flat of relative dimension 1 over Spec(OL), such that M(S) for
any OL-scheme S denotes the category of false elliptic curves (A, ι) over S satisfying a technical property
regarding the Lie algebra, which can be found as Equation 1.2.1 in [Phi15]. This 2-dimensional stack M is
usually referred to as (the integral model of) a Shimura curve. We are interested in two particular substacks
of this stack; those defining the false elliptic curves with complex multiplication by Oi for i ∈ {1, 2}.

Let Yi for i ∈ {1, 2} be the algebraic stack over Spec(OL) with Yi(S) the category of false elliptic curves
over the OL-scheme S with complex multiplication by Oi. By forgetting the CM-structure, we have a
morphism of stacks Yi → M. We further define J := Y1 ×M Y2. By definition of the pullback of stacks,
J now denotes the algebraic stack over Spec(OL) with J (S) the category of triples (A1,A2, f) where
Ai = (Ai, ιi, κi) for i ∈ {1, 2} is a false elliptic curve over the OL-scheme S with complex multiplication by
Oi and where f : A1 → A2 is an isomorphism.

Following [Phi15], we proceed to refine the stack J by associating to every object (A1,A2, f) ∈ J (S) a
pair of objects (ϑ, ν) as follows. It is well-known that for any positive integer N , there exists a unique ideal
mN ⊂ RN of index N2. For i ∈ {1, 2}, there is a unique surjective ring map θi : Oi → RN/mN making the
following diagram commute, where Ai[mN ] denotes group scheme of the mN -torsion inside Ai.

Oi EndRN/mN
(Ai[mN ])

RN/mN

θi

Since OL = O1 ⊗Z O2, we obtain a well-defined surjective ring map ϑ : θ1 ⊗ θ2 : OL → RN/mN . For
brevity, we will denote V := Hom(OL, R/mN ). We let aϑ = ker(ϑ) ∩ OF be the reflex ideal. Since ker(ϑ) is
an OL-ideal of norm N2, it follows that aϑ is an OF -ideal of norm N . As such, if N = pq, there are precisely
four possibilities for aϑ;

aϑ ∈ {p1q1, p1q2, p2q1, p2q2} =: I.

Next, as in Proposition 2.3 in [HY12], one can construct a map degCM : HomRN
(A1, A2) → D−1

F satisfying

the defining property that TrFQ (degCM(f)) = deg∗(f), where deg∗(f) denotes the false degree of the morphism
f as in Definition 2.2.15 in [Phi15], which satisfies the property that deg∗(f) = 1 for all isomorphisms f . As
such, we may consider the element ν = degCM(f) ∈ D−1

F .
For any ϑ ∈ V, we define the stack Xϑ to be the algebraic stack over Spec(OL) with Xϑ(S) for any

OL-scheme S the category of triples (A1,A2, f) ∈ J (S) with the property that the pair (A1,A2) induces the
map ϑ ∈ V by the construction outlined above. For any ν ∈ D−1

F , we let Xϑ,ν denote the algebraic stack over
Spec(OL) with Xϑ,ν(S) for any OL-scheme S the category of triples (A1,A2, f) ∈ Xϑ(S) with the property
that degCM(f) = ν on every component of S.
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We then obtain the decompositions

J =
⊔
ϑ∈V

Xϑ and Xϑ =
⊔

ν∈D−1
F

Tr(ν)=1

Xϑ,ν .

The main result of [Phi15] concerns the Arkelov degree of the stacks Xϑ, which is defined as

deg(Xϑ) :=
∑
r⊂OL

log(|Fr|)
∑

x∈Xϑ(k)

length(Osh
Xϑ,x

)

|Aut(x)|
,

where k = Fr and where Osh
Xϑ,x

denotes the strictly Henselian local ring of Xϑ for the étale topology at the
geometric point x. By the decomposition above, we have

deg(Xϑ) =
∑

ν∈D−1
F

Tr(ν)=1

deg(Xϑ,ν). (5)

Lastly, we define the finite set

Diffϑ(ν) = Diffaϑ
(ν) := {r ⊂ OF | χr(νa

−1
ϑ DF ) = −1},

where χr denotes the character defined by the unramified extension of local fields Lr/Fr. Theorem 2 in
[Phi15] then says the following.

Theorem 4. Suppose that Diffϑ(ν) = {r} for some prime r ⊂ OF . If r ∤ N , the degree of Xϑ,ν satisfies

exp(deg(Xϑ,ν)) = rtr/2 where tr = ordr(νrDF ) · ρ(νaϑr−1DF ).

If r | N , depending on whether r divides aϑ or not, we must replace the term ordr(νrDF ) by ordr(ν) or
ordr(νr) respectively. If ν /∈ D−1

F or #Diffϑ(ν) ̸= 1, then the degree is always 0.

This result gives us an explicit formula for the Arkelov degrees of the stacks Xϑ,ν and as such, also of the
degrees of the stacks Xϑ. It is also clear from the result that the degree of the stack Xϑ,ν only depends on
the ideal aϑ ∈ I and not on the precise map ϑ ∈ V. This allows us to define for any a ∈ I the quantity

X(a, ν) := deg(Xϑ,ν)

where ϑ ∈ V is arbitrary such that aϑ = a. In the next subsection we will show that these expressions, when
combined appropriately, constitute the right hand side of Theorem 1. The remainder of this section aims to
relate the degrees of the stacks Xϑ to the left hand side, ultimately establishing equality.

2.2 An elementary formula

We assign a sign to each homomorphism ϑ ∈ V . This is done by recording the Gal(F/Q)-orbit of its associated
ideal aϑ ∈ I. Explicitly, we set

δ(ϑ) = δ(aϑ) :=

{
+1 if aϑ ∈ {p1q1, p2q2};
−1 if aϑ ∈ {p1q2, p2q1}.

The following proposition connects the results from Theorem 4 to the formula from Theorem 1.

Proposition 5. Let ν ∈ D−1,+
F with Tr(ν) = 1. Then we can write ν = (x+

√
D)/2

√
D for some integer x

with x2 < D. Furthermore,

F

(
D − x2

4N

)δ(x)

=
∏
a∈I

exp
(
δ(a)X(a, ν)

)
.

For other ν ∈ F , both sides of the equation simply equal 1.
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Proof. Albeit elementary, we include this proof in some detail because we will require similar considerations
later in our analytic approach as well. Suppose first that N ∤ Nm(νDF ), so no a ∈ I can divide νDF . Then
by Theorem 4, we have X(a, ν) = 0. On the other hand, the F -value of the non-integer (D − x2)/(4N) =
Nm(νDF )/N is defined to be 1 as well. We may thus assume that N | Nm(νDF ) and as such, some a ∈ I
divides νDF . We claim that this ideal is unique within I. Indeed, if not, then either p or q would divide
νDF . But this ideal is generated by (x+

√
D)/2; a contradiction. Hence we may restrict our view to the

unique a ∈ I dividing νDF and we reduce to proving

F

(
D − x2

4N

)δ(x)

= exp
(
δ(a)X(a, ν)

)
.

Next we claim that, if chosen appropriately, the signs δ(x) and δ(a) will agree for all x and a. Indeed, if σ
denotes the non-trivial element of Gal(F/Q), then we note that

(x+
√
D)/2 ∈ p1q1 ⇐⇒ (−x+

√
D)/2) ∈ σ(p1q1) = p2q2.

In other words, the Gal(F/Q)-orbit of the ideal a dividing (x+
√
D)/2 depends only on the {±1}-orbit of

the root x represents of D mod 2N ; whence we may choose the signs such that they agree. We thus reduce
to proving

F

(
D − x2

4N

)
= exp(X(a, ν)).

From the fact that the ideal νa−1DF is primitive, it easily follows that Diffa(ν) contains prime ideals r above
precisely those rational primes r dividing Nm(νa−1DF ) = (D − x2)/4N an odd number of times that are
neither inert in F nor completely split in L. This shows that, in case #Diffa(ν) ̸= 1, by Theorem 4 and the
definition of F , both sides of the equation once again equal 1.

We thus suppose that Diffa(ν) = {r} for some prime r ⊂ OF . If r ∤ N , we use Theorem 4 to reduce to
proving that

F

(
D − x2

4N

)
= rtr/2 where tr = ordr(νrDF ) · ρ(νa−1r−1DF ).

To see this, we recall that when computing F ((D − x2)/4N), the value tr is computed as the product of two
factors, the first of which equals the number of times r divides (D − x2)/4N plus 1; using that r ∤ N , this is
precisely ordr(νrDF ). For the second contribution, we first remark that D−x2 is indeed supported on primes
that are not inert in F , because by construction D will be a square modulo each prime dividing this number.
The remaining primes split into two categories; they are either inert in L/F , or split. By assumption, r is the
only of the former category dividing νaϑDF an odd number of times. Now note that ρ is a multiplicative
quantity so that it can be computed prime by prime. If a prime s of F is inert in L/F , then s2k is uniquely
a norm from L for any positive integer k. If instead s splits into S1 and S2 in L, then the ideal sk is a
norm from L in precisely k + 1 ways; indeed, only the ideals Sk−i

1 Si
2 for 0 ≤ i ≤ k have the required norm.

Combining all of this proves the claimed equality.
Finally, we must consider the case of r | N . We claim that r | a. Indeed, if not, then r | νDF , but because

also a | νDF , it would follow that either p or q divides this primitive ideal; a contradiction. We thus use
Theorem 4 to reduce to proving that

F

(
D − x2

4N

)
= rtr/2 where tr = ordr(ν) · ρ(νa−1r−1DF ).

The proof of the correctness of the factor ρ can be copied verbatim from above. For the other factor, if
2k + 1 is the multiplicity with which r divides νaDF , then it divides ν precisely 2k times as we assume
gcd(N,D) = 1. On the other hand, we note that 2k is equal to the multiplicity with which r divides the
norm (D − x2)/4 of νDF . Hence the number (D − x2)/(4N) contains precisely 2k − 1 factors of r; adding 1
back yields 2k again, completing the proof in this case too.
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Corollary 6. Suppose that ϑ, ϑ′ ∈ V are such that δ(ϑ) ̸= δ(ϑ′). Then

exp
(
δ(ϑ)deg(Xϑ)

)2 · exp(δ(ϑ′)deg(Xϑ′)
)2

=
∏

x2<D
x2≡D mod 4N

F

(
D − x2

4N

)δ(x)

.

Proof. We apply Proposition 5 and take the product over all totally positive ν ∈ F with Nm(νDF ) divisible
by N ; this yields the correct right hand side. For the left hand side, by Equation 5, we need merely observe
that by Theorem 4, it holds that X(a, ν) = X(σ(a), σ(ν)) and as such, deg(Xϑ) does not depend on the
Gal(F/Q)-orbit of its reflex ideal.

2.3 Intersection theory

It is clear from Corollary 6 that to complete the proof, we must give an alternative description of the quantity
deg(Xϑ). The most essential term in the formula defining its Arkelov degree is the length(Osh

Xϑ,x
), which we

aim to relate to an intersection on the coarse moduli space XN .
By definition, J = Y1 ×M Y2; whence for any x ∈ J (k),

Osh
Jx

∼= Osh
Y1,x

⊗Osh
Mx

Osh
Y2,x

.

By Theorem 4.1.3 in [Phi15], which says that |Aut(x)| = w1w2 for all points x ∈ J (k), we may write

deg(Xϑ) =
1

w1w2

∑
r⊂OL

log(|Fr|)
∑

x∈[Xϑ(k)]

length(Osh
Y1,x

⊗Osh
Mx

Osh
Y2,x

).

Let Yi → XN be the closed subscheme supported on the points with complex multiplication by Oi. As
is outlined in Section II of [Vis89], we have a natural map π : M → XN . As XN is smooth and M is a
Deligne-Mumford stack, π must be flat. Let (Y1 × Y2)ϑ denote the set of pairs of CM-points that induce
ϑ ∈ V. The following lemma will move us away from the language of stacks and into the realm of schemes.

Lemma 7. Fix a prime ideal r ⊂ OL and a geometric point x = (A1,A2, f) ∈ J (k). Then

length
(
Osh

Jx

)
= 2 length

(
OY1,x ⊗OXN,x

OY2,x

)
.

Proof. This is a consequence of the fact that deg(π) = 1/2.

Corollary 8. If x = (A1,A2) ∈ (Y1 × Y2)ϑ(k), then for any ϑ ∈ V it holds that

deg(Xϑ) =
2

w1w2

∑
r⊂OL

log(|Fr|)
∑

x∈(Y1×Y2)ϑ(k)

length
(
OY1,x ⊗OXN,x

OY2,x

)
.

Proof. This is clear from the definition of the stack Xϑ and Lemma 7 above, with the single difference being
the new sum not referencing the isomorphism f . However, it is easy to check that two triples (A1,A2, f) and
(A′

1,A
′
2, f

′) are isomorphic as soon as all of the Ai and A′
i for i ∈ {1, 2} are isomorphic.

As a result, to compute deg(Xϑ) for any given ϑ ∈ V, it suffices to study the numbers

length
(
OY1,x ⊗OXN,x

OY2,x

)
for r ⊂ OL and x = (A1,A2) ∈ (Y1 × Y2)ϑ(k). The coarse moduli space XN is a genus 0 curve, thus allowing
an isomorphism jN : XN → P1. Morita proved in his master thesis [Mor70] that for any positive integer N ,
the Shimura curve XN is semistable and has good reduction at all the primes not dividing N .

Let r ⊂ OL be a prime and let XN,r be a semistable model of XN over Spec(OL,r). By the above, if
r ∤ N , the completed local ring of any point on the special fibre is isomorphic to OL,rJxK. If r | N , then
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because we chose a semistable model of XN,r, at all the singular points on the special fibre the completed
local ring is isomorphic to OL,rJx, yK/(xy−ϖ), where ϖ denotes a uniformiser inside OL,r. However, because
all CM-points we study are defined over the fields Hi for i ∈ {1, 2}, both of which are unramified at r by
virtue of the assumption that r be coprime to both Di for i ∈ {1, 2}, CM-points can never reduce to singular
points on the special fibre on XN,r. As such, the completed local rings at the reduction of a CM-point is
always isomorphic to OL,rJxK as well.

As a result, for any r ⊂ OL and (A1,A2) ∈ (Y1 × Y2)ϑ(k), we obtain two maps

Spec(OLr
) → Spec(OLr

JxK).

which correspond to two ring maps
OLr

JxK → OLr
.

The following result is an easy exercise, the proof of which we opt to omit.

Lemma 9. Let R be a complete local ring and consider two maps f1, f2 : RJxK → R defined by f1(x) = a
and f2(x) = b for certain a, b ∈ R. Then

R⊗f1,RJxK,f2 R
∼= R/(a− b).

If we let PAi
denote the CM-point on XN defining the CM-false elliptic curve Ai, then the lemma above

has the following immediate corollary.

Corollary 10. For any r ⊂ OL and x = (A1,A2) ∈ (Y1 × Y2)ϑ(k), it holds that

length
(
OY1,x ⊗OXN,x

OY2,x

)
= vr

(
jN,r(PA1)− jN,r(PA2)

)
.

Proof. We apply Lemma 9 to equate the left hand side to length
(
OLr

/
(
jN,r(PA1)− jN,r(PA2)

))
, where jN,r

is a suitably normalised scalar multiple of jN ; it is an easy exercise to check that this length is simply the
r-adic valuation.

2.4 Proof of Theorem 1

It is explained in Section 4.1 and 4.2 in [Phi15] how the group Pic(Ki)×WN acts on the set of false elliptic
curves with CM by Oi. Key are Proposition 4.2.1, which states that this group action is simply transitive on
the set [Yi(C)], and Proposition 5.1.4, which states the same for [Yi(k)]. It is important to know how the
group actions on these embeddings relate to the reflex ideal a ∈ I.

Lemma 11. Let (A1,A2) be a CM-pair inducing the morphism ϑ ∈ V. Then for any pair of ideals
([c1], [c2]) ∈ Pic(K1)× Pic(K2), the CM-pair ([c1] ·A1, [c2] ·A2) also induces the map ϑ ∈ V.

Proof. This is immediate from the discussion in [Phi15] on page 39.

Lemma 12. Let (A1,A2) be a CM-pair inducing the reflex ideal a = piqj . Then the CM-pairs (wp ·A1,A2)
and (A1, wp ·A2) induce reflex ideal pkqj with k ̸= i, and the CM-pairs (wq ·A1,A2) and (A1, wq ·A2) induce
reflex ideal piql with l ̸= j.

Proof. This is a consequence of the considerations in Section 5.2 in [Phi15].

Corollary 13. For any given ϑ ∈ V, the space (Y1 × Y2)ϑ(k) is a principal homogeneous space for the action
of Pic(K1)×Pic(K2). In addition, the set V itself is a principal homogenous space for the action of WN ×WN

and the set I is so for WN .

Proof. The first claim is a direct consequence of the results above, which combine to show that precisely the
action of Pic(K1)× Pic(K2) leaves the morphism ϑ ∈ V invariant. The other claims are easy to deduce from
Lemma 12.
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Lemma 14. For any point CM-point P = PAi , it holds that

wN (P ) ∈ Pic(Ki) · Frobp(P ).

Proof. This is a consequence of the fact that Frobp, acting nontrivially on Ki, also conjugates the reflex ideal
to the other element in its Gal(F/Q)-orbit. This effect coincides with the action of wN on the reflex ideal
and as such, these actions must agree up to an element from Pic(Ki).

Corollary 15. For any CM-point P = PAi
, it holds that

P ′ ∈ Pic(Ki) · wq(P ).

Proof. Apply wp to both sides of Lemma 14 and recall that by definition, P ′ = wp(Frobp(P )).

Proof. (of Theorem 1) Using the structure of (Y1×Y2)ϑ(k) as principal homogeneous space, we allow ourselves
to fix a CM-pair (A1,A2) inducing some ϑ ∈ V. Using Corollaries 8 and 10, we now rearrange

deg(Xϑ) =
2

w1w2

∑
r⊂OL

log(|Fr|)
∑

(A1,A2)∈
(Y1×Y2)ϑ(k)

vr (jN,r(PA1
)− jN,r(PA2

))

=
2

w1w2

∑
r⊂OL

log(|Fr|)
∑

([c1],[c2])

vr
(
jN,r(P[c1]·A1

)− jN,r(P[c2]·A2
)
)
.

Now let V ′ = (Wq ×Wq) · ϑ ⊂ V where Wq = {1, wq} ⊂ WN . We will study∑
ϑ∈V′

δ(ϑ)deg(Xϑ).

Making use of Corollary 15 and exploiting the fact that we take an average over the product of the class
groups to ignore the difference between P ′ and wq(P ), the contribution for r ⊂ OL is precisely∑

([c1],[c2])

vr

(
jN,r(P[c1]·A1

)− jN,r(P[c2]·A2
)

jN,r(P ′
[c1]·A1

)− jN,r(P[c2]·A2
)
·
jN,r(P

′
[c1]·A1

)− jN,r(P
′
[c2]·A2

)

jN,r(P[c1]·A1
)− jN,r(P ′

[c2]·A2
)

)
.

The cross ratio is independent of the choice of uniformising function jN,r, so we may replace it by our original
choice jN without changing the outcome. Now recall Shimura’s reciprocity law, clearly explained on the first
pages of [Shi67], which states in effect that taking an average over the class group amounts to taking the
norm of the algebraic integer jN (P ) in the unramified field extension Hi/Ki. In other words,∏

[c1],[c2]

[
jN (P[c1]·A1

), jN (P ′
[c1]·A1

), jN (P[c2]·A2
), jN (P ′

[c2]·A2
)
]

is equal to the norm NmH1H2

L [jN (PA1
), jN (P ′

A1
), jN (PA2

), jN (P ′
A2

)]. We conclude that∑
ϑ∈V′

δ(ϑ)deg(Xϑ) =
2

w1w2

∑
r⊂OL

log(|Fr|)vr
(
NmH1H2

L

[
jN (PA1

), jN (P ′
A1

), jN (PA2
), jN (P ′

A2
)
])

=
2

w1w2
log NmH1H2

Q
[
jN (PA1

), jN (P ′
A1

), jN (PA2
), jN (P ′

A2
)
]
.

Since V ′ contains four elements, two of each possible sign for the reflex ideal aθ, we may finally appeal to
Corollary 6 to conclude that

2

w1w2
log NmH1H2

Q
[
jN (PA1

), jN (P ′
A1

), jN (PA2
), jN (P ′

A2
)
]
=

∏
x2<D

x2≡D mod 4N

F

(
D − x2

4N

)δ(x)

;

completing the proof of Theorem 1.
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3 An R = T theorem

In this section we will study the theory of deformations of a rigidification of the Galois representation 1⊕ χ

attached to the following p-stabilisation of the Hilbert Eisenstein series E
(p)
1,χ := (1− Vp1

)(1 + Vp2
)E1,χ. The

purpose of this rigidification is two-fold. First and foremost, it forces all endomorphisms of our representation
to be scalar, resulting in a representable deformation functor. The second purpose is more subtle; rigidifying
will cause the dimensions of the tangent spaces of our various deformation rings to drop by 1 compared
to the naive unrigidified case due to the introduction of additional coboundaries. This is crucial in lining
up the dimensions in order to prove our desired nearly ordinary modularity theorem. In this section, all
homomorphisms and cocycles are assumed to be continuous. Similar arguments in different settings can be
found in Pozzi’s thesis [Poz19] and the works [BDP22, BD16, BDS20, BC06].

3.1 Some Galois cohomology

The following is key in enabling us to compute Galois cohomology groups for certain actions of absolute
Galois groups on local fields; it can be found as Lemma 3.2 in [DPV23].

Proposition 16. Let H/F be finite Galois. Then there is an exact sequence of Gal(H/F )-modules,

0 → Hom(GH ,Qp) →
∏
v|p

Hom(H×
v ,Qp) → Hom(OH [1/p]×,Qp).

In addition, this sequence is right exact if and only if Leopoldt’s conjecture holds for H.

We omit the proof, but instead sketch how it is used to compute all cohomology groups that will be
relevant for us. From now on, let Qp(χ) denote the GF -module in which the action of GF on Qp is through
the character χ. Further, write for simplicity Qp(1) := Qp.

Lemma 17. The space Hom(GF ,Qp) is 1-dimensional.

Proof. Since F/Q is abelian, Leopoldt’s conjecture is known to be true and so the sequence from Proposition
16 is short exact for H = F . We may now count dimensions, using that

F×
p1

× F×
p2

∼= Q×
p ×Q×

p and OF [1/p]
×/{±1} ∼= Z3.

We conclude that dim Hom(GF ,Qp) = 4− 3 = 1, as claimed.

For the sake of brevity, we will denote Gpi
:= GFpi

for i = 1, 2.

Lemma 18. For i ∈ {1, 2} the space H1(Gpi ,Qp(χ)) is 1-dimensional. The restriction maps yield an
isomorphism

H1(GF ,Qp(χ))
∼−→ H1(Gp1

,Qp(χ))⊕H1(Gp2
,Qp(χ)).

In particular, the space H1(GF ,Qp(χ)) is 2-dimensional.

Proof. We follow Lemma 3.3 in [DPV23]. First, we note that restriction to GL gives an isomorphism

H1(GF ,Qp(χ)) ∼= Hom(GL,Qp(χ))
Gal(L/F ) = Hom(GL,Qp)

χ,

where the final group denotes the χ-eigenspace. Indeed, this follows from the inflation-restriction sequence
and the easy computation that H1(Gal(L/F ),Qp(χ)) = H2(Gal(L/F ),Qp(χ)) = 0. Since L/Q is abelian,
the sequence in Proposition 16 is exact as before. We obtain an isomorphism

Hom(GL,Qp)
χ ∼= Hom(L×

p1
,Qp)

χ ×Hom(L×
p2
,Qp)

χ,
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as by the Galois-equivariant version of Dirichlet’s Unit Theorem, it holds that (O×
L [1/p]⊗Qp)

χ = 0, which
uses that χ is totally odd and χ(pi) = −1 for i ∈ {1, 2}. Similarly, one can show that for i ∈ {1, 2},

H1(Gpi ,Qp(χ)) ∼= Hom(GLpi
,Qp)

χ ∼= Hom(L×
pi
,Qp)

χ,

proving the claimed isomorphism. Finally, the spaces Hom(L×
pi
,Qp) for i ∈ {1, 2} are easily seen to be

3-dimensional and spanned by ordpi
, a p-adic logarithm and its Galois twist. Since χ restricts non-trivially to

the decomposition group, the χ-eigenspace is quickly seen to be 1-dimensional, spanned by the difference of
the two logarithms. This completes the proof of the lemma.

Finally, we will need the following results in order to compute tangent spaces later on.

Lemma 19. It holds that
H2(GF ,Qp) = 0 and H2(GF ,Qp(χ)) = 0.

Proof. We use the global Euler characteristic formula. Since F has two real places, we compute that

dim H2(GF ,Qp) = dim H1(GF ,Qp)− dim H0(GF ,Qp) + 2 dim H0(GR,Qp)− 2 dim (Qp)

= 1− 1 + 2− 2 = 0,

where we used Proposition 17. Similarly, using Proposition 18, we compute that

dim H2(GF ,Qp(χ)) = dim H1(GF ,Qp(χ))− dim H0(GF ,Qp(χ)) + 2 dim H0(GR,Qp(χ))

− 2 dim (Qp(χ)) = 2− 0 + 0− 2 = 0,

because complex conjugation in Gal(C/R) acts non-trivially through χ.

3.2 Deformation functors and representability

The following lemma follows from a direct calculation.

Lemma 20. For any η ∈ Z1(GF ,Qp(χ)), we have a Galois representation

ρη : GF → GL2(Qp) : τ 7→
(
1 χ(τ)η(τ)
0 χ(τ)

)
.

In addition, it has no non-scalar endomorphisms if and only if η ̸= 0 ∈ H1(GF ,Qp(χ)).

Definition 21. Let CQp denote the category of local complete Noetherian Qp-algebras with residue field Qp.
Given any object (A,mA) of CQp , a lift of ρη to A is a representation ρ : GF → GL2(A) that reduces to ρη after
composing with the natural map GL2(A) → GL2(Qp) induced by the natural map A 7→ A/mA

∼= Qp. We say
that two lifts are equivalent if they are conjugate by a matrix in the kernel of the map GL2(A) → GL2(Qp).
A deformation of ρη to A is an equivalence class of lifts of ρη to A. We define the functor Dρη

: CQp
→ Set

by sending any (A,mA) ∈ CQp
to the set of equivalence classes of deformations of ρη to A.

Proposition 22. If η ̸= 0 ∈ H1(GF ,Qp(χ)), the functor Dρη is represented by a ring Rρη .

Proof. Using the same argument as in Proposition 5 in [Maz89], we reduce to showing the non-existence of
non-scalar endomorphisms and the finite dimensionality of the tangent space. The former is taken care of
by Lemma 20, and for the latter we may bound the dimension of the tangent space H1(GF , ad(ρη)) by the
dimension of the tangent space of its semisimplification H1(GF , ad(ρ0)). By standard arguments, this space
decomposes as Hom(GF ,Qp)

2 ⊕H1(GF ,Qp(χ))
2; whence by Lemmas 17 and 18, its dimension is 6 < ∞.

From now on, we assume that η ̸= 0 ∈ H1(GF ,Qp(χ)) to ensure representability.
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Definition 23. Consider triples (ρ, L1, L2) where ρ is a lift of ρη to some (A,mA) ∈ CQp and L1 and L2

are free direct summands of A2 such that L1 lifts the line ⟨e1⟩ and L2 lifts the line ⟨e2⟩. We say two such
triples are equivalent if for some g ∈ ker(GL2(A) → GL2(Qp)) it holds that ρ = gρ′g−1 and L1 = gL′

1 and
L2 = gL′

2. We let Dfil
ρη

be the functor sending an object (A,mA) to the set of equivalence classes of such
triples (ρ, L1, L2) as defined above.

Proposition 24. The functor Dfil
ρη

is represented by the ring RρηJX,Y K.

Proof. We define a bijection
Hom(Rρη

JX,Y K, A) → Dfil
ρη
(A)

by sending some map f : RρηJX,Y K → A to the representation

GF → GL2(Rρη ) → GL2(RρηJX,Y K) → GL2(A)

induced by the universal representation and the map f itself, together with the lines Lf,1 = ⟨e1+f(X)e2⟩ ⊂ A2

and Lf,2 = ⟨e2 + f(Y )e1⟩ ⊂ A2. As f is a morphism of local rings, f(X), f(Y ) ∈ mA and thus the map is
well defined. Since every line lifing ⟨ei⟩ to A for some i ∈ {1, 2} is of that form and we may choose the images
of X and Y freely in mA, surjectivity is obvious. We sketch the proof of injectivity; more details can be found
in Lemma 1.3.2 in [Poz19]. If two morphisms f, f ′ : Rρη

JX,Y K → A have the same image under the above
association, they give rise to the same deformation. But then the universal property of Rρη

yields readily
that f and f ′ must agree when restricted to Rρη

. This means that the matrix g ∈ ker(GL2(A) → GL2(Qp))
intertwines the lift induced by both f and f ′, which forces g to be scalar. This readily yields f(X) = f ′(X)
and f(Y ) = f ′(Y ) and as such f = f ′ on all of RρηJX,Y K.

From now on, we must require that η|Gp2
= 0. The reason as to why is immediate from the following

definition; the line ⟨e2⟩ is only fixed by Gp2
by ρη if this condition on η is satisfied. Note that this fixes η

uniquely up to a scalar, as can be seen from Lemma 18.

Definition 25. Let Dno
ρη

: CQp → Set be the subfunctor of Dfil
ρη

sending an object (A,mA) ∈ CQp to the
equivalence class of triples (ρ, L1, L2) as above with the additional properties that the line L1 is Gp1-stable
and the line L2 is Gp2

-stable. We call such deformations nearly ordinary.

By requiring the two lines L1 and L2 to lift the two distinct lines ⟨e1⟩ and ⟨e2⟩ respectively in the definition
above, we ensure that the two quotient characters on the spaces A2/Li will lift the two distinct characters χ

and 1. This corresponds to the particular choice of p-stabilisation E
(p)
1,χ := (1− Vp1)(1 + Vp2)E1,χ with two

distinct signs that will be at the core of our arguments later.

Proposition 26. The functor Dno
ρη

is represented by a universal deformation ring Rno
ρη
.

Proof. We will find an ideal I ⊂ Rρη
JXK such that in the bijection

Hom(Rρη
JX,Y K, A) → Dfil

ρη
(A),

the image of an element on the left is contained in the subset Dno
ρη
(A) if and only if it factors through

R0
ρη

JX,Y K/I. This would yield a bijection

Hom(Rρη
JX,Y K/I,A) → Dno

ρη
(A),

establishing the desired conclusion Rno
ρη

∼= Rρη
JX,Y K/I. It remains to identify I. Let us consider a

representative for the universal deformation

ρuniv =

(
α β
γ δ

)
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and investigate when its universal line Luniv
1 = ⟨e1 +Xe2⟩ is stable under the action of Gp1 . By changing

bases, this happens precisely when(
1 0

−X 1

)(
α β
γ δ

)(
1 0
X 1

)
=

(
α+ βX β

γ + (δ − α)X − βX2 δ − βX

)
fixes the line ⟨e1⟩ on Gp1 . This is easy to read off; it happens precisely when

γ(σ) + (δ(σ)− α(σ))X − β(σ)X2 vanishes for all σ ∈ Gp1
.

Let I1 ⊂ R0
ρη

JXK be the ideal generated by all the elements above and completely similarly define I2. Then
I = I1 + I2 is easily seen to be the desired ideal.

3.3 Computing tangent spaces

Choosing a basis of Q2
p, we may identify the adjoint representation

Ad(ρη) ∼= M2(Qp),

on which the action is given for g ∈ GF by g ·M = ρη(g)
−1Mρη(g).

Lemma 27. There is a well-defined map of GF -modules

φ1 : Ad(ρ) → Qp(χ) :

(
x y
z w

)
7→ z.

Proof. This follows from the computation of the matrix product(
1 −η
0 χ

)(
x y
z w

)(
1 χη
0 χ

)
=

(
x− zη xχη + yχ− zχη2 − wχη
zχ zη + w

)
, (6)

which shows that the GF -action on the bottom-right entry is through multiplication by χ.

Now let W1 = ker(φ1); in other words, we have a short exact sequence of GF -modules

0 → W1 → Ad(ρ) → Qp(χ) → 0.

Lemma 28. There is a well-defined map of GF -modules

φ2 : W1 → Qp ⊕Qp :

(
x y
0 w

)
7→ (x,w).

Proof. This is immediate from substituting z = 0 in Equation 6.

We now define W2 = ker(φ2), so that we have a short exact sequence

0 → W2 → W1 → Qp ⊕Qp → 0.

The following result completes the filtration and allows us to start computing cohomology groups using long
exact sequences.

Lemma 29. There is a well-defined isomorphism of GF -modules given by

W2
∼−→ Qp(χ) :

(
0 y
0 0

)
7→ y.

Proof. This is immediate from substituting x = z = w = 0 in Equation 6.
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Proposition 30. The group H1(GF ,W1) is 3-dimensional. Further, H2(GF ,W1) = 0.

Proof. We consider the long exact sequence associated with the short exact sequence defining W2. It is clear
that H0(GF ,Qp(χ)) = 0 and H0(GF ,Qp ⊕Qp) = Qp ⊕Qp. Further, one may observe that

H0(GF ,W1) = WGF
1 =

{
M ∈ W1 | ρ−1Mρ = M

}
= ⟨id⟩ ∼= Qp,

where we used Lemma 20. Finally, we recall Lemma 19, which states that H2(GF ,Qp(χ)) = 0. Combining
all of this with Lemma 29, the long exact sequence becomes

0 → Qp → Qp ⊕Qp → H1(GF ,Qp(χ)) → H1(GF ,W1) → H1(GF ,Qp ⊕Qp) → 0.

Applying Lemmas 17 and 18, we conclude that

dim H1(GF ,W1) + 2 = 1 + 2 + 2;

completing the proof of the first claim. For the second, we look slightly further along in the long exact
sequence and use Lemma 19 to find H2(GF ,W1) in between two zeroes.

Theorem 31. The tangent space tρη is 5-dimensional.

Proof. Using the well-known isomorphism tρη
∼= H1(GF ,Ad(ρ)), we reduce to computing the dimension of

the latter cohomology group. We now use the long exact sequence associated with the short exact sequence
defining W1. Recalling that H0(GF ,Qp(χ)) = 0 and H2(GF ,W1) = 0 by Proposition 30 above, we conclude
that part of this sequence reads

0 → H1(GF ,W1) → H1(GF ,Ad(ρ)) → H1(GF ,Qp(χ)) → 0.

In particular, appealing to Lemma 18 and again Proposition 30, we find that

dim H1(GF ,Ad(ρ)) = dim H1(GF ,W1) + dim H1(GF ,Qp(χ)) = 3 + 2 = 5,

completing the proof.

We now compute the dimension of the tangent space to the nearly ordinary deformation functor.

Lemma 32. There is an isomorphism of Qp-vector spaces between tfilρη
and H1(GF ,Ad(ρη))⊕Q2

p.

Proof. By definition and using Proposition 24, we have

tfilρη
= Hom(Rfil

ρη
,Qp[ϵ]) = Hom(RρηJX,Y K,Qp[ϵ]) ∼= Hom(Rρη ,Qp[ϵ])⊕Q2

p;

this final isomorphism comes from the observation that we may choose the images of X and Y arbitrarily
and independently in the maximal ideal ϵQp[ϵ] ∼= Qp.

Proposition 33. A triple (Θ, λ1, λ2) ∈ H1(GF ,Ad(ρη))⊕Q2
p corresponds to a nearly ordinary deformation

of ρη if and only if
c|Gp1

= λ1(1− χ) and b|Gp2
= λ2(χ− 1).

Proof. By definition and using Proposition 26, we have

tnoρη
= Hom(Rno

ρη
,Qp[ϵ]) = Hom(Rρη

JX,Y K/I,Qp[ϵ]),

where I = I1+I2 as in the proof of Proposition 26. We retain its notation and consider φ ∈ Hom(R0
ρη

JX,Y K,Qp[ϵ]).
If we write

Θ =

(
a b
c d

)
,
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then by Lemma 32, there is a unique triple (Θ, λ1, λ2) ∈ H1(GF ,End
0(V ))⊕Q2

p such that

φ

(
α β
γ δ

)
= (1 + ϵΘ)ρη =

(
1 + aϵ χη + χ[ηa+ b]ϵ
cϵ χ+ χ[ηc+ d]ϵ

)
, φ(X) = λ1ϵ, φ(Y ) = λ2ϵ.

We can now compute the constraints posed by the vanishing on I to be

c = λ1(1− χ) on Gp1
and χη + χ[ηa+ b]ϵ+ λ2(1− χ)ϵ = 0 on Gp2

.

However, η is chosen to be trivial on Gp2
. As such, we obtain the proposition.

Lemma 34. There is a well-defined homomorphism

f : H1(GF ,Ad(ρη)) → H1(Gp1 ,Qp(χ))⊕H1(Gp2 ,Qp(χ))

explicitly given by, adopting the usual notation for the components of Θ,

Θ 7→
(
c|Gp1

, b|Gp2

)
.

Proof. It is easy to see that the map H1(GF ,Ad(ρ)) → H1(GF ,Qp(χ)) in the proof of Theorem 31 is given
by Θ 7→ c ∈ H1(GF ,Qp(χ)) so we may compose this map with the restriction GF → Gp1 . Further, since
η vanishes on Gp2 , it holds that ρη|Gp2

= 1 ⊕ χ. This readily implies that also b|Gp2
∈ H1(Gp2 ,Qp(χ))

describes a well-defined cohomology class.

Proposition 35. There is an isomorphism of Qp-vector spaces between tnoρη
and ker(f).

Proof. Given Θ ∈ ker(f), we may construct a nearly ordinary triple (Θ, λ1, λ2) using the map

Θ 7→
(
Θ, c(Frobp1)/2, b(Frobp2)/2

)
.

This is in fact nearly ordinary, because by virtue of Θ being in the kernel of f , the cocycles c|Gp1
and b|Gp2

are coboundaries and as such, are given by c|Gp1
= µ1(1− χ) and b|Gp2

= µ2(χ− 1) for certain µ1, µ2 ∈ Qp.
Using that χ(Frobpi

) = −1 for i ∈ {1, 2}, evaluating yields that µ1 = c(Frobp1
)/2 and µ2 = b(Frobp2

)/2
are uniquely determined. Comparing with Proposition 33, this shows our claim. Conversely, to any nearly
ordinary triple we associate its first component, since by Proposition 33, for nearly ordinary triples, c|Gp1

and
b|Gp2

must be coboundaries. Since these operations are evidently inverse, this establishes the proposition.

Corollary 36. The tangent space tnoρη
is 3-dimensional.

Proof. We claim that the map f from Lemma 34 is surjective. Indeed, the sequence in Theorem 31 in
combination with Lemma 18 shows that the map onto the first factor is surjective. Further, the submodule
W2 of Ad(ρη) surjects onto the second factor by Lemma 29 while being identically zero on the first; these
two observations imply surjectivity. Using Theorem 31 and two applications of Lemma 18, we conclude that
dim tnoρη

= 5− 2 = 3; precisely as claimed.

3.4 A lift to T
Let Tno denote Hida’s nearly ordinary cuspidal Hecke algebra as defined in [Hid89a] and discussed in Section
3 of [DPV23]. Let E1,χ denote the parallel weight (1, 1)-Hilbert Eisenstein series and further we let

E
(p)
1,χ := (1− Vp1

)(1 + Vp2
)E1,χ

be one of the p-stabilisations with opposite choices of signs. This is a p-adic cusp form and as such defines a

morphism Tno → Qp by sending a Hecke operator to its f := E
(p)
1,χ-eigenvalue. Let T be the nilreduction of

the completion of the localisation of Tno at the prime ideal mf given by the kernel of the morphism above.
Let K be its ring of fractions, which is a product of fields. Then Hida proved the following in [Hid89a].
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Theorem 37. There exists a unique semisimple Galois representation π : GF → GL2(K) with the following
properties:

� π is continuous, odd and unramified outside p;

� For each prime l ∤ p, it holds that

det
(
1− π(Frobl)X

)
= 1− TlX + ⟨l⟩Nm(l)X2;

� For i ∈ {1, 2} there exist characters ϵi, δi : Gpi
→ T× such that, up to equivalence, when restricted to

Gpi
, the representation π is of the form

π(σ) =

(
ϵi(σ) ∗
0 δi(σ)

)
for σ ∈ Gpi

.

� If we identify Gab
pi

∼= F×
pi
, then we have the identity δi(x) = Ux for all x ∈ F×

pi
.

We refine this representation in two ways using the nowadays standard technique. We must find a stable
lattice inside K2 so that we obtain a representation GF → GL2(T) instead, which we may then reduce modulo
its maximal ideal mf . Secondly, we must insist that this reduction precisely equals ρη in order to obtain a
deformation of ρη. Let us achieve these two results in succession.

Lemma 38. There exist an element γ ∈ GF \GL and a basis of {e1, e2} of K2 such that

π(γ) =

(
λ1 0
0 λ2

)
,

where λ1 ≡ 1 mod mf and λ2 ≡ −1 mod mf . In addition, the unique fixed lines fixed by the subgroups Gpi
,

for i ∈ {1, 2} can be written as ⟨e1 + yie2⟩ where yi ∈ K×.

Proof. This is the content of Lemma 4.3 and Lemma 4.6 in [DKV18].

In any basis as in the lemma above, write

π(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
for certain functions a, b, c, d : GF → K. We proceed to analyse these functions.

Lemma 39. The functions a and d are T-valued. In fact, a ≡ 1 mod mf and d ≡ χ mod mf .

Proof. For any prime l ∤ p, using Theorem 37, we have that

a(Frobl) + d(Frobl) = Tr(π(Frobl)) = Tl ∈ T.

In other words, the continuous map Tr(π) : GF → K takes on integral values for every element Frobl for l ∤ p.
By Chebotarev’s Density Theorem, the result extends to all of GF . Next note that

λ1a(Frobl) + λ2d(Frobl) = Tr(π(γFrobl)) ∈ T.

Combining these two expressions and using that λ1 − λ2 ∈ T× then yields that a and d both must have

integral image themselves. Finally, by definition of f = E
(p)
1,χ we have Tl ≡ 1 + χ(l) mod mf . Again, by

continuity, this implies that for any σ ∈ GF , it holds that a(σ)+d(σ) ≡ 1+χ(σ) mod mf . Again considering
γσ, we also obtain a(σ)− d(σ) ≡ 1− χ(σ) mod mf . Combining these completes the proof.
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Lemma 40. For any σ, τ ∈ GF , it holds that b(σ)c(τ) ∈ mf .

Proof. This follows from the fact that π is a homomorphism; comparing the top-left entry in the equation
π(στ) = π(σ)π(τ) yields the equality a(στ) = a(σ)a(τ) + b(σ)c(τ). By Lemma 39, we know that a(GF ) ⊂
1 +mfT, and as such, b(σ)c(τ) must be inside of mf for all σ, τ ∈ GF .

Definition 41. Let B denote the T-submodule of K generated by all elements of the form b(σ) for σ ∈ GF ,
and C the analogous submodule using the elements c(σ).

Lemma 42. There are well-defined injective maps

jB : HomT(B/mfB,T/mf ) → H1(GF ,Qp(χ)) : f 7→ χ · (f ◦ b);
jC : HomT(C/mfC,T/mf ) → H1(GF ,Qp(χ)) : g 7→ g ◦ c.

Proof. The off-diagonal entries in the equation π(στ) = π(σ)π(τ) yield respectively

b(στ) = d(τ)b(σ) + a(σ)b(τ) and c(στ) = a(τ)c(σ) + d(σ)c(τ).

Reducing mod mf and using Lemma 39, these equations reduce to the cocycle conditions for χ · b and c
respectively, readily showing well-definedness. To show injectivity, we observe that GL is contained in the
kernel of every coboundary. So if GL ⊂ ker(f ◦ b), because also b(γ) = 0 for γ ∈ GF \GL, it readily follows
that f ◦ b would be completely trivial; the same argument works for g ◦ c.

We continue to exploit the knowledge that π is nearly ordinary to obtain certain local information about
the entries b and c, which we will later use to deduce further global properties of the modules B and C. What
ensues is a subtle dance between global properties and information about local restrictions, which turns out
to provide us with all the necessary conclusions.

Lemma 43. For i ∈ {1, 2}, the maps ϵi, δi : Gpi
→ T×/mf

∼= Q×
p are equal to 1, χ, or χ, 1.

Proof. In the proof of Lemma 39 we showed that Tr(π(σ)) ≡ 1+χ(σ) mod mf and because det(π(Frobl)) =
χ(l) for all primes l ∤ p, completely similarly we may extend this formula to all of GF . We have thus shown
that ϵi(σ) + δi(σ) = 1 + χ(σ) mod mf and ϵi(σ)δi(σ) = χ(σ) mod mf . For σ ∈ GL ∩ Gpi

, this is readily
rewritten as (ϵi(σ) − 1)2 ≡ (δi(σ) − 1)2 ≡ 0 mod mf . This shows that ϵi(σ) ≡ δi(σ) ≡ 1 mod mf on
GL ∩Gpi

. This determines these characters on an index 2 subgroup, which leaves only two possibilities; 1 or
χ. Since we can choose σ = Frobpi

∈ Gpi
\GL to find that ϵi(σ) + δi(σ) ≡ 0 mod mf , it is clear that each

choice must occur exactly once.

Proposition 44. For each i ∈ {1, 2}, at least one of the following must hold:

� χ · b mod mfB is a coboundary when restricted to Gpi
;

� c mod mfC is a coboundary when restricted to Gpi .

Proof. The change of basis matrix that changes π into the upper triangular form from Theorem 37 must
satisfy for all σ ∈ Gpi

the equality(
a(σ) b(σ)
c(σ) d(σ)

)(
x y
z w

)
=

(
x y
z w

)(
ϵi(σ) ∗
0 δi(σ)

)
.

Comparing the top left entries, we obtain that b(σ) = x
z

(
ϵi(σ)− a(σ)

)
. Similarly, comparing the bottom left

entries, we obtain that c(σ) = z
x

(
ϵi(σ)− d(σ)

)
. Using Lemma 43 above in combination with Lemma 39, it

follows that either ϵi(σ) − a(σ) ∈ mf or ϵi(σ) − d(σ) ∈ mf for all σ ∈ Gpi
. Suppose the former. Then let

τ = Frobpi
∈ Gpi

, so that ϵi(τ)− d(τ) ∈ T×. This shows that z
x = c(τ) ·

(
ϵi(σ)− d(σ)

)−1 ∈ C, and as such,

c(σ) = z
x

(
ϵi(σ) − d(σ)

)
≡ z

x

(
1 − χ(σ)

)
mod mfC, which shows that c is a coboundary mod mfC. The

other case is completely analogous.
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Corollary 45. Let {i, j} = {1, 2}. If χ · b mod mfB is a coboundary when restricted to Gpi , then c
mod mfC is a coboundary when restricted to Gpj .

Proof. By Proposition 44 above, it suffices to show that it cannot occur that b or c is a coboundary mod mf

when restricted to both Gp1
and Gp2

. Let us therefore suppose the contrary for c; we claim that it is then a
coboundary globally. Indeed, similarly to the proof of Lemma 18, the map

H1(GF , C/mfC) → H1(Gp1
, C/mfC)⊕H1(Gp2

, C/mfC)

is an isomorphism. It follows that there exists some λ ∈ C/mfC such that c(σ) ≡ λ · (1− χ(σ)) mod mfC.
In particular, 0 = c(γ) ≡ 2λ mod mfC which shows that C/mfC = 0. By Nakayama’s Lemma, it follows
from this that C = 0 globally, and as such, c must be the zero-cocycle. However, π is irreducible; this is a
contradiction and completes the proof.

Proposition 46. The modules B and C are free T-modules of rank 1.

Proof. Using the same argument as Lemme 4 in [BC06], it follows that both B and C are T-modules of finite
type. The images of the maps jB and jC are 1-dimensional inside H1(GF ,Qp(χ)), because Corollary 45 above
implies that both b and c will be locally trivial at precisely one of the two places above p, which cuts out a
1-dimensional subspace by Lemma 18. By the injectivity established by Lemma 42, using that T/mfT ∼= Qp,
it follows that HomT(B/mfB,Qp) is 1-dimensional. In other words, B/mfB is generated by a single element
so by Nakayama’s Lemma, the same must then hold for B itself; the argument for C is analogous.

Corollary 47. There exists a basis of K2 such that the image of π takes values in T2 and is upper triangular
mod mf . The T-module spanned by these basis vectors is GF -stable.

Proof. By Proposition 46 above, we can find an element b0 ∈ B generating the T-module B. Now consider
the basis {b0e1, e2}, in which π looks like

π(σ) =

(
a(σ) b(σ)b−1

0

c(σ)b0 d(σ)

)
.

By Lemma 40, it follows that c(σ)b0 ∈ mf for all σ ∈ GF . This means that π takes values in T2, and as such,
it stabilises the T-lattice M = ⟨b0e1, e2⟩.

We now rescale our original choice of basis vectors as in the corollary above, to omit b0 from any future
calculations. In addition, in view of Corollary 45, we may assume that b mod mf is a coboundary when
restricted to Gp2 , whereas c mod mf is a coboundary when restricted to Gp1 .

Proposition 48. Up to a rescaling a basis vector by some λ ∈ Q×
p , the map π is a lift of ρη.

Proof. From Lemma 39 and the proof of Corollary 47, we already know that a ≡ 1 mod mf , and d ≡ χ
mod mf and c ≡ 0 mod mf . It thus suffices to show that b(σ) ≡ λ · η mod mf for some λ ∈ Q×

p . Recall that
η is a generator for the 1-dimensional subspace of H1(GF ,Qp(χ)) of cocycles that vanish on the decomposition
group Gp2 ⊂ GF . Since we assume that b mod mf is a coboundary when restricted to Gp2 and further
b(γ) = 0, it readily follows that b vanishes completely on Gp2 . As a result, b mod mf = λ · η and since b
mod mf cannot be trivial when restricted to Gp1

as a result of Corollary 45, it follows that even λ ∈ Q×
p .

To conclude that π is now actually a nearly ordinary deformation of ρη, it remains to identify lines inside
T2 on which suitable restrictions of π act scalar.

Theorem 49. Consider π from Theorem 37 in any basis with the property that the conditions from Proposition
48 are satisfied. Then π defines a nearly ordinary deformation of ρη.
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Proof. It suffices to exhibit free direct summands Li for i ∈ {1, 2} of rank 1 inside T2 which are stable under
the restriction π|Gpi

and which lift ei. By Theorem 37, for i ∈ {1, 2}, we can find matrices with(
a(σ) b(σ)
c(σ) d(σ)

)(
xi yi
zi wi

)
=

(
xi yi
zi wi

)(
ϵi(σ) ∗
0 δi(σ)

)
,

yielding the equalities b(σ) = xi

zi

(
ϵi(σ) − a(σ)

)
and c(σ) = zi

xi

(
ϵi(σ) − d(σ)

)
. By our choices for when

b and c are respectively trivial mod mf , it follows from Lemma 39 that ϵ2 ≡ 1 mod mf and that also
ϵ1 ≡ χ mod mf . Using the same argument as in the proof of Proposition 44, we show that z1/x1 ∈ mf and
x2/z2 ∈ mf . We thus set

L1 =

〈(
1

z1/x1

)〉
and L2 =

〈(
x2/z2
1

)〉
.

These lines are free of rank 1 inside T2 and fixed by π|Gpi
by construction. Further, by the above, they

reduce to e1 and e2 respectively, completing the proof.

3.5 The modularity theorem

The goal of this section will be to prove an isomorphism Rno
ρη

∼= T. We have already constructed the map, as
Theorem 49 claims that there exists a nearly ordinary deformation π of ρη to T. By the universal property of
Rno

ρη
, this induces a map T : Rno

ρη
→ T that induces this deformation from ρuniv.

Lemma 50. The map T : Rno
ρη

→ T is surjective.

Proof. Let Λ = QpJX,Y, ZK be as defined in Section 2.2 and 3.1 in [BDS20]. Both Rno
ρη

and T carry a natural
Λ-algebra structure and the map T defined above is generally Λ-linear. Since T is generated over Λ by the
operators Tl, ⟨l⟩ and Ux for x ∈ OF ⊗ Zp, it suffices to show that these are contained in the image of T . We
use the defining relation that π = T ◦ ρuniv to show for l ∤ p that

T
(
Tr(ρuniv(Frobl))

)
= Tr

(
T (ρuniv(Frobl))

)
= Tr(π(Frobl)) = Tl.

Similarly,
T
(
det(ρuniv(Frobl))

)
= det

(
T (ρuniv(Frobl))

)
= det(π(Frobl)) = ⟨l⟩Nm(l).

It now suffices to consider the operators Ux for x ∈ F ⊗ Zp
∼= Fp1

× Fp2
. Use the stable lines for ρuniv and π

to construct bases. If we then let ∆ denote the bottom right entry of ρuniv, we then obtain for x ∈ F×
p1

that
T
(
∆(x)

)
= δ1(x) = Ux. The top-left entry yields the same result for x ∈ F×

p2
, completing the proof.

Lemma 51. Let k be a field and further let (A,mA) and (B,mB) be local k-algebras. Suppose that
dimk(mA/m

2
A) = dim(B) < ∞ and that there is a surjective map of k-algebras A → B. Then A and

B are both regular local rings with the same finite Krull dimension.

Proof. The existence of a surjective map A → B implies that dim(A) ≥ dim(B) and similarly for the tangent
spaces. Krull’s principal ideal theorem implies that the dimension of the tangent space is bounded below by
the Krull dimension of the ring. Combining these two observations with the given equality of dimensions
quickly yields that everything must be equal, completing the proof.

Proposition 52. Let k be a field and let (A,mA) and (B,mB) be Noetherian regular local k-algebras with
the same finite Krull dimension. Then every surjective map A → B must be an isomorphism.

Proof. This is just commutative algebra. A proof can be found in the author’s PhD thesis.

Theorem 53. The map T : Rno
ρη

→ T is an isomorphism.

Proof. Corollary 36 showed that dim(tnoρη
) = 3 and its is well-known that T is equidimensional of dimension 3.

By Lemma 50, the map T is surjective. Now Lemma 51 implies that both Rno
ρη

and T are regular of the same
Krull dimension. As they are also Noetherian, Proposition 52 implies that the surjective map T must in fact
be an isomorphism, completing the proof.
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4 Analytic proof

Let logp denote the Iwasawa branch of the p-adic logarithm. Our first goal of this section is to rewrite the
expressions

2

w1w2
logp Θ(D1, D2) and

2

w1w2
logp Θp(D1, D2)

into a form more closely related to the terms appearing in the Fourier expansion of the Hilbert Eisenstein

series E
(p)
1,χ. Throughout, we will write Gal(F/Q) = ⟨σ⟩, but we will also use the notation x′ := σ(x) for

x ∈ F . After that, we will extract the p-adic modular form that is associated with a particular nearly
ordinary deformation as considered in the previous section and compute its coefficients explicitly. Finally, we
compute its diagonal restriction, take its derivative and compute its ordinary projection. The vanishing of
this expression will yield a proof of Theorem 2.

4.1 From quaternions to ideals

This subsection uses an approach similar to the one described in Section 2 from [HY12]. We will be brief,
and for many of the details, we refer to their work.

Fix two embeddings α1 : O1 → Rq and α2 : O2 → Rq. This turns Bq into an L-vector space as follows. Let
x ∈ K1 and y ∈ K2. Then the action of the element xy ∈ L on some γ ∈ Bq is defined by xy∗γ = α1(x)γα2(y)
and we extend this definition to all of L by Q-linearity. Since both L and Bq are 4-dimensional Q-vector
spaces, Bq becomes a 1-dimensional L-vector space and a 2-dimensional F -vector space.

Proposition 2.3 in [HY12] shows the existence of an F -linear quadratic form detF : Bq → F+ that is
uniquely characterised by requiring that

TrF/Q(detF (γ)) = Nm(γ)

for all γ ∈ Bq. We define the reflex ideal associated with the embeddings α1, α2 as the intersection with F of
the kernel of the composition

L → Bq → Bq/Π ∼= Fq2 ,

where the first map is only additive, and where Π ∈ Bq∞ is an element of norm q as provided in Section 2.2
in [Phi15]. By the commutativity of the rightmost ring, this composition is actually a ring morphism and as
such, it defines an ideal in L. We assume that this reflex ideal is given by q1.

The p-adic theta function is defined as an infinite product over the units in some maximal order inside a
quaternion algebra. In order to relate this to Hilbert Eisenstein series, we describe a construction that turns
counting quaternions with various properties into counting ideals of L. Choose some isomorphism of L-vector
spaces ι : Bq → L. Naturally, ι is highly non-canonical, but we will still use it to define an L-ideal associated
to some b ∈ Rq as

Ib := ι(b)/ι(Rq).

The ideal Ib is both integral and independent of the choice of isomorphism ι : Bq → L. Combining Lemma
2.5, Lemma 2.16 and Lemma 2.22 in [HY12], we obtain the following.

Proposition 54. The ideal Ib satisfies

NmL/F (Ib) = detF (b)q
−1
1 DF .

Any attempt at constructing a bijection between quaternions and ideals using only one choice of embeddings
is obstructed by the simple fact that ι(R), and as such Ib, will always be in the same ideal class. We must
therefore take into account the action of the Picard groups on the embeddings, as defined in Corollary
30.4.23 in [Voi21]. We will write ι[c1, c2] for an isomorphism of 1-dimensional L-vector spaces Bq → L where
Bq is equipped with the L-vector space structure induced by the embeddings [c1] · α1 and [c2] · α2, where
[c1] ∈ Pic(K1) and [c2] ∈ Pic(K2). Further, let I[c1, c2]b denote the ideal associated to b using the embedding
ι[c1, c2] and let detF [c1, c2] be the resulting F -bilinear quadratic form.

The following bijection will be key in rewriting the Θ-series into a more useful form.
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Theorem 55. For any totally positive ν ∈ F+, the association (b, [c1], [c2]) 7→ I[c1, c2]b establishes a bijection
between the set of (b, [c1], [c2]) ∈ (O×

1 \Rq / O×
2 )×Pic(K1)×Pic(K2) with the property that detF [c1, c2](b) = ν

and the set of integral ideals I ⊂ OL such that NmL/F (I) = (ν)q−1
1 DF .

Proof. This is a rephrased version of Corollary 2.24 in [HY12]. Fundamentally, one uses the exact sequence
below; this is the same sequence that was used critically in Section 6 in the original paper [GZ84].

1 {±1} O×
1 ×O×

2 O×
L O×,+

F

Pic(K1)× Pic(K2) Pic(L) Pic(F )+ {±1} 1.

4.2 Rewriting Θ(D1, D2)

Recall that
Θ(D1, D2) :=

∏
Pic(K1)·τ1
Pic(K2)·τ2

∏
b∈Rq [1/p]

×
1

[τ1, τ
′
1, bτ2, bτ

′
2].

It turns out that the cross-ratio is connected to the form detF if we introduce the form det′F , which is the
form induced by the embeddings α1 and α2. It also admits a more explicit description.

Lemma 56. For any b ∈ B, the numbers detF (b) and det′F (b) are Gal(F/Q)-conjugates.

Proof. It suffices to show that the composite σ ◦ detF : B → F satisfies the defining property of det′F . This is
an easy check and is left to the reader.

Proposition 57. Let τi, τ
′
i be the two fixed points in Hp for the image of αi(Oi) under any choice of splitting

Bq ⊗ Zp → M2(Qp). Then

[τ1, τ
′
1, bτ2, bτ

′
2] = −detF (b)

det′F (b)
.

Proof. One may check that the explicit formula

f(b) = Nm(b)
(τ1 − bτ2)(τ

′
1 − bτ ′2)

(τ1 − τ ′1)(bτ2 − bτ ′2)

precisely satisfies the defining properties for detF . The result now follows from the observation that for α1,
the points τ1 and τ ′1 are swapped.

Theorem 58. It holds that

2

w1w2
logp Θ(D1, D2) = lim

n→∞

∑
ν∈(D−1

F q1)
+

Tr(ν)=p2n

logp

( ν

ν′

)
· ρ(νq−1

1 DF ).

Proof. By Proposition 57, ignoring the sign by pairing each quaternion with its negative, we obtain

Θ(D1, D2) =
∏

[c1],[c2]

∏
b∈Rq [1/p]

×
1

detF [c1, c2](b)

det′F [c1, c2](b)
,

For any b ∈ Rq[1/p]
×
1 , there exists some minimal k ≥ 0 such that pkb =: B ∈ Rq. This association induces a

bijection

Rq[1/p]
×
1

∼−→
∞⊔
k=0

{
B ∈ Rq | p ∤ B, Nm(B) = p2k

}
.
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We define for any n ≥ 0 the set

Rq(n) :=
{
B ∈ Rq | Nm(B) = p2n

}
.

Now we observe that the association b 7→ pn−kb induces a bijection

n⊔
k=0

{
B ∈ Rq | p ∤ B, Nm(B) = p2k

} ∼−→ Rq(n).

As such, taking the p-adic logarithm,

logp Θ(D1, D2) = lim
n→∞

∑
[c1],[c2]

∑
b∈Rq(n)

logp

(
detF (b)

det′F (b)

)
.

We switch the order of summation; instead of summing over all b ∈ Rq(k) and recording its associated
detF -value, we will sum over each possible detF -value and record how often it is reached by some b ∈ Rq(k).
Recalling that b ∈ Rq(k) means that Tr(det[c1, c2]F (b)) = Nm(b) = p2k, we find∑

ν≫0
Tr(ν)=p2n

logp

( ν

ν′

)
·#
{
(b, [c1], [c2]) ∈ Rq(n)× Pic(K1)× Pic(K2) | detF [c1, c2](b) = ν

}
.

We solved this counting problem in Theorem 55; taking care with units in O×
1 and O×

2 , we write the above as

logp Θ(D1, D2) =
w1w2

2
lim

n→∞

∑
ν≫0,ν∈D−1

F q1

Tr(ν)=p2n

logp

( ν

ν′

)
· ρ(νq−1

1 DF );

this completes the proof.

Recall that π ∈ Rq denoted a quaternion with Nm(π) = p. Multiplication by π induces a bijection

Rq[1/p]
×
1 :=

{
b ∈ Rq[1/p]

× | Nm(b) = 1
} ∼−→

{
b ∈ Rq[1/p]

× | Nm(b) = p
}
=: Rq[1/p]

×
p ,

with inverse map given by multiplication by π/p. We now have the following result.

Corollary 59. It holds that

2

w1w2
logp Nm(Θp(D1, D2)) = lim

n→∞

∑
ν∈(D−1

F q1)
+

Tr(ν)=p2n+1

logp

( ν

ν′

)
· ρ(νq−1

1 DF ),

Proof. We simply observe that that

Θ(τ1, τ
′
1;πτ2)

Θ(τ1, τ ′1;πτ
′
2)

=
∏

b∈Rq [1/p]
×
1

(
τ1 − bπτ2

)(
τ ′1 − bπτ ′2

)(
τ1 − bπτ ′2

)(
τ ′1 − bπτ2

) =
∏

b∈Rq [1/p]
×
p

(τ1 − bτ2)(τ
′
1 − bτ ′2)

(τ1 − bτ ′2)(τ
′
1 − bτ2)

;

now we obtain our result through identical reasoning as in the proof of Theorem 58.

As our method to analyse the explicit values of the p-adic number Θ(D1, D2)/Θp(D1, D2) ultimately only
gives us an equality after taking the p-adic logarithm logp, to obtain a genuine equality, we must analyse the
number of factors of p occurring on both sides of the equation in Theorem 2 separately. This is established in
the following proofs.
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Lemma 60. Let ν ∈ D−1
F be such that Tr(ν) = pn for some positive integer n and suppose further that

vp(Nm(ν)) is odd or that vp1(ν) ̸= vp2(ν). Then pn | ν.

Proof. Let us explicitly write

ν
√
D =

x+ pn
√
D

2
, so that Nm(ν

√
D) =

x2 − p2nD

4
.

Write x = pky where p ∤ y. If k ≥ n, we are done. If not, we find that

ν
√
D = pk

y + pn−k
√
D

2
and Nm(ν

√
D) = p2k

y2 − p2n−2kD

4
.

By assumption, the fractions still contain factors of p. One deduces that p | y; this is a contradiction.

Proposition 61. It holds that

±2

w1w2
vp

(
Θ(D1, D2)

Θp(D1, D2)

)
=

∑
x2<D

x2≡D mod 4N

δ(x)vp

(
F

(
D − x2

4N

))
.

Proof. The proof of Theorem 58 shows that, if we neglect to apply logp, we obtain

Θ(D1, D2)
±2

w1w2 = lim
n→∞

∏
ν∈(D−1

F q1)
+

Tr(ν)=p2n

( ν

ν′

)ρ(νq−1
1 DF )

and similarly for Θp(D1, D2). We claim that the p1-adic valuation of each term in the limit is constant.
Indeed, only terms with vp1

(ν) ̸= vp1
(ν′) = vp2

(ν) can contribute to the p1-adic valuation. By Lemma 60,
this means that only those ν lifted from trace 1 can contribute. As indeed ρ(p2nνq−1

1 DF ) = ρ(νq−1
1 DF ), we

conclude that

±2

w1w2
vp1

(Θ(D1, D2)) =
∑

ν∈(D−1
F q1)

+

Tr(ν)=1

ρ(νq−1
1 DF )

(
vp1

(ν)− vp1
(ν′))

=
∑

ν∈(D−1
F p1q1)

+

Tr(ν)=1

ρ(νq−1
1 DF )vp1

(ν)−
∑

ν∈(D−1
F p1q2)

+

Tr(ν)=1

ρ(νq−1
2 DF )vp1

(ν).

On the other hand, because either vp1(ν) = 0 or vp2(ν) = 0 for ν of trace 1, it always holds that
ρ(p2n+1νq−1

1 DF ) = 0, which has the consequence that vp1(Θp(D1, D2)) = 0. For similar reasons, only
those ν for which vp1

(ν) is even can contribute to the sum expressing vp(Θ(D1, D2)). This means that the

prime p divides the quantity Nm(ν
√
D)/N = (D − x2)/4N an odd number of times; whence its F -value will

be a power of the prime p by definition. The agreement between the exponent in the definition of the F -value
and the function ρ has been shown before in the proof of Proposition 5. Now repeat for p2 and add.

4.3 Extracting aν from ρ̃

In this subsection we will extract the p-adic modular form that is associated with a particular nearly ordinary
deformation as considered in the previous section, of which we have proved its modularity in Theorem 53.
Explicitly, we choose the equivalence class of the lift

ρ̃ =

(
1 + ϵ

(
a 0
0 d

))(
1 χη
0 χ

)
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where a = −d ∈ Hom(GF ,Qp). Note that this is in fact a deformation, because our choice c = 0 forces
a, d ∈ Hom(GF ,Qp) as a result of Lemma 28. The lines ⟨e1⟩ and ⟨e2⟩ are fixed by Gp1 and Gp2 respectively.
Using that χ is trivial on the inertia subgroups, it follows that the quotient characters are given by

µp1 = d|Ip1
= 1− logp(χp)ϵ and µp2 = a|Ip2

= 1 + logp(χp)ϵ.

After identifying (OF ⊗ Zp)
× ∼= O×

Fp1
× O×

Fp2

∼= Ip1 × Ip2 , the weight character is given by µp1 × µp2 . In

particular, the weight character for the diagonal restriction of this modular form can be computed as the
composition

(Z⊗ Zp)
× ∆−→ (OF ⊗ Zp)

× ∼= O×
Fp1

×O×
Fp2

→ Qp[ϵ],

where ∆ denotes the diagonal embedding. We explicitly compute that

x 7→ (x, x) 7→ µp1(x)µp2(x) = (−1 + logp(x)ϵ)(1 + logp(x)ϵ) = −1.

In particular, the diagonal restriction is of constant weight. This shows that the above deformation describes
an infinitesimal family of modular forms in the anti-parallel weight direction.

Recall from Proposition 17 that

Hom(GF ,Qp) ∼= ker
(
Hom(F×

p1
× F×

p2
,Qp) → Hom(OF [1/p]

×,Qp)
)

is a 1-dimensional Qp-vector space. This kernel is spanned by the map

(F ⊗ Zp)
× ∼−→ F×

p1
× F×

p2
→ Qp

sending (x, y) to logp(xy). Indeed, any element x from F embeds as (x, σ(x)), and if u ∈ O×
F [1/p] then

u · σ(u) = NmF
Q (u) ∈ ±pZ. As such, its image under the Iwasawa brach of the p-adic logarithm vanishes, as

by definition logp(p) = 0. We now explicitly choose a = −d to equal this map, which can also be written as
logp ◦χcyc

p , where χcyc
p denotes the p-adic cyclotomic character.

We now extract from the traces of ρ̃ evaluated at Frobl for l a prime of F a morphism φ : T → Q[ϵ]. Recall
that T is generated by the operators Tl for all primes l of F coprime to p, and the operators Uπ1

and Uπ2

where π1, π2 ∈ A×
F are local uniformisers at p1 and p2 respectively.

Proposition 62. Let l ∤ p be a prime ideal of F . Then

φ(Tl) =

{
2 if χ(l) = 1;

2 logp(Nm(l))ϵ if χ(l) = −1.

Proof. By Theorem 37, we have φ(Tl) = Tr(ρ̃(Frobl)) as long as l ∤ p. It is easy to see that

Tr(ρ̃(τ)) = 1 + χ(τ) + (1− χ(τ)) logp(χ
cyc
p (τ))

for all τ ∈ GF . Now we must split cases. If the prime ideal l ∤ p splits in the field extension L/F , then Frobl
is trivial in Gal(L/F ) and as such, χ(Frobl) = 1 and the expression for the trace above yields the result
immediately. If the prime ideal l ∤ p is inert in the field extension L/F , then Frobl is nontrivial in Gal(L/F )
and as such, χ(Frobl) = −1. We then find that

Tr(ρ̃(Frobl)) = 2 logp(χ
cyc
p (Frobl))ϵ = 2 logp(Nm(l))ϵ;

this completes the proof.

Let π1, π2 ∈ A×
F be local uniformisers at p1 and p2 respectively, being trivial at all other places. Finding

the images of Uπ1 and Uπ2 under the morphism φ works slightly differently.
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Proposition 63. Let π1, π2 ∈ AF be as above. Then

φ(Uπ1) = −1 + logp(π1)ϵ and φ(Uπ2) = 1 + logp(π2)ϵ.

Proof. By Theorem 37, we obtain the images of Uπ and Uπ′ not as traces of ρ̃, but as the image of the local
characters µp1 and µp2 . The local character in the first case is

µp1(π, 1) = χ(π) + χ(π)d(π)ϵ = −1 + logp(π)ϵ.

Completely similarly, µp2(1, π
′) = 1 + a(π′)ϵ = 1 + logp(π

′)ϵ, completing the proof.

In order to continue with higher powers of prime ideals, we must also determine the images of the diamond
operators. Fortunately, this is straightforward.

Lemma 64. For any prime ideal l ∤ p of F , it holds that

φ(⟨l⟩Nm(l)) = χ(Frobl).

Proof. Again by Theorem 37, the image of Frobl has determinant φ(⟨l⟩Nm(l)). In our case, since we kept the
determinant constant as a+ d = 0, this is simply χ(Frobl).

Proposition 65. Let l ∤ p be a prime ideal of F and n ≥ 0 an integer. Then

φ(Tln) =


n+ 1 if χ(l) = 1;

(n+ 1) logp(Nm(l))ϵ if χ(l) = −1 and n is odd;

1 if χ(l) = −1 and n is even.

Further, it holds that

φ(Uπn
1
) = (−1)n(1− n logp(π1)ϵ);

φ(Uπn
2
) = 1 + n logp(π2)ϵ.

Proof. We remind the reader of the essential recursion relation

Tln+1 = TlnTl − ⟨l⟩Nm(l)Tln−1

for l ∤ p, whereas simply Uπn = Un
π for the places above p.

� If the prime ideal l ∤ p splits in the field extension L/F , then Tr(ρ̃(Frobl)) = 2 and χ(Frobl) = 1. We
obtain the recursion

T (n+ 1) = 2T (n)− T (n− 1) with L(0) = 1, L(1) = 2.

This is easily solved and yields L(n) = n+ 1 for all n ≥ 0.

� If the prime ideal l ∤ p is inert in the field extension L/F , then Tr(ρ̃(Frobl)) = 2 logp(Nm(l))ϵ and
χ(Frobl) = −1. We obtain the recursion

L(n+ 1) = 2 logp(Nm(l))ϵ · L(n) + L(n− 1)

with L(0) = 1 and L(1) = 2 logp(Nm(l))ϵ. Since ϵ2 = 0, this results in

L(2n) = 1 and L(2n− 1) = 2n logp(Nm(l))ϵ for all n ≥ 1.

For the operators Uπ1
and Uπ2

, we may simply raise the result from Proposition 63 to the appropriate power
to obtain the claimed formula.
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Corollary 66. Let l ∤ p be a prime ideal of F and let n ≥ 0 be an integer. Then

φ(Tln) = ρ(ln) +
1

2
(n+ 1)

(
1− χ(ln)

)
logp(Nm(l))ϵ,

where ρ(I) denotes the number of integral ideals of L with norm equal to I ⊂ OF .

Proof. Indeed, we have seen before, and it is easy convince oneself, that

ρ(ln) =


n+ 1 if χ(l) = 1;

0 if χ(l) = −1 and n is odd;

1 if χ(l) = −1 and n is even.

These quantities match the integral parts of φ(Tln) that we found above. As for the infinitesimal part, we
get no contribution precisely when χ(ln) = 1, and as such, the expression 1 − χ(ln) is twice the indicator
function for the case χ(l) = −1 and n is odd. Combining these two parts yields the corollary.

Corollary 67. Let J ⊂ OF be any ideal coprime to p. Then

φ(TJ) = ρ(J) +
1

2

∑
ln∥J

(
(n+ 1)

(
1− χ(ln)

)
ρ(J/ln)

)
logp(Nm(l))ϵ.

Proof. Using the definition

TJ :=
∏
ln∥J

Tln ,

one may write out, keeping in mind that ϵ2 = 0, that

φ(TJ) =
∏
ln∥J

(
ρ(ln) +

1

2
(n+ 1)

(
1− χ(ln)

)
logp(Nm(l))ϵ

)
=
∏
ln∥J

ρ(ln) +
1

2

∑
ln∥J

(n+ 1)
(
1− χ(ln)

)
logp(Nm(l))ϵ

∏
rm∥J/ln

ρ(rm);

this yields the corollary after recalling the multiplicativity of ρ.

Let us now define for any integral ideal J coprime to p a positive integer F(J) by

logp(F(J)) :=
1

2

∑
ln∥J

(
(n+ 1)

(
1− χ(ln)

)
ρ(J/ln)

)
logp(Nm(l)).

For the sake of brevity and clarity, we will henceforth refer to those prime powers ln∥J with χ(ln) = −1, as
the special primes of an ideal J ⊂ OF . Note here that p1 and p2 can also be special primes, if we relax the
condition that J be coprime to p, as we will soon be forced to do.

Proposition 68. Let J ⊂ OF be any integral ideal coprime to p. Then

φ(TJ) = ρ(J) + logp(F(J))ϵ.

In addition, F(J) is a power of a single rational prime. If J is a primitive ideal, then it even holds that
F(J) = F (Nm(J))2, where F is as defined in the introduction.

Proof. The first claim follows directly from Corollary 67 and the definition of F(J). For the second, we must
observe that the only summands in the expression defining F(J) that could possibly contribute are those for
the special primes of J . If there are no such primes, then F(J) = 1. If there is more than special prime, one
of which being ln, then its contribution will also vanish because all ρ(J/ln) = 0, as the existence of a special
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prime obstructs an ideal from being a norm from L. We conclude that F(J) = 1 in that case too. Only the
case in which there is a unique special prime remains, proving that F(J) is a power of the underlying rational
prime ℓ, as claimed. Finally, our primitivity assumption forces all primes dividing J to split in F/Q and
to all lie above different rational primes, and as such, the prime factorisation of J in F matches the prime
factorisation of its norm in Q. In the proof of Proposition 5, we saw that the exact exponent of ℓ occuring in
the expression F (Nm(J)) can also be written as (n+ 1)ρ(J/ln)/2, completing the proof.

For any integral ideal J of F , we let J̃ denote its p-deprivation, which is obtained by removing all factors of
p1 and p2 from the factorisation of J . Recall that q1 denotes the reflex ideal associated with the embeddings

αi : Oi → Rq. Let E
(p)
1,χ(ϵ) be the Hilbert modular form associated with the morphism φ : T → Q[ϵ] computed

above, which is an h+
F -tuple of q-expansions and consider its component corresponding to the narrow ideal

class of D−1
F q1. Finally, let aν for any ν ∈ (D−1

F q1)
+ denote one of its coefficients.

Theorem 69. For any ν ∈ (D−1
F q1)

+, let Jν denote the ideal νDF q
−1
1 . Then

aν = (−1)vp1
(ν)
(
ρ(J̃ν) + logp(F(J̃ν))ϵ− ρ(J̃ν) logp(ν/ν

′)ϵ
)
.

Proof. To compute aν for some ν ∈ (D−1
F q1)

+, we must consider the idèle α = νdπ−1
q1

, where πq1
is any idèle

that equals 1 everywhere away from q1, where it is a uniformiser, and where d ∈ A×
F is such that it generates

the ideal DF . Let ν̃ denote the idèle that is equal to ν everywhere away from p, where it is equal to 1. Then
ν = ν̃νp1

νp2
. We may then compute that

φ(Tα) = φ(Tν̃dπ−1
q1

)φ(Uνp1
)φ(Uνp2

)

= φ(T
J̃ν
) · (−1)vp1

(νp1
)(1− logp(νp1

)ϵ) · (1 + logp(νp2
)ϵ)

= (−1)vp1
(νp1

)
(
ρ(J̃ν) + logp(F(J̃ν)ϵ

)(
1− logp(νp1/νp2)ϵ

)
= (−1)vp1

(νp1
)
(
ρ(J̃ν) + logp(F(J̃ν)ϵ− ρ(J̃ν) logp(ν/ν

′)ϵ
)
;

this is precisely the theorem. We used here that vp2 can be identified with v′p1
, since under the isomorphism

OF ⊗ Zp
∼= OFp1

×OFp2
, the element ν is sent to (ν, σ(ν)) = (ν, ν′).

4.4 Proof of Theorem 2

We take the diagonal restriction of the form obtained in the previous section;

∆E
(p)
1,χ(ϵ) =

∞∑
n=1

( ∑
ν∈(D−1

F q1)
+

tr(ν)=n

aν

)
qn.

Taking its derivative with respect to the weight amounts to considering only the ϵ-part, which yields

d

dϵ
∆E

(p)
1,χ(ϵ) =

∞∑
n=1

( ∑
ν∈(D−1

F q1)
+

tr(ν)=n

(−1)vp1
(ν)
(
logp(F(J̃ν))− ρ(J̃ν) logp(ν/ν

′)
))

qn.

Proposition 70. The object d
dϵ∆E

(p)
1,χ(ϵ) is an overconvergent p-adic modular form of weight 2. Its ordinary

projection eord
(

d
dϵ∆E

(p)
1,χ(ϵ)

)
is a classical modular form in S2(Γ0(N)).

Proof. We have seen before that the weight character for ∆E
(p)
1,χ(ϵ) is constant, and because for the ϵ = 0-

specialisation its weight is simply 1+ 1 = 2, the result will be of constant weight 2. By subtracting a constant
family, Lemma 2.1 in [DPV21] yields that its derivative is also an overconvergent p-adic modular form of

31



weight 2. By Coleman’s Classicality Theorem, which can be found as Theorem 6.1 in [Col96], its ordinary

projection is of slope 0 < 1 and hence classical. Further, it is a cusp form because E
(p)
1,χ is a p-adic cusp form.

For the level, since we took the ideal DF q
−1
1 , the tame level of our diagonal restriction will be exactly q. The

level of its ordinary projection is then obtained by multiplying its tame level by p. Combining all of this, we
obtain an object in S2(Γ0(N)), as claimed.

Explicitly, if we apply the operator eord, we obtain, using that n! is even for n ≥ 2 and the fact that we
have p-adic convergence for all even terms by Theorem 58,

a1

(
eord

(
d

dϵ
∆E

(p)
1,χ(ϵ)

))
= lim

n→∞
apn!

(
d

dϵ
∆E

(p)
1,χ(ϵ)

)
= lim

n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

(−1)vp1
(ν)
(
logp(F(J̃ν))− ρ(J̃ν) logp(ν/ν

′)
)
.

Now define

A := lim
n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

(−1)vp1
(ν)ρ(J̃ν) logp(ν/ν

′);

B := lim
n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

(−1)vp1 (ν) logp(F(J̃ν)).

For the sake of brevity, we extend the definition of vp to F by setting it equal to vp1
× vp2

.

Proposition 71. It holds that

A =
2

w1w2
logp Θ(D1, D2)−

2

w1w2
logp Θp(D1, D2).

Proof. We note that since χ(Jν) = χ(DF )χ(q1) = (−1)2 = 1, the partities of vp1
(Jν) and vp2

(Jν) being

different means that χ(J̃ν) = −1, and as such, ρ(J̃ν) = 0. Hence we may write

A = lim
n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

vp(ν)≡(0,0)

ρ(J̃ν) logp(ν/ν
′)− lim

n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

vp(ν)≡(1,1)

ρ(J̃ν) logp(ν/ν
′),

the congruences being mod 2. For the first term, one may observe that ρ(J̃ν) = ρ(Jν). In fact, ρ(Jν) = 0
unless vp(ν) ≡ (0, 0) mod 2, and as a result, we may even write the first term as

lim
n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

ρ(Jν) logp(ν/ν
′) =

2

w1w2
logp Θ(D1, D2),

where we appealed to Theorem 58. For the second term, one may observe that p | ν, and as such, we may

make that substitution, further using that ρ(J̃ν) = ρ(Jpν) in this case, to obtain

lim
n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n

vp(ν)≡(1,1)

ρ(J̃ν) logp(ν/ν
′) = lim

n→∞

∑
ν∈(D−1

F q1)
+

tr(ν)=p2n−1

ρ(Jν) logp(ν/ν
′) =

2

w1w2
logp Θp(D1, D2),

where we appealed to Corollary 59 and where we were allowed to omit the bottom subscript for the same
reason as before.
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Proposition 72. It holds that

B =
∑

Nm(a)=N

∑
ν∈(D−1

F a)+

tr(ν)=1

δ(a) logp(F (Nm(Jν)/p)).

Proof. First note that, by Lemma 68, it holds that F(J̃ν) = 1 as soon as χ(J̃ν) = 1, because this implies
that the number of special primes is even, and thus in particular not one. Since χ(Jν) = 1, it follows that
precisely one of p1 and p2 must be special to get a non-zero contribution to the sum. Since ν contains the
full p-part of Jν , this implies that vp(Nm(ν)) must be odd. By Lemma 60, it must hold that p2n | ν, where
tr(ν) = p2n. In other words, ν = p2nµ, where tr(µ) = 1. It follows that all contributing summands to the

n-th term in the limit are lifted from those ν of unit trace. In fact, since J̃p2nν = J̃ν and vp(Jp2nν) ≡ vp(Jν)
mod 2, each summand induced by some ν of unit trace is independent of the prime exponent n. It follows
that the limit is equal to its first term;

B =
∑

ν∈(D−1
F q1)

+

tr(ν)=1
vp(Nm(ν)) odd

(−1)vp1
(Jν) logp(F(J̃ν)).

Note that the ideal J̃ν is always primitive, because the element ν
√
D is of the form (x +

√
D)/2 and as

such, no rational prime can divide it. As it is prime to p by definition, F(J̃ν) = F (Nm(J̃ν))
2 in all cases

by Proposition 68. Note further that vp(Nm(Jν)) must be odd, so vp(Nm(Jν)/p) will be even. As such, we

have F (Nm(J̃ν)) = F (Nm(Jν)/p). Further note that if vp(Nm(Jν)) were even, dividing by p would make
p a special prime of Nm(Jν)/p. As such, its F -value must be a power of p, of which the p-adic logarithm
vanishes. Since contributing ν must contain a factor of p1 or p2, we have proved that

B = 2
∑

ν∈(D−1
F p1q1)

+

or ν∈(D−1
F p2q1)

+

tr(ν)=1

(−1)vp1
(Jν) logp(F (Nm(Jν)/p)).

Adding in those ν ∈ (D−1
F q2)

+ is the same as adding a term for every ν′ ∈ (D−1
F q1)

+. For every non-zero term
in the sum, we have that vp1(Jν′) ̸≡ vp1(Jν) mod 2 and Nm(Jν′) = Nm(Jν). In other words, the summands
for ν and ν′ would agree up to a sign measured by both δ(a) and (−1)vp1

(ν).

Proof. (of Theorem 2) By Proposition 70, we have eord
(

d
dϵ∆E

(p)
1,χ(ϵ)

)
∈ S2(Γ0(N)); we claim that it is

even identically zero. Indeed, for N ∈ {6, 10}, this space is zero. For N = 22, this space is 2-dimensional,
containing two oldforms. From our explicit descriptions of the coefficients, it is not difficult to deduce that
apk = (−1)ka1; it is a quick check that for p = 2, 11, no such cuspforms exist in S2(Γ0(22)). We conclude

that, in particular, a1(e
ord
(

d
dϵ∆Ep

1,χ(ϵ)
)
) = 0. This means that A+B = 0; written out, we find

2

w1w2

(
logp Θ(D1, D2)− logp Θp(D1, D2)

)
=

∑
Nm(a)=N

∑
ν∈(D−1

F a)+

tr(ν)=1

δ(a) logp(F (Nm(Jν)/p)).

Finally, for ν = (x+
√
D)/2

√
D, it holds that

Nm(Jν)/p =
D − x2

4N
.

This is precisely Theorem 2 up to a sign and up to powers of p. Since Proposition 61 took care of the powers
of p, this completes the proof.

33



References

[BC91] J.F. Boutot and Henri Carayol. Uniformisation p-adique des courbes de Shimura: les théorèmes de
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[BD16] Joël Belläıche and Mladen Dimitrov. On the eigencurve at classical weight 1 points. Duke
Mathematical Journal, 165(2):245 – 266, 2016.

[BDP22] Adel Betina, Mladen Dimitrov, and Alice Pozzi. On the failure of Gorensteinness at weight 1
Eisenstein points of the eigencurve. American Journal of Mathematics, 144(1):227–265, 2022.

[BDS20] A. Betina, M. Dimitrov, and S.C. Shih. Eisenstein points on the Hilbert cuspidal eigenvariety.
preprint, 2020.
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