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The setup

I Let Artk be the category of local artinian k-algebras with residue
field k .

I Let F : Artk → Set be a functor and let R be a complete local
k-algebra with maximal ideal m.

I Denote hR : Artk → Set be given by hR(A) = Homk(R,A).

I We say F is pro-representable by R if there exists an isomorphism
hR ∼= F .

Lemma
There is a bijection between lim←−F (R/mn) and natural transformations
hR → F .

I We denote ξ ∈ lim←−F (R/mn) by {ξn} where ξn ∈ F (R/mn).

I Such an element can have different properties.
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Different kinds of {ξn}
Definition
Let F be as before. We say a pair (R, ξ) is

I a versal family for F if F (k) has only one element and for every
surjection B → A, the map Hom(R,B)→ Hom(R,A)×F (A) F (B) is
also surjective.

Hom(R,B) Hom(R,A)

θ ∈ F (B) F (A) 3 η

This means that given any map R → A inducing η ∈ F (A) and any
element θ ∈ F (B) mapping to η, we can lift the map R → A to a
map R → B inducing θ.

I a miniversal family if in addition Hom(R, k[t]/t2)→ F (k[t]/t2) is
bijective. We also say that F has a pro-representable hull.

I a universal family if hR → F is an isomorphism, so in particular, F is
pro-representable by R.
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Properties of versal families

Lemma
Suppose that F : Artk → Set has a versal family. Then

I For any A ∈ Artk , the map Hom(R,A)→ F (A) is surjective.

I for any pair of morphisms A′,A′′ → A, the natural map
F (A′ ×A A′′)→ F (A′)×F (A) F (A′′) is surjective.

Here the fibered product A′ ×A A′′ = {(a′, a′′) | equal images in A} is the
same as in Set.

Proof.

I Taking A� k, since F (A) surjects onto F (k), any element from
F (A) can be lifted to Hom(R,A). In fact, it is equivalent to F (k)
consisting of exactly one element.

I Let η′ ∈ F (A′) and η′′ ∈ F (A′′) mapping to the same element in
F (A). By surjectivity, we can find maps R → A′ and R → A′′ lifting
η′ and η′′ mapping to the same R → A. These lift to a map
R → A′ ×A A′′, inducing an element in F (A′ ×A A′′).
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Properties of miniversal families (1)

Lemma
In particular, if the family is miniversal, the map
F (A×k k[t]/t2)→ F (A)×F (k) F (k[t]/t2) is even bijective.

Proof.
First note that A×k k[t]/t2 = A[t]/t2 surjects onto A. Let θ1, θ2 map to
a pair η ∈ F (A) and ξ ∈ F (k[t]/t2) and choose u : R → A inducing η.

Hom(R, k[t]/t2) vi ∈ Hom(R,A[t]/t2) Hom(R,A) 3 u

ξ ∈ F (k[t]/t2) θi ∈ F (A[t]/t2) F (A) 3 η

iso

Then we can find lifts v1, v2 inducing θ1, θ2 respectively. But since their
restrictions to k[t]/t2 both induce ξ, by miniversality, these restrictions
agree. Since they also agree on A, as they both induce u : R → A, we
conclude v1 = v2 and so θ1 = θ2.
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Properties of miniversal families (2)
By a small extension in Artk we mean a surjection A′ → A such that the
kernel I is a 1-dimensional k-vector space. Note that then I ·mA′ = 0
and I 2 = 0. We have the following corollaries:
I The tangent space tF := F (k[t]/t2) has the natural structure of a

finite dimensional k-vector space.

Proof: Since tR := Hom(R, k[t]/t2)→ tF is bijective, is has a k-vector
space structure. We can also define it intrinsically: the map
k[t]/t2 → k[t]/t2 sending t 7→ λt induces scalar multiplication tF → tF .
Also, the obvious map k[t1]/t21 ×k k[t2]/t22 → k[t]/t2 induces addition.

I For any small extension p : A′ → A and any η ∈ F (A), the vector
space tF acts transitively on (Fp)−1(η) ⊂ F (A′).

Proof: It is an easy exercise in commutative algebra to show that
A′ ×A A′ ∼= A′ ×k k[I ]. So we find

F (A′)×F (k) tF ∼= F (A′ ×k k[t]/t2) = F (A′ ×A A′)� F (A′)×F (A) F (A′).

So for any η′ ∈ F (A′) over η ∈ F (A), we obtain the group action by

{η′} × tF � {η′} × (Fp)−1(η).
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Schlessinger’s criterion

Theorem
A functor F : Artk → Set has a miniversal family if and only if

I F (k) has just one element;

I for any small extension A′′ → A, the map
F (A′ ×A A′′)→ F (A′)×F (A) F (A′′) is surjective;

I the above map is bijective for A′′ = k[t]/t2 and A = k;

I tF is a finite dimensional k-vector space.

Furthermore, F is pro-representable if and only if in addition for every
small extension p : A′ → A and every η ∈ F (A) for which
(Fp)−1(η) 6= ∅, the group action of tF is bijective.

Remark: Since any surjective map can be factored into small extensions,
the second condition holds immediately for all surjective maps.
We have already seen that all the above properties are satisfied for
miniversal families. The additional property for pro-representable F
follows immediately from the construction of the action. Thus it suffices
to show the converse.
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Construction of (R , ξ) (1)
Let t1, . . . , tr be a basis for the dual vector space t∗F and define the ring
S = kJt1, . . . , tr K with maximal ideal m. Set

R1 = S/m2 ∼= k[t1]/t21 ×k . . .×k k[tr ]/t
2
r .

We then see that

tR1 := Hom(R1, k[t]/t2) ∼= t∗∗F = tF .

We also know that

F (R1) = F (k[t1]/t21 ×k . . .×k k[tr ]/t
2
r )

= F (k[t1]/t21 )× . . .× F (k[tr ]/t
2
r )

= trF
∼= tF ⊗k t

∗
F ,

where the last isomorphism is naturally induced by our choice of basis.
The identity element id =

∑
ti ⊗ t∗i thus induces some ξ1 ∈ F (R1),

inducing a bijection between tR1 and tF .
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Construction of (R , ξ) (2)

Now suppose we have constructed (Ri , ξi ) for 1 ≤ i ≤ q where Ri = S/Ji
with mi+1 ⊂ Ji ⊂ Ji−1 and ξi ∈ F (Ri ) compatible elements, meaning
that Ri → Ri−1 sends ξi to ξi−1. We then define Rq+1 as S/Jq+1 where
Jq+1 is the smallest ideal J of S satisfying

I mJq ⊂ J ⊂ Jq;

I ξq ∈ F (Rq) lifts to an element ξ′ ∈ F (S/J).

To see that such a smallest ideal exists, recall from commutative algebra
that given any two ideals J,K ⊂ Jq, we may enlarge either J or K to
ensure that J + K = Jq without changing J ∩ K . But then

S/(J ∩ K ) = (S/J)×S/Jq (S/K ),

and so
F (S/J ∩ K )� F (S/J)×F (S/Jq) F (S/K )

ensures the existence of a lift of ξq to F (S/J ∩ K ).
In conclusion, we define R = lim←−Rj and ξ = {ξn}. We claim that this is
the desired miniversal family.
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Verification of miniversality (1)

By construction we have tR ∼= tR1
∼= tF , so it suffices to show that for

any small extension p : A′ → A, given any map R → A inducing
η ∈ F (A) and any element θ ∈ F (A′) mapping to η, we can lift the map
R → A to a map R → A′ inducing θ.

Hom(R,A′) Hom(R,A)

θ ∈ F (A′) F (A) 3 η

We claim that it suffices to lift any R → A to a map v : R → A′, for v
would induce an element θ′ ∈ F (A′) inducing η, and so
θ, θ′ ∈ (Fp)−1(η). Now tF acts transitively on this preimage, so
θ = t ∗ θ′ for some t ∈ tF = tR . Similarly, tR acts translitively on the
maps in Hom(R,A′) restricting to the given map R → A. Then t ∗ v
induces t ∗ θ′ = θ, as desired.
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Verification of miniversailty (2)

Let us be given a map R → A and a small extension A′ → A. Because A
is Artin, we can factor R → Rq → A for some q. Also, because S is just
a power series ring, we may lift this factorisation to form the following
diagram.

S Rq ×A A′ A′

R Rq A

w

p′ p

Note that p′ is a small extension, and if it has a section, we are done, so
assume it does not. Note that the image of w surjects onto Rq, and so
its kernel cannot be trivial (for then im(w) ∼= Rq, giving a section). So
0 6= ker(im(w)→ Rq) ⊂ ker(p′). But p′ is a small extension, so we must
have equality. Therefore w is surjective.
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m · ker(p′) = 0. Because
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Hence J satisfies the conditions from the construction, and so Jq+1 ⊂ J.
We conclude that

w : S → Rq+1 → Rq ×A A′ → A′,

so the canonical map R → Rq+1 induces a lift R → A′, as desired.



Verification of miniversality (3)

S Rq ×A A′ A′

R Rq A

w

p′ p

Let J = ker(w). Then clearly J ⊂ Jq, but also mJq ⊂ J because
m · ker(p′) = 0. Because

F (S/J) = F (Rq ×A A′)� F (Rq)×F (A) ×F (A′),

we can lift ξq ∈ F (Rq) to some ξ′ ∈ F (S/J) inducing ξq and θ ∈ F (A′).
Hence J satisfies the conditions from the construction, and so Jq+1 ⊂ J.
We conclude that

w : S → Rq+1 → Rq ×A A′ → A′,

so the canonical map R → Rq+1 induces a lift R → A′, as desired.



Verification of pro-representability

Recall, now we assume that for every small extension p : A′ → A and
every η ∈ F (A) for which (Fp)−1(η) 6= ∅, the group action of tF is
bijective. We must show that hR(A)→ F (A) is bijective for all A. Note
that if hR(A)→ F (A) is bijective and A′ → A is a small extension such
that

Hom(R,A′)→ Hom(R,A)×F (A) F (A′)

is bijective, then hR(A′)→ F (A′) must be bijective too.

Hom(R,A′) Hom(R,A)

θ ∈ F (A′) F (A) 3 η

Thus we will prove the unique lifting property. Let a map R → A be
given inducing η ∈ F (A). If (Fp)−1(η) = ∅, there is nothing to show.
Otherwise, tF acts bijectively on (Fp)−1(η). Since hR is pro-represented
by itself, tR acts bijectively on the set of morphisms R → A′ inducting
the given map R → A. But since tR = tF , we obtain the bijection.
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Pro-representability of deformation functors

I Recall that a deformation of a scheme X0/k is a pair (X , i) where X
is a scheme flat over Spec(A) with A ∈ Artk and i : X0 → X is a
closed immersion with the property that the induced map
X0 → X ×Spec(A) Spec(k) is an isomorphism.

I Define the deformation functor DefX of X0 by associating to
A ∈ Artk the set of deformations (X , i) up to equivalence, where we
say (X1, i1) ∼ (X2, i2) when there exists an isomorphism φ : X1 → X2

such that φ ◦ i1 = i2.

Theorem: The deformation functor DefX of a smooth variety X over a
field k is pro-representable if and only if for any small extension B → A
and XA ∈ FX (A) and XB ∈ FX (B), any automorphism of XA extends to
an automorphism of XB .
Counter-example: Let X be the blowup of many points lying on a line `
in P2

k . Then the automorphisms of X can be viewed as automorphisms of
P2
k that preserve the line `. If we deform X to make the points in general

position, there are no automorphisms fixing all the points anymore.
Hence DefX is not pro-representable by the previous theorem.
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