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Fermat’s Last Theorem

In 1637: if n > 2 and x,y, z ∈ Z satisfy

xn + yn = zn,

then xyz = 0.

First proof completed in 1994 mainly by Andrew Wiles.
We need to introduce elliptic curves and modular forms to
understand the method.
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Elliptic Curves

Definition
An elliptic curve over a field kwith char(k) , 2, 3 is given by an
equation of the form y2 = x3 + ax+ b with a,b ∈ k. Its points E(L)
over a field L consist of the solutions (x,y) ∈ L2 and a point at infinity.

Define the discriminant ∆ = −16(4a3 + 27b2).
An elliptic curve must be non-singular: ∆ , 0.
The points of an elliptic curve form a group:
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Conductor

Let E be an elliptic curve over Q and let p be a prime number.
Intuitively, by reducing the equation for Emodulo p, we obtain
the reduction of Emodulo p. Denote this by Ẽ.

If p | ∆min, then Ẽ is singular =⇒ E has bad reduction.
Two types: multiplicative reduction and additive reduction.

Definition
We define the conductor of E by

N =
∏
p|∆min

pfp+δp where fp =

{
1 if E has mult. reduction at p;
2 if E has add. reduction at p,

and where δp = 0 for p > 5 and for δ2, δ3 use Tate’s algorithm.
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If p | ∆min, then Ẽ is singular =⇒ E has bad reduction.
Two types: multiplicative reduction and additive reduction.

Definition
We define the conductor of E by

N =
∏
p|∆min

pfp+δp where fp =

{
1 if E has mult. reduction at p;
2 if E has add. reduction at p,

and where δp = 0 for p > 5 and for δ2, δ3 use Tate’s algorithm.

MikeDaas The modular and symplectic methods November 25, 2021 4 / 13



Galois representations

An elliptic curve over Q can have torsion points; those of finite
order. Write E[n] := E(Q)[n] for the n-torsion over Q.

Theorem
The C-points of an elliptic curve are given by E(C) � C/(Z+ τZ) for
some τ ∈ H. In particular, E[n] � (Z/nZ)2.

The group Gal(Q/Q) acts on the n-torsion points E[n].
For any prime `, this gives a representation

ρ`E : Gal(Q/Q)→ GL(E[`]) � GL2(F`).

MikeDaas The modular and symplectic methods November 25, 2021 5 / 13



Galois representations

An elliptic curve over Q can have torsion points; those of finite
order. Write E[n] := E(Q)[n] for the n-torsion over Q.

Theorem
The C-points of an elliptic curve are given by E(C) � C/(Z+ τZ) for
some τ ∈ H. In particular, E[n] � (Z/nZ)2.

The group Gal(Q/Q) acts on the n-torsion points E[n].
For any prime `, this gives a representation

ρ`E : Gal(Q/Q)→ GL(E[`]) � GL2(F`).

MikeDaas The modular and symplectic methods November 25, 2021 5 / 13



Galois representations

An elliptic curve over Q can have torsion points; those of finite
order. Write E[n] := E(Q)[n] for the n-torsion over Q.

Theorem
The C-points of an elliptic curve are given by E(C) � C/(Z+ τZ) for
some τ ∈ H. In particular, E[n] � (Z/nZ)2.

The group Gal(Q/Q) acts on the n-torsion points E[n].
For any prime `, this gives a representation

ρ`E : Gal(Q/Q)→ GL(E[`]) � GL2(F`).

MikeDaas The modular and symplectic methods November 25, 2021 5 / 13



Level Lowering

For any prime p, let vp(n) denote the number of factors of p in n.

(slightly false) Level Lowering Theorem (Ribet, 1990)
Let E/Q be an elliptic curve with conductor N and discriminant ∆min.
Let ` > 3 be a prime number such that ρ`E is irreducible. Define

N` = N
/ ∏
p‖N, `|vp(∆min)

p.

Then there exists another elliptic curve F/Qwith conductor N` such
that their mod-` representations are isomorphic.

Example: if N = 2 · 3 · 5 and ∆ = 22 · 15`, then N` = 2.
Now we are ready for Fermat’s Last Theorem!
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Fermat’s Last Theorem

It suffices to show that x` + y` + z` = 0 has no non-trivial
solutions for all odd primes ` > 5.
Suppose we have a non-trivial solution and consider

E : Y2 = X(X− x`)(X+ y`).

One may compute that

∆min = (xyz)2`/28 and N = rad(xyz),

where rad(n) is the product of all the primes dividing n.
Level lowering: N` = 2, so E corresponds to a rational elliptic
curve of conductor 2.
Lemma: There exist no elliptic curves with conductor 2. �
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The symplectic method

Problem: often elliptic curves after level lowering do still exist.
Idea: still derive a contradiction based on the information that
their mod-` representations are supposed to be isomorphic.

The symplectic method: we have an isomorphism E[`]→ F[`].
What do we know about its determinant?
First: we need canonical bases.

MikeDaas The modular and symplectic methods November 25, 2021 8 / 13



The symplectic method

Problem: often elliptic curves after level lowering do still exist.
Idea: still derive a contradiction based on the information that
their mod-` representations are supposed to be isomorphic.
The symplectic method: we have an isomorphism E[`]→ F[`].
What do we know about its determinant?
First: we need canonical bases.

MikeDaas The modular and symplectic methods November 25, 2021 8 / 13



Symplectic types

For some τ ∈ H, the C-points of an elliptic curve are given by

E(C) � C/(Z+ τZ).

Let ϕ : E[`]→ F[`] be a morphism and γ the matrix sending

γ :
{

1/`, τF/`
}
7→
{
ϕ(1/`),ϕ(τE/`)

}
.

Define r(ϕ) = det(γ). This is well-defined, because any two bases
for a lattice � Z2 differ by an element in GL2(Z).
By insisting on τ ∈ H, we force det = 1.
Clearly, for any scalar a ∈ F`, we have r(a ·ϕ) = a2r(ϕ).

Definition
We say ϕ is symplectic if r(ϕ) is a square modulo `.
If not, we say it is anti-symplectic.
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A symplectic theorem

Proposition (Kraus, Oesterlé, 1992)
Let E/Q and F/Q be elliptic curves such that E[`] � F[`] for some `. Let
p , ` be a prime such that both E and F have mult. reduction at p, and
such that neither vp(∆min(E)) nor vp(∆min(F)) is divisible by `.

Then E[`] and F[`] are symplectically isomorphic if and only if
vp(∆min(E)) / vp(∆min(F)) is a square modulo `.

If E and F have mult. reduction at two primes p and q, then

vp(∆min(E))vq(∆min(E))

vp(∆min(F))vq(∆min(F))

must always be a square modulo `.
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An example

Theorem
Let ` > 5 be a prime such that 12 - `− 1. Then any integers (x,y, z)
satisfying

x` + 3y` + 5z` = 0

for which y is even, must satisfy x = y = z = 0.

Given a non-trivial solution, consider

E : Y2 = X(X− x`)(X+ 3y`) with ∆min(E) = (15)2(xyz)2`/ 28.

Level lowering result: we find N` = 30, with

F : Y2 + XY + Y = X3 + X+ 2 with ∆(F) = −2160 = −24 · 33 · 5.

Both E and F have multiplicative reduction at the primes 2, 3 and 5.
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,
−8 · 2
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Example of a theorem (D., 2020)

Let k,α > 0 be integers and ` > 5 a prime. Then the equation

x` + 2αy` + 3kz` = 0

has no nontrivial solutions if
α = 0 or α > 3.
k = 0 and α , 1, where the exceptional case only has the
non-trivial solutions (±n,∓n,±n).
α ∈ {1, 2, 3} and y is even.
α ∈ {1, 2} and ` is such that k is not a square modulo `.
α = 3 and ` is such that 2k is not a square modulo `.
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