The modular and symplectic methods

Mike $\mathbb{D a a s}$

Universiteit Leiden
November 25, 2021

Fermat's Last Theorem

- In 1637: if $n>2$ and $x, y, z \in \mathbb{Z}$ satisfy

$$
x^{n}+y^{n}=z^{n}
$$

then $x y z=0$.

Fermat's Last Theorem

- In 1637: if $n>2$ and $x, y, z \in \mathbb{Z}$ satisfy

$$
x^{n}+y^{n}=z^{n}
$$

then $x y z=0$.

- First proof completed in 1994 mainly by Andrew Wiles.
- We need to introduce elliptic curves and modular forms to understand the method.

Elliptic Curves

Definition

An elliptic curve over a field k with $\operatorname{char}(k) \neq 2,3$ is given by an equation of the form $y^{2}=x^{3}+a x+b$ with $a, b \in k$. Its points $E(L)$ over a field L consist of the solutions $(x, y) \in L^{2}$ and a point at infinity.

Elliptic Curves

Definition

An elliptic curve over a field k with $\operatorname{char}(\mathrm{k}) \neq 2,3$ is given by an equation of the form $y^{2}=x^{3}+a x+b$ with $a, b \in k$. Its points $E(L)$ over a field L consist of the solutions $(x, y) \in L^{2}$ and a point at infinity.

- Define the discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$.
- An elliptic curve must be non-singular: $\Delta \neq 0$.

Elliptic Curves

Definition

An elliptic curve over a field k with $\operatorname{char}(k) \neq 2,3$ is given by an equation of the form $y^{2}=x^{3}+a x+b$ with $a, b \in k$. Its points $E(L)$ over a field L consist of the solutions $(x, y) \in L^{2}$ and a point at infinity.

- Define the discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$.
- An elliptic curve must be non-singular: $\Delta \neq 0$.
- The points of an elliptic curve form a group:

$P+Q+R=0$

$P+Q+Q=0$

$P+Q+0=0$

$P+P+0=0$

Conductor

- Let E be an elliptic curve over \mathbb{Q} and let p be a prime number.
- Intuitively, by reducing the equation for E modulo p, we obtain the reduction of E modulo p . Denote this by \tilde{E}.

Conductor

- Let E be an elliptic curve over \mathbb{Q} and let p be a prime number.
- Intuitively, by reducing the equation for E modulo p, we obtain the reduction of E modulo p . Denote this by \tilde{E}.
- If $\mathfrak{p} \mid \Delta_{\min }$, then \tilde{E} is singular $\Longrightarrow E$ has bad reduction.
- Two types: multiplicative reduction and additive reduction.

Conductor

- Let E be an elliptic curve over \mathbb{Q} and let p be a prime number.
- Intuitively, by reducing the equation for E modulo p, we obtain the reduction of E modulo p . Denote this by \tilde{E}.
- If $p \mid \Delta_{\min }$, then \tilde{E} is singular $\Longrightarrow E$ has bad reduction.
- Two types: multiplicative reduction and additive reduction.

Definition

We define the conductor of E by

$$
N=\prod_{p \mid \Delta_{\min }} p^{f_{p}+\delta_{p}} \text { where } f_{p}=\left\{\begin{array}{l}
1 \text { if } E \text { has mult. reduction at } p \\
2 \text { if } E \text { has add. reduction at } p
\end{array}\right.
$$ and where $\delta_{p}=0$ for $p \geqslant 5$ and for δ_{2}, δ_{3} use Tate's algorithm.

Galois representations

- An elliptic curve over \mathbb{Q} can have torsion points; those of finite order. Write $\mathrm{E}[\mathrm{n}]:=\mathrm{E}(\overline{\mathbb{Q}})[\mathrm{n}]$ for the n -torsion over $\overline{\mathbb{Q}}$.

Galois representations

- An elliptic curve over \mathbb{Q} can have torsion points; those of finite order. Write $E[n]:=E(\overline{\mathbb{Q}})[n]$ for the n-torsion over $\overline{\mathbb{Q}}$.

Theorem

The \mathbb{C}-points of an elliptic curve are given by $\mathrm{E}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. In particular, $E[n] \cong(\mathbb{Z} / n \mathbb{Z})^{2}$.

Galois representations

- An elliptic curve over \mathbb{Q} can have torsion points; those of finite order. Write $E[n]:=E(\overline{\mathbb{Q}})[n]$ for the n-torsion over $\overline{\mathbb{Q}}$.

Theorem

The \mathbb{C}-points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. In particular, $\mathrm{E}[\mathrm{n}] \cong(\mathbb{Z} / \mathrm{n} \mathbb{Z})^{2}$.

- The group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on the n-torsion points $E[n]$.
- For any prime ℓ, this gives a representation

$$
\rho_{\mathrm{E}}^{\ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(\mathrm{E}[\ell]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

Level Lowering

- For any prime p, let $v_{p}(n)$ denote the number of factors of p in n.

(slightly false) Level Lowering Theorem (Ribet, 1990)

Let E / \mathbb{Q} be an elliptic curve with conductor N and discriminant $\Delta_{\text {min }}$. Let $\ell \geqslant 3$ be a prime number such that ρ_{E}^{ℓ} is irreducible. Define

$$
\mathrm{N}_{\ell}=\mathrm{N} / \prod_{p \| \mathrm{N}, \ell \mid v_{\mathrm{p}}\left(\Delta_{\min }\right)} p
$$

Then there exists another elliptic curve F / \mathbb{Q} with conductor N_{ℓ} such that their mod- ℓ representations are isomorphic.

Level Lowering

- For any prime p, let $v_{p}(n)$ denote the number of factors of p in n.

(slightly false) Level Lowering Theorem (Ribet, 1990)

Let E / \mathbb{Q} be an elliptic curve with conductor N and discriminant $\Delta_{\text {min }}$. Let $\ell \geqslant 3$ be a prime number such that ρ_{E}^{ℓ} is irreducible. Define

$$
\mathrm{N}_{\ell}=\mathrm{N} / \prod_{p \| \mathrm{N}, \ell \mid v_{\mathrm{p}}\left(\Delta_{\min }\right)} p
$$

Then there exists another elliptic curve F / \mathbb{Q} with conductor N_{ℓ} such that their mod- ℓ representations are isomorphic.

- Example: if $\mathrm{N}=2 \cdot 3 \cdot 5$ and $\Delta=2^{2} \cdot 15^{\ell}$, then $\mathrm{N}_{\ell}=2$.
- Now we are ready for Fermat's Last Theorem!

Fermat's Last Theorem

- It suffices to show that $x^{\ell}+y^{\ell}+z^{\ell}=0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+y^{\ell}\right)
$$

Fermat's Last Theorem

- It suffices to show that $x^{\ell}+y^{\ell}+z^{\ell}=0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+y^{\ell}\right)
$$

- One may compute that

$$
\Delta_{\min }=(x y z)^{2 \ell} / 2^{8} \quad \text { and } \quad N=\operatorname{rad}(x y z)
$$

where $\operatorname{rad}(n)$ is the product of all the primes dividing n.

Fermat's Last Theorem

- It suffices to show that $x^{\ell}+y^{\ell}+z^{\ell}=0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+y^{\ell}\right)
$$

- One may compute that

$$
\Delta_{\min }=(x y z)^{2 \ell} / 2^{8} \quad \text { and } \quad N=\operatorname{rad}(x y z)
$$

where $\operatorname{rad}(n)$ is the product of all the primes dividing n.

- Level lowering: $\mathrm{N}_{\ell}=2$, so E corresponds to a rational elliptic curve of conductor 2 .

Fermat's Last Theorem

- It suffices to show that $x^{\ell}+y^{\ell}+z^{\ell}=0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+y^{\ell}\right)
$$

- One may compute that

$$
\Delta_{\min }=(x y z)^{2 \ell} / 2^{8} \quad \text { and } \quad N=\operatorname{rad}(x y z)
$$

where $\operatorname{rad}(n)$ is the product of all the primes dividing n.

- Level lowering: $\mathrm{N}_{\ell}=2$, so E corresponds to a rational elliptic curve of conductor 2.
- Lemma: There exist no elliptic curves with conductor 2.

The symplectic method

- Problem: often elliptic curves after level lowering do still exist.
- Idea: still derive a contradiction based on the information that their mod- ℓ representations are supposed to be isomorphic.

The symplectic method

- Problem: often elliptic curves after level lowering do still exist.
- Idea: still derive a contradiction based on the information that their mod- ℓ representations are supposed to be isomorphic.
- The symplectic method: we have an isomorphism $E[\ell] \rightarrow F[\ell]$. What do we know about its determinant?
- First: we need canonical bases.

Symplectic types

- For some $\tau \in \mathcal{H}$, the \mathbb{C}-points of an elliptic curve are given by

$$
\mathrm{E}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

Symplectic types

- For some $\tau \in \mathcal{H}$, the \mathbb{C}-points of an elliptic curve are given by

$$
\mathrm{E}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

- Let $\varphi: \mathrm{E}[\ell] \rightarrow \mathrm{F}[\ell]$ be a morphism and γ the matrix sending

$$
\gamma:\left\{1 / \ell, \tau_{F} / \ell\right\} \mapsto\left\{\varphi(1 / \ell), \varphi\left(\tau_{\mathrm{E}} / \ell\right)\right\} .
$$

- Define $r(\varphi)=\operatorname{det}(\gamma)$.

Symplectic types

- For some $\tau \in \mathcal{H}$, the \mathbb{C}-points of an elliptic curve are given by

$$
\mathrm{E}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

- Let $\varphi: \mathrm{E}[\ell] \rightarrow \mathrm{F}[\ell]$ be a morphism and γ the matrix sending

$$
\gamma:\left\{1 / \ell, \tau_{F} / \ell\right\} \mapsto\left\{\varphi(1 / \ell), \varphi\left(\tau_{E} / \ell\right)\right\} .
$$

- Define $r(\varphi)=\operatorname{det}(\gamma)$. This is well-defined, because any two bases for a lattice $\cong \mathbb{Z}^{2}$ differ by an element in $\mathrm{GL}_{2}(\mathbb{Z})$.
- By insisting on $\tau \in \mathcal{H}$, we force det $=1$.

Symplectic types

- For some $\tau \in \mathcal{H}$, the \mathbb{C}-points of an elliptic curve are given by

$$
\mathrm{E}(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

- Let $\varphi: \mathrm{E}[\ell] \rightarrow \mathrm{F}[\ell]$ be a morphism and γ the matrix sending

$$
\gamma:\left\{1 / \ell, \tau_{F} / \ell\right\} \mapsto\left\{\varphi(1 / \ell), \varphi\left(\tau_{E} / \ell\right)\right\} .
$$

- Define $r(\varphi)=\operatorname{det}(\gamma)$. This is well-defined, because any two bases for a lattice $\cong \mathbb{Z}^{2}$ differ by an element in $\mathrm{GL}_{2}(\mathbb{Z})$.
- By insisting on $\tau \in \mathcal{H}$, we force det $=1$.
- Clearly, for any scalar $a \in \mathbb{F}_{\ell}$, we have $r(a \cdot \varphi)=a^{2} r(\varphi)$.

Definition

We say φ is symplectic if $r(\varphi)$ is a square modulo ℓ. If not, we say it is anti-symplectic.

A symplectic theorem

Proposition (Kraus, Oesterlé, 1992)

Let E / \mathbb{Q} and F / Q be elliptic curves such that $E[\ell] \cong F[\ell]$ for some ℓ. Let $p \neq \ell$ be a prime such that both E and F have mult. reduction at p, and such that neither $v_{p}\left(\Delta_{\min }(E)\right)$ nor $v_{p}\left(\Delta_{\min }(F)\right)$ is divisible by ℓ.

Then $\mathrm{E}[\ell]$ and $\mathrm{F}[\ell]$ are symplectically isomorphic if and only if $v_{p}\left(\Delta_{\min }(E)\right) / v_{p}\left(\Delta_{\min }(F)\right)$ is a square modulo ℓ.

A symplectic theorem

Proposition (Kraus, Oesterlé, 1992)

Let E / \mathbb{Q} and F / Q be elliptic curves such that $E[\ell] \cong F[\ell]$ for some ℓ. Let $p \neq \ell$ be a prime such that both E and F have mult. reduction at p, and such that neither $v_{p}\left(\Delta_{\min }(E)\right)$ nor $v_{p}\left(\Delta_{\min }(F)\right)$ is divisible by ℓ.

Then $\mathrm{E}[\ell]$ and $\mathrm{F}[\ell]$ are symplectically isomorphic if and only if $v_{p}\left(\Delta_{\min }(E)\right) / v_{p}\left(\Delta_{\min }(F)\right)$ is a square modulo ℓ.

If E and F have mult. reduction at two primes p and q, then

$$
\frac{v_{p}\left(\Delta_{\min }(E)\right) v_{q}\left(\Delta_{\min }(E)\right)}{v_{p}\left(\Delta_{\min }(F)\right) v_{q}\left(\Delta_{\min }(F)\right)}
$$

must always be a square modulo ℓ.

An example

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell-1$. Then any integers (x, y, z) satisfying

$$
x^{\ell}+3 y^{\ell}+5 z^{\ell}=0
$$

for which y is even, must satisfy $x=y=z=0$.

- Given a non-trivial solution, consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+3 y^{\ell}\right) \text { with } \Delta_{\min }(E)=(15)^{2}(x y z)^{2 \ell} / 2^{8} .
$$

An example

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell-1$. Then any integers (x, y, z) satisfying

$$
x^{\ell}+3 y^{\ell}+5 z^{\ell}=0
$$

for which y is even, must satisfy $x=y=z=0$.

- Given a non-trivial solution, consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+3 y^{\ell}\right) \text { with } \Delta_{\min }(E)=(15)^{2}(x y z)^{2 \ell} / 2^{8} .
$$

- Level lowering result: we find $\mathrm{N}_{\ell}=30$, with

$$
F: Y^{2}+X Y+Y=X^{3}+X+2 \text { with } \Delta(F)=-2160=-2^{4} \cdot 3^{3} \cdot 5
$$

An example

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell-1$. Then any integers (x, y, z) satisfying

$$
x^{\ell}+3 y^{\ell}+5 z^{\ell}=0
$$

for which y is even, must satisfy $x=y=z=0$.

- Given a non-trivial solution, consider

$$
E: Y^{2}=X\left(X-x^{\ell}\right)\left(X+3 y^{\ell}\right) \text { with } \Delta_{\min }(E)=(15)^{2}(x y z)^{2 \ell} / 2^{8} .
$$

- Level lowering result: we find $\mathrm{N}_{\ell}=30$, with

$$
F: Y^{2}+X Y+Y=X^{3}+X+2 \text { with } \Delta(F)=-2160=-2^{4} \cdot 3^{3} \cdot 5
$$

- Both E and F have multiplicative reduction at the primes 2,3 and 5 .

An example

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell-1$. Then any integers (x, y, z) satisfying

$$
x^{\ell}+3 y^{\ell}+5 z^{\ell}=0
$$

for which y is even, must satisfy $x=y=z=0$.

- Then all of

$$
\frac{-8 \cdot 2}{4 \cdot 3}, \quad \frac{-8 \cdot 2}{4 \cdot 1} \quad \text { and } \quad \frac{2 \cdot 2}{3 \cdot 1}
$$

must be squares modulo ℓ.

An example

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell-1$. Then any integers (x, y, z) satisfying

$$
x^{\ell}+3 y^{\ell}+5 z^{\ell}=0
$$

for which y is even, must satisfy $x=y=z=0$.

- Then all of

$$
\frac{-8 \cdot 2}{4 \cdot 3}, \quad \frac{-8 \cdot 2}{4 \cdot 1} \quad \text { and } \quad \frac{2 \cdot 2}{3 \cdot 1}
$$

must be squares modulo ℓ.

- Hence -1 and 3 must be squares, so $\ell \equiv 1(\bmod 12)$.

Example of a theorem (D., 2020)

Let $k, \alpha \geqslant 0$ be integers and $\ell \geqslant 5$ a prime. Then the equation

$$
x^{\ell}+2^{\alpha} y^{\ell}+3^{k} z^{\ell}=0
$$

has no nontrivial solutions if

- $\alpha=0$ or $\alpha>3$.
- $k=0$ and $\alpha \neq 1$, where the exceptional case only has the non-trivial solutions $(\pm \mathrm{n}, \mp \mathrm{n}, \pm \mathrm{n})$.
- $\alpha \in\{1,2,3\}$ and y is even.
- $\alpha \in\{1,2\}$ and ℓ is such that k is not a square modulo ℓ.
- $\alpha=3$ and ℓ is such that $2 k$ is not a square modulo ℓ.

