The modular and symplectic methods

Mike Daas

Universiteit Leiden

November 25, 2021

• In 1637: if n > 2 and $x, y, z \in \mathbb{Z}$ satisfy

$$x^n + y^n = z^n,$$

then xyz = 0.

• In 1637: if n > 2 and $x, y, z \in \mathbb{Z}$ satisfy

$$x^n + y^n = z^n,$$

then xyz = 0.

- First proof completed in 1994 mainly by Andrew Wiles.
- We need to introduce *elliptic curves* and modular forms to understand the method.

Elliptic Curves

Definition

An *elliptic curve* over a field k with char(k) \neq 2, 3 is given by an equation of the form $y^2 = x^3 + ax + b$ with $a, b \in k$. Its points E(L) over a field L consist of the solutions $(x,y) \in L^2$ and a point at infinity.

Elliptic Curves

Definition

An *elliptic curve* over a field k with char(k) \neq 2, 3 is given by an equation of the form $y^2 = x^3 + ax + b$ with $a, b \in k$. Its points E(L) over a field L consist of the solutions $(x,y) \in L^2$ and a point at infinity.

- Define the discriminant $\Delta = -16(4a^3 + 27b^2)$.
- An elliptic curve must be *non-singular*: $\Delta \neq 0$.

Elliptic Curves

Definition

An *elliptic curve* over a field k with char(k) \neq 2, 3 is given by an equation of the form $y^2 = x^3 + ax + b$ with $a, b \in k$. Its points E(L) over a field L consist of the solutions $(x,y) \in L^2$ and a point at infinity.

- Define the discriminant $\Delta = -16(4a^3 + 27b^2)$.
- An elliptic curve must be *non-singular*: $\Delta \neq 0$.
- The points of an elliptic curve form a *group*:

Conductor

- ullet Let E be an elliptic curve over ${\mathbb Q}$ and let p be a prime number.
- Intuitively, by reducing the equation for E modulo p, we obtain the *reduction* of E modulo p. Denote this by \tilde{E} .

Conductor

- Let E be an elliptic curve over \mathbb{Q} and let p be a prime number.
- Intuitively, by reducing the equation for E modulo p, we obtain the *reduction* of E modulo p. Denote this by Ẽ.
- If $p \mid \Delta_{min}$, then \tilde{E} is singular \implies E has bad reduction.
- Two types: *multiplicative reduction* and *additive reduction*.

Conductor

- \bullet Let E be an elliptic curve over $\mathbb Q$ and let p be a prime number.
- Intuitively, by reducing the equation for E modulo p, we obtain the *reduction* of E modulo p. Denote this by \tilde{E} .
- If $p \mid \Delta_{min}$, then \tilde{E} is singular \implies E has bad reduction.
- Two types: multiplicative reduction and additive reduction.

Definition

We define the conductor of E by

$$N = \prod_{p \mid \Delta_{min}} \mathfrak{p}^{f_p + \delta_p} \ \ \text{where} \ \ f_p = \begin{cases} 1 \ \ \text{if E has mult. reduction at p;} \\ 2 \ \ \text{if E has add. reduction at p,} \end{cases}$$

and where $\delta_p = 0$ for $p \geqslant 5$ and for δ_2 , δ_3 use Tate's algorithm.

Galois representations

• An elliptic curve over \mathbb{Q} can have *torsion* points; those of finite order. Write $E[n] := E(\overline{\mathbb{Q}})[n]$ for the n-torsion over $\overline{\mathbb{Q}}$.

Galois representations

• An elliptic curve over \mathbb{Q} can have *torsion* points; those of finite order. Write $E[n] := E(\overline{\mathbb{Q}})[n]$ for the n-torsion over $\overline{\mathbb{Q}}$.

Theorem

The \mathbb{C} -points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. In particular, $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Galois representations

• An elliptic curve over \mathbb{Q} can have *torsion* points; those of finite order. Write $E[n] := E(\overline{\mathbb{Q}})[n]$ for the n-torsion over $\overline{\mathbb{Q}}$.

Theorem

The \mathbb{C} -points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. In particular, $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

- The group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the n-torsion points E[n].
- For any prime ℓ , this gives a representation

$$\rho_{\mathsf{E}}^{\ell}: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(\mathsf{E}[\ell]) \cong GL_2(\mathbb{F}_{\ell}).$$

Level Lowering

• For any prime p, let $v_p(n)$ denote the number of factors of p in n.

(slightly false) Level Lowering Theorem (Ribet, 1990)

Let E/\mathbb{Q} be an elliptic curve with conductor N and discriminant Δ_{min} . Let $\ell \geqslant 3$ be a prime number such that ρ_E^ℓ is irreducible. Define

$$N_\ell = N \Big/ \prod_{p \parallel N, \; \ell \mid \nu_p(\Delta_{min})} p.$$

Then there exists another elliptic curve F/\mathbb{Q} with conductor N_ℓ such that their mod- ℓ representations are isomorphic.

Level Lowering

• For any prime p, let $v_p(n)$ denote the number of factors of p in n.

(slightly false) Level Lowering Theorem (Ribet, 1990)

Let E/\mathbb{Q} be an elliptic curve with conductor N and discriminant Δ_{min} . Let $\ell \geqslant 3$ be a prime number such that ρ_E^ℓ is irreducible. Define

$$N_\ell = N \Big/ \prod_{p \parallel N, \; \ell \mid \nu_p(\Delta_{min})} p.$$

Then there exists another elliptic curve F/\mathbb{Q} with conductor N_ℓ such that their mod- ℓ representations are isomorphic.

- **Example:** if $N = 2 \cdot 3 \cdot 5$ and $\Delta = 2^2 \cdot 15^{\ell}$, then $N_{\ell} = 2$.
- Now we are ready for Fermat's Last Theorem!

- It suffices to show that $x^{\ell} + y^{\ell} + z^{\ell} = 0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

E:
$$Y^2 = X(X - x^{\ell})(X + y^{\ell}).$$

- It suffices to show that $x^{\ell} + y^{\ell} + z^{\ell} = 0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

E:
$$Y^2 = X(X - x^{\ell})(X + y^{\ell}).$$

One may compute that

$$\Delta_{min} = (xyz)^{2\ell}/2^8$$
 and $N = rad(xyz)$,

where rad(n) is the product of all the primes dividing n.

- It suffices to show that $x^{\ell} + y^{\ell} + z^{\ell} = 0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

E:
$$Y^2 = X(X - x^{\ell})(X + y^{\ell}).$$

One may compute that

$$\Delta_{min} = (xyz)^{2\ell}/2^8$$
 and $N = rad(xyz)$,

where rad(n) is the product of all the primes dividing n.

• Level lowering: $N_{\ell}=2$, so E corresponds to a rational elliptic curve of conductor 2.

- It suffices to show that $x^{\ell} + y^{\ell} + z^{\ell} = 0$ has no non-trivial solutions for all odd primes $\ell \geqslant 5$.
- Suppose we have a non-trivial solution and consider

E:
$$Y^2 = X(X - x^{\ell})(X + y^{\ell}).$$

One may compute that

$$\Delta_{\min} = (xyz)^{2\ell}/2^8$$
 and $N = \operatorname{rad}(xyz)$,

where rad(n) is the product of all the primes dividing n.

- Level lowering: $N_{\ell}=2$, so E corresponds to a rational elliptic curve of conductor 2.
- **Lemma:** There exist no elliptic curves with conductor 2.

November 25, 2021

The symplectic method

- **Problem:** often elliptic curves after level lowering *do* still exist.
- **Idea:** still derive a contradiction based on the information that their mod- ℓ representations are supposed to be isomorphic.

The symplectic method

- **Problem:** often elliptic curves after level lowering *do* still exist.
- **Idea:** still derive a contradiction based on the information that their mod- ℓ representations are supposed to be isomorphic.
- The symplectic method: we have an isomorphism $E[\ell] \to F[\ell]$. What do we know about its determinant?
- First: we need canonical bases.

 \bullet For some $\tau \in \mathcal{H},$ the C-points of an elliptic curve are given by

$$E(\mathbb{C})\cong \mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z}).$$

• For some $\tau \in \mathcal{H}$, the C-points of an elliptic curve are given by

$$E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}).$$

• Let $\varphi : E[\ell] \to F[\ell]$ be a morphism and γ the matrix sending

$$\gamma: \left\{1/\ell, \tau_{\mathsf{F}}/\ell\right\} \mapsto \left\{\phi(1/\ell), \phi(\tau_{\mathsf{E}}/\ell)\right\}.$$

• Define $r(\varphi) = det(\gamma)$.

• For some $\tau \in \mathcal{H}$, the C-points of an elliptic curve are given by

$$E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}).$$

• Let $\varphi : E[\ell] \to F[\ell]$ be a morphism and γ the matrix sending

$$\gamma: \big\{1/\ell, \tau_{\mathsf{F}}/\ell\big\} \mapsto \big\{\phi(1/\ell), \phi(\tau_{\mathsf{E}}/\ell)\big\}.$$

- Define $r(\phi) = det(\gamma)$. This is well-defined, because any two bases for a lattice $\cong \mathbb{Z}^2$ differ by an element in $GL_2(\mathbb{Z})$.
- By insisting on $\tau \in \mathcal{H}$, we force det = 1.

• For some $\tau \in \mathcal{H}$, the C-points of an elliptic curve are given by

$$E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}).$$

• Let $\varphi : E[\ell] \to F[\ell]$ be a morphism and γ the matrix sending

$$\gamma: \left\{1/\ell, \tau_{\mathsf{F}}/\ell\right\} \mapsto \left\{\phi(1/\ell), \phi(\tau_{\mathsf{E}}/\ell)\right\}.$$

- Define $r(\phi) = det(\gamma)$. This is well-defined, because any two bases for a lattice $\cong \mathbb{Z}^2$ differ by an element in $GL_2(\mathbb{Z})$.
- By insisting on $\tau \in \mathcal{H}$, we force det = 1.
- Clearly, for any scalar $a \in \mathbb{F}_{\ell}$, we have $r(a \cdot \phi) = a^2 r(\phi)$.

Definition

We say φ is *symplectic* if $r(\varphi)$ is a square modulo ℓ . If not, we say it is *anti-symplectic*.

A symplectic theorem

Proposition (Kraus, Oesterlé, 1992)

Let E/\mathbb{Q} and F/\mathbb{Q} be elliptic curves such that $E[\ell] \cong F[\ell]$ for some ℓ . Let $p \neq \ell$ be a prime such that both E and F have mult. reduction at p, and such that neither $\nu_p(\Delta_{min}(E))$ nor $\nu_p(\Delta_{min}(F))$ is divisible by ℓ .

Then $E[\ell]$ and $F[\ell]$ are symplectically isomorphic if and only if $\nu_p(\Delta_{min}(E)) / \nu_p(\Delta_{min}(F))$ is a square modulo ℓ .

A symplectic theorem

Proposition (Kraus, Oesterlé, 1992)

Let E/\mathbb{Q} and F/\mathbb{Q} be elliptic curves such that $E[\ell] \cong F[\ell]$ for some ℓ . Let $p \neq \ell$ be a prime such that both E and F have mult. reduction at p, and such that neither $\nu_p(\Delta_{min}(E))$ nor $\nu_p(\Delta_{min}(F))$ is divisible by ℓ .

Then $E[\ell]$ and $F[\ell]$ are symplectically isomorphic if and only if $\nu_p(\Delta_{min}(E)) / \nu_p(\Delta_{min}(F))$ is a square modulo ℓ .

If E and F have mult. reduction at two primes p and q, then

$$\frac{\nu_p(\Delta_{min}(\mathsf{E}))\nu_q(\Delta_{min}(\mathsf{E}))}{\nu_p(\Delta_{min}(\mathsf{F}))\nu_q(\Delta_{min}(\mathsf{F}))}$$

must always be a square modulo ℓ .

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell - 1$. Then any integers (x, y, z) satisfying

$$x^{\ell} + 3y^{\ell} + 5z^{\ell} = 0$$

for which y is even, must satisfy x = y = z = 0.

• Given a non-trivial solution, consider

E:
$$Y^2 = X(X - x^{\ell})(X + 3y^{\ell})$$
 with $\Delta_{min}(E) = (15)^2 (xyz)^{2\ell} / 2^8$.

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell - 1$. Then any integers (x, y, z) satisfying

$$x^{\ell} + 3y^{\ell} + 5z^{\ell} = 0$$

for which y is even, must satisfy x = y = z = 0.

• Given a non-trivial solution, consider

$$E: Y^2 = X(X - x^{\ell})(X + 3y^{\ell}) \text{ with } \Delta_{min}(E) = (15)^2 (xyz)^{2\ell} / 2^8.$$

• Level lowering result: we find $N_{\ell} = 30$, with

$$F \colon Y^2 + XY + Y = X^3 + X + 2 \ \text{with} \ \Delta(F) = -2160 = -2^4 \cdot 3^3 \cdot 5.$$

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell - 1$. Then any integers (x, y, z) satisfying

$$x^{\ell} + 3y^{\ell} + 5z^{\ell} = 0$$

for which y is even, must satisfy x = y = z = 0.

• Given a non-trivial solution, consider

$$E: Y^2 = X(X - x^{\ell})(X + 3y^{\ell}) \text{ with } \Delta_{min}(E) = (15)^2 (xyz)^{2\ell} / 2^8.$$

• Level lowering result: we find $N_\ell = 30$, with

F:
$$Y^2 + XY + Y = X^3 + X + 2$$
 with $\Delta(F) = -2160 = -2^4 \cdot 3^3 \cdot 5$.

• Both E and F have multiplicative reduction at the primes 2, 3 and 5.

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell - 1$. Then any integers (x, y, z) satisfying

$$x^{\ell} + 3y^{\ell} + 5z^{\ell} = 0$$

for which y is even, must satisfy x = y = z = 0.

• Then all of

$$\frac{-8\cdot 2}{4\cdot 3}$$
, $\frac{-8\cdot 2}{4\cdot 1}$ and $\frac{2\cdot 2}{3\cdot 1}$

must be squares modulo ℓ .

Theorem

Let $\ell \geqslant 5$ be a prime such that $12 \nmid \ell - 1$. Then any integers (x, y, z) satisfying

$$x^{\ell} + 3y^{\ell} + 5z^{\ell} = 0$$

for which y is even, must satisfy x = y = z = 0.

Then all of

$$\frac{-8\cdot 2}{4\cdot 3}$$
, $\frac{-8\cdot 2}{4\cdot 1}$ and $\frac{2\cdot 2}{3\cdot 1}$

must be squares modulo ℓ .

• Hence -1 and 3 must be squares, so $\ell \equiv 1 \pmod{12}$.

Example of a theorem (D., 2020)

Let $k, \alpha \geqslant 0$ be integers and $\ell \geqslant 5$ a prime. Then the equation

$$x^{\ell} + 2^{\alpha}y^{\ell} + 3^k z^{\ell} = 0$$

has no nontrivial solutions if

- $\alpha = 0$ or $\alpha > 3$.
- k = 0 and $\alpha \neq 1$, where the exceptional case only has the non-trivial solutions $(\pm n, \mp n, \pm n)$.
- $\alpha \in \{1, 2, 3\}$ and y is even.
- $\alpha \in \{1, 2\}$ and ℓ is such that k is not a square modulo ℓ .
- $\alpha = 3$ and ℓ is such that 2k is not a square modulo ℓ .