Gross and Zagier's Fascinating Formula

Mike Daas

Universiteit Leiden

November 23, 2023

Definition

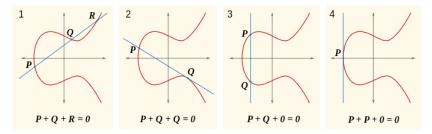
An *elliptic curve* over a field k with char(k) = 0 is given by an equation of the form $y^2 = x^3 + ax + b$ with $a, b \in k$.

Elliptic Curves

Definition

An *elliptic curve* over a field k with char(k) = 0 is given by an equation of the form $y^2 = x^3 + ax + b$ with $a, b \in k$.

The points of an elliptic curve form a group:

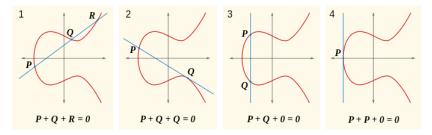


Elliptic Curves

Definition

An *elliptic curve* over a field k with char(k) = 0 is given by an equation of the form $y^2 = x^3 + ax + b$ with $a, b \in k$.

The points of an elliptic curve form a group:



- Define the discriminant $\Delta = -16(4a^3 + 27b^2)$.
- An elliptic curve must be *non-singular*: $\Delta \neq 0$.

Definition

The *j*-invariant of an elliptic curve $E : y^2 = x^3 + ax + b$ is defined as

$$\mathfrak{j}(E)=-1728\frac{(4\mathfrak{a})^3}{\Delta}=1728\frac{4\mathfrak{a}^3}{4\mathfrak{a}^3+27\mathfrak{b}^2}.$$

Definition

The *j*-*invariant* of an elliptic curve $E : y^2 = x^3 + ax + b$ is defined as

$$\mathfrak{j}(\mathsf{E}) = -1728 \frac{(4\mathfrak{a})^3}{\Delta} = 1728 \frac{4\mathfrak{a}^3}{4\mathfrak{a}^3 + 27\mathfrak{b}^2}.$$

• If
$$E_1 : y^2 = x^3 + 1$$
, then $j(E_1) =$

Definition

The *j*-*invariant* of an elliptic curve $E : y^2 = x^3 + ax + b$ is defined as

$$\mathfrak{j}(\mathsf{E}) = -1728 \frac{(4\mathfrak{a})^3}{\Delta} = 1728 \frac{4\mathfrak{a}^3}{4\mathfrak{a}^3 + 27\mathfrak{b}^2}.$$

• If
$$E_1 : y^2 = x^3 + 1$$
, then $j(E_1) = 0$;

• If
$$E_2 : y^2 = x^3 + x$$
, then $j(E_2) =$

Definition

The *j*-*invariant* of an elliptic curve $E : y^2 = x^3 + ax + b$ is defined as

$$\mathfrak{j}(\mathsf{E}) = -1728 \frac{(4\mathfrak{a})^3}{\Delta} = 1728 \frac{4\mathfrak{a}^3}{4\mathfrak{a}^3 + 27\mathfrak{b}^2}.$$

• If
$$E_1 : y^2 = x^3 + 1$$
, then $j(E_1) = 0$;

• If
$$E_2 : y^2 = x^3 + x$$
, then $j(E_2) = 1728$.

Definition

The *j*-*invariant* of an elliptic curve $E : y^2 = x^3 + ax + b$ is defined as

$$\mathfrak{j}(\mathsf{E}) = -1728 \frac{(4\mathfrak{a})^3}{\Delta} = 1728 \frac{4\mathfrak{a}^3}{4\mathfrak{a}^3 + 27\mathfrak{b}^2}.$$

Example

• If
$$E_1 : y^2 = x^3 + 1$$
, then $j(E_1) = 0$;

• If
$$E_2 : y^2 = x^3 + x$$
, then $j(E_2) = 1728$.

Question

How can we determine whether or not E_1 and E_2 are isomorphic?

Definition

The j-invariant of an elliptic curve $E : y^2 = x^3 + ax + b$ is defined as

$$\mathfrak{j}(E) = -1728 \frac{(4a)^3}{\Delta} = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Example

• If
$$E_1 : y^2 = x^3 + 1$$
, then $j(E_1) = 0$;

• If
$$E_2 : y^2 = x^3 + x$$
, then $j(E_2) = 1728$.

Question

How can we determine whether or not E_1 and E_2 are isomorphic?

Theorem

It holds that $E_1 \cong E_2$ over \overline{k} if and only if $j(E_1) = j(E_2)$.

We have infinitely many rational maps $E \to E$: namely, for $n \in \mathbb{Z}$, consider $[n] : E \to E$ sending $P \in E$ to $n \cdot P \in E$.

We have infinitely many rational maps $E \to E$: namely, for $n \in \mathbb{Z}$, consider $[n] : E \to E$ sending $P \in E$ to $n \cdot P \in E$.

Example

For $E_1: y^2 = x^3 + 1$, the map $[2]: E \to E$ is explicitly given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto 2 \cdot \mathsf{P} = \left(\frac{9\mathsf{x}^4}{4\mathsf{y}^2} - 2\mathsf{x}, \frac{3\mathsf{x}^2}{2\mathsf{y}}\left(3\mathsf{x} - \frac{9\mathsf{x}^4}{4\mathsf{y}^2}\right) - \mathsf{y}\right).$$

We have infinitely many rational maps $E \to E$: namely, for $n \in \mathbb{Z}$, consider $[n] : E \to E$ sending $P \in E$ to $n \cdot P \in E$.

Example

For $E_1: y^2 = x^3 + 1$, the map $[2]: E \to E$ is explicitly given by

$$P = (x, y) \mapsto 2 \cdot P = \left(\frac{9x^4}{4y^2} - 2x, \frac{3x^2}{2y} \left(3x - \frac{9x^4}{4y^2}\right) - y\right)$$

Question

Are there more such *endomorphisms* $E \rightarrow E$?

We have infinitely many rational maps $E \to E$: namely, for $n \in \mathbb{Z}$, consider $[n] : E \to E$ sending $P \in E$ to $n \cdot P \in E$.

Example

For $E_1: y^2 = x^3 + 1$, the map $[2]: E \to E$ is explicitly given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto 2 \cdot \mathsf{P} = \left(\frac{9\mathsf{x}^4}{4\mathsf{y}^2} - 2\mathsf{x}, \frac{3\mathsf{x}^2}{2\mathsf{y}}\left(3\mathsf{x} - \frac{9\mathsf{x}^4}{4\mathsf{y}^2}\right) - \mathsf{y}\right).$$

Question

Are there more such *endomorphisms* $E \rightarrow E$? What are all possible structures of the ring End(E)?

Complex Multiplication

Theorem

Let E/k be an elliptic curve with char(k) = 0. Then:

- Either $\operatorname{End}(E) = \mathbb{Z};$
- Or End(E) is isomorphic to an order in an imaginary quadratic number field. We say that E *has CM*.

Complex Multiplication

Theorem

Let E/k be an elliptic curve with char(k) = 0. Then:

- Either $\operatorname{End}(E) = \mathbb{Z};$
- Or End(E) is isomorphic to an order in an imaginary quadratic number field. We say that E *has CM*.

For
$$E_1 : y^2 = x^3 + 1$$
, we have a map $[\zeta_3] : E \to E$ given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto (\zeta_3 \mathsf{x}, \mathsf{y}) \implies \operatorname{End}(\mathsf{E}) \cong \mathbb{Z}[\zeta_3].$$

Complex Multiplication

Theorem

Let E/k be an elliptic curve with char(k) = 0. Then:

- Either $\operatorname{End}(E) = \mathbb{Z}$;
- Or End(E) is isomorphic to an order in an imaginary quadratic number field. We say that E *has CM*.

Example 1

For
$$E_1: y^2 = x^3 + 1$$
, we have a map $[\zeta_3]: E \to E$ given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto (\zeta_3 \mathsf{x}, \mathsf{y}) \implies \operatorname{End}(\mathsf{E}) \cong \mathbb{Z}[\zeta_3].$$

For
$$E_1: y^2 = x^3 + x$$
, we have a map $[i]: E \to E$ given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto (-\mathsf{x}, \mathfrak{i} \mathsf{y}) \implies \mathsf{End}(\mathsf{E}) \cong \mathbb{Z}[\mathfrak{i}].$$

Gross and Zagier's discovery (1/2)

Most curves do not have CM. Examples:

$$\begin{split} & \mathsf{E}_3: y^2 = x^3 - 2835x - 71442 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]; \\ & \mathsf{E}_4: y^2 = x^3 - 9504x + 365904 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]; \\ & \mathsf{E}_5: y^2 = x^3 - 608x + 5776 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]. \end{split}$$

Gross and Zagier's discovery (1/2)

Most curves do not have CM. Examples:

$$\begin{split} & \mathsf{E}_3: y^2 = x^3 - 2835x - 71442 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]; \\ & \mathsf{E}_4: y^2 = x^3 - 9504x + 365904 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]; \\ & \mathsf{E}_5: y^2 = x^3 - 608x + 5776 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]. \end{split}$$

We compute that

$$j(E_3) = -3^3 5^3$$
, $j(E_4) = -2^{15}$, and $j(E_5) = -2^{15} 3^3$.

Gross and Zagier's discovery (1/2)

Most curves do not have CM. Examples:

$$\begin{split} & \mathsf{E}_3: y^2 = x^3 - 2835x - 71442 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]; \\ & \mathsf{E}_4: y^2 = x^3 - 9504x + 365904 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]; \\ & \mathsf{E}_5: y^2 = x^3 - 608x + 5776 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]. \end{split}$$

We compute that

$$j(E_3)=-3^35^3, \quad j(E_4)=-2^{15}, \quad \text{and} \quad j(E_5)=-2^{15}3^3.$$

However, the following is striking:

$$\begin{split} \mathfrak{j}(\mathsf{E}_3) - \mathfrak{j}(\mathsf{E}_4) &= 7 \cdot 13 \cdot 17 \cdot 19;\\ \mathfrak{j}(\mathsf{E}_3) - \mathfrak{j}(\mathsf{E}_5) &= 3^7 \cdot 13 \cdot 31;\\ \mathfrak{j}(\mathsf{E}_4) - \mathfrak{j}(\mathsf{E}_5) &= 2^{16} \cdot 13. \end{split}$$

Gross and Zagier's discovery (2/2)

More examples:

$$\begin{split} & \mathsf{E}_6: y^2 = x^3 - 13760x + 621264 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right]; \\ & \mathsf{E}_7: y^2 = x^3 - 117920x + 15585808 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-67}}{2}\right]; \\ & \mathsf{E}_8: y^2 = x^3 - 34790720x + 78984748304 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right] \end{split}$$

November 23, 2023

.

Gross and Zagier's discovery (2/2)

More examples:

$$\begin{split} & \mathsf{E}_6: \mathsf{y}^2 = \mathsf{x}^3 - 13760\mathsf{x} + 621264 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right]; \\ & \mathsf{E}_7: \mathsf{y}^2 = \mathsf{x}^3 - 117920\mathsf{x} + 15585808 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-67}}{2}\right]; \\ & \mathsf{E}_8: \mathsf{y}^2 = \mathsf{x}^3 - 34790720\mathsf{x} + 78984748304 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right] \end{split}$$
 We compute that

$$\mathfrak{j}(E_6)=-2^{18}3^35^3, \quad \mathfrak{j}(E_7)=-2^{15}3^35^311^3, \text{ and } \mathfrak{j}(E_8)=-2^{18}3^35^323^329^3.$$

.

Gross and Zagier's discovery (2/2)

More examples:

$$\begin{split} & \mathsf{E}_6: y^2 = x^3 - 13760x + 621264 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right]; \\ & \mathsf{E}_7: y^2 = x^3 - 117920x + 15585808 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-67}}{2}\right]; \\ & \mathsf{E}_8: y^2 = x^3 - 34790720x + 78984748304 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right] \end{split}$$

We compute that

$$\mathfrak{j}(E_6)=-2^{18}3^35^3, \quad \mathfrak{j}(E_7)=-2^{15}3^35^311^3, \text{ and } \mathfrak{j}(E_8)=-2^{18}3^35^323^329^3.$$

The following is even more striking:

$$\begin{split} \mathfrak{j}(\mathsf{E}_6) - \mathfrak{j}(\mathsf{E}_7) &= 2^{15} \cdot 3^6 \cdot 5^3 \cdot 7^2;\\ \mathfrak{j}(\mathsf{E}_6) - \mathfrak{j}(\mathsf{E}_8) &= 2^{19} \cdot 3^6 \cdot 5^3 \cdot 7^3 \cdot 37 \cdot 433;\\ \mathfrak{j}(\mathsf{E}_7) - \mathfrak{j}(\mathsf{E}_8) &= 2^{15} \cdot 3^7 \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 139 \cdot 331. \end{split}$$

.

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3;\\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15};\\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3 \texttt{;} \\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15}\texttt{;} \\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3;\\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15};\\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3;\\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15};\\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

x	±1	±3	± 5	±7	
$(D - x^2)/4$	19	17	13	7	

Recall that $j(E_3) - j(E_5) = 3^7 \cdot 13 \cdot 31$. Let $D = 7 \cdot 19$.

Recall the curves

$$\begin{split} & \mathsf{E}_{3} \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_{3}) = -3^{3}5^{3} \texttt{;} \\ & \mathsf{E}_{4} \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_{4}) = -2^{15}\texttt{;} \\ & \mathsf{E}_{5} \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_{5}) = -2^{15}3^{3}. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

x	±1	± 3	± 5	±7	
$(D - x^2)/4$	19	17	13	7	

Recall that $j(E_3) - j(E_5) = 3^7 \cdot 13 \cdot 31$. Let $D = 7 \cdot 19$.

x	±1					
$(D - x^2)/4$	3 · 11	31	3 ³	<mark>3</mark> · 7	13	3

Suppose we have E_1 and E_2 with CM by $\mathbb{Z}\left[\frac{1+\sqrt{D_1}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{D_2}}{2}\right]$.

Suppose we have E_1 and E_2 with CM by $\mathbb{Z}\left[\frac{1+\sqrt{D_1}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{D_2}}{2}\right]$. Many things can happen to primes in larger orders. For example:

 $(2)=(1+\mathfrak{i})^2\in\mathbb{Z}[\mathfrak{i}],\quad 3\in\mathbb{Z}[\mathfrak{i}] \text{ is prime, and } 5=(2+\mathfrak{i})(2-\mathfrak{i})\in\mathbb{Z}[\mathfrak{i}].$

Suppose we have E_1 and E_2 with CM by $\mathbb{Z}\left[\frac{1+\sqrt{D_1}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{D_2}}{2}\right]$. Many things can happen to primes in larger orders. For example:

 $(2) = (1+i)^2 \in \mathbb{Z}[i], \quad 3 \in \mathbb{Z}[i] \text{ is prime, and } 5 = (2+i)(2-i) \in \mathbb{Z}[i].$

Let $D = D_1D_2$. Three types of primes dividing $(D - x^2)/4 > 0$:

• Blue primes: primes that are no longer prime in both $\mathbb{Z}\left[\frac{1+\sqrt{D_i}}{2}\right]$;

Suppose we have E_1 and E_2 with CM by $\mathbb{Z}\left[\frac{1+\sqrt{D_1}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{D_2}}{2}\right]$. Many things can happen to primes in larger orders. For example:

 $(2) = (1+i)^2 \in \mathbb{Z}[i], \quad 3 \in \mathbb{Z}[i] \text{ is prime, and } 5 = (2+i)(2-i) \in \mathbb{Z}[i].$

Let $D = D_1D_2$. Three types of primes dividing $(D - x^2)/4 > 0$:

- Blue primes: primes that are no longer prime in both $\mathbb{Z}\left[\frac{1+\sqrt{D_i}}{2}\right]$;
- Green primes: primes that stay prime with even exponent;

Suppose we have E_1 and E_2 with CM by $\mathbb{Z}\left[\frac{1+\sqrt{D_1}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{D_2}}{2}\right]$. Many things can happen to primes in larger orders. For example:

 $(2) = (1+i)^2 \in \mathbb{Z}[i], \quad 3 \in \mathbb{Z}[i] \text{ is prime, and } 5 = (2+i)(2-i) \in \mathbb{Z}[i].$

Let $D = D_1D_2$. Three types of primes dividing $(D - x^2)/4 > 0$:

- Blue primes: primes that are no longer prime in both $\mathbb{Z}\left[\frac{1+\sqrt{D_i}}{2}\right]$;
- Green primes: primes that stay prime with even exponent;
- Red primes: primes that stay prime with odd exponent.

Suppose we have E_1 and E_2 with CM by $\mathbb{Z}\left[\frac{1+\sqrt{D_1}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{D_2}}{2}\right]$. Many things can happen to primes in larger orders. For example:

 $(2) = (1+i)^2 \in \mathbb{Z}[i], \quad 3 \in \mathbb{Z}[i] \text{ is prime, and } 5 = (2+i)(2-i) \in \mathbb{Z}[i].$

Let $D = D_1D_2$. Three types of primes dividing $(D - x^2)/4 > 0$:

- Blue primes: primes that are no longer prime in both $\mathbb{Z}\left[\frac{1+\sqrt{D_i}}{2}\right]$;
- Green primes: primes that stay prime with even exponent;
- Red primes: primes that stay prime with odd exponent.

Example: let $D_1 = -7$ and $D_2 = -43$. Then:

x	±1	±3	± 5	±7	±9	±11	±13	± 15	±17
$\frac{D-x^2}{4}$	$3 \cdot 5^2$	73	3 · 23	$3^2 \cdot 7$	$5 \cdot 11$	$3^2 \cdot 5$	3 · 11	19	3

The Fascinating Formula

Recipe

• For each integer $(D - x^2)/4 > 0$, colour its primes.

The Fascinating Formula

Recipe

- For each integer $(D x^2)/4 > 0$, colour its primes.
- If there is *not* exactly 1 red prime p, skip.

- For each integer $(D x^2)/4 > 0$, colour its primes.
- If there is *not* exactly 1 red prime p, skip.
- Otherwise, add 1 to its exponent and those of all blue primes.

- For each integer $(D x^2)/4 > 0$, colour its primes.
- If there is *not* exactly 1 red prime p, skip.
- Otherwise, add 1 to its exponent and those of all blue primes.
- Multiply these numbers together to get k; then obtain p^{k/2}.

- For each integer $(D x^2)/4 > 0$, colour its primes.
- If there is *not* exactly 1 red prime p, skip.
- Otherwise, add 1 to its exponent and those of all blue primes.
- Multiply these numbers together to get k; then obtain p^{k/2}.

Example: let $D_1 = -7$ and $D_2 = -43$. Then:

	±1								
$\frac{D-x^2}{4}$	$3 \cdot 5^2$	73	3 · 23	$3^2 \cdot 7$	5 · 11	$3^2 \cdot 5$	3 · 11	19	3
$p^{k/2}$	3	73	3 ²	7	5 ²	5	3 ²	19	3

- For each integer $(D x^2)/4 > 0$, colour its primes.
- If there is *not* exactly 1 red prime p, skip.
- Otherwise, add 1 to its exponent and those of all blue primes.
- Multiply these numbers together to get k; then obtain p^{k/2}.

Example: let $D_1 = -7$ and $D_2 = -43$. Then:

	±1								
$\frac{D-x^2}{4}$	$3 \cdot 5^2$	73	3 · 23	$3^2 \cdot 7$	5 · 11	$3^2 \cdot 5$	3 · 11	19	3
$p^{k/2}$	3	73	3 ²	7	5 ²	5	3 ²	19	3

Final step: multiplying all these $p^{k/2}$ together gives the right answer!

x	±1	±3	± 5	±7	±9	±11	±13	±15	±17
$\frac{D-x^2}{4}$	$3 \cdot 5^2$	73	<u>3 · 23</u>	$3^2 \cdot 7$	$5 \cdot 11$	$3^2 \cdot 5$	3 · 11	19	3
p ^{k/2}	3	73	3 ²	7	5 ²	5	3 ²	19	3

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3;\\ & \mathsf{E}_6 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_6) = -2^{18} 3^3 5^3. \end{split}$$

x	±1	±3	± 5	±7	±9	±11	±13	±15	±17
$\frac{D-x^2}{4}$	$3 \cdot 5^2$	73	<u>3 · 23</u>	$3^2 \cdot 7$	$5 \cdot 11$	$3^2 \cdot 5$	3 · 11	19	3
p ^{k/2}	3	73	3 ²	7	5 ²	5	3 ²	19	3

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_6 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_6) = -2^{18} 3^3 5^3. \end{split}$$

Then indeed,

$$\mathfrak{j}(\mathsf{E}_3)-\mathfrak{j}(\mathsf{E}_6)=2^{18}3^35^3-3^35^3=884732625$$

x	±1	±3	± 5	±7	±9	±11	±13	±15	±17
$\frac{D-x^2}{4}$	$3 \cdot 5^2$	73	<u>3 · 23</u>	$3^2 \cdot 7$	$5 \cdot 11$	$3^2 \cdot 5$	3 · 11	19	3
p ^{k/2}	3	73	3 ²	7	5 ²	5	3 ²	19	3

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_6 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_6) = -2^{18} 3^3 5^3. \end{split}$$

Then indeed,

$$\mathfrak{j}(\mathsf{E}_3)-\mathfrak{j}(\mathsf{E}_6)=2^{18}3^35^3-3^35^3=884732625=3^6\cdot 5^3\cdot 7\cdot 19\cdot 73.$$

More generally, when $j(E) \notin \mathbb{Z}$ but in a bigger number field, then it still holds for the *absolute norm* of the difference between j-values.

Mike Daas

Gross and Zagier's Fascinating Formula

The C-points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. Now CM-curves correspond to actual CM-points: $\tau \in \{i, \sqrt{-3}, (1 + \sqrt{-7})/2, \ldots\}.$

The C-points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. Now CM-curves correspond to actual CM-points: $\tau \in \{i, \sqrt{-3}, (1 + \sqrt{-7})/2, \ldots\}.$

So instead of j(E), we can consider $j : \mathcal{H} \to \mathbb{C}$ and study $j(\tau)$.

The C-points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. Now CM-curves correspond to actual CM-points: $\tau \in \{i, \sqrt{-3}, (1 + \sqrt{-7})/2, \ldots\}.$

So instead of j(E), we can consider $j : \mathcal{H} \to \mathbb{C}$ and study $j(\tau)$. Changing the basis of a lattice gives the same elliptic curve. This means that even

 $\mathfrak{j}:SL_2(\mathbb{Z})\setminus\mathcal{H}\to\mathbb{C}$

where $SL_2(\mathbb{Z}) = \{A \in M_2(\mathbb{Z}) \mid det(A) = 1\}$ acts on \mathcal{H} :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.$$

12/14

The C-points of an elliptic curve are given by $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some $\tau \in \mathcal{H}$. Now CM-curves correspond to actual CM-points: $\tau \in \{i, \sqrt{-3}, (1 + \sqrt{-7})/2, \ldots\}.$

So instead of j(E), we can consider $j : \mathcal{H} \to \mathbb{C}$ and study $j(\tau)$. Changing the basis of a lattice gives the same elliptic curve. This means that even

 $\mathfrak{j}:SL_2(\mathbb{Z})\setminus \mathfrak{H}\to \mathbb{C}$

where $SL_2(\mathbb{Z}) = \{A \in M_2(\mathbb{Z}) \mid det(A) = 1\}$ acts on \mathcal{H} :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.$$

The quotient $SL_2(\mathbb{Z}) \setminus \mathcal{H}$ is called a *modular curve*.

12/14

How did we obtain the modular curve $SL_2(\mathbb{Z}) \setminus \mathcal{H}$?

Shimura curves

How did we obtain the modular curve $SL_2(\mathbb{Z}) \setminus \mathcal{H}$?

- Start with matrix algebra M₂(Q);
- Take a maximal order inside it: $M_2(\mathbb{Z})$;
- Take the subgroup of units of norm 1: $SL_2(\mathbb{Z})$.

Shimura curves

How did we obtain the modular curve $SL_2(\mathbb{Z}) \setminus \mathcal{H}$?

- Start with matrix algebra M₂(Q);
- Take a maximal order inside it: $M_2(\mathbb{Z})$;
- Take the subgroup of units of norm 1: $SL_2(\mathbb{Z})$.

Let B denote an indefinite quaternion algebra. Let $R\subset B$ be a maximal order and let R_1^\times be the subgroup of units of norm 1. Define

$$X_{B}(\mathbb{C}) = \mathsf{R}_{1}^{\times} \setminus \mathcal{H};$$

this is known as a Shimura curve.

13/14

How did we obtain the modular curve $SL_2(\mathbb{Z}) \setminus \mathcal{H}$?

- Start with matrix algebra M₂(Q);
- Take a maximal order inside it: $M_2(\mathbb{Z})$;
- Take the subgroup of units of norm 1: $SL_2(\mathbb{Z})$.

Let B denote an indefinite quaternion algebra. Let $R\subset B$ be a maximal order and let R_1^\times be the subgroup of units of norm 1. Define

$$\mathsf{X}_{\mathsf{B}}(\mathbb{C}) = \mathsf{R}_1^{\times} \setminus \mathcal{H};$$

this is known as a Shimura curve. Sometimes, there exists a generator J of the function field. This choice is not unique, but the *cross-ratio* is:

$$\frac{J(x) - J(z)}{J(x) - J(w)} \frac{J(y) - J(z)}{J(y) - J(w)}$$

Theorem, D. (2023)

For CM-points τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

Theorem, D. (2023)

For *CM-points* τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

Main ideas of proof:

• Relate the above to a p-adic quantity involving Θ-functions.

Theorem, D. (2023)

For CM-points τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

- Relate the above to a p-adic quantity involving Θ-functions.
- Compute the derivative of a family of p-adic Hilbert mod. forms.

Theorem, D. (2023)

For *CM-points* τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

- Relate the above to a p-adic quantity involving Θ-functions.
- Compute the derivative of a family of p-adic Hilbert mod. forms.
- Splits into two parts: the cross-ratio and the fascinating formula.

Theorem, D. (2023)

For CM-points τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

- Relate the above to a p-adic quantity involving Θ-functions.
- Compute the derivative of a family of p-adic Hilbert mod. forms.
- Splits into two parts: the cross-ratio and the fascinating formula.
- For abstract reasons this gives zero so these parts must be equal.

Theorem, D. (2023)

For CM-points τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

- Relate the above to a p-adic quantity involving Θ-functions.
- Compute the derivative of a family of p-adic Hilbert mod. forms.
- Splits into two parts: the cross-ratio and the fascinating formula.
- For abstract reasons this gives zero so these parts must be equal.
- Compute family by deforming its associated Galois representation infinitesimally ($e^2 = 0$) and prove an R = T-theorem.

Theorem, D. (2023)

For CM-points τ_1 , τ_1' , τ_2 , τ_2' , the algebraic norm of the cross-ratio

$$\frac{J(\tau_1) - J(\tau_2)}{J(\tau_1) - J(\tau_2')} \frac{J(\tau_1') - J(\tau_2)}{J(\tau_1') - J(\tau_2')}$$

obeys a similarly fascinating formula.

Main ideas of proof:

- Relate the above to a p-adic quantity involving Θ-functions.
- Compute the derivative of a family of p-adic Hilbert mod. forms.
- Splits into two parts: the cross-ratio and the fascinating formula.
- For abstract reasons this gives zero so these parts must be equal.
- Compute family by deforming its associated Galois representation infinitesimally ($e^2 = 0$) and prove an R = T-theorem.

Thank you for your attention!