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Elliptic Curves

Definition
An elliptic curve over a field k with char(k) = 0 is given by an equation
of the form y2 = x3 + ax+ b with a,b ∈ k.

The points of an elliptic curve form a group:

Define the discriminant ∆ = −16(4a3 + 27b2).
An elliptic curve must be non-singular: ∆ , 0.
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The j-invariant

Definition
The j-invariant of an elliptic curve E : y2 = x3 + ax+ b is defined as

j(E) = −1728
(4a)3

∆
= 1728

4a3

4a3 + 27b2 .

Example

If E1 : y2 = x3 + 1, then j(E1) = 0;
If E2 : y2 = x3 + x, then j(E2) = 1728.

Question
How can we determine whether or not E1 and E2 are isomorphic?

Theorem
It holds that E1 � E2 over k if and only if j(E1) = j(E2).
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Endomorphisms

Observation
We have infinitely many rational maps E → E: namely, for n ∈ Z,
consider [n] : E → E sending P ∈ E to n · P ∈ E.

Example

For E1 : y2 = x3 + 1, the map [2] : E → E is explicitly given by

P = (x,y) 7→ 2 · P =

(
9x4

4y2 − 2x,
3x2

2y

(
3x−

9x4

4y2

)
− y

)
.

Question
Are there more such endomorphisms E → E?
What are all possible structures of the ring End(E)?
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Complex Multiplication

Theorem
Let E/k be an elliptic curve with char(k) = 0. Then:

Either End(E) = Z;
Or End(E) is isomorphic to an order in an imaginary quadratic
number field. We say that E has CM.

Example 1

For E1 : y2 = x3 + 1, we have a map [ζ3] : E → E given by

P = (x,y) 7→ (ζ3x,y) =⇒ End(E) � Z[ζ3].

Example 2

For E1 : y2 = x3 + x, we have a map [i] : E → E given by

P = (x,y) 7→ (−x, iy) =⇒ End(E) � Z[i].
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Gross and Zagier’s discovery (1/2)

Most curves do not have CM. Examples:

E3 : y2 = x3 − 2835x− 71442 has CM by Z

[
1 +

√
−7

2

]
;

E4 : y2 = x3 − 9504x+ 365904 has CM by Z

[
1 +

√
−11

2

]
;

E5 : y2 = x3 − 608x+ 5776 has CM by Z

[
1 +

√
−19

2

]
.

We compute that

j(E3) = −3353, j(E4) = −215, and j(E5) = −21533.

However, the following is striking:

j(E3) − j(E4) = 7 · 13 · 17 · 19;

j(E3) − j(E5) = 37 · 13 · 31;

j(E4) − j(E5) = 216 · 13.
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Gross and Zagier’s discovery (2/2)

More examples:

E6 : y2 = x3 − 13760x+ 621264 has CM by Z

[
1 +

√
−43

2

]
;

E7 : y2 = x3 − 117920x+ 15585808 has CM by Z

[
1 +

√
−67

2

]
;

E8 : y2 = x3 − 34790720x+ 78984748304 has CM by Z

[
1 +

√
−163

2

]
.

We compute that

j(E6) = −2183353, j(E7) = −2153353113, and j(E8) = −2183353233293.

The following is even more striking:

j(E6) − j(E7) = 215 · 36 · 53 · 72;

j(E6) − j(E8) = 219 · 36 · 53 · 73 · 37 · 433;

j(E7) − j(E8) = 215 · 37 · 53 · 72 · 13 · 139 · 331.
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An unexpected connection

Recall the curves

E3 with CM by Z
[

1 +
√
−7

2

]
and j(E3) = −3353;

E4 with CM by Z
[

1 +
√
−11

2

]
and j(E4) = −215;

E5 with CM by Z
[

1 +
√
−19

2

]
and j(E5) = −21533.

Recall that j(E3) − j(E4) = 7 · 13 · 17 · 19. Let D = 7 · 11.

x ±1 ±3 ±5 ±7
(D− x2)/4 19 17 13 7

Recall that j(E3) − j(E5) = 37 · 13 · 31. Let D = 7 · 19.

x ±1 ±3 ±5 ±7 ±9 ±11
(D− x2)/4 3 · 11 31 33 3 · 7 13 3
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Three colours of primes

Suppose we have E1 and E2 with CM by Z
[

1+
√
D1

2

]
and Z

[
1+

√
D2

2

]
.

Many things can happen to primes in larger orders. For example:

(2) = (1 + i)2 ∈ Z[i], 3 ∈ Z[i] is prime, and 5 = (2 + i)(2 − i) ∈ Z[i].

Let D = D1D2. Three types of primes dividing (D− x2)/4 > 0:

Blue primes: primes that are no longer prime in both Z
[

1+
√
Di

2

]
;

Green primes: primes that stay prime with even exponent;
Red primes: primes that stay prime with odd exponent.

Example: let D1 = −7 and D2 = −43. Then:

x ±1 ±3 ±5 ±7 ±9 ±11 ±13 ±15 ±17
D−x2

4 3 · 52 73 3 · 23 32 · 7 5 · 11 32 · 5 3 · 11 19 3
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The Fascinating Formula

Recipe

For each integer (D− x2)/4 > 0, colour its primes.

If there is not exactly 1 red prime p, skip.
Otherwise, add 1 to its exponent and those of all blue primes.
Multiply these numbers together to get k; then obtain pk/2.

Example: let D1 = −7 and D2 = −43. Then:

x ±1 ±3 ±5 ±7 ±9 ±11 ±13 ±15 ±17
D−x2

4 3 · 52 73 3 · 23 32 · 7 5 · 11 32 · 5 3 · 11 19 3
pk/2 3 73 32 7 52 5 32 19 3

Final step: multiplying all these pk/2 together gives the right answer!
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Example

x ±1 ±3 ±5 ±7 ±9 ±11 ±13 ±15 ±17
D−x2

4 3 · 52 73 3 · 23 32 · 7 5 · 11 32 · 5 3 · 11 19 3
pk/2 3 73 32 7 52 5 32 19 3

Recall the curves

E3 with CM by Z
[

1 +
√
−7

2

]
and j(E3) = −3353;

E6 with CM by Z
[

1 +
√
−43

2

]
and j(E6) = −2183353.

Then indeed,

j(E3) − j(E6) = 2183353 − 3353 = 884732625 = 36 · 53 · 7 · 19 · 73.

More generally, when j(E) < Z but in a bigger number field, then it still
holds for the absolute norm of the difference between j-values.
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What is the j-function really?

Theorem
The C-points of an elliptic curve are given by E(C) � C/(Z+ τZ) for
some τ ∈ H. Now CM-curves correspond to actual CM-points:

τ ∈ {i,
√
−3, (1 +

√
−7)/2, . . .}.

So instead of j(E), we can consider j : H → C and study j(τ).
Changing the basis of a lattice gives the same elliptic curve. This
means that even

j : SL2(Z) \ H → C

where SL2(Z) = {A ∈ M2(Z) | det(A) = 1} acts on H:(
a b

c d

)
· z = az+ b

cz+ d
.

The quotient SL2(Z) \ H is called a modular curve.
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Shimura curves

How did we obtain the modular curve SL2(Z) \ H?

Start with matrix algebra M2(Q);
Take a maximal order inside it: M2(Z);
Take the subgroup of units of norm 1: SL2(Z).

Let B denote an indefinite quaternion algebra. Let R ⊂ B be a maximal
order and let R×

1 be the subgroup of units of norm 1. Define

XB(C) = R×
1 \ H;

this is known as a Shimura curve. Sometimes, there exists a generator J
of the function field. This choice is not unique, but the cross-ratio is:

J(x) − J(z)

J(x) − J(w)

J(y) − J(z)

J(y) − J(w)
.
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My research

Theorem, D. (2023)
For CM-points τ1, τ ′

1, τ2, τ ′
2, the algebraic norm of the cross-ratio

J(τ1) − J(τ2)

J(τ1) − J(τ ′
2)

J(τ ′
1) − J(τ2)

J(τ ′
1) − J(τ ′

2)

obeys a similarly fascinating formula.

Main ideas of proof:
Relate the above to a p-adic quantity involving Θ-functions.
Compute the derivative of a family of p-adic Hilbert mod. forms.
Splits into two parts: the cross-ratio and the fascinating formula.
For abstract reasons this gives zero so these parts must be equal.
Compute family by deforming its associated Galois representation
infinitesimally (ϵ2 = 0) and prove an R = T -theorem.

Thank you for your attention!
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