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Abstract

For each positive integer n ≥ 2, a purely equational proof must exist for the statement that a ring R in
which xn = x holds for all x ∈ R, must be commutative. By elementary means, we find such equational
proofs for a significant density of even exponents n by establishing a reduction step that is as strong as can
reasonably be expected by decreasing the given exponent n in a way that is minimal in view of the finite
fields satisfying the same equation.
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1 Introduction

A classical result by Jacobson [Jac45] from 1945 states that if R is a ring with the property that for every
x ∈ R, there exists some integer n(x) ≥ 2 such that xn(x) = x, then the ring R must be commutative. Here,
R need not be unital. The standard proof can be found in §12 in Lam’s A First Course in Noncommutative
Rings [Lam91], in which the proof of Jacobson’s result in its complete generality is reduced to little more
than a single page of reasoning after applying Herstein’s Lemma and subsequently appealing to various
structure theorems for certain classes of rings.

However, various authors observed that to prove Jacobson’s result, there is no need for such powerful
tools, and more elementary proofs have since been found. Examples can be found in Herstein’s paper [Her54],
Rogers’s work [Rog71] and [Rog72], and in Nagahara and Tominaga’s very short paper [NT74]. These proofs
are much simpler than Jacobson’s original proof, but they do rely on various ring theoretic notions. In
particular, they venture beyond the framework of pure equational logic.

In a first course on ring theory, it is not uncommon to challenge students to prove Jacobson’s theorem
in the special case that one can take n(x) = 2 for all x ∈ R. In other words, tasking them to show that
all Boolean rings must be commutative, which follows from expanding the equation (x + y)2 = x + y and
cancelling, combined with the observation that x = (−x)2 = −x.

In various online spaces, numerous examples can be found of students tasked to prove Jacobson’s theorem
in the special case that one can take n(x) = 3 for all x ∈ R; a problem that is considerably less trivial but
can still be done purely equationally with some patience. It is natural to consider the special case of
Jacobson’s theorem for an arbitrary fixed exponent n(x) = n; we call all such rings J(n)-rings. By Birkhoff’s
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completeness theorem, included as Theorem 14.19 in [SB81], proofs using purely equational logic must exist
in each case, but finding them and writing them down is a separate challenge. For n ≤ 6, such proofs are
easily found on the internet. Many have wondered about a more general solution to this problem, but often
with little success.

A great source for explicit equational proofs for small exponents is Morita’s article [Mor78], which is
notoriously difficult to obtain but contains proofs for all n ≤ 25 and all even n ≤ 50. In [Zha90], Zhang uses
an idea similar to the one presented in the present note to obtain equational proofs for an empirically positive
density, with the drawback that deciding whether or not their strategy works for a given n is computationally
as expensive as finding the equational proof itself. Significant progress was made by Burris and Lawrence in
[BL91] by describing explicitly a finite set of rewrite rules complete for the equational theory of finite fields.
However, they rely on the general results from [Jac45] to relate the equational theory for J(n)-rings to that
of all finite J(n)-fields to draw their conclusions.

In this short note we propose an elementary reduction step for general even exponents that yields equa-
tional proofs for Jacobson’s commutativity theorem for a very significant positive density of even integers.
This makes explicit the general reduction step from the equational theory for J(n)-rings to that of all finite
J(n)-fields used in [BL91]. In this sense, our reduction step is as strong as one could expect.

2 The reduction step

To obtain our reduction, our strategy is as follows. Fix a positive even integer n and a J(n)-ring R. Note
that we do not assume that R is unital. We may then notice that x = (−x)n = −x for all x ∈ R, and
as such, the ring is of characteristic at most 2. For any x ∈ R and any h ∈ XF2[X], it must hold that
h(x)n − h(x) = 0 ∈ R. Let In ⊂ F2[X] be the ideal spanned by all these relations. Then by construction,
for any f ∈ In and x ∈ R, we must have that f(x) = 0 ∈ R. Because F2[X] is a principal ideal domain,
it follows that In = (gn) for some gn ∈ F2[X]. Our key result determines gn exactly using only some very
elementary algebra. We use the convention that N = Z≥1.

Proposition 1. With the definitions from above, define the set

Sn = {m ∈ N : 2m − 1 | n− 1}.

Then we have
gn = lcm

{
X2m −X | m ∈ Sn

}
.

Proof. We use the principle that two squarefree polynomials over F2 are equal if and only if they have the
same zeroes in an algebraic closure F2 of F2. Indeed, both sides are squarefree because the polynomial
Xk −X is separable for any positive even integer k. The zeroes of the right hand side are easily determined;
some α ∈ F2 is one of its zeroes if and only if it is a zero of X2m −X for some m ∈ Sn, or equivalently, if
and only if α ∈ F2m for some m ∈ Sn. On the other hand, some α ∈ F2 is a zero of gn if and only if it is a
zero of all hn − h for h ∈ XF2[X]. We have thus reduced to showing that for α ∈ F2,

h(α)n = h(α) for all h ∈ XF2[X] ⇐⇒ α ∈ F2m for some m ∈ Sn.

If α ∈ F2m for some m ∈ Sn and h(α) = 0, then we are done. If h(α) ∈ F×
2m instead, it holds that

h(α)2
m−1 = 1. By definition of m, raising this expression to some power yields that h(α)n−1 = 1, proving

one direction.
Now let α ∈ F2 and suppose that h(α)n = h(α) for all h ∈ XF2[X]. If we write F2[α] = F2m for some

m ∈ N, we must show that m ∈ Sn. Using that X2m−1 ∈ XF2[X] is constantly equal to 1 on F×
2m , we

observe that {
h(α) | h ∈ XF2[X]

}
=

{
h(α) | h ∈ F2[X]

}
= F2[α] = F2m .

In other words, we have shown that βn = β for all β ∈ F2m . Since F×
2m is cyclic of order 2m − 1, we may

choose β to be a generator. It then follows immediately that 2m− 1 | n− 1, showing m ∈ Sn and completing
the proof.
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In our context, the above proposition tells us precisely how much we can deduce from examining all
possible relations generated by looking at just a single element x ∈ R, the polynomial gn being the minimal
relation from which all others follow. Even though the proof uses some mild ring theory, it sets up equational
proofs by generating relations using all h ∈ XF2[X] of degree smaller than n and finding gn by performing
Euclid’s algorithm. Any deductions beyond this must be made using at least two variables, as is exemplified
by our brief sketch earlier of the proof for Boolean rings.

Further, for any positive integer m, there is a finite field F2m , which is a J(2m)-ring. It is easy to see
that F2m is a J(n)-ring if and only if m ∈ Sn. Any attempt at a reduction to any smaller exponent finds
an obvious obstruction in the existence of rings in which this reduction step would fail to hold. One way to
interpret the proposition above is that, for any obstruction ring from the set {F2m | m ∈ Sn}, we get a factor
contributing to gn and together these exactly form the minimal relation. In this sense, the obstructions
coming from finite fields are really the only ones and our reduction step is optimal.

3 Densities for equational proofs

In order to compute densities of even numbers satisfying the condition that Sn is equal to a given set, we
require the following elementary lemma.

Lemma 2. Let m,n ∈ N and denote d = gcd(m,n). Then

gcd(2m − 1, 2n − 1) = 2d − 1.

Proof. This is a restatement of the fact that F×
2m ∩ F×

2n = F×
2d
.

Of particular interest to us is the case in which among all the finite fields which are J(n)-rings, there is
one that contains all others. This allows us to explicitly reduce the problem to a smaller exponent.

Theorem 3. Let n be an even positive integer with the property that there is some m ∈ N such that all finite
J(n)-fields are F2m and its subfields. Then any J(n)-ring is also a J(2m)-ring. The density of even n for
which any J(n)-ring is necessarily Boolean is given by

α :=
∏

p prime

2p − 2

2p − 1
≈ 0.54830.

Proof. For the first claim, we are to show that gn = X2m −X. Indeed, by Proposition 1, this is equivalent to

showing that X2k −X | X2m −X for any k ∈ Sn. But by assumption, F2k ⊂ F2m , proving the claim. From
this it follows that for any even positive integer n, any J(n)-ring must be Boolean if and only if m = 1 in
the previous claim. This happens if and only if n− 1 is divisible by no number of the form 2k − 1 for k ≥ 2.
Because for any prime p | k we have 2p − 1 | 2k − 1 by Lemma 2, it suffices for n to not be divisible by any
number of the form 2p − 1. By the same lemma, all these numbers are pairwise coprime. Since the density
of the numbers divisible by 2p − 1 is its reciprocal, an expansion using inclusion-exclusion yields that the
set of numbers not divisible by any of the numbers {2p − 1 | p is prime} has density∏

p prime

(
1− 1

2p − 1

)
,

which precisely equals α. Because all the numbers 2p − 1 are odd, it does not matter for the density if we
restrict to the odd numbers n− 1.

Recall that for each even n ≤ 50, Morita in [Mor78] found a purely equational proof for the commutativity
of all J(n)-rings. If we assume these results, in particular their proofs for the even values n ∈ {8, 16, 32}, we
may drastically increase the density of even n for which explicit equational proofs are known.
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Theorem 4. With the results from [Mor78], Theorem 3 yields equational proofs for the commutativity of
all J(n)-rings for a density of even integers n equal to(

127

85
+

12

73
+

36080

1082401

)
α ≈ 0.92763.

Proof. Using Theorem 3 for m ≤ 5 in combination with [Mor78], we can find equational proofs whenever
Sn ⊂ {1, 2, 4}, Sn = {1, 3} or Sn = {1, 5}. For the first case, we replace the condition of not being divisible

by 22
1 −1 = 3 by not being divisible by 22

3 −1 = 255, yielding a density of 127α/85. The other two densities
are deduced by subtracting α, the density of numbers with Sn = {1}, from the densities for Sn ⊂ {1, 3} and
Sn ⊂ {1, 5}, which are obtained similarly.

In other words, for about 92.76% of positive even exponents, we can find an explicit equational proof
for the commutativity of all J(n)-rings. One may try to explore equational proofs for more families of
conditions sufficient for commutativity, some of which are listed in Pinter-Lucke’s paper [PL07]. One may
further attempt to find equational proofs for odd exponents n, but the loss of the quick observation that
char(R) = 2 significantly complicates matters here. The author would welcome any ideas to expand upon
these attempts further.
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