CM-values of p-adic Θ-functions

Mike Daas

Universiteit Leiden
10th of October, 2023

Universiteit
Leiden

Setting up

Let $\mathrm{D}_{1}, \mathrm{D}_{2}<0$ be coprime discriminants and write $\mathrm{D}=\mathrm{D}_{1} \mathrm{D}_{2}$. Set

$$
\begin{aligned}
K_{1}=\mathbb{Q}\left(\sqrt{D_{1}}\right), \quad K_{2}=\mathbb{Q}\left(\sqrt{D_{2}}\right), \\
F=\mathbb{Q}(\sqrt{D}), \quad L=\mathbb{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right) .
\end{aligned}
$$

Setting up

Let $\mathrm{D}_{1}, \mathrm{D}_{2}<0$ be coprime discriminants and write $\mathrm{D}=\mathrm{D}_{1} \mathrm{D}_{2}$. Set

$$
\begin{aligned}
K_{1} & =\mathbb{Q}\left(\sqrt{D_{1}}\right), \quad K_{2}=\mathbb{Q}\left(\sqrt{D_{2}}\right), \\
F & =\mathbb{Q}(\sqrt{D}), \quad L=\mathbb{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right) .
\end{aligned}
$$

Let χ be the genus character of $L / F:$ if $\mathfrak{p} \subset \mathcal{O}_{F}$ is prime, then

$$
x(\mathfrak{p})= \begin{cases}1 & \text { if } \mathfrak{p} \text { splits in } L / F \\ -1 & \text { if } \mathfrak{p} \text { is inert in } L / F\end{cases}
$$

The formula

Let $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ be an ideal. Define

$$
\begin{aligned}
\rho(\mathrm{I}) & =\#\left\{\mathrm{~J} \subset \mathcal{O}_{\mathrm{L}} \mid \operatorname{Nm}_{\mathrm{F}}^{\mathrm{L}}(\mathrm{~J})=\mathrm{I}\right\} ; \\
\operatorname{sp}(\mathrm{I}) & = \begin{cases}\mathfrak{p} & \text { if } \mathfrak{p} \text { is } \text { unique with } \chi(\mathfrak{p})=-1 \text { and } v_{\mathfrak{p}}(\mathrm{I}) \text { odd } \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Important: $\rho(\mathrm{I})=0$ if and only if I has at least one special prime.

The formula

Let $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ be an ideal. Define

$$
\begin{aligned}
\rho(\mathrm{I}) & =\#\left\{\mathrm{~J} \subset \mathcal{O}_{\mathrm{L}} \mid \operatorname{Nm}_{\mathrm{F}}^{\mathrm{L}}(\mathrm{~J})=\mathrm{I}\right\} ; \\
\operatorname{sp}(\mathrm{I}) & = \begin{cases}\mathfrak{p} & \text { if } \mathfrak{p} \text { is } \text { unique with } \chi(\mathfrak{p})=-1 \text { and } v_{\mathfrak{p}}(\mathrm{I}) \text { odd; } \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Important: $\rho(\mathrm{I})=0$ if and only if I has at least one special prime. Let E_{1} be an elliptic curve with $C M$ by \mathcal{O}_{1} and E_{2} an elliptic curve with $C M$ by \mathcal{O}_{2}. Then by $C M$ theory, $j\left(E_{i}\right) \in H_{i}$ for $i=1,2$, where H_{i} is the Hilbert class field of K_{i}. For simplicity, assume $D_{i} \neq-3,-4$.

The formula

Let $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ be an ideal. Define

$$
\begin{aligned}
\rho(\mathrm{I}) & =\#\left\{\mathrm{~J} \subset \mathcal{O}_{\mathrm{L}} \mid \operatorname{Nm}_{\mathrm{F}}^{\mathrm{L}}(\mathrm{~J})=\mathrm{I}\right\} ; \\
\operatorname{sp}(\mathrm{I}) & = \begin{cases}\mathfrak{p} & \text { if } \mathfrak{p} \text { is } \text { unique with } \chi(\mathfrak{p})=-1 \text { and } v_{\mathfrak{p}}(\mathrm{I}) \text { odd } \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Important: $\rho(\mathrm{I})=0$ if and only if I has at least one special prime.
Let E_{1} be an elliptic curve with $C M$ by \mathcal{O}_{1} and E_{2} an elliptic curve with $C M$ by \mathcal{O}_{2}. Then by CM theory, $\mathfrak{j}\left(E_{i}\right) \in H_{i}$ for $i=1,2$, where H_{i} is the Hilbert class field of K_{i}. For simplicity, assume $D_{i} \neq-3,-4$.

Theorem (Gross-Zagier, 1984)

Setting $\alpha=v \sqrt{D}$ and $\mathcal{D}_{\mathrm{F}}=(\sqrt{\mathrm{D}})$, the following equality holds:

$$
\log \mathrm{Nm}_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+} \\ \operatorname{tr}(v)=1}} \rho(\operatorname{sp}(\alpha) \alpha)\left(v_{\operatorname{sp}(\alpha)}(\alpha)+1\right) \log \operatorname{Nm}(\operatorname{sp}(\alpha))
$$

Example

Let $D_{1}=-7$ and $D_{2}=-19$. Then

$$
\begin{aligned}
& E_{1}: y^{2}+x y=x^{3}-x^{2}-2 x-1, \quad \mathfrak{j}\left(E_{1}\right)=-3^{3} 5^{3} ; \\
& E_{2}: y^{2}+y=x^{3}-38 x+90, \quad \mathfrak{j}\left(E_{2}\right)=-2^{15} 3^{3} .
\end{aligned}
$$

Example

Let $D_{1}=-7$ and $D_{2}=-19$. Then

$$
\begin{aligned}
& E_{1}: y^{2}+x y=x^{3}-x^{2}-2 x-1, \quad j\left(E_{1}\right)=-3^{3} 5^{3} ; \\
& E_{2}: y^{2}+y=x^{3}-38 x+90, \quad j\left(E_{2}\right)=-2^{15} 3^{3} .
\end{aligned}
$$

If $v \in \mathcal{D}_{F}^{-1,+}$ and $\operatorname{tr}(v)=1$, then

$$
\alpha=v \sqrt{D}=\frac{x+\sqrt{D}}{2}, \quad \text { where } x^{2}<D=133 \text { and } x \text { is odd. }
$$

Example

Let $D_{1}=-7$ and $D_{2}=-19$. Then

$$
\begin{aligned}
& E_{1}: y^{2}+x y=x^{3}-x^{2}-2 x-1, \quad j\left(E_{1}\right)=-3^{3} 5^{3} ; \\
& E_{2}: y^{2}+y=x^{3}-38 x+90, \quad j\left(E_{2}\right)=-2^{15} 3^{3} .
\end{aligned}
$$

If $v \in \mathcal{D}_{\mathrm{F}}^{-1,+}$ and $\operatorname{tr}(v)=1$, then

$$
\alpha=v \sqrt{D}=\frac{x+\sqrt{D}}{2}, \quad \text { where } x^{2}<D=133 \text { and } x \text { is odd. }
$$

x	± 1	± 3	± 5	± 7	± 9	± 11
$\left(\mathrm{D}-\mathrm{x}^{2}\right) / 4$	$3 \cdot 11$	31	3^{3}	$3 \cdot 7$	13	3
$\operatorname{sp}(\alpha)$	3	31	3	3	13	3
$\left(v_{\operatorname{sp}(\alpha)}(\alpha)+1\right) / 2$	1	1	2	1	1	1
$\rho(\operatorname{sp}(\alpha) \alpha)$	2	1	1	2	1	1

Example

Let $D_{1}=-7$ and $D_{2}=-19$. Then

$$
\begin{aligned}
& E_{1}: y^{2}+x y=x^{3}-x^{2}-2 x-1, \quad j\left(E_{1}\right)=-3^{3} 5^{3} ; \\
& E_{2}: y^{2}+y=x^{3}-38 x+90, \quad j\left(E_{2}\right)=-2^{15} 3^{3} .
\end{aligned}
$$

If $v \in \mathcal{D}_{\mathrm{F}}^{-1,+}$ and $\operatorname{tr}(v)=1$, then

$$
\alpha=v \sqrt{D}=\frac{x+\sqrt{D}}{2}, \quad \text { where } x^{2}<D=133 \text { and } x \text { is odd. }
$$

x	± 1	± 3	± 5	± 7	± 9	± 11
$\left(\mathrm{D}-\mathrm{x}^{2}\right) / 4$	$3 \cdot 11$	31	3^{3}	$3 \cdot 7$	13	3
$\operatorname{sp}(\alpha)$	3	31	3	3	13	3
$\left(v_{\operatorname{sp}(\alpha)}(\alpha)+1\right) / 2$	1	1	2	1	1	1
$\rho(\operatorname{sp}(\alpha) \alpha)$	2	1	1	2	1	1

Let's check:

$$
\mathfrak{j}\left(E_{1}\right)-\mathfrak{j}\left(E_{2}\right)=-3^{3} 5^{3}+2^{15} 3^{3}=881361
$$

Example

Let $D_{1}=-7$ and $D_{2}=-19$. Then

$$
\begin{aligned}
& E_{1}: y^{2}+x y=x^{3}-x^{2}-2 x-1, \quad j\left(E_{1}\right)=-3^{3} 5^{3} ; \\
& E_{2}: y^{2}+y=x^{3}-38 x+90, \quad j\left(E_{2}\right)=-2^{15} 3^{3} .
\end{aligned}
$$

If $v \in \mathcal{D}_{\mathrm{F}}^{-1,+}$ and $\operatorname{tr}(v)=1$, then

$$
\alpha=v \sqrt{D}=\frac{x+\sqrt{D}}{2}, \quad \text { where } x^{2}<D=133 \text { and } x \text { is odd. }
$$

x	± 1	± 3	± 5	± 7	± 9	± 11
$\left(\mathrm{D}-\mathrm{x}^{2}\right) / 4$	$3 \cdot 11$	31	3^{3}	$3 \cdot 7$	13	3
$\operatorname{sp}(\alpha)$	3	31	3	3	13	3
$\left(v_{\operatorname{sp}(\alpha)}(\alpha)+1\right) / 2$	1	1	2	1	1	1
$\rho(\operatorname{sp}(\alpha) \alpha)$	2	1	1	2	1	1

Let's check:

$$
\mathfrak{j}\left(E_{1}\right)-\mathfrak{j}\left(E_{2}\right)=-3^{3} 5^{3}+2^{15} 3^{3}=881361=3^{7} \cdot 13 \cdot 31 .
$$

Zagier's proof

First step is to rewrite the task at hand to proving

$$
\log N m_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \\ \operatorname{tr}(v)=1}} \chi(I) \log N m(I) .
$$

Zagier's proof

First step is to rewrite the task at hand to proving

$$
\log N m_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \\ \operatorname{tr}(v)=1}} \chi(I) \log N m(I) .
$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$
\mathrm{E}_{\mathrm{k}, \mathrm{X}}(z, z)=\text { const }+\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+} \\ \operatorname{tr}(v)=\mathrm{n}}}\left(\sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \mathrm{Nm}(\mathrm{I})^{\mathrm{k}-1}\right) q^{n} .
$$

Zagier's proof

First step is to rewrite the task at hand to proving

$$
\log \mathrm{Nm}_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,++} \\ \operatorname{tr}(v)=1}} \sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \log \mathrm{Nm}(\mathrm{I}) .
$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$
\mathrm{E}_{\mathrm{k}, \mathrm{X}}(z, z)=\text { const }+\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+} \\ \operatorname{tr}(v)=\mathrm{n}}}\left(\sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \mathrm{Nm}(\mathrm{I})^{\mathrm{k}-1}\right) q^{n} .
$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;

Zagier's proof

First step is to rewrite the task at hand to proving

$$
\log \mathrm{Nm}_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,++} \\ \operatorname{tr}(v)=1}} \sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \log \mathrm{Nm}(\mathrm{I}) .
$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$
\mathrm{E}_{\mathrm{k}, \mathrm{X}}(z, z)=\text { const }+\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+} \\ \operatorname{tr}(v)=\mathrm{n}}}\left(\sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \mathrm{Nm}(\mathrm{I})^{\mathrm{k}-1}\right) q^{n} .
$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;
- Take its derivative and evaluate at $s=0$;

Zagier's proof

First step is to rewrite the task at hand to proving

$$
\log \mathrm{Nm}_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,++} \\ \operatorname{tr}(v)=1}} \sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \log \mathrm{Nm}(\mathrm{I}) .
$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$
\mathrm{E}_{\mathrm{k}, \mathrm{X}}(z, z)=\text { const }+\sum_{\substack{v \in \mathcal{D}_{F}^{-1,+} \\ \operatorname{tr}(v)=\mathrm{n}}}\left(\sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \mathrm{Nm}(\mathrm{I})^{\mathrm{k}-1}\right) q^{n} .
$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;
- Take its derivative and evaluate at $s=0$;
- Apply a so-called holomorphic projection.

This must be in $\mathrm{M}_{2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=0$.

Zagier's proof

First step is to rewrite the task at hand to proving

$$
\log N m_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(\mathfrak{j}\left(\mathrm{E}_{1}\right)-\mathfrak{j}\left(\mathrm{E}_{2}\right)\right)=\sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \\ \operatorname{tr}(v)=1}} \chi(I) \log \mathrm{Nm}(I) .
$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$
\mathrm{E}_{k, \chi}(z, z)=\text { const }+\sum_{\substack{v \in \mathcal{D}_{F}^{-1,+} \\ \operatorname{tr}(v)=n}}\left(\sum_{\mathrm{I} \mid(v) \mathcal{D}_{\mathrm{F}}} \chi(\mathrm{I}) \mathrm{Nm}(\mathrm{I})^{\mathrm{k}-1}\right) q^{n} .
$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;
- Take its derivative and evaluate at $s=0$;
- Apply a so-called holomorphic projection.

This must be in $M_{2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=0$. The explicit formula for its Fourier coefficients involves two terms, one for each side \Longrightarrow equal. Hard.

What is the j-function really?

Consider $\mathrm{M}_{2}(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

$$
M_{2}(\mathbb{Z}) \subset M_{2}(\mathbb{Q}) .
$$

Its units of norm 1 are precisely

$$
\mathrm{SL}_{2}(\mathbb{Z}) \subset \mathrm{M}_{2}(\mathbb{Z})
$$

What is the j-function really?

Consider $\mathrm{M}_{2}(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

$$
M_{2}(\mathbb{Z}) \subset M_{2}(\mathbb{Q}) .
$$

Its units of norm 1 are precisely

$$
\mathrm{SL}_{2}(\mathbb{Z}) \subset \mathrm{M}_{2}(\mathbb{Z})
$$

Since $M_{2}(\mathbb{Q})$ acts on \mathbb{C}, we may consider the quotient

$$
\mathrm{Y}_{1}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}
$$

Its function field is generated by the j-function.

What is the j-function really?

Consider $\mathrm{M}_{2}(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

$$
M_{2}(\mathbb{Z}) \subset M_{2}(\mathbb{Q})
$$

Its units of norm 1 are precisely

$$
\mathrm{SL}_{2}(\mathbb{Z}) \subset \mathrm{M}_{2}(\mathbb{Z})
$$

Since $M_{2}(\mathbb{Q})$ acts on \mathbb{C}, we may consider the quotient

$$
\mathrm{Y}_{1}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}
$$

Its function field is generated by the j-function.

Question

What happens if we change $M_{2}(\mathbb{Q})$ to a different quaternion algebra?

Shimura curves

Choose two primes $p \neq q$ and let $N=p q$. Let B_{N} denote the quaternion algebra ramified at p and q. Let R_{N} be a maximal order and let $R_{N, 1}^{\times}$denote the subgroup of units of norm 1. We may choose an embedding $\mathrm{R}_{\mathrm{N}, 1}^{\times} \rightarrow \mathrm{M}_{2}(\mathbb{R})$ to form the quotient

$$
\mathrm{X}_{\mathrm{N}}(\mathbb{C})=\mathrm{R}_{\mathrm{N}, 1}^{\times} \backslash \mathcal{H} ;
$$

this is known as a Shimura curve, which is an algebraic curve $/ \mathbb{Q}$.

Shimura curves

Choose two primes $p \neq q$ and let $N=p q$. Let B_{N} denote the quaternion algebra ramified at p and q. Let R_{N} be a maximal order and let $R_{N, 1}^{\times}$denote the subgroup of units of norm 1. We may choose an embedding $\mathrm{R}_{\mathrm{N}, 1}^{\times} \rightarrow \mathrm{M}_{2}(\mathbb{R})$ to form the quotient

$$
\mathrm{X}_{\mathrm{N}}(\mathbb{C})=\mathrm{R}_{\mathrm{N}, 1}^{\times} \backslash \mathcal{H} ;
$$

this is known as a Shimura curve, which is an algebraic curve $/ \mathbb{Q}$.

Proposition

The Shimura curve X_{N} is of genus 0 if and only if $N \in\{6,10,22\}$.
Suppose henceforth that we are in one of these cases. Then there exists a generator $\mathfrak{j}_{\mathrm{N}}$ of the function field. Note this choice is not unique.

Shimura curves

Choose two primes $p \neq q$ and let $N=p q$. Let B_{N} denote the quaternion algebra ramified at p and q. Let R_{N} be a maximal order and let $R_{N, 1}^{\times}$denote the subgroup of units of norm 1. We may choose an embedding $\mathrm{R}_{\mathrm{N}, 1}^{\times} \rightarrow \mathrm{M}_{2}(\mathbb{R})$ to form the quotient

$$
\mathrm{X}_{\mathrm{N}}(\mathbb{C})=\mathrm{R}_{\mathrm{N}, 1}^{\times} \backslash \mathcal{H} ;
$$

this is known as a Shimura curve, which is an algebraic curve $/ \mathbb{Q}$.

Proposition

The Shimura curve X_{N} is of genus 0 if and only if $N \in\{6,10,22\}$.
Suppose henceforth that we are in one of these cases. Then there exists a generator j_{N} of the function field. Note this choice is not unique. Let $\tau_{1}, \tau_{2} \in \mathcal{H}$ be CM points: fixed points in \mathbb{C} of embeddings $\mathcal{O}_{i} \rightarrow R_{N}$. These exist when p and q are inert in both K_{i}. We want to study

$$
\operatorname{Nm}\left(j_{N}\left(\tau_{1}\right)-j_{N}\left(\tau_{2}\right)\right)
$$

They are algebraic by Shimura reciprocity.

Cerednik-Drinfeld

Let B_{q} denote the quaternion algebra ramified at q and ∞. Let R_{q} be a maximal order. Now B_{q} is definite, so consider the group

$$
\Gamma_{\mathrm{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times}
$$

of units of norm 1 .

Cerednik-Drinfeld

Let B_{q} denote the quaternion algebra ramified at q and ∞. Let R_{q} be a maximal order. Now B_{q} is definite, so consider the group

$$
\Gamma_{\mathrm{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times}
$$

of units of norm 1. Since B_{q} is split at p, it embeds into $M_{2}\left(\mathbb{Q}_{p}\right)$ and as such, we can take the quotient

$$
\Gamma_{q}^{p} \backslash \mathcal{H}_{p},
$$

where $\mathcal{H}_{p}=\mathrm{P}^{1}\left(\mathbb{C}_{\mathrm{p}}\right) \backslash \mathrm{P}^{1}\left(\mathbb{Q}_{\mathrm{p}}\right)$ is the p-adic upper half plane.

Cerednik-Drinfeld

Let B_{q} denote the quaternion algebra ramified at q and ∞. Let R_{q} be a maximal order. Now B_{q} is definite, so consider the group

$$
\Gamma_{\mathrm{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times}
$$

of units of norm 1. Since B_{q} is split at p, it embeds into $M_{2}\left(\mathbb{Q}_{p}\right)$ and as such, we can take the quotient

$$
\Gamma_{q}^{p} \backslash \mathcal{H}_{p},
$$

where $\mathcal{H}_{p}=\mathrm{P}^{1}\left(\mathbb{C}_{\mathrm{p}}\right) \backslash \mathrm{P}^{1}\left(\mathbb{Q}_{\mathrm{p}}\right)$ is the p-adic upper half plane.

Theorem (Cerednik-Drinfeld)

The quotient $\Gamma_{q}^{p} \backslash \mathcal{H}_{p}$ is as rigid p-adic space isomorphic to $X_{N}\left(\mathbb{C}_{p}\right)$.

Cerednik-Drinfeld

Let B_{q} denote the quaternion algebra ramified at q and ∞. Let R_{q} be a maximal order. Now B_{q} is definite, so consider the group

$$
\Gamma_{\mathbf{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times}
$$

of units of norm 1 . Since B_{q} is split at p, it embeds into $M_{2}\left(\mathbb{Q}_{p}\right)$ and as such, we can take the quotient

$$
\Gamma_{q}^{p} \backslash \mathcal{H}_{p},
$$

where $\mathcal{H}_{p}=\mathrm{P}^{1}\left(\mathbb{C}_{\mathrm{p}}\right) \backslash \mathrm{P}^{1}\left(\mathbb{Q}_{\mathrm{p}}\right)$ is the p-adic upper half plane.

Theorem (Cerednik-Drinfeld)

The quotient $\Gamma_{q}^{p} \backslash \mathcal{H}_{p}$ is as rigid p-adic space isomorphic to $X_{N}\left(\mathbb{C}_{p}\right)$.

Question

Which functions on $\Gamma_{q}^{p} \backslash \mathcal{H}_{p}$ correspond to j_{N} on the other side?

Theta functions

Let $w_{1}, w_{2} \in \mathcal{H}_{p}$. Then consider the expression

$$
\Theta\left(w_{1}, w_{2} ; z\right)=\prod_{\gamma \in \Gamma_{q}^{p}} \frac{z-\gamma w_{1}}{z-\gamma w_{2}} .
$$

If $N \in\{6,10,22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_{q}^{p} \backslash \mathcal{H}_{p}$ with divisor $\left[w_{1}\right]-\left[w_{2}\right]$.

Theta functions

Let $w_{1}, w_{2} \in \mathcal{H}_{p}$. Then consider the expression

$$
\Theta\left(w_{1}, w_{2} ; z\right)=\prod_{\gamma \in \Gamma_{q}^{p}} \frac{z-\gamma w_{1}}{z-\gamma w_{2}} .
$$

If $N \in\{6,10,22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_{\mathrm{q}}^{\mathrm{p}} \backslash \mathcal{H}_{\mathrm{p}}$ with divisor $\left[w_{1}\right]-\left[w_{2}\right]$. We obtain

$$
\Theta\left(w_{1}, w_{2} ; z\right)=c\left(w_{1}, w_{2}\right) \cdot \frac{\mathfrak{j}_{\mathrm{N}}(z)-\mathfrak{j}_{\mathrm{N}}\left(w_{1}\right)}{\mathfrak{j}_{\mathrm{N}}(z)-\mathfrak{j}_{\mathrm{N}}\left(w_{2}\right)}, \text { for some } \mathrm{c}\left(w_{1}, w_{2}\right) \in \mathbb{C}_{p}
$$

Theta functions

Let $w_{1}, w_{2} \in \mathcal{H}_{p}$. Then consider the expression

$$
\Theta\left(w_{1}, w_{2} ; z\right)=\prod_{\gamma \in \Gamma_{q}^{p}} \frac{z-\gamma w_{1}}{z-\gamma w_{2}} .
$$

If $N \in\{6,10,22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_{\mathrm{q}}^{\mathrm{p}} \backslash \mathcal{H}_{\mathrm{p}}$ with divisor $\left[w_{1}\right]-\left[w_{2}\right]$. We obtain

$$
\Theta\left(w_{1}, w_{2} ; z\right)=c\left(w_{1}, w_{2}\right) \cdot \frac{\mathfrak{j}_{\mathrm{N}}(z)-\mathfrak{j}_{\mathrm{N}}\left(w_{1}\right)}{\mathfrak{j}_{\mathrm{N}}(z)-\mathfrak{j}_{\mathrm{N}}\left(w_{2}\right)}, \text { for some } \mathrm{c}\left(w_{1}, w_{2}\right) \in \mathbb{C}_{p}
$$

Now choose $w_{1}=\tau_{1}$ and $w_{2}=\tau_{1}^{\prime}$; its Galois conjugate. Because we don't know $c\left(\tau_{1}, \tau_{1}^{\prime}\right)$, we opt to study instead

$$
\frac{\mathfrak{j}_{N}\left(\tau_{2}\right)-\mathfrak{j}_{N}\left(\tau_{1}\right) \mathfrak{j}_{N}\left(\tau_{2}^{\prime}\right)-\mathfrak{j}_{N}\left(\tau_{1}^{\prime}\right)}{\mathfrak{j}_{N}\left(\tau_{2}\right)-\mathfrak{j}_{N}\left(\tau_{1}^{\prime}\right)} \frac{j_{N}\left(\tau_{2}^{\prime}\right)-\mathfrak{j}_{N}\left(\tau_{1}\right)}{}=\prod_{\gamma \in \Gamma_{9}^{p}} \frac{\tau_{2}-\gamma \tau_{1}}{\tau_{2}-\gamma \tau_{1}^{\prime}} \frac{\tau_{2}^{\prime}-\gamma \tau_{1}^{\prime}}{\tau_{2}^{\prime}-\gamma \tau_{1}} .
$$

The conjecture

One can p-adically approximate the quantity

$$
J_{\mathbf{q}}^{\mathrm{p}}\left(\tau_{1}, \tau_{2}\right):=\prod_{\gamma \in \Gamma_{\mathfrak{q}}^{p}} \frac{\tau_{2}-\gamma \tau_{1}}{\tau_{2}-\gamma \tau_{1}^{\prime}} \frac{\tau_{2}^{\prime}-\gamma \tau_{1}^{\prime}}{\tau_{2}^{\prime}-\gamma \tau_{1}}
$$

and recognise it as an algebraic number.

The conjecture

One can p-adically approximate the quantity

$$
J_{\mathbf{q}}^{\mathrm{p}}\left(\tau_{1}, \tau_{2}\right):=\prod_{\gamma \in \Gamma_{\mathfrak{q}}^{p}} \frac{\tau_{2}-\gamma \tau_{1}}{\tau_{2}-\gamma \tau_{1}^{\prime}} \frac{\tau_{2}^{\prime}-\gamma \tau_{1}^{\prime}}{\tau_{2}^{\prime}-\gamma \tau_{1}}
$$

and recognise it as an algebraic number.
There are four ideals \mathfrak{a} of norm $\mathrm{N}=\mathrm{pq}$ in \mathcal{O}_{F}; they come in two $\operatorname{Gal}(\mathrm{F} / \mathbb{Q})$ orbits. Assign one orbit $\delta(\mathfrak{a})=+1$, the other $\delta(\mathfrak{a})=-1$.

The conjecture

One can p-adically approximate the quantity

$$
J_{\mathfrak{q}}^{\mathrm{p}}\left(\tau_{1}, \tau_{2}\right):=\prod_{\gamma \in \Gamma_{\mathfrak{q}}^{p}} \frac{\tau_{2}-\gamma \tau_{1}}{\tau_{2}-\gamma \tau_{1}^{\prime}} \frac{\tau_{2}^{\prime}-\gamma \tau_{1}^{\prime}}{\tau_{2}^{\prime}-\gamma \tau_{1}}
$$

and recognise it as an algebraic number.
There are four ideals \mathfrak{a} of norm $\mathrm{N}=\mathrm{pq}$ in \mathcal{O}_{F}; they come in two $\operatorname{Gal}(\mathrm{F} / \mathrm{Q})$ orbits. Assign one orbit $\delta(\mathfrak{a})=+1$, the other $\delta(\mathfrak{a})=-1$.

Conjecture (Giampietro, Darmon)

The expression

$$
\log N m_{\mathbb{Q}}^{\mathrm{H}_{1} \mathrm{H}_{2}} J_{\mathrm{q}}^{\mathrm{p}}\left(\tau_{1}, \tau_{2}\right)
$$

is up to sign explicitly equal to
$\sum_{N m(\mathfrak{a})=N} \delta(\mathfrak{a}) \sum_{\substack{v \in \mathcal{D}^{-1,+} \\ \operatorname{tr}(v)=1}} \rho\left(\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right) \alpha \mathfrak{a}^{-1}\right)\left(v_{\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right)}\left(\alpha \mathfrak{a}^{-1}\right)+1\right) \log \operatorname{Nm}\left(\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right)\right)$.

Intermezzo: rewriting the theta-series

Let τ_{i} be defined by an embedding $\alpha_{i}: \mathcal{O}_{i} \rightarrow R_{q}$ for $i=1,2$. This yields actions of the \mathcal{O}_{i} on B_{q}, and as such, an action of L through

$$
\mathcal{O}_{\mathrm{L}} \cong \mathcal{O}_{1} \otimes_{\mathbb{Z}} \mathcal{O}_{2}:(\mathrm{x} \otimes \mathrm{y}) * \mathrm{~b}=\alpha_{1}(\mathrm{x}) \mathrm{b} \alpha_{2}(\mathrm{y}) .
$$

Intermezzo: rewriting the theta-series

Let τ_{i} be defined by an embedding $\alpha_{i}: \mathcal{O}_{i} \rightarrow R_{q}$ for $i=1,2$. This yields actions of the \mathcal{O}_{i} on B_{q}, and as such, an action of L through

$$
\mathcal{O}_{\mathrm{L}} \cong \mathcal{O}_{1} \otimes_{\mathbb{Z}} \mathcal{O}_{2}:(\mathrm{x} \otimes \mathrm{y}) * \mathrm{~b}=\alpha_{1}(\mathrm{x}) \mathrm{b} \alpha_{2}(\mathrm{y}) .
$$

Since $[\mathrm{L}: \mathbb{Q}]=\left[\mathrm{B}_{\mathrm{q}}: \mathbb{Q}\right]=4$, so $\left[\mathrm{B}_{\mathrm{q}}: \mathrm{L}\right]=1$.

Intermezzo: rewriting the theta-series

Let τ_{i} be defined by an embedding $\alpha_{i}: \mathcal{O}_{i} \rightarrow R_{q}$ for $i=1,2$. This yields actions of the \mathcal{O}_{i} on B_{q}, and as such, an action of L through

$$
\mathcal{O}_{\mathrm{L}} \cong \mathcal{O}_{1} \otimes_{\mathbb{Z}} \mathcal{O}_{2}:(\mathrm{x} \otimes \mathrm{y}) * \mathrm{~b}=\alpha_{1}(\mathrm{x}) \mathrm{b} \alpha_{2}(\mathrm{y})
$$

Since $[\mathrm{L}: \mathbb{Q}]=\left[\mathrm{B}_{\mathrm{q}}: \mathbb{Q}\right]=4$, so $\left[\mathrm{B}_{\mathrm{q}}: \mathrm{L}\right]=1$.

Proposition

There exists a unique F -linear quadratic form $\operatorname{det}_{\mathrm{F}}: \mathrm{B}_{\mathrm{q}} \rightarrow \mathrm{F}$ with the property that $\operatorname{tr}_{F / \mathbb{Q}}\left(\operatorname{det}_{\mathrm{F}}(\mathrm{b})\right)=\mathrm{Nm}(\mathrm{b})$.

Intermezzo: rewriting the theta-series

Let τ_{i} be defined by an embedding $\alpha_{i}: \mathcal{O}_{i} \rightarrow R_{q}$ for $i=1,2$. This yields actions of the \mathcal{O}_{i} on B_{q}, and as such, an action of L through

$$
\mathcal{O}_{\mathrm{L}} \cong \mathcal{O}_{1} \otimes_{\mathbb{Z}} \mathcal{O}_{2}:(x \otimes y) * b=\alpha_{1}(x) b \alpha_{2}(y)
$$

Since $[\mathrm{L}: \mathbb{Q}]=\left[\mathrm{B}_{\mathrm{q}}: \mathbb{Q}\right]=4$, so $\left[\mathrm{B}_{\mathrm{q}}: \mathrm{L}\right]=1$.

Proposition

There exists a unique F -linear quadratic form $\operatorname{det}_{\mathrm{F}}: \mathrm{B}_{\mathrm{q}} \rightarrow \mathrm{F}$ with the property that $\operatorname{tr}_{F / \mathbb{Q}}\left(\operatorname{det}_{F}(b)\right)=N m(b)$.

It satisfies

$$
\frac{\tau_{2}-b \tau_{1}}{\tau_{2}-b \tau_{1}^{\prime}} \frac{\tau_{2}^{\prime}-b \tau_{1}^{\prime}}{\tau_{2}^{\prime}-b \tau_{1}}=\frac{\operatorname{det}_{\mathrm{F}}(\mathrm{~b})}{\operatorname{det}_{\mathrm{F}}^{\prime}(\mathrm{b})}
$$

As such,

$$
\frac{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}\right)}{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}^{\prime}\right)}=\prod_{b \in \Gamma_{\mathrm{q}}^{p}} \frac{\operatorname{det}_{\mathrm{F}}(\mathrm{~b})}{\operatorname{det}_{\mathrm{F}}^{\prime}(b)}
$$

From quaternions to ideals

Let $\iota: B \rightarrow L$ be an isomorphism of L-vector spaces. For $b \in B_{q}$, define the ideal

$$
\mathrm{I}_{\mathrm{b}}=\mathrm{l}(\mathrm{~b}) / \mathrm{l}\left(\mathrm{R}_{\mathrm{q}}\right) .
$$

From quaternions to ideals

Let $\iota: B \rightarrow L$ be an isomorphism of L-vector spaces. For $b \in B_{q}$, define the ideal

$$
\mathrm{I}_{\mathrm{b}}=\mathrm{l}(\mathrm{~b}) / \iota\left(\mathrm{R}_{\mathrm{q}}\right)
$$

Proposition

Ranging over all possible pairs of embeddings α_{1}, α_{2}, the association $b \mapsto I_{b}$ establishes a bijection between

$$
\left\{b \in R_{q} /\{ \pm 1\} \mid \operatorname{det}_{F}(b)=v\right\}
$$

and

$$
\left\{\mathrm{I} \subset \mathcal{O}_{\mathrm{L}} \mid \mathrm{Nm}_{\mathrm{L} / \mathrm{F}}(\mathrm{I})=(\mathrm{v}) \mathfrak{q}^{-1} \mathcal{D}_{\mathrm{F}}\right\}
$$

Rewriting the theta series further

Note that we have a correspondence

$$
\Gamma_{\mathbf{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times} \leftrightarrow \lim _{n \rightarrow \infty}\left\{\mathrm{~b} \in \mathrm{R}_{\mathrm{q}} \mid \mathrm{Nm}(\mathrm{~b})=\mathrm{p}^{2 \mathrm{n}}\right\} .
$$

Rewriting the theta series further

Note that we have a correspondence

$$
\Gamma_{\mathbf{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times} \leftrightarrow \lim _{n \rightarrow \infty}\left\{\mathrm{~b} \in \mathrm{R}_{\mathrm{q}} \mid \mathrm{Nm}(\mathrm{~b})=\mathrm{p}^{2 \mathrm{n}}\right\} .
$$

As such,

$$
\begin{aligned}
\frac{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}\right)}{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}^{\prime}\right)} & =\prod_{b \in \Gamma_{\mathrm{q}}^{p}} \frac{\operatorname{det}_{\mathrm{F}}(\mathrm{~b})}{\operatorname{det}_{\mathrm{F}}^{\prime}(\mathrm{b})} \\
& =\lim _{n \rightarrow \infty} \prod_{N m(b)=p^{2 n}} \frac{\operatorname{det}_{\mathrm{F}}(\mathrm{~b})}{\operatorname{det}_{\mathrm{F}}^{\prime}(\mathrm{b})} .
\end{aligned}
$$

Rewriting the theta series further

Note that we have a correspondence

$$
\Gamma_{\mathrm{q}}^{\mathrm{p}}=\mathrm{R}_{\mathrm{q}}[1 / \mathrm{p}]_{1}^{\times} \leftrightarrow \lim _{\mathrm{n} \rightarrow \infty}\left\{\mathrm{~b} \in \mathrm{R}_{\mathrm{q}} \mid \mathrm{Nm}(\mathrm{~b})=\mathrm{p}^{2 \mathrm{n}}\right\} .
$$

As such,

$$
\begin{aligned}
\frac{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}\right)}{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}^{\prime}\right)} & =\prod_{b \in \Gamma_{\mathrm{q}}^{p}} \frac{\operatorname{det}_{\mathrm{F}}(\mathrm{~b})}{\operatorname{det}_{\mathrm{F}}^{\prime}(\mathrm{b})} \\
& =\lim _{n \rightarrow \infty} \prod_{N \mathrm{~b}(\mathrm{~b})=\mathrm{p}^{2 n}} \frac{\operatorname{det}_{\mathrm{F}}(\mathrm{~b})}{\operatorname{det}_{F}^{\prime}(\mathrm{b})} .
\end{aligned}
$$

Taking the logarithm;

$$
\begin{aligned}
\log _{p} \frac{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}\right)}{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}^{\prime}\right)} & =\lim _{n \rightarrow \infty} \sum_{\operatorname{tr}(v)=\mathfrak{p}^{2 n}} \#\left\{b \in R_{q} \mid \operatorname{det}_{F}(b)=v\right\} \log _{p}\left(v / v^{\prime}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{\operatorname{tr}(v)=p^{2 n}} \rho\left((v) \mathfrak{q}^{-1} \mathcal{D}_{F}\right) \log _{p}\left(v / v^{\prime}\right)
\end{aligned}
$$

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1, \chi}$. We wish to do the following three steps:

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, \chi}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .
But writing down explicit families of modular forms is hard. Idea:

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .
But writing down explicit families of modular forms is hard. Idea:
- Consider its associated Galois representation $1 \oplus \chi$;

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .
But writing down explicit families of modular forms is hard. Idea:
- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally $\left(\epsilon^{2}=0\right)$ and explicitly;

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .
But writing down explicit families of modular forms is hard. Idea:
- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally $\left(\epsilon^{2}=0\right)$ and explicitly;
- Argue why these deformations are modular;

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .
But writing down explicit families of modular forms is hard. Idea:
- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally $\left(\epsilon^{2}=0\right)$ and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients a_{v} for all $v \gg 0$;

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $\mathrm{E}_{1, \chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1, x}$;
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0 .
But writing down explicit families of modular forms is hard. Idea:
- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally $\left(\epsilon^{2}=0\right)$ and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients a_{v} for all $v \gg 0$;
- The ϵ-part then yields a meaningful derivative.

Deforming $1 \oplus \chi$

Again let $\rho=1 \oplus \chi$. Write $\tilde{\rho}$ for a deformation of ρ to the $\operatorname{ring} \mathrm{GL}_{2}\left(\mathbb{Q}_{\mathfrak{p}}[\epsilon]\right)$ where $\epsilon^{2}=0$.

Deforming $1 \oplus \chi$

Again let $\rho=1 \oplus \chi$. Write $\tilde{\rho}$ for a deformation of ρ to the $\operatorname{ring} \mathrm{GL}_{2}\left(\mathbb{Q}_{\mathfrak{p}}[\epsilon]\right)$ where $\epsilon^{2}=0$.

Proposition

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}: \mathrm{G}_{\mathrm{F}} \rightarrow \mathbb{Q}_{\mathrm{p}}$ be those functions such that

$$
\tilde{\rho}(\tau)=\left(1+\epsilon\left(\begin{array}{ll}
a(\tau) & b(\tau) \\
c(\tau) & d(\tau)
\end{array}\right)\right) \cdot \rho(\tau)
$$

for all $\tau \in G_{F}$. Then these functions must respectively satisfy

$$
a, d \in \operatorname{Hom}\left(G_{F}, \mathbb{Q}_{p}\right), \quad \text { and } \quad b, c \in H^{1}\left(G_{F}, \mathbb{Q}_{p}(\chi)\right) .
$$

Deforming $1 \oplus \chi$

Again let $\rho=1 \oplus \chi$. Write $\tilde{\rho}$ for a deformation of ρ to the $\operatorname{ring} \mathrm{GL}_{2}\left(\mathbb{Q}_{\mathfrak{p}}[\epsilon]\right)$ where $\epsilon^{2}=0$.

Proposition

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}: \mathrm{G}_{\mathrm{F}} \rightarrow \mathbb{Q}_{\mathrm{p}}$ be those functions such that

$$
\tilde{\rho}(\tau)=\left(1+\epsilon\left(\begin{array}{ll}
a(\tau) & b(\tau) \\
c(\tau) & d(\tau)
\end{array}\right)\right) \cdot \rho(\tau)
$$

for all $\tau \in G_{F}$. Then these functions must respectively satisfy

$$
a, d \in \operatorname{Hom}\left(G_{F}, \mathbb{Q}_{p}\right), \quad \text { and } \quad b, c \in H^{1}\left(G_{F}, \mathbb{Q}_{p}(\chi)\right) .
$$

Note that $\operatorname{dim} \operatorname{Hom}\left(G_{F}, \mathbb{Q}_{p}\right)=1$ spanned by the p-adic cyclotomic character:

$$
\phi_{\mathrm{p}}^{\text {cyc }}: \mathrm{G}_{\mathrm{F}} \rightarrow \operatorname{Gal}\left(\mathrm{~F}\left(\zeta_{\mathrm{p}}^{\infty}\right) / \mathrm{F}\right) \cong \mathbb{Z}_{\mathrm{p}}^{\times} \xrightarrow{\log _{\mathrm{p}}} \mathbb{Q}_{\mathrm{p}}
$$

Images of Frobenius

For simplicity, choose

$$
\tilde{\rho}(\tau)=\left(\begin{array}{cc}
1+\phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon & 0 \\
0 & \chi-\chi \phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon
\end{array}\right) .
$$

Suppose that this deformation is modular. That would yield a morphism $\varphi: \mathbb{T} \rightarrow \mathbb{Q}_{p}[\epsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by adèles of F, but in practice:

Images of Frobenius

For simplicity, choose

$$
\tilde{\rho}(\tau)=\left(\begin{array}{cc}
1+\phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon & 0 \\
0 & \chi-\chi \phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon
\end{array}\right) .
$$

Suppose that this deformation is modular. That would yield a morphism $\varphi: \mathbb{T} \rightarrow \mathbb{Q}_{p}[\epsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by adèles of F , but in practice:

- operators $\mathrm{T}_{\mathrm{I}},\langle\mathrm{I}\rangle$ for all primes $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ prime to p ;

Images of Frobenius

For simplicity, choose

$$
\tilde{\rho}(\tau)=\left(\begin{array}{cc}
1+\phi_{\mathfrak{p}}^{\mathrm{cyc}} \epsilon & 0 \\
0 & \chi-\chi \phi_{\mathfrak{p}}^{\mathrm{cyc}} \epsilon
\end{array}\right) .
$$

Suppose that this deformation is modular. That would yield a morphism $\varphi: \mathbb{T} \rightarrow \mathbb{Q}_{p}[\epsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by adèles of F , but in practice:

- operators $\mathrm{T}_{\mathrm{I}},\langle\mathrm{I}\rangle$ for all primes $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ prime to p ;
- operators U_{π} and $\mathrm{U}_{\pi^{\prime}}$ for all uniformisers π and π^{\prime} at the two places of F above p.

Images of Frobenius

For simplicity, choose

$$
\tilde{\rho}(\tau)=\left(\begin{array}{cc}
1+\phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon & 0 \\
0 & \chi-\chi \phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon
\end{array}\right) .
$$

Suppose that this deformation is modular. That would yield a morphism $\varphi: \mathbb{T} \rightarrow \mathbb{Q}_{\mathrm{p}}[\epsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by adèles of F , but in practice:

- operators $\mathrm{T}_{\mathrm{I}},\langle\mathrm{I}\rangle$ for all primes $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ prime to p ;
- operators U_{π} and $\mathrm{U}_{\pi^{\prime}}$ for all uniformisers π and π^{\prime} at the two places of F above p.
We recover φ from

$$
\varphi\left(\mathrm{T}_{\mathrm{I}}\right)=\operatorname{tr}\left(\tilde{\rho}\left(\text { Frob }_{\mathrm{I}}\right)\right)= \begin{cases}2 & \text { if } \chi(\mathrm{I})=1 \\ 2 \log _{\mathrm{p}}(\operatorname{Nm}(\mathrm{I})) \epsilon & \text { if } \chi(\mathrm{l})=-1\end{cases}
$$

Images of Frobenius

For simplicity, choose

$$
\tilde{\rho}(\tau)=\left(\begin{array}{cc}
1+\phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon & 0 \\
0 & \chi-\chi \phi_{\mathrm{p}}^{\mathrm{cyc}} \epsilon
\end{array}\right) .
$$

Suppose that this deformation is modular. That would yield a morphism $\varphi: \mathbb{T} \rightarrow \mathbb{Q}_{\mathrm{p}}[\epsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by adèles of F , but in practice:

- operators $\mathrm{T}_{\mathrm{I}},\langle\mathrm{I}\rangle$ for all primes $\mathrm{I} \subset \mathcal{O}_{\mathrm{F}}$ prime to p ;
- operators U_{π} and $\mathrm{U}_{\pi^{\prime}}$ for all uniformisers π and π^{\prime} at the two places of F above p.
We recover φ from

$$
\varphi\left(\mathrm{T}_{\mathrm{I}}\right)=\operatorname{tr}\left(\tilde{\rho}\left(\text { Frob }_{\mathrm{I}}\right)\right)= \begin{cases}2 & \text { if } \chi(\mathrm{I})=1 \\ 2 \log _{\mathrm{p}}(\operatorname{Nm}(\mathrm{I})) \epsilon & \text { if } \chi(\mathrm{l})=-1\end{cases}
$$

Further, note that

$$
\varphi(\langle\mathrm{I}\rangle \operatorname{Nm}(\mathrm{I}))=\operatorname{det}\left(\tilde{\rho}\left(\operatorname{Frob}_{\mathrm{I}}\right)\right)=\chi(\mathrm{I}) .
$$

Solving the recursion

Remember the essential recursion relation

$$
\mathrm{T}_{\mathrm{I}^{\mathrm{n}+1}}=\mathrm{T}_{\mathrm{I}^{\mathrm{n}}} \mathrm{~T}_{\mathrm{I}}-\langle\mathrm{I}\rangle \mathrm{Nm}(\mathrm{I}) \mathrm{T}_{\mathrm{I}^{n-1}} .
$$

Solving the recursion

Remember the essential recursion relation

$$
\mathrm{T}_{\mathrm{I}^{n+1}}=\mathrm{T}_{\mathrm{I}^{\mathrm{n}}} \mathrm{~T}_{\mathrm{I}}-\langle\mathrm{I}\rangle \operatorname{Nm}(\mathrm{I}) \mathrm{T}_{\mathrm{I}^{n-1}} .
$$

We can solve this in each case explicitly:

$$
\varphi\left(T_{I^{n}}\right)= \begin{cases}n+1 & \text { if } \chi(\mathrm{l})=1 ; \\ (\mathrm{n}+1) \log _{p}(\operatorname{Nm}(\mathrm{l})) \epsilon & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is odd; } \\ 1 & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is even. }\end{cases}
$$

Solving the recursion

Remember the essential recursion relation

$$
\mathrm{T}_{\mathrm{I}^{n+1}}=\mathrm{T}_{\mathrm{I}^{\mathrm{n}}} \mathrm{~T}_{\mathrm{I}}-\langle\mathrm{I}\rangle \operatorname{Nm}(\mathrm{I}) \mathrm{T}_{\mathrm{I}^{n-1}} .
$$

We can solve this in each case explicitly:

$$
\varphi\left(T_{I^{n}}\right)= \begin{cases}n+1 & \text { if } \chi(\mathrm{l})=1 ; \\ (\mathrm{n}+1) \log _{\mathrm{p}}(\operatorname{Nm}(\mathrm{l})) \epsilon & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is odd; } \\ 1 & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is even. }\end{cases}
$$

Compare this to

$$
\sum_{\mathrm{I}| |^{n}} \chi(\mathrm{I})=\rho\left(\mathrm{I}^{\mathrm{n}}\right)= \begin{cases}n+1 & \text { if } \chi(\mathrm{I})=1 \\ 0 & \text { if } \chi(\mathrm{I})=-1 \text { and } n \text { is odd } \\ 1 & \text { if } \chi(\mathrm{I})=-1 \text { and } n \text { is even. }\end{cases}
$$

Unifying expressions

So we have

$$
\varphi\left(T_{I^{n}}\right)= \begin{cases}n+1 & \text { if } \chi(\mathrm{l})=1 ; \\ (\mathrm{n}+1) \log _{\mathrm{p}}(\operatorname{Nm}(\mathrm{l})) \epsilon & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is odd; } \\ 1 & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is even. }\end{cases}
$$

The integral parts are precisely $\rho\left(I^{n}\right)$. We can thus write

$$
\varphi\left(T_{I^{n}}\right)=\rho\left(l^{n}\right)+\frac{1}{2}(n+1)\left(1-\chi\left(r^{n}\right)\right) \log _{p}(\operatorname{Nm}(\mathrm{l})) \epsilon .
$$

Unifying expressions

So we have

$$
\varphi\left(T_{l^{n}}\right)= \begin{cases}n+1 & \text { if } \chi(\mathrm{l})=1 ; \\ (n+1) \log _{p}(\operatorname{Nm}(\mathrm{l})) \epsilon & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is odd; } \\ 1 & \text { if } \chi(\mathrm{l})=-1 \text { and } n \text { is even. }\end{cases}
$$

The integral parts are precisely $\rho\left(\mathrm{I}^{\mathrm{n}}\right)$. We can thus write

$$
\varphi\left(T_{I^{n}}\right)=\rho\left(l^{n}\right)+\frac{1}{2}(n+1)\left(1-\chi\left(r^{n}\right)\right) \log _{p}(\operatorname{Nm}(\mathrm{l})) \epsilon .
$$

Let $\mathrm{J} \subset \mathcal{O}_{\mathrm{F}}$ be any ideal coprime to p. Then

$$
\varphi\left(T_{J}\right)=\rho(J)+\frac{1}{2} \sum_{I^{n} \| J}\left((n+1)\left(1-\chi\left(I^{n}\right)\right) \rho\left(J / \mathrm{I}^{n}\right)\right) \log _{p}(\operatorname{Nm}(\mathrm{I})) \epsilon .
$$

The Magic Moment

$$
\varphi\left(T_{J}\right)=\rho(J)+\frac{1}{2} \sum_{I^{n} \| J}\left((n+1)\left(1-\chi\left(\mathrm{I}^{\mathrm{n}}\right)\right) \rho\left(\mathrm{J} / \mathrm{I}^{\mathrm{n}}\right)\right) \log _{\mathrm{p}}(\mathrm{Nm}(\mathrm{l})) \epsilon .
$$

The Magic Moment

$$
\varphi\left(\mathrm{T}_{\mathrm{J}}\right)=\rho(\mathrm{J})+\frac{1}{2} \sum_{\mathrm{I}^{\mathrm{n}} \| \mathrm{J}}\left((\mathrm{n}+1)\left(1-\chi\left(\mathrm{I}^{\mathrm{n}}\right)\right) \rho\left(\mathrm{J} / \mathrm{I}^{\mathrm{n}}\right)\right) \log _{p}(\operatorname{Nm}(\mathrm{I})) \epsilon .
$$

Proposition

If J is a primitive ideal coprime to p, then the quantity

$$
\frac{1}{2} \sum_{I^{n} \| J}\left((n+1)\left(1-\chi\left(I^{n}\right)\right) \rho\left(J / I^{n}\right)\right) \log _{p}(N m(I))
$$

is equal to

$$
\rho(\operatorname{sp}(J) J)\left(v_{\operatorname{sp}(J)}(J)+1\right) \log _{p} \operatorname{Nm}(\operatorname{sp}(J)) .
$$

The Magic Moment

$$
\varphi\left(T_{J}\right)=\rho(\mathrm{J})+\frac{1}{2} \sum_{\mathrm{I}^{\mathrm{n}} \| \mathrm{J}}\left((\mathrm{n}+1)\left(1-\chi\left(\mathrm{I}^{\mathrm{n}}\right)\right) \rho\left(\mathrm{J} / \mathrm{I}^{\mathrm{n}}\right)\right) \log _{p}(\operatorname{Nm}(\mathrm{I})) \epsilon .
$$

Proposition

If J is a primitive ideal coprime to p, then the quantity

$$
\frac{1}{2} \sum_{I^{n} \| J}\left((n+1)\left(1-\chi\left(I^{n}\right)\right) \rho\left(J / I^{n}\right)\right) \log _{p}(N m(\mathrm{l}))
$$

is equal to

$$
\rho(\operatorname{sp}(J) J)\left(v_{\mathrm{sp}(J)}(J)+1\right) \log _{\mathrm{p}} \operatorname{Nm}(\mathrm{sp}(J)) .
$$

Indeed, the factor $1-\chi\left(\mathrm{I}^{\mathrm{n}}\right)=0$ unless I is a special prime of J , and if $\mathrm{J} / \mathrm{l}^{\mathrm{n}}$ still has another special prime, $\rho\left(\mathrm{J} / \mathrm{I}^{\mathfrak{n}}\right)=0$. It can thus only be non-zero when I is the unique special prime; the rest matches up.

Fourier coefficients

For convenience, let us denote

$$
\log \mathcal{F}(J)=\rho(\operatorname{sp}(J) J)\left(v_{\text {sp }(J)}(J)+1\right) \log (\operatorname{sp}(J)),
$$

so that very concisely, for J coprime to p,

$$
\varphi\left(\mathrm{T}_{\mathrm{J}}\right)=\rho(\mathrm{J})+\log \mathcal{F}(\mathrm{J}) \epsilon
$$

Let \widetilde{J} denote the ideal J without its prime factors dividing p .

Fourier coefficients

For convenience, let us denote

$$
\log \mathcal{F}(J)=\rho(\operatorname{sp}(J) J)\left(v_{\text {sp }(J)}(J)+1\right) \log (\operatorname{sp}(J)),
$$

so that very concisely, for J coprime to p,

$$
\varphi\left(\mathrm{T}_{\mathrm{J}}\right)=\rho(\mathrm{J})+\log \mathcal{F}(\mathrm{J}) \epsilon
$$

Let \widetilde{J} denote the ideal J without its prime factors dividing p .

Theorem

For any $v \in\left(\mathcal{D}_{\mathrm{F}}^{-1} \mathfrak{q}\right)^{+}$, let $\mathrm{J}_{v}=(v) \mathcal{D}_{\mathrm{F}} \mathfrak{q}^{-1}$. Then it holds that

$$
a_{v}\left(f_{q}\right)=(-1)^{v_{p}(v)}\left(\rho\left(\tilde{J_{v}}\right)+\log _{p}\left(\mathcal{F}\left(\widetilde{J}_{v}\right)\right) \epsilon-\rho\left(\tilde{J_{v}}\right) \log _{p}\left(v / v^{\prime}\right) \epsilon\right) .
$$

Fourier coefficients

For convenience, let us denote

$$
\log \mathcal{F}(J)=\rho(\operatorname{sp}(J) J)\left(v_{\text {sp }(J)}(J)+1\right) \log (\operatorname{sp}(J)),
$$

so that very concisely, for J coprime to p,

$$
\varphi\left(\mathrm{T}_{\mathrm{J}}\right)=\rho(\mathrm{J})+\log \mathcal{F}(\mathrm{J}) \epsilon
$$

Let \widetilde{J} denote the ideal J without its prime factors dividing p .

Theorem

For any $v \in\left(\mathcal{D}_{\mathrm{F}}^{-1} \mathfrak{q}\right)^{+}$, let $\mathrm{J}_{v}=(v) \mathcal{D}_{\mathrm{F}} \mathfrak{q}^{-1}$. Then it holds that

$$
a_{v}\left(f_{q}\right)=(-1)^{v_{p}(v)}\left(\rho\left(\widetilde{J_{v}}\right)+\log _{p}\left(\mathcal{F}\left(\widetilde{J}_{v}\right)\right) \epsilon-\rho\left(\widetilde{J_{v}}\right) \log _{p}\left(v / v^{\prime}\right) \epsilon\right) .
$$

The term $\log \left(v / v^{\prime}\right)$ comes from v at the two places above p, as

$$
\varphi\left(\mathrm{U}_{\pi}\right)=-1+\log _{p}(\pi) \epsilon ; \quad \varphi\left(\mathrm{U}_{\pi^{\prime}}\right)=1+\log _{p}\left(\pi^{\prime}\right) \epsilon
$$

Ordinary projection

We take the diagonal restriction:

$$
\operatorname{diag}\left(f_{q}\right)=\sum_{n=1}^{\infty}\left(\sum_{\substack{v \in\left(\mathcal{D}^{-1}{ }^{-1} \mathfrak{q}+\\ \operatorname{tr}(v)=n\right.}} a_{v}\right) q^{n} .
$$

Ordinary projection

We take the diagonal restriction:

$$
\operatorname{diag}\left(f_{q}\right)=\sum_{n=1}^{\infty}\left(\sum_{\substack{v \in\left(\mathcal{D}^{-1} \mathfrak{q}^{+}+\\ \operatorname{tr}(v)=n\right.}} a_{v}\right) q^{n} .
$$

Taking its derivative amounts to considering only the ϵ-part:

$$
a_{n}\left(\partial \operatorname{diag}\left(f_{q}\right)\right)=\sum_{\substack{v \in\left(\mathcal{D}_{F}^{-1} \mathfrak{q}\right)^{+} \\ \operatorname{tr}(v)^{+}=\boldsymbol{n}}}(-1)^{v_{p}(v)}\left(\log _{p}\left(\mathcal{F}\left(\tilde{J_{v}}\right)\right)-\rho\left(\widetilde{J_{v}}\right) \log _{p}\left(v / v^{\prime}\right)\right) .
$$

Ordinary projection

We take the diagonal restriction:

$$
\operatorname{diag}\left(f_{q}\right)=\sum_{n=1}^{\infty}\left(\sum_{\substack{v \in\left(\mathcal{D}^{-1} \mathfrak{q}^{+}+\\ \operatorname{tr}(v)=n\right.}} a_{v}\right) q^{n} .
$$

Taking its derivative amounts to considering only the ϵ-part:

$$
a_{n}\left(\partial \operatorname{diag}\left(f_{q}\right)\right)=\sum_{\substack{v \in\left(\mathcal{D}_{F}^{-1}-q\right)^{+} \\ \operatorname{tr}(v)=n}}(-1)^{v_{p}(v)}\left(\log _{p}\left(\mathcal{F}\left(\tilde{J_{v}}\right)\right)-\rho\left(\widetilde{J_{v}}\right) \log _{p}\left(v / v^{\prime}\right)\right) .
$$

Now we take the ordinary projection $e^{\text {ord }}$:

$$
\begin{aligned}
& a_{1}\left(e^{\operatorname{ord}}\left(\partial \operatorname{diag}\left(f_{q}\right)\right)\right)=\lim _{n \rightarrow \infty} a_{p^{2 n}}\left(\partial \operatorname{diag}\left(f_{q}\right)\right) \\
& \left.\quad=\lim _{n \rightarrow \infty} \sum_{\substack{v \in\left(\mathcal{D}^{-1} \mathfrak{q}\right)^{+} \\
\operatorname{tr}(v)=p^{2 n}}}(-1)^{v_{p}(v)}\left(\log _{p}\left(\mathcal{F}\left(\widetilde{J_{v}}\right)\right)-\rho\left(\widetilde{J_{v}}\right) \log _{p}\left(v / v^{\prime}\right)\right)\right) .
\end{aligned}
$$

The crux!

One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

$$
\mathrm{S}_{2}\left(\Gamma_{0}(6)\right)=\mathrm{S}_{2}\left(\Gamma_{0}(10)\right)=0 \quad \text { and } \quad \mathrm{S}_{2}\left(\Gamma_{0}(22)\right) \approx 0
$$

The crux!

One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

$$
\mathrm{S}_{2}\left(\Gamma_{0}(6)\right)=\mathrm{S}_{2}\left(\Gamma_{0}(10)\right)=0 \quad \text { and } \quad \mathrm{S}_{2}\left(\Gamma_{0}(22)\right) \approx 0
$$

In other words, if

$$
A:=\lim _{n \rightarrow \infty} \sum_{\substack{v \in\left(\mathcal{D}_{\mathrm{F}}^{-1} \mathfrak{q}\right)^{+} \\ \operatorname{tr}(v)=\mathrm{p}^{2 n}}}(-1)^{v_{\mathfrak{p}}(v)} \rho\left(\tilde{J_{v}}\right) \log _{\mathfrak{p}}\left(v / v^{\prime}\right)
$$

and

$$
B:=\lim _{n \rightarrow \infty} \sum_{\substack{v \in\left(\mathcal{D}^{-1}{ }^{-1} \mathfrak{q}+\\ \operatorname{tr}(v)=p^{2 n}\right.}}(-1)^{v_{p}(v)} \log _{p}\left(\mathcal{F}\left(\widetilde{J_{v}}\right)\right),
$$

then $A=B$.

The crux!

One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

$$
\mathrm{S}_{2}\left(\Gamma_{0}(6)\right)=\mathrm{S}_{2}\left(\Gamma_{0}(10)\right)=0 \quad \text { and } \quad \mathrm{S}_{2}\left(\Gamma_{0}(22)\right) \approx 0
$$

In other words, if

$$
A:=\lim _{n \rightarrow \infty} \sum_{\substack{v \in\left(\mathcal{D}_{F}^{-1} \mathfrak{q}\right)+\\ \operatorname{tr}(v)=p^{2 n}}}(-1)^{v_{p}(v)} \rho\left(\widetilde{J_{v}}\right) \log _{p}\left(v / v^{\prime}\right)
$$

and

$$
B:=\lim _{n \rightarrow \infty} \sum_{\substack{v \in\left(\mathcal{D}^{-1}{ }^{-1} \mathfrak{q}\right)+\\ \operatorname{tr}(v)=p^{2 n}}}(-1)^{v_{p}(v)} \log _{p}\left(\mathcal{F}\left(\widetilde{J_{v}}\right)\right),
$$

then $A=B$. Recall our expression for the theta series

$$
\log _{p} \frac{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}\right)}{\Theta\left(\tau_{1}, \tau_{1}^{\prime} ; \tau_{2}^{\prime}\right)}=\sum_{\operatorname{tr}(v)=p^{2 n}} \rho\left(J_{v}\right) \log _{p}\left(v / v^{\prime}\right)
$$

It easily follows that

$$
A=\log N m J_{\mathfrak{q}}^{p}\left(\tau_{1}, \tau_{2}\right)
$$

Conclusion

One can show that the limit in B equals the first term:
where

$$
B=\sum_{\substack{v \in\left(\mathcal{D}_{\mathcal{V}}^{-1} \mathfrak{q}\right)^{+} \\ \operatorname{tr}(v)=1}}(-1)^{v_{p}(v)} \log _{p}\left(\mathcal{F}\left(\widetilde{\mathrm{~J}_{v}}\right)\right)
$$

$$
\log \mathcal{F}(J)=\rho(\operatorname{sp}(J) J)\left(v_{\operatorname{sp}(J)}(J)+1\right) \log _{p}(\operatorname{sp}(J))
$$

Conclusion

One can show that the limit in B equals the first term:
where

$$
B=\sum_{\substack{\left.v \in \mathcal{D}_{\mathcal{1}}^{-1} \mathfrak{q}\right)^{+} \\ \operatorname{tr}(v)=1}}(-1)^{v_{p}(v)} \log _{p}\left(\mathcal{F}\left(\tilde{J_{v}}\right)\right)
$$

$$
\log \mathcal{F}(J)=\rho(\operatorname{sp}(J) J)\left(v_{s p(J)}(J)+1\right) \log _{p}(\operatorname{sp}(J))
$$

Now use $A=B$ to complete the proof:

Theorem (D., 2023)

The expression

$$
\log N m_{\mathbb{Q}}^{H_{1} H_{2}} J_{\mathfrak{q}}^{p}\left(\tau_{1}, \tau_{2}\right)
$$

is up to sign explicitly equal to

$$
\sum_{N m(\mathfrak{a})=N} \delta(\mathfrak{a}) \sum_{\substack{v \in \mathcal{D}_{\mathrm{F}}^{-1,+} \\ \operatorname{tr}(v)=1}} \rho\left(\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right) \alpha \mathfrak{a}^{-1}\right)\left(v_{\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right)}\left(\alpha \mathfrak{a}^{-1}\right)+1\right) \log \operatorname{Nm}\left(\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right)\right)
$$

Conclusion

One can show that the limit in B equals the first term:
where

$$
B=\sum_{\substack{v \in\left(\mathcal{D}^{-1} \mathfrak{q}\right)+\\ \operatorname{tr}(v)=1}}(-1)^{v_{p}(v)} \log _{p}\left(\mathcal{F}\left(\tilde{J_{v}}\right)\right)
$$

$$
\log \mathcal{F}(J)=\rho(\operatorname{sp}(J) J)\left(v_{\operatorname{sp}(J)}(J)+1\right) \log _{p}(\operatorname{sp}(J))
$$

Now use $A=B$ to complete the proof:

Theorem (D., 2023)

The expression

$$
\log N m_{\mathbb{Q}}^{H_{1} H_{2}} J_{\mathfrak{q}}^{p}\left(\tau_{1}, \tau_{2}\right)
$$

is up to sign explicitly equal to

$$
\sum_{\operatorname{Nm}(\mathfrak{a})=N} \delta(\mathfrak{a}) \sum_{\substack{v \in \mathcal{D}_{F}^{-1,+} \\ \operatorname{tr}(v)=1}} \rho\left(\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right) \alpha \mathfrak{a}^{-1}\right)\left(v_{\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right)}\left(\alpha \mathfrak{a}^{-1}\right)+1\right) \log \operatorname{Nm}\left(\operatorname{sp}\left(\alpha \mathfrak{a}^{-1}\right)\right)
$$

Preprint is on arXiv: https://arxiv.org/abs/2309.17251

