CM-values of p-adic Θ -functions

Mike Daas

Universiteit Leiden

3rd of June, 2024

Complex Multiplication

Theorem

Let E/k be an elliptic curve with char(k) = 0. Then:

- Either End(E) = \mathbb{Z} ;
- Or End(E) is isomorphic to an order in an imaginary quadratic number field. We say that E *has CM*.

Complex Multiplication

Theorem

Let E/k be an elliptic curve with char(k) = 0. Then:

- Either $\operatorname{End}(E) = \mathbb{Z}$;
- Or End(E) is isomorphic to an order in an imaginary quadratic number field. We say that E *has CM*.

Example 1

For
$$E_1 : y^2 = x^3 + 1$$
, we have a map $[\zeta_3] : E \to E$ given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto (\zeta_3 \mathsf{x}, \mathsf{y}) \implies \mathsf{End}(\mathsf{E}) \cong \mathbb{Z}[\zeta_3].$$

Complex Multiplication

Theorem

Let E/k be an elliptic curve with char(k) = 0. Then:

- Either $\operatorname{End}(E) = \mathbb{Z}$;
- Or End(E) is isomorphic to an order in an imaginary quadratic number field. We say that E *has CM*.

Example 1

For
$$E_1: y^2 = x^3 + 1$$
, we have a map $[\zeta_3]: E \to E$ given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto (\zeta_3 \mathsf{x}, \mathsf{y}) \implies \mathsf{End}(\mathsf{E}) \cong \mathbb{Z}[\zeta_3].$$

Example 2

For $E_2: y^2 = x^3 + x$, we have a map $[i]: E \to E$ given by

$$\mathsf{P} = (\mathsf{x}, \mathsf{y}) \mapsto (-\mathsf{x}, \mathfrak{i} \mathsf{y}) \implies \mathsf{End}(\mathsf{E}) \cong \mathbb{Z}[\mathfrak{i}].$$

Gross and Zagier's discovery (1/2)

Most curves do not have CM. Examples:

$$\begin{split} & E_3: y^2 + xy = x^3 - x^2 - 2x - 1 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-7}}{2}\right]; \\ & E_4: y^2 + y = x^3 - x^2 - 7x + 10 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-11}}{2}\right]; \\ & E_5: y^2 + y = x^3 - 38x + 90 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-19}}{2}\right]. \end{split}$$

Gross and Zagier's discovery (1/2)

Most curves do not have CM. Examples:

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-7}}{2}\right]; \\ & \mathsf{E}_4: y^2 + y = x^3 - x^2 - 7x + 10 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-11}}{2}\right]; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-19}}{2}\right]. \end{split}$$

We compute that

$$j(E_3) = -3^3 5^3$$
, $j(E_4) = -2^{15}$, and $j(E_5) = -2^{15} 3^3$.

Gross and Zagier's discovery (1/2)

Most curves do not have CM. Examples:

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-7}}{2}\right]; \\ & \mathsf{E}_4: y^2 + y = x^3 - x^2 - 7x + 10 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-11}}{2}\right]; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-19}}{2}\right]. \end{split}$$

We compute that

$$j(E_3)=-3^35^3, \quad j(E_4)=-2^{15}, \quad \text{and} \quad j(E_5)=-2^{15}3^3.$$

However, the following is striking:

$$\begin{split} j(E_3) - j(E_4) &= 7 \cdot 13 \cdot 17 \cdot 19; \\ j(E_3) - j(E_5) &= 3^7 \cdot 13 \cdot 31; \\ j(E_4) - j(E_5) &= 2^{16} \cdot 13. \end{split}$$

Gross and Zagier's discovery (2/2)

More examples:

$$\begin{split} & \mathsf{E}_6: y^2+y=x^3-860x+9707 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right]; \\ & \mathsf{E}_7: y^2+y=x^3-7370x+243528 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-67}}{2}\right]; \\ & \mathsf{E}_8: y^2+y=x^3-2174420x+1234136692 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right]. \end{split}$$

3rd of June, 2024

Gross and Zagier's discovery (2/2)

More examples:

$$\begin{split} & \mathsf{E}_6: y^2 + y = x^3 - 860x + 9707 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-43}}{2}\right]; \\ & \mathsf{E}_7: y^2 + y = x^3 - 7370x + 243528 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-67}}{2}\right]; \\ & \mathsf{E}_8: y^2 + y = x^3 - 2174420x + 1234136692 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-163}}{2}\right]. \end{split}$$

We compute that

$$\mathfrak{j}(\mathsf{E}_6)=-2^{18}3^35^3, \quad \mathfrak{j}(\mathsf{E}_7)=-2^{15}3^35^311^3, \text{ and } \mathfrak{j}(\mathsf{E}_8)=-2^{18}3^35^323^329^3.$$

Gross and Zagier's discovery (2/2)

More examples:

$$\begin{split} & \mathsf{E}_6: y^2 + y = x^3 - 860x + 9707 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-43}}{2}\right]; \\ & \mathsf{E}_7: y^2 + y = x^3 - 7370x + 243528 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-67}}{2}\right]; \\ & \mathsf{E}_8: y^2 + y = x^3 - 2174420x + 1234136692 \quad \text{has CM by} \quad \mathbb{Z}\left[\frac{1 + \sqrt{-163}}{2}\right]. \end{split}$$

We compute that

$$\mathfrak{j}(\mathsf{E}_6)=-2^{18}3^35^3, \quad \mathfrak{j}(\mathsf{E}_7)=-2^{15}3^35^311^3, \text{ and } \mathfrak{j}(\mathsf{E}_8)=-2^{18}3^35^323^329^3.$$

The following is even more striking:

$$\begin{split} j(E_6) - j(E_7) &= 2^{15} \cdot 3^6 \cdot 5^3 \cdot 7^2; \\ j(E_6) - j(E_8) &= 2^{19} \cdot 3^6 \cdot 5^3 \cdot 7^3 \cdot 37 \cdot 433; \\ j(E_7) - j(E_8) &= 2^{15} \cdot 3^7 \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 139 \cdot 331. \end{split}$$

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3 \texttt{;} \\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15} \texttt{;} \\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3 \texttt{.} \end{split}$$

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3 \texttt{;} \\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15} \texttt{;} \\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3 \texttt{;} \\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15} \texttt{;} \\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3;\\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15};\\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

x	±1	±3	± 5	±7
$(D - x^2)/4$	19	17	13	7

Recall that $j(E_3) - j(E_5) = 3^7 \cdot 13 \cdot 31$. Let $D = 7 \cdot 19$.

Recall the curves

$$\begin{split} & \mathsf{E}_3 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_3) = -3^3 5^3;\\ & \mathsf{E}_4 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_4) = -2^{15};\\ & \mathsf{E}_5 \text{ with CM by } \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text{ and } \mathfrak{j}(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Recall that $j(E_3) - j(E_4) = 7 \cdot 13 \cdot 17 \cdot 19$. Let $D = 7 \cdot 11$.

x	±1	±3	± 5	±7
$(D - x^2)/4$	19	17	13	7

Recall that $j(E_3) - j(E_5) = 3^7 \cdot 13 \cdot 31$. Let $D = 7 \cdot 19$.

x	±1	±3	±5	±7	±9	±11
$(D - x^2)/4$	3 · 11	31	3 ³	<mark>3</mark> · 7	13	3

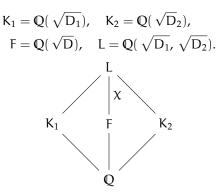
Setting up

Let $D_1, D_2 < 0$ be coprime discriminants and write $D = D_1D_2$. Set

$$\begin{split} \mathsf{K}_1 &= \mathbb{Q}(\sqrt{D_1}), \quad \mathsf{K}_2 = \mathbb{Q}(\sqrt{D_2}), \\ \mathsf{F} &= \mathbb{Q}(\sqrt{D}), \quad \mathsf{L} = \mathbb{Q}(\sqrt{D_1}, \sqrt{D_2}). \\ & & & & \\ & & & \\$$

Setting up

Let D_1 , $D_2 < 0$ be coprime discriminants and write $D = D_1 D_2$. Set



Let χ be the genus character of L/F: if $\mathfrak{p} \subset \mathfrak{O}_F$ is prime, then

$$\chi(\mathfrak{p}) = \begin{cases} 1 & \text{if } \mathfrak{p} \text{ splits in L/F;} \\ -1 & \text{if } \mathfrak{p} \text{ is inert in L/F.} \end{cases}$$

The formula

Let $I\subset {\mathfrak O}_F$ be an ideal. Define

$$\begin{split} \rho(I) &= \#\{J \subset \mathfrak{O}_L \mid Nm_F^L(J) = I\};\\ sp(I) &= \begin{cases} \mathfrak{p} & \text{if } \mathfrak{p} \text{ is unique with } \chi(\mathfrak{p}) = -1 \text{ and } \nu_\mathfrak{p}(I) \text{ odd};\\ 1 & \text{otherwise.} \end{cases} \end{split}$$

Important: $\rho(I) = 0$ if and only if I has at least one special prime.

The formula

Let $I \subset {\mathfrak O}_F$ be an ideal. Define

$$\rho(I) = \#\{J \subset \mathcal{O}_L \mid Nm_F^L(J) = I\};$$

$$sp(I) = \begin{cases} \mathfrak{p} & \text{if } \mathfrak{p} \text{ is unique with } \chi(\mathfrak{p}) = -1 \text{ and } \nu_\mathfrak{p}(I) \text{ odd};\\ 1 & \text{otherwise.} \end{cases}$$

Important: $\rho(I) = 0$ if and only if I has at least one special prime. Let E_1 be an elliptic curve with CM by \mathcal{O}_1 and E_2 an elliptic curve with CM by \mathcal{O}_2 . Then by CM theory, $j(E_i) \in H_i$ for i = 1, 2, where H_i is the Hilbert class field of K_i . For simplicity, assume $D_i \notin \{-3, -4\}$.

The formula

Let $I \subset {\mathfrak O}_F$ be an ideal. Define

$$\rho(I) = \#\{J \subset \mathcal{O}_L \mid Nm_F^L(J) = I\};$$

$$sp(I) = \begin{cases} \mathfrak{p} & \text{if } \mathfrak{p} \text{ is unique with } \chi(\mathfrak{p}) = -1 \text{ and } \nu_\mathfrak{p}(I) \text{ odd};\\ 1 & \text{otherwise.} \end{cases}$$

Important: $\rho(I) = 0$ if and only if I has at least one special prime. Let E_1 be an elliptic curve with CM by \mathcal{O}_1 and E_2 an elliptic curve with CM by \mathcal{O}_2 . Then by CM theory, $j(E_i) \in H_i$ for i = 1, 2, where H_i is the Hilbert class field of K_i . For simplicity, assume $D_i \notin \{-3, -4\}$.

Theorem (Gross-Zagier, 1984)

Setting $\alpha = \nu \, \sqrt{D}$ and $\mathcal{D}_F = (\, \sqrt{D})$, the following equality holds:

$$log Nm_Q^{H_1H_2}\big(j(E_1)-j(E_2)\big) = \sum_{\substack{\nu \in \mathcal{D}_F^{-1,+} \\ tr(\nu)=1}} \rho(sp(\alpha)\alpha)(\nu_{sp(\alpha)}(\alpha)+1) log Nm(sp(\alpha)).$$

Let $D_1 = -7$ and $D_2 = -19$. Then

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90, \quad j(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

Let $D_1 = -7$ and $D_2 = -19$. Then

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90, \quad j(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

If $\nu \in \mathcal{D}_{F}^{-1,+}$ and $tr(\nu) = 1$, then

$$\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}$$
, where $x^2 < D = 133$ and x is odd.

Let $D_1 = -7$ and $D_2 = -19$. Then

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90, \quad j(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

If $\nu \in \mathcal{D}_F^{-1,+}$ and $tr(\nu) = 1$, then

 $\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}$, where $x^2 < D = 133$ and x is odd.

x	±1	±3	± 5	±7	±9	±11
$(D - x^2)/4$	3 · 11	31	3 ³	$3 \cdot 7$	13	3
$sp(\alpha)$	3	31	3	3	13	3
$(v_{sp(\alpha)}(\alpha)+1)/2$	1	1	2	1	1	1
$\rho(sp(\alpha)\alpha)$	2	1	1	2	1	1

Let $D_1 = -7$ and $D_2 = -19$. Then

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90, \quad j(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

If $\nu \in \mathcal{D}_F^{-1,+}$ and $tr(\nu) = 1$, then

 $\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}$, where $x^2 < D = 133$ and x is odd.

x	±1	±3	± 5	±7	±9	±11
$(D - x^2)/4$	3 · 11	31	3 ³	$3 \cdot 7$	13	3
$sp(\alpha)$	3	31	3	3	13	3
$(v_{\mathrm{sp}(\alpha)}(\alpha)+1)/2$	1	1	2	1	1	1
$\rho(sp(\alpha)\alpha)$	2	1	1	2	1	1

Let's check:

$$j(E_3) - j(E_5) = -3^3 5^3 + 2^{15} 3^3 = 881361$$

Let $D_1 = -7$ and $D_2 = -19$. Then

$$\begin{split} & \mathsf{E}_3: y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(\mathsf{E}_3) = -3^3 5^3; \\ & \mathsf{E}_5: y^2 + y = x^3 - 38x + 90, \quad j(\mathsf{E}_5) = -2^{15} 3^3. \end{split}$$

If $\nu \in \mathcal{D}_F^{-1,+}$ and $tr(\nu) = 1$, then

 $\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}$, where $x^2 < D = 133$ and x is odd.

x	±1	±3	± 5	±7	±9	±11
$(D - x^2)/4$	3 · 11	31	3 ³	$3 \cdot 7$	13	3
$sp(\alpha)$	3	31	3	3	13	3
$(v_{\mathrm{sp}(\alpha)}(\alpha)+1)/2$	1	1	2	1	1	1
$\rho(sp(\alpha)\alpha)$	2	1	1	2	1	1

Let's check:

$$j(E_3) - j(E_5) = -3^3 5^3 + 2^{15} 3^3 = 881361 = 3^7 \cdot 13 \cdot 31.$$

First step is to rewrite the task at hand to proving

$$log Nm_Q^{H_1H_2}(j(E_1) - j(E_2)) = \sum_{\substack{\nu \in \mathcal{D}_F^{-1,+} \\ tr(\nu) = 1}} \sum_{I \mid (\nu) \mathcal{D}_F} \chi(I) log Nm(I).$$

Zagier's proof

First step is to rewrite the task at hand to proving

$$\log Nm_{\mathbb{Q}}^{H_1H_2}(j(\mathsf{E}_1) - j(\mathsf{E}_2)) = \sum_{\substack{\mathbf{v}\in \mathcal{D}_{\mathsf{F}}^{-1,+} |I|(\mathbf{v})\mathcal{D}_{\mathsf{F}} \\ tr(\mathbf{v})=1}} \sum_{\substack{\mathsf{v}\in \mathcal{D}_{\mathsf{F}}^{-1,+} |I|(\mathbf{v})\mathcal{D}_{\mathsf{F}}}} \chi(I) \log Nm(I).$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$\mathsf{E}_{k,\chi}(z,z) = \operatorname{const} + \sum_{\substack{\nu \in \mathcal{D}_{\mathsf{F}}^{-1,+} \\ \operatorname{tr}(\nu) = \mathfrak{n}}} \left(\sum_{\substack{I \mid (\nu) \mathcal{D}_{\mathsf{F}}}} \chi(I) \operatorname{Nm}(I)^{k-1} \right) \mathfrak{q}^{\mathfrak{n}}.$$

Zagier's proof

First step is to rewrite the task at hand to proving

$$\log Nm_{\mathbb{Q}}^{H_1H_2}(j(\mathsf{E}_1) - j(\mathsf{E}_2)) = \sum_{\substack{\mathbf{v}\in \mathcal{D}_{\mathsf{F}}^{-1,+} | I|(\mathbf{v})\mathcal{D}_{\mathsf{F}} \\ tr(\mathbf{v}) = 1}} \sum_{\mathsf{t}(\mathbf{v})\in \mathsf{T}} \chi(I) \log Nm(I).$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$\mathsf{E}_{k,\chi}(z,z) = \operatorname{const} + \sum_{\substack{\mathbf{v}\in \mathcal{D}_{\mathsf{F}}^{-1,+} \\ \operatorname{tr}(\mathbf{v})=\mathfrak{n}}} \left(\sum_{\substack{\mathrm{I}\mid (\mathbf{v})\mathcal{D}_{\mathsf{F}}}} \chi(\mathrm{I}) \operatorname{Nm}(\mathrm{I})^{k-1}\right) \mathfrak{q}^{\mathfrak{n}}.$$

• Consider a family parametrised by a "weight" $s \in \mathbb{C}$;

Zagier's proof

First step is to rewrite the task at hand to proving

$$\log Nm_{\mathbb{Q}}^{H_1H_2}(j(\mathsf{E}_1) - j(\mathsf{E}_2)) = \sum_{\substack{\mathbf{v}\in \mathcal{D}_{\mathsf{F}}^{-1,+} | I|(\mathbf{v})\mathcal{D}_{\mathsf{F}} \\ tr(\mathbf{v}) = 1}} \sum_{\mathsf{t}(\mathbf{v})\in \mathsf{T}} \chi(I) \log Nm(I).$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$\mathsf{E}_{\mathsf{k},\chi}(z,z) = \mathrm{const} + \sum_{\substack{\mathbf{v}\in\mathcal{D}_{\mathsf{F}}^{-1,+}\\\mathrm{tr}(\mathbf{v})=\mathfrak{n}}} \left(\sum_{\mathrm{I}\mid(\mathbf{v})\mathcal{D}_{\mathsf{F}}} \chi(\mathrm{I})\mathrm{Nm}(\mathrm{I})^{\mathsf{k}-1}\right) \mathfrak{q}^{\mathfrak{n}}.$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;
- Take its derivative and evaluate at s = 0;

First step is to rewrite the task at hand to proving

$$\log Nm_{\mathbb{Q}}^{H_1H_2}(j(\mathsf{E}_1) - j(\mathsf{E}_2)) = \sum_{\substack{\mathbf{v}\in \mathcal{D}_{\mathsf{F}}^{-1,+} |I|(\mathbf{v})\mathcal{D}_{\mathsf{F}} \\ tr(\mathbf{v})=1}} \sum_{\mathsf{V}\in \mathcal{D}_{\mathsf{F}}^{-1,+} |I|(\mathbf{v})\mathcal{D}_{\mathsf{F}}} \chi(I) \log Nm(I).$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$\mathsf{E}_{\mathsf{k},\chi}(z,z) = \mathrm{const} + \sum_{\substack{\mathbf{v}\in\mathcal{D}_{\mathsf{F}}^{-1,+}\\\mathrm{tr}(\mathbf{v})=\mathfrak{n}}} \left(\sum_{\mathrm{I}\mid(\mathbf{v})\mathcal{D}_{\mathsf{F}}} \chi(\mathrm{I})\mathrm{Nm}(\mathrm{I})^{\mathsf{k}-1}\right) \mathfrak{q}^{\mathfrak{n}}.$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;
- Take its derivative and evaluate at *s* = 0;
- Apply a so-called *holomorphic projection*.

This must be in $M_2(SL_2(\mathbb{Z})) = 0$.

First step is to rewrite the task at hand to proving

$$\log Nm_{\mathbb{Q}}^{H_1H_2}(j(\mathsf{E}_1) - j(\mathsf{E}_2)) = \sum_{\substack{\nu \in \mathcal{D}_F^{-1,+} \ I \mid (\nu) \mathcal{D}_F \\ tr(\nu) = 1}} \sum_{\chi(I) \log Nm(I).}$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$\mathsf{E}_{k,\chi}(z,z) = \operatorname{const} + \sum_{\substack{\mathbf{v}\in\mathcal{D}_{\mathsf{F}}^{-1,+}\\\operatorname{tr}(\mathbf{v})=\mathbf{n}}} \left(\sum_{\mathrm{I}\mid(\mathbf{v})\mathcal{D}_{\mathsf{F}}} \chi(\mathrm{I}) \mathrm{Nm}(\mathrm{I})^{k-1}\right) \mathfrak{q}^{\mathfrak{n}}.$$

- Consider a family parametrised by a "weight" $s \in \mathbb{C}$;
- Take its derivative and evaluate at s = 0;
- Apply a so-called *holomorphic projection*.

This must be in $M_2(SL_2(\mathbb{Z})) = 0$. The explicit formula for its Fourier coefficients involves two terms, one for each side \implies equal. Hard.

What is the j-function really?

Consider $M_2(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

 $M_2(\mathbb{Z}) \subset M_2(\mathbb{Q}).$

Its units of norm 1 are precisely

 $SL_2(\mathbb{Z}) \subset M_2(\mathbb{Z}).$

Consider $M_2(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

 $M_2(\mathbb{Z}) \subset M_2(\mathbb{Q}).$

Its units of norm 1 are precisely

 $SL_2(\mathbb{Z})\subset M_2(\mathbb{Z}).$

Since $M_2(\mathbb{Q})$ acts on \mathbb{C} , we may consider the quotient

 $Y_1(\mathbb{C}) = SL_2(\mathbb{Z}) \setminus \mathcal{H}.$

Its function field is generated by the j-function.

Consider $M_2(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

 $M_2(\mathbb{Z}) \subset M_2(\mathbb{Q}).$

Its units of norm 1 are precisely

 $SL_2(\mathbb{Z})\subset M_2(\mathbb{Z}).$

Since $M_2(\mathbb{Q})$ acts on \mathbb{C} , we may consider the quotient

 $Y_1(\mathbb{C}) = SL_2(\mathbb{Z}) \setminus \mathcal{H}.$

Its function field is generated by the j-function.

Question

What happens if we change $M_2(\mathbb{Q})$ to a different quaternion algebra?

Shimura curves

Choose two primes $p \neq q$ and let N = pq. Let B_N denote the quaternion algebra ramified at p and q. Let R_N be a maximal order and let $R_{N,1}^{\times}$ denote the subgroup of units of norm 1. We may choose an embedding $R_{N,1}^{\times} \rightarrow M_2(\mathbb{R})$ to form the quotient

$$X_{\mathsf{N}}(\mathbb{C}) = \mathsf{R}_{\mathsf{N},1}^{\times} \setminus \mathcal{H};$$

this is known as a Shimura curve, which is an algebraic curve $/\mathbb{Q}$.

Shimura curves

Choose two primes $p \neq q$ and let N = pq. Let B_N denote the quaternion algebra ramified at p and q. Let R_N be a maximal order and let $R_{N,1}^{\times}$ denote the subgroup of units of norm 1. We may choose an embedding $R_{N,1}^{\times} \rightarrow M_2(\mathbb{R})$ to form the quotient

$$X_{\mathsf{N}}(\mathbb{C}) = \mathsf{R}_{\mathsf{N},1}^{\times} \setminus \mathcal{H};$$

this is known as a Shimura curve, which is an algebraic curve $/\mathbb{Q}$.

Proposition

The Shimura curve X_N is of genus 0 if and only if $N \in \{6, 10, 22\}$.

Suppose henceforth that we are in one of these cases. Then there exists a generator j_N of the function field. Note this choice is not unique.

Shimura curves

Choose two primes $p \neq q$ and let N = pq. Let B_N denote the quaternion algebra ramified at p and q. Let R_N be a maximal order and let $R_{N,1}^{\times}$ denote the subgroup of units of norm 1. We may choose an embedding $R_{N,1}^{\times} \rightarrow M_2(\mathbb{R})$ to form the quotient

$$X_{\mathsf{N}}(\mathbb{C}) = \mathsf{R}_{\mathsf{N},1}^{\times} \setminus \mathcal{H};$$

this is known as a Shimura curve, which is an algebraic curve $/\mathbb{Q}$.

Proposition

The Shimura curve X_N is of genus 0 if and only if $N \in \{6, 10, 22\}$.

Suppose henceforth that we are in one of these cases. Then there exists a generator j_N of the function field. Note this choice is not unique. Let $\tau_1, \tau_2 \in \mathcal{H}$ be CM points: fixed points in \mathcal{H} of embeddings $\mathcal{O}_i \rightarrow R_N$. These exist when p and q are inert in both K_i . We want to study

 $Nm(j_N(\tau_1) - j_N(\tau_2)).$

They are algebraic by Shimura reciprocity.

Let B_q denote the quaternion algebra ramified at q and ∞ . Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma^{\mathrm{p}}_{\mathrm{q}} = \mathrm{R}_{\mathrm{q}}[1/\mathrm{p}]_{1}^{\times}$$

of units of norm 1.

Let B_q denote the quaternion algebra ramified at q and ∞ . Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma^{\mathrm{p}}_{\mathrm{q}} = \mathrm{R}_{\mathrm{q}}[1/\mathrm{p}]_{1}^{\times}$$

of units of norm 1. Since B_q is split at p, it embeds into $M_2(\mathbb{Q}_p)$ and as such, we can take the quotient

 $\Gamma^p_q \setminus \mathcal{H}_p$,

where $\mathfrak{H}_p = P^1(\mathbb{C}_p) \setminus P^1(\mathbb{Q}_p)$ is the *p*-adic upper half plane.

Let B_q denote the quaternion algebra ramified at q and ∞ . Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma^{\mathrm{p}}_{\mathrm{q}} = \mathrm{R}_{\mathrm{q}}[1/\mathrm{p}]_{1}^{\times}$$

of units of norm 1. Since B_q is split at p, it embeds into $M_2(\mathbb{Q}_p)$ and as such, we can take the quotient

 $\Gamma^p_q \setminus \mathcal{H}_p$,

where $\mathfrak{H}_p = P^1(\mathbb{C}_p) \setminus P^1(\mathbb{Q}_p)$ is the *p*-adic upper half plane.

Theorem (Cerednik-Drinfeld)

The quotient $\Gamma_q^p \setminus \mathcal{H}_p$ as a rigid p-adic space is isomorphic to $X_N(\mathbb{C}_p)$.

Let B_q denote the quaternion algebra ramified at q and ∞ . Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma^{\mathrm{p}}_{\mathrm{q}} = \mathrm{R}_{\mathrm{q}} [1/\mathrm{p}]_{1}^{\times}$$

of units of norm 1. Since B_q is split at p, it embeds into $M_2(\mathbb{Q}_p)$ and as such, we can take the quotient

 $\Gamma^p_q \setminus \mathcal{H}_p$,

where $\mathfrak{H}_p = P^1(\mathbb{C}_p) \setminus P^1(\mathbb{Q}_p)$ is the *p*-adic upper half plane.

Theorem (Cerednik-Drinfeld)

The quotient $\Gamma^p_q \setminus \mathcal{H}_p$ as a rigid p-adic space is isomorphic to $X_N(\mathbb{C}_p)$.

Question

Which functions on $\Gamma^p_q \setminus \mathfrak{H}_p$ correspond to j_N on the other side?

Theta functions

Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1,w_2;z) = \prod_{\gamma \in \Gamma^p_q} rac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_q^p \setminus \mathcal{H}_p$ with divisor $[w_1] - [w_2]$.

Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1, w_2; z) = \prod_{\gamma \in \Gamma^p_q} rac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_q^p \setminus \mathcal{H}_p$ with divisor $[w_1] - [w_2]$. We obtain

$$\Theta(w_1, w_2; z) = c(w_1, w_2) \cdot \frac{j_N(z) - j_N(w_1)}{j_N(z) - j_N(w_2)}, \text{ for some } c(w_1, w_2) \in \mathbb{C}_p.$$

Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1, w_2; z) = \prod_{\gamma \in \Gamma^p_q} rac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_q^p \setminus \mathcal{H}_p$ with divisor $[w_1] - [w_2]$. We obtain

$$\Theta(w_1, w_2; z) = c(w_1, w_2) \cdot \frac{j_N(z) - j_N(w_1)}{j_N(z) - j_N(w_2)}, \text{ for some } c(w_1, w_2) \in \mathbb{C}_p.$$

Now choose $w_1 = \tau_1$ and $w_2 = \tau'_1$; its Galois conjugate. Because we don't know $c(\tau_1, \tau'_1)$, we opt to study instead

$$\frac{j_{N}(\tau_{2}) - j_{N}(\tau_{1})}{j_{N}(\tau_{2}) - j_{N}(\tau_{1}')} \frac{j_{N}(\tau_{2}') - j_{N}(\tau_{1}')}{j_{N}(\tau_{2}') - j_{N}(\tau_{1})} = \prod_{\gamma \in \Gamma_{q}^{p}} \frac{\tau_{2} - \gamma \tau_{1}}{\tau_{2} - \gamma \tau_{1}'} \frac{\tau_{2}' - \gamma \tau_{1}'}{\tau_{2}' - \gamma \tau_{1}}.$$

The conjecture

One can p-adically approximate the quantity

$$J^p_q(\tau_1,\tau_2) := \prod_{\gamma \in \Gamma^p_q} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau_1'} \frac{\tau_2' - \gamma \tau_1'}{\tau_2' - \gamma \tau_1}$$

and recognise it as an algebraic number.

The conjecture

One can p-adically approximate the quantity

$$J^p_q(\tau_1,\tau_2) := \prod_{\gamma \in \Gamma^p_q} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau_1'} \frac{\tau_2' - \gamma \tau_1'}{\tau_2' - \gamma \tau_1}$$

and recognise it as an algebraic number.

There are four ideals a of norm N = pq in \mathcal{O}_F ; they come in two Gal(F/Q) orbits. Assign one orbit $\delta(\mathfrak{a}) = +1$, the other $\delta(\mathfrak{a}) = -1$.

The conjecture

One can p-adically approximate the quantity

$$J^p_q(\tau_1,\tau_2) := \prod_{\gamma \in \Gamma^p_q} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau_1'} \frac{\tau_2' - \gamma \tau_1'}{\tau_2' - \gamma \tau_1}$$

and recognise it as an algebraic number.

There are four ideals a of norm N = pq in \mathcal{O}_F ; they come in two Gal(F/Q) orbits. Assign one orbit $\delta(\mathfrak{a}) = +1$, the other $\delta(\mathfrak{a}) = -1$.

Conjecture (Giampietro, Darmon)

The expression

 $log Nm_Q^{H_1H_2}J_q^p(\tau_1,\tau_2)$

is up to sign explicitly equal to

$$\sum_{\substack{Nm(\mathfrak{a})=N\\tr(\nu)=1}} \delta(\mathfrak{a}) \sum_{\substack{\nu \in \mathcal{D}_F^{-1,+}\\tr(\nu)=1}} \rho(sp(\alpha \mathfrak{a}^{-1})\alpha \mathfrak{a}^{-1})(\nu_{sp(\alpha \mathfrak{a}^{-1})}(\alpha \mathfrak{a}^{-1})+1) \log Nm \; (sp(\alpha \mathfrak{a}^{-1})).$$

Note that we have a correspondence

$$\Gamma^p_q = \mathsf{R}_q[1/p]_1^{\times} \leftrightarrow \lim_{n \to \infty} \left\{ \mathfrak{b} \in \mathsf{R}_q \mid \mathsf{Nm}(\mathfrak{b}) = \mathfrak{p}^{2n} \right\}.$$

Note that we have a correspondence

$$\Gamma^p_q = \mathsf{R}_q[1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \left\{ b \in \mathsf{R}_q \mid Nm(b) = p^{2n} \right\}.$$

$$\implies \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \prod_{b\in\Gamma_q^p} \frac{\tau_2 - b\tau_1}{\tau_2 - b\tau_1'} \frac{\tau_2' - b\tau_1'}{\tau_2' - b\tau_1} = \lim_{n\to\infty} \prod_{\mathrm{Nm}(b)=p^{2n}} \frac{\nu_b}{\nu_b'}.$$

Note that we have a correspondence

$$\Gamma^p_q = R_q [1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \left\{ b \in R_q \mid Nm(b) = p^{2n} \right\}.$$

$$\implies \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \prod_{b\in\Gamma_q^p} \frac{\tau_2 - b\tau_1}{\tau_2 - b\tau_1'} \frac{\tau_2' - b\tau_1'}{\tau_2' - b\tau_1} = \lim_{n\to\infty} \prod_{Nm(b)=p^{2n}} \frac{\nu_b}{\nu_b'}.$$

Note $\nu_b,\nu_b'\in F$ and one can compute that $tr(\nu_b)=Nm(b)=p^{2n}.$ Then

$$\log_p \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \lim_{n \to \infty} \sum_{tr(\nu) = p^{2n}} \# \{ b \in R_q \mid \nu_b = \nu \} \log_p(\nu/\nu').$$

Note that we have a correspondence

$$\Gamma^p_q = R_q [1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \left\{ b \in R_q \mid Nm(b) = p^{2n} \right\}.$$

$$\implies \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \prod_{b\in\Gamma_q^p} \frac{\tau_2 - b\tau_1}{\tau_2 - b\tau_1'} \frac{\tau_2' - b\tau_1'}{\tau_2' - b\tau_1} = \lim_{n\to\infty} \prod_{Nm(b)=p^{2n}} \frac{\nu_b}{\nu_b'}.$$

Note $\nu_b,\nu_b'\in F$ and one can compute that $tr(\nu_b)=Nm(b)=p^{2n}.$ Then

$$\log_p \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \lim_{n \to \infty} \sum_{tr(\nu) = p^{2n}} \# \{ b \in R_q \mid \nu_b = \nu \} \log_p(\nu/\nu').$$

Proposition

Taking an average over the class groups, there is a bijection between

$$\{b\in R_q/\{\pm 1\} \mid \nu_b=\nu\} \quad \text{and} \quad \{I\subset \mathbb{O}_L \mid Nm_{L/F}(I)=(\nu)\mathfrak{q}^{-1}\mathfrak{D}_F\}.$$

Note that we have a correspondence

$$\Gamma^p_q = R_q [1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \left\{ b \in R_q \mid Nm(b) = p^{2n} \right\}.$$

$$\implies \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \prod_{\mathbf{b}\in\Gamma_q^{\mathbf{p}}} \frac{\tau_2 - \mathbf{b}\tau_1}{\tau_2 - \mathbf{b}\tau_1'} \frac{\tau_2' - \mathbf{b}\tau_1'}{\tau_2' - \mathbf{b}\tau_1} = \lim_{\mathbf{n}\to\infty} \prod_{\mathrm{Nm}(\mathbf{b})=\mathbf{p}^{2n}} \frac{\nu_{\mathbf{b}}}{\nu_{\mathbf{b}}'}.$$

Note $\nu_b,\nu_b'\in F$ and one can compute that $tr(\nu_b)=Nm(b)=p^{2n}.$ Then

$$\log_p \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \lim_{n \to \infty} \sum_{tr(\nu) = p^{2n}} \# \{ b \in R_q \mid \nu_b = \nu \} \log_p(\nu/\nu').$$

Proposition

Taking an average over the class groups, there is a bijection between

$$\{b\in R_q/\{\pm 1\}\mid \nu_b=\nu\} \quad \text{and} \quad \{I\subset \mathbb{O}_L\mid Nm_{L/F}(I)=(\nu)\mathfrak{q}^{-1}\mathfrak{D}_F\}.$$

$$\implies \log_p \operatorname{Nm}_{\mathbb{Q}} \frac{\Theta(\tau_1, \tau_1'; \tau_2)}{\Theta(\tau_1, \tau_1'; \tau_2')} = \lim_{n \to \infty} \sum_{tr(\nu) = p^{2n}} \rho((\nu) \mathfrak{q}^{-1} \mathcal{D}_F) \log_p(\nu/\nu').$$

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

• Find explicit family of Hilbert modular forms around $E_{1,\chi}$;

- Find explicit family of Hilbert modular forms around E_{1,χ};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;

- Find explicit family of Hilbert modular forms around E_{1,χ};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

- Find explicit family of Hilbert modular forms around E_{1,x};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

- Find explicit family of Hilbert modular forms around E_{1,x};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

• Consider its associated Galois representation $1 \oplus \chi$;

- Find explicit family of Hilbert modular forms around E_{1,x};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;

- Find explicit family of Hilbert modular forms around E_{1,x};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;
- Argue why these deformations are modular;

- Find explicit family of Hilbert modular forms around E_{1,x};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients a_{ν} for all $\nu \gg 0$;

- Find explicit family of Hilbert modular forms around E_{1,x};
- Take its diagonal restriction, take its derivative with respect to the weight parameter and compute its coefficients explicitly;
- Apply the *ordinary projection;* argue why the result must vanish and obtain an equality by equating its coefficients to 0.

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients a_{ν} for all $\nu \gg 0$;
- The ε-part then yields a meaningful derivative.

Deforming $1\oplus \chi$

Again let $\rho = 1 \oplus \chi$ and $\tilde{\rho}$ be a deformation of ρ to $GL_2(\mathbb{Q}_p[\epsilon])$ where $\epsilon^2 = 0$.

Deforming $1 \oplus \chi$

Again let $\rho = 1 \oplus \chi$ and $\tilde{\rho}$ be a deformation of ρ to $GL_2(\mathbb{Q}_p[\epsilon])$ where $\epsilon^2 = 0$.

Proposition

Let $a,b,c,d:G_F\to \mathbb{Q}_p$ be those functions such that

$$\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \varepsilon \begin{pmatrix} a(\tau) & b(\tau) \\ c(\tau) & d(\tau) \end{pmatrix} \end{pmatrix} \cdot \rho(\tau)$$

for all $\tau\in G_F.$ Then these functions must respectively satisfy

 $a, d \in Hom(G_F, \mathbb{Q}_p), \text{ and } b, c \in H^1(G_F, \mathbb{Q}_p(\chi)).$

Deforming $1 \oplus \chi$

Again let $\rho = 1 \oplus \chi$ and $\tilde{\rho}$ be a deformation of ρ to $GL_2(\mathbb{Q}_p[\epsilon])$ where $\epsilon^2 = 0$.

Proposition

Let $a,b,c,d:G_F\to \mathbb{Q}_p$ be those functions such that

$$\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \varepsilon \begin{pmatrix} a(\tau) & b(\tau) \\ c(\tau) & d(\tau) \end{pmatrix} \end{pmatrix} \cdot \rho(\tau)$$

for all $\tau \in G_F$. Then these functions must respectively satisfy

$$a, d \in \text{Hom}(G_F, \mathbb{Q}_p), \text{ and } b, c \in H^1(G_F, \mathbb{Q}_p(\chi)).$$

Note that dim $Hom(G_F, \mathbb{Q}_p) = 1$ spanned by the p-adic cyclotomic character:

$$\phi_p^{cyc}: G_F \to Gal(F(\zeta_p^{\infty})/F) \cong \mathbb{Z}_p^{\times} \xrightarrow{\log_p} \mathbb{Q}_p.$$

Deforming $1 \oplus \chi$

Again let $\rho = 1 \oplus \chi$ and $\tilde{\rho}$ be a deformation of ρ to $GL_2(\mathbb{Q}_p[\epsilon])$ where $\epsilon^2 = 0$.

Proposition

Let $a,b,c,d:G_F\to \mathbb{Q}_p$ be those functions such that

$$\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \varepsilon \begin{pmatrix} a(\tau) & b(\tau) \\ c(\tau) & d(\tau) \end{pmatrix} \end{pmatrix} \cdot \rho(\tau)$$

for all $\tau \in G_F$. Then these functions must respectively satisfy

$$a, d \in \operatorname{Hom}(G_F, \mathbb{Q}_p), \text{ and } b, c \in H^1(G_F, \mathbb{Q}_p(\chi)).$$

Note that dim $Hom(G_F, \mathbb{Q}_p) = 1$ spanned by the p-adic cyclotomic character:

$$\phi_p^{cyc}: G_F \to Gal(F(\zeta_p^{\infty})/F) \cong \mathbb{Z}_p^{\times} \xrightarrow{\log_p} \mathbb{Q}_p.$$

For simplicity, choose

$$\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \varphi_p^{cyc} \varepsilon & 0 \\ 0 & \chi - \chi \varphi_p^{cyc} \varepsilon \end{pmatrix}.$$

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\varepsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by:

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\varepsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by:

• operators T_I , $\langle I \rangle$ for all primes $I \subset \mathcal{O}_F$ prime to p;

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\epsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by:

- operators T_I , $\langle I \rangle$ for all primes $I \subset O_F$ prime to p;
- operators U_{π} and $U_{\pi'}$ for all uniformisers π and π' at p.

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\varepsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by:

- operators T_I , $\langle I \rangle$ for all primes $I \subset O_F$ prime to p;
- operators U_{π} and $U_{\pi'}$ for all uniformisers π and π' at p.

We recover φ from

$$\varphi(T_{I}) = tr(\tilde{\rho}(Frob_{I})) = \begin{cases} 2 & \text{if } \chi(I) = 1; \\ 2\log_{p}(Nm(I))\varepsilon & \text{if } \chi(I) = -1. \end{cases}$$

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\varepsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by:

- operators T_I , $\langle I \rangle$ for all primes $I \subset O_F$ prime to p;
- operators U_{π} and $U_{\pi'}$ for all uniformisers π and π' at p.

We recover φ from

$$\varphi(T_{\mathfrak{l}}) = tr(\tilde{\rho}(Frob_{\mathfrak{l}})) = \begin{cases} 2 & \text{if } \chi(\mathfrak{l}) = 1; \\ 2\log_{p}(Nm(\mathfrak{l}))\varepsilon & \text{if } \chi(\mathfrak{l}) = -1. \end{cases}$$

Further, note that

$$\phi(\langle \mathfrak{l}\rangle Nm(\mathfrak{l}))=det(\tilde{\rho}(Frob_{\mathfrak{l}}))=\chi(\mathfrak{l}).$$

Remember the essential recursion relation

$$T_{\mathfrak{l}^{n+1}}=T_{\mathfrak{l}^n}T_{\mathfrak{l}}-\langle\mathfrak{l}\rangle Nm(\mathfrak{l})T_{\mathfrak{l}^n-1}.$$

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\varepsilon]$, where \mathbb{T} is Hida's p-adic Hecke algebra, generated by:

- operators T_I , $\langle I \rangle$ for all primes $I \subset O_F$ prime to p;
- operators U_{π} and $U_{\pi'}$ for all uniformisers π and π' at p.

We recover φ from

$$\varphi(T_{\mathfrak{l}}) = tr(\tilde{\rho}(Frob_{\mathfrak{l}})) = \begin{cases} 2 & \text{if } \chi(\mathfrak{l}) = 1; \\ 2\log_{p}(Nm(\mathfrak{l}))\varepsilon & \text{if } \chi(\mathfrak{l}) = -1. \end{cases}$$

Further, note that

$$\phi(\langle \mathfrak{l}\rangle Nm(\mathfrak{l})) = det(\tilde{\rho}(Frob_{\mathfrak{l}})) = \chi(\mathfrak{l}).$$

Remember the essential recursion relation

$$\mathsf{T}_{\mathfrak{l}^{n+1}} = \mathsf{T}_{\mathfrak{l}^n} \mathsf{T}_{\mathfrak{l}} - \langle \mathfrak{l} \rangle \mathsf{Nm}(\mathfrak{l}) \mathsf{T}_{\mathfrak{l}^{n-1}}.$$

We can solve this in each case explicitly:

$$\phi(T_{I^n}) = \begin{cases} n+1 & \text{if } \chi(\mathfrak{l}) = 1;\\ (n+1)\log_p(Nm(\mathfrak{l}))\varepsilon & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } n \text{ is odd};\\ 1 & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } n \text{ is even.} \end{cases}$$

Unifying expressions

So we have

$$\phi(\mathsf{T}_{\mathfrak{l}^n}) = \begin{cases} \mathfrak{n} + 1 & \text{if } \chi(\mathfrak{l}) = 1;\\ (\mathfrak{n} + 1) \log_p(\mathsf{Nm}(\mathfrak{l}))\varepsilon & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } \mathfrak{n} \text{ is odd};\\ 1 & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } \mathfrak{n} \text{ is even.} \end{cases}$$

Compare this to

$$\sum_{I \mid I^n} \chi(I) = \rho(I^n) = \begin{cases} n+1 & \text{if } \chi(I) = 1; \\ 0 & \text{if } \chi(I) = -1 \text{ and } n \text{ is odd}; \\ 1 & \text{if } \chi(I) = -1 \text{ and } n \text{ is even.} \end{cases}$$

Unifying expressions

So we have

$$\phi(\mathsf{T}_{\mathfrak{l}^n}) = \begin{cases} \mathfrak{n} + 1 & \text{if } \chi(\mathfrak{l}) = 1;\\ (\mathfrak{n} + 1) \log_p(\mathsf{Nm}(\mathfrak{l}))\varepsilon & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } \mathfrak{n} \text{ is odd};\\ 1 & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } \mathfrak{n} \text{ is even.} \end{cases}$$

Compare this to

$$\sum_{I \mid I^n} \chi(I) = \rho(I^n) = \begin{cases} n+1 & \text{if } \chi(I) = 1; \\ 0 & \text{if } \chi(I) = -1 \text{ and } n \text{ is odd}; \\ 1 & \text{if } \chi(I) = -1 \text{ and } n \text{ is even.} \end{cases}$$

The integral parts are precisely $\rho(I^n)$. We can thus write

$$\phi(\mathsf{T}_{\mathfrak{l}^n}) = \rho(\mathfrak{l}^n) + \frac{1}{2}(n+1)(1-\chi(\mathfrak{l}^n))\log_p(Nm(\mathfrak{l}))\varepsilon.$$

Unifying expressions

So we have

$$\phi(\mathsf{T}_{\mathfrak{l}^n}) = \begin{cases} \mathfrak{n} + 1 & \text{if } \chi(\mathfrak{l}) = 1;\\ (\mathfrak{n} + 1) \log_p(\mathsf{Nm}(\mathfrak{l}))\varepsilon & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } \mathfrak{n} \text{ is odd};\\ 1 & \text{if } \chi(\mathfrak{l}) = -1 \text{ and } \mathfrak{n} \text{ is even.} \end{cases}$$

Compare this to

$$\sum_{I \mid l^n} \chi(I) = \rho(l^n) = \begin{cases} n+1 & \text{if } \chi(l) = 1; \\ 0 & \text{if } \chi(l) = -1 \text{ and } n \text{ is odd}; \\ 1 & \text{if } \chi(l) = -1 \text{ and } n \text{ is even.} \end{cases}$$

The integral parts are precisely $\rho(I^n)$. We can thus write

$$\varphi(\mathsf{T}_{\mathfrak{l}^n}) = \rho(\mathfrak{l}^n) + \frac{1}{2}(n+1)(1-\chi(\mathfrak{l}^n))\log_p(\mathrm{Nm}(\mathfrak{l}))\varepsilon.$$

Let $J \subset O_F$ be any ideal coprime to p. Then

$$\varphi(\mathsf{T}_{J}) = \rho(J) + \frac{1}{2} \sum_{\mathfrak{l}^{\mathfrak{n}} \parallel J} \left((\mathfrak{n} + 1) \left(1 - \chi(\mathfrak{l}^{\mathfrak{n}}) \right) \rho(J/\mathfrak{l}^{\mathfrak{n}}) \right) \log_{\mathfrak{p}}(\mathsf{Nm}(\mathfrak{l})) \varepsilon.$$

The Magic Moment

$$\varphi(\mathsf{T}_{J}) = \rho(J) + \frac{1}{2} \sum_{\mathfrak{l}^{\mathfrak{n}} \parallel J} \left((\mathfrak{n} + 1) \left(1 - \chi(\mathfrak{l}^{\mathfrak{n}}) \right) \rho(J/\mathfrak{l}^{\mathfrak{n}}) \right) \log_{\mathfrak{p}}(\mathsf{Nm}(\mathfrak{l})) \varepsilon.$$

The Magic Moment

$$\varphi(\mathsf{T}_{J}) = \rho(J) + \frac{1}{2} \sum_{\mathfrak{l}^{\mathfrak{n}} \parallel J} \left((\mathfrak{n} + 1) \left(1 - \chi(\mathfrak{l}^{\mathfrak{n}}) \right) \rho(J/\mathfrak{l}^{\mathfrak{n}}) \right) \log_{\mathfrak{p}}(\mathsf{Nm}(\mathfrak{l})) \varepsilon.$$

Proposition

If J is a primitive ideal coprime to p, then the quantity

$$\frac{1}{2} \sum_{\mathfrak{l}^n \parallel J} \left((\mathfrak{n}+1) \left(1 - \chi(\mathfrak{l}^n) \right) \rho(J/\mathfrak{l}^n) \right) \log_p(Nm(\mathfrak{l}))$$

is equal to

$$\rho(sp(J)J)(\nu_{sp(J)}(J)+1)\log_p Nm\ (sp(J)).$$

The Magic Moment

$$\varphi(\mathsf{T}_{J}) = \rho(J) + \frac{1}{2} \sum_{\mathfrak{l}^{\mathfrak{n}} \parallel J} \left((\mathfrak{n} + 1) \left(1 - \chi(\mathfrak{l}^{\mathfrak{n}}) \right) \rho(J/\mathfrak{l}^{\mathfrak{n}}) \right) \log_{\mathfrak{p}}(\mathsf{Nm}(\mathfrak{l})) \varepsilon.$$

Proposition

If J is a primitive ideal coprime to p, then the quantity

$$\frac{1}{2} \sum_{\mathfrak{l}^n \parallel J} \left((\mathfrak{n}+1) \left(1 - \chi(\mathfrak{l}^n) \right) \rho(J/\mathfrak{l}^n) \right) \log_p(Nm(\mathfrak{l}))$$

is equal to

$$\rho(sp(J)J)(\nu_{sp(J)}(J)+1)\log_p Nm\ (sp(J)).$$

Indeed, the factor $1 - \chi(I^n) = 0$ unless I is a special prime of J, and if J/I^n still has another special prime, $\rho(J/I^n) = 0$. It can thus only be non-zero when I is the unique special prime; the rest matches up.

Fourier coefficients

For convenience, let us denote

$$\log \mathfrak{F}(J) = \rho(sp(J)J)(\nu_{sp(J)}(J) + 1)\log(sp(J)),$$

so that very concisely, for J coprime to p,

$$\varphi(\mathsf{T}_{\mathsf{J}}) = \rho(\mathsf{J}) + \log \mathfrak{F}(\mathsf{J})\epsilon.$$

Let \tilde{J} denote the ideal J without its prime factors dividing p.

Fourier coefficients

For convenience, let us denote

 $\log \mathcal{F}(J) = \rho(sp(J)J)(\nu_{sp(J)}(J) + 1)\log(sp(J)),$

so that very concisely, for J coprime to p,

$$\varphi(\mathsf{T}_{\mathsf{J}}) = \rho(\mathsf{J}) + \log \mathfrak{F}(\mathsf{J}) \epsilon.$$

Let \tilde{J} denote the ideal J without its prime factors dividing p.

Theorem

For any $\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+}$, let $J_{\nu} = (\nu)\mathcal{D}_{F}\mathfrak{q}^{-1}$. Then it holds that

 $\mathfrak{a}_\nu(\mathfrak{f}_\mathfrak{q}) = (-1)^{\nu_\mathfrak{p}(\nu)} \big(\rho(\widetilde{J_\nu}) + log_p(\mathfrak{F}(\widetilde{J}_\nu))\varepsilon - \rho(\widetilde{J_\nu}) \, log_p(\nu/\nu')\varepsilon \big).$

Fourier coefficients

For convenience, let us denote

$$\log \mathcal{F}(J) = \rho(sp(J)J)(\nu_{sp(J)}(J) + 1)\log(sp(J)),$$

so that very concisely, for J coprime to p,

$$\varphi(\mathsf{T}_{\mathsf{J}}) = \rho(\mathsf{J}) + \log \mathfrak{F}(\mathsf{J}) \epsilon.$$

Let \tilde{J} denote the ideal J without its prime factors dividing p.

Theorem

For any
$$\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+}$$
, let $J_{\nu} = (\nu)\mathcal{D}_{F}\mathfrak{q}^{-1}$. Then it holds that

$$\mathfrak{a}_{\nu}(\mathfrak{f}_{\mathfrak{q}}) = (-1)^{\nu_{\mathfrak{p}}(\nu)} \big(\rho(\widetilde{J_{\nu}}) + \log_{\mathfrak{p}}(\mathfrak{F}(\widetilde{J}_{\nu}))\varepsilon - \rho(\widetilde{J_{\nu}}) \log_{\mathfrak{p}}(\nu/\nu')\varepsilon \big).$$

The term $log(\nu/\nu')$ comes from ν at the two places above p, as

$$\varphi(\mathsf{U}_{\pi}) = -1 + \log_{\mathsf{p}}(\pi)\varepsilon; \quad \varphi(\mathsf{U}_{\pi'}) = 1 + \log_{\mathsf{p}}(\pi')\varepsilon.$$

Ordinary projection

We take the diagonal restriction:

$$diag(f_{\mathfrak{q}}) = \sum_{n=1}^{\infty} \Big(\sum_{\substack{\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+} \\ tr(\nu) = n}} \mathfrak{a}_{\nu} \Big) \mathfrak{q}^{n}.$$

Ordinary projection

We take the diagonal restriction:

$$diag(f_{\mathfrak{q}}) = \sum_{n=1}^{\infty} \Big(\sum_{\substack{\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+} \\ tr(\nu) = n}} a_{\nu} \Big) q^{n}.$$

Taking its derivative amounts to considering only the ε -part:

$$a_{n}(\operatorname{ddiag}(f_{\mathfrak{q}})) = \sum_{\substack{\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+} \\ \operatorname{tr}(\nu) = n}} (-1)^{\nu_{\mathfrak{p}}(\nu)} \big(\log_{\mathfrak{p}}(\mathfrak{F}(\widetilde{J_{\nu}})) - \rho(\widetilde{J_{\nu}}) \log_{\mathfrak{p}}(\nu/\nu') \big).$$

Ordinary projection

We take the diagonal restriction:

$$diag(f_{\mathfrak{q}}) = \sum_{n=1}^{\infty} \Big(\sum_{\substack{\nu \in (\mathcal{D}_{\overline{F}}^{-1}\mathfrak{q})^{+} \\ tr(\nu) = n}} \mathfrak{a}_{\nu} \Big) \mathfrak{q}^{n}.$$

Taking its derivative amounts to considering only the ε -part:

$$a_{n}(\operatorname{ddiag}(f_{\mathfrak{q}})) = \sum_{\substack{\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+} \\ \operatorname{tr}(\nu) = n}} (-1)^{\nu_{\mathfrak{p}}(\nu)} \big(\log_{\mathfrak{p}}(\mathfrak{F}(\widetilde{J_{\nu}})) - \rho(\widetilde{J_{\nu}}) \log_{\mathfrak{p}}(\nu/\nu') \big).$$

Now we take the *ordinary projection* e^{ord}:

$$\begin{split} a_1(e^{ord}(\partial diag(f_{\mathfrak{q}}))) &= \lim_{n \to \infty} a_{p^{2n}}(\partial diag(f_{\mathfrak{q}})) \\ &= \lim_{n \to \infty} \sum_{\substack{\nu \in (\mathfrak{D}_F^{-1}\mathfrak{q})^+ \\ tr(\nu) = p^{2n}}} (-1)^{\nu_\mathfrak{p}(\nu)} \big(\log_p(\mathcal{F}(\widetilde{J_\nu})) - \rho(\widetilde{J_\nu}) \log_p(\nu/\nu') \big) \Big). \end{split}$$

The crux!

One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

 $S_2(\Gamma_0(6)) = S_2(\Gamma_0(10)) = 0$ and $S_2(\Gamma_0(22)) \approx 0$.

The crux!

One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

$$S_2(\Gamma_0(6)) = S_2(\Gamma_0(10)) = 0$$
 and $S_2(\Gamma_0(22)) \approx 0$.

In other words, if

$$A := \lim_{n \to \infty} \sum_{\substack{\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+} \\ tr(\nu) = p^{2n}}} (-1)^{\nu_{\mathfrak{p}}(\nu)} \rho(\widetilde{J_{\nu}}) \log_{p}(\nu/\nu')$$

and

$$\mathsf{B} := \lim_{n \to \infty} \sum_{\substack{\nu \in (\mathcal{D}_F^{-1}\mathfrak{q})^+ \\ \mathfrak{tr}(\nu) = p^{2n}}} (-1)^{\nu_\mathfrak{p}(\nu)} \log_p(\mathfrak{F}(\widetilde{J_\nu})),$$

then A = B.

The crux!

One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

$$S_2(\Gamma_0(6)) = S_2(\Gamma_0(10)) = 0$$
 and $S_2(\Gamma_0(22)) \approx 0$.

In other words, if

$$A:=\lim_{n\to\infty}\sum_{\substack{\nu\in (\mathcal{D}_F^{-1}\mathfrak{q})^+\\ tr(\nu)=p^{2n}}}(-1)^{\nu_\mathfrak{p}(\nu)}\rho(\widetilde{J_\nu})\log_p(\nu/\nu')$$

and

$$B := \lim_{n \to \infty} \sum_{\substack{\nu \in (\mathcal{D}_F^{-1}\mathfrak{q})^+ \\ tr(\nu) = p^{2n}}} (-1)^{\nu_{\mathfrak{p}}(\nu)} \log_{\mathfrak{p}}(\mathcal{F}(\widetilde{J_{\nu}})),$$

then A = B. Recall our expression for the theta series

$$\log_p \frac{\Theta(\tau_1,\tau_1';\tau_2)}{\Theta(\tau_1,\tau_1';\tau_2')} = \lim_{n \to \infty} \sum_{tr(\nu) = p^{2n}} \rho(J_\nu) \log_p(\nu/\nu').$$

It easily follows that

$$A = \log \operatorname{Nm} J^p_q(\tau_1, \tau_2).$$

Conclusion

One can show that the limit in B equals the first term:

$$B = \sum_{\substack{\nu \in (\mathcal{D}_{F}^{-1}\mathfrak{q})^{+} \\ tr(\nu) = 1}} (-1)^{\nu_{\mathfrak{p}}(\nu)} \log_{\mathfrak{p}}(\mathfrak{F}(\widetilde{J_{\nu}}))$$

where

$$\log \mathfrak{F}(J) = \rho(sp(J)J)(\nu_{sp(J)}(J)+1)\log_p(sp(J)).$$

Conclusion

One can show that the limit in B equals the first term:

$$B = \sum_{\substack{\nu \in (\mathcal{D}_F^{-1}\mathfrak{q})^+ \\ tr(\nu) = 1}} (-1)^{\nu_\mathfrak{p}(\nu)} \log_p(\mathfrak{F}(\widetilde{J_\nu}))$$

where

$$\log \mathfrak{F}(J) = \rho(sp(J)J)(\nu_{sp(J)}(J)+1)\log_p(sp(J)).$$

Now use A = B to complete the proof:

Theorem (D., 2023)

The expression

$$\log Nm_{\mathbb{Q}}^{H_1H_2}J^p_{\mathfrak{q}}(\tau_1,\tau_2)$$

is up to sign explicitly equal to

$$\sum_{\substack{Nm(\mathfrak{a})=N\\tr(\nu)=1}} \delta(\mathfrak{a}) \sum_{\substack{\nu \in \mathcal{D}_F^{-1,+}\\tr(\nu)=1}} \rho(sp(\alpha \mathfrak{a}^{-1})\alpha \mathfrak{a}^{-1})(\nu_{sp(\alpha \mathfrak{a}^{-1})}(\alpha \mathfrak{a}^{-1})+1) \log Nm \ (sp(\alpha \mathfrak{a}^{-1})).$$

Conclusion

One can show that the limit in B equals the first term:

$$B = \sum_{\substack{\nu \in (\mathcal{D}_F^{-1}\mathfrak{q})^+ \\ tr(\nu) = 1}} (-1)^{\nu_\mathfrak{p}(\nu)} \log_p(\mathfrak{F}(\widetilde{J_\nu}))$$

where

$$\log \mathfrak{F}(J) = \rho(sp(J)J)(\nu_{sp(J)}(J)+1)\log_p(sp(J)).$$

Now use A = B to complete the proof:

Theorem (D., 2023)

The expression

 $log\,Nm_Q^{H_1H_2}J^p_q(\tau_1,\tau_2)$

is up to sign explicitly equal to

$$\sum_{\substack{Nm(\mathfrak{a})=N\\tr(\nu)=1}} \delta(\mathfrak{a}) \sum_{\substack{\nu \in \mathcal{D}_F^{-1,+}\\tr(\nu)=1}} \rho(sp(\alpha \mathfrak{a}^{-1})\alpha \mathfrak{a}^{-1})(\nu_{sp(\alpha \mathfrak{a}^{-1})}(\alpha \mathfrak{a}^{-1})+1) \log Nm \ (sp(\alpha \mathfrak{a}^{-1})).$$

Preprint is on arXiv: https://arxiv.org/abs/2309.17251