CM-values of p-adic ©-functions

Mike Daas

Universiteit Leiden

3rd of June, 2024

Universiteit
) Leiden

Mike Daas CM-values of p-adic @-functions 3rd of June, 2024



Complex Multiplication

Let E/k be an elliptic curve with char(k) = 0. Then:
o Either End(E) = Z;

@ Or End(E) is isomorphic to an order in an imaginary quadratic number
field. We say that E has CM.
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Complex Multiplication

Let E/k be an elliptic curve with char(k) = 0. Then:
o Either End(E) = Z;

@ Or End(E) is isomorphic to an order in an imaginary quadratic number
field. We say that E has CM.

For E; : y?> =% + 1, we have amap [(3] : E — E given by

P = (x,y) — (G3x,y) = End(E) = ZI[].

CM-values of p-adic @-functions 3rd of June, 2024



Complex Multiplication

Let E/k be an elliptic curve with char(k) = 0. Then:
o Either End(E) = Z;

@ Or End(E) is isomorphic to an order in an imaginary quadratic number
field. We say that E has CM.

For E; : y?> =% + 1, we have amap [(3] : E — E given by

P = (x,y) — (G3x,y) = End(E) = ZI[].

For E; : y?> = %3 + x, we have amap [i] : E — E given by

P = (x,y) = (—x,iy) = End(E) = Z[i].
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Gross and Zagier’s discovery (1/2)

Most curves do not have CM. Examples:

Es:y?+xy=x>—x*—-2x—1 hasCMby Z[qu];

Esiy?+y=x"—x>—7x+10 hasCMby Z[
1+\/—19]
— |

1+ \/—11} '
2 7

Es:y?+y=x"—38x+90 hasCM by Z[
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Gross and Zagier’s discovery (1/2)

Most curves do not have CM. Examples:

Es:y?+xy=x>—x*—-2x—1 hasCMby Z[qu];

Esiy?+y=x"—x>—7x+10 hasCMby Z[
1+\/—19]
— |

1+ \/—11} '
2 7

Es:y?+y=x"—38x+90 hasCM by Z[

We compute that
j(Es) = —3%%, j(E) =—2", and j(Es)=—2"3",
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Gross and Zagier’s discovery (1/2)

Most curves do not have CM. Examples:

Es:y?+xy=x>—x*—-2x—1 hasCMby Z[qu];

Esiy?+y=x"—x>—7x+10 hasCMby Z[
1+\/—19]
— |

1+ \/—11} '
2 7

Es:y?+y=x"—38x+90 hasCM by Z[

We compute that
j(Es) = —3%5°, j(Es) =—2', and j(Es) = —2'53%.
However, the following is striking:
j(E3) —j(E4) =7-13-17-19;

j(E3) —j(Es) =37 -13.31;
j(E4) —j(Es) =2 . 13.
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Gross and Zagier’s discovery (2/2)

More examples:

1+ v—4
Eo:y?+y=x>—860x +9707 hasCMby Z [423] ;

E7iy?+y =) —7370x+ 243528 has CMby Z [”;/TW] ;
Bgiy? +y =7 — 2174420x + 1234136692 has CMby Z [H\QT“] ‘
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Gross and Zagier’s discovery (2/2)

More examples:

1+ v/—4
Eo:y?+y=x>—860x +9707 hasCMby Z [423] ;
E7:y*+y=x>—7370x + 243528 hasCMby Z {1+2 “67] ;

Bgiy? +y =7 — 2174420x + 1234136692 has CMby Z [H\QT“] ‘

We compute that
j(Eg) = —2183%5%,  j(E;) = —21°3%5%11%, and j(Eg) = —2183%5%23%293.
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Gross and Zagier’s discovery (2/2)

More examples:

1+ v—4
Eo:y?+y=x>—860x +9707 hasCMby Z [423] ;

E7:y*+y=x>—7370x + 243528 hasCMby Z {1+2 “67] ;

Bgiy? +y =7 — 2174420x + 1234136692 has CMby Z [H\QT“] ‘

We compute that
j(Ee) = —2'%3°5°, j(E;) = —2"°3%5°11%, and j(Es) = —2'%3°5°23°29°.
The following is even more striking:
j(Eg) —j(E7) =2'°.36.5%.7%

j(Eg) —j(Eg) =2'7.3°.5%. 7% .37 .433;
j(Ey) —j(Eg) =2 .37.5%.72.13.139 - 331.
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An unexpected connection

Recall the curves

14+ =7
2

E; with CM by Z [ ] and j(E3) = —3%5%;

E4 with CM by Z [1+2 v

1+ v-19
2

} and j(E4) — —25,

Es with CM byZ{ ] and j(E5) = —2°3%.
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An unexpected connection

Recall the curves

14+ =7
2

E; with CM by Z [ ] and j(E3) = —3%5%;

E4 with CM by Z [1+2 v

1+ v-19
2

} and j(Ey) = 2%,
Es with CM by Z [ ] and j(E5) = —2°3%.

Recall that j(E3) —j(E4) =7-13-17-19. Let D = 7 - 11.
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An unexpected connection

Recall the curves

14+ =7
2

E; with CM by Z [ ] and j(E3) = —3%5%;

E4 with CM by Z [1+2 v

1+ v-19
2

} and j(Ey) = 2%,
Es with CM by Z [ ] and j(E5) = —2°3%.

Recall that j(E3) —j(E4) =7-13-17-19. Let D = 7 - 11.

x 1] 43 [ 45 | 7
D—xH)/A 19 [17 [ 13] 7
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An unexpected connection

Recall the curves

E; with CM by Z [1+2 ”_7] and j(E3) = —3%5%;

E4 with CM by Z [1+2 v

1+ v-19
2

} and j(Ey) = 2%,
Es with CM by Z [ ] and j(E5) = —2°3%.

Recall that j(E3) —j(E4) =7-13-17-19. Let D = 7 - 11.

x 1] 43 [ 45 | 7
D—xH)/A 19 [17 [ 13] 7

Recall that j(E;3) —j(Es) =37 -13-31. Let D = 7 - 19.
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An unexpected connection

Recall the curves

E; with CM by Z [1+2 ”_7] and j(E3) = —3%5%;

E4 with CM by Z [1+2 v

1+ v-19
2

} and j(Ey) = 2%,
Es with CM by Z [ ] and j(E5) = —2°3%.

Recall that j(E3) —j(E4) =7-13-17-19. Let D = 7 - 11.

x 1] 43 [ 45 | 7
D—xH)/A 19 [17 [ 13] 7

Recall that j(E;3) —j(Es) =37 -13-31. Let D = 7 - 19.

X 1 | £3 [ 45 | =7 | £9 | +11
D—x2)/43-11 |31 | 3 [3.7] 13| 3
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Let Dy, D, < 0 be coprime discriminants and write D = D1 D,. Set

Ki =Q(y/D1), K»=Q(VDy),
F=Q(VD), L=0Q(v/Di, vDy).
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Let Dy, D, < 0 be coprime discriminants and write D = D1 D,. Set

Ki =Q(y/D1), K»=Q(VDy),
F=Q(VD), L=0Q(v/Di, vDy).

1 if p splits in L/F;
x(p) = | PepTE IR
—1 ifpisinertin L/F.
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The formula

Let I C Of be an ideal. Define

p(I) =#J C O INmE(]) =1},

sp(l) = p if p is unique with x(p) = —1 and v,(I) odd;
PLU= 1 otherwise.

Important: p(I) = 0 if and only if I has at least one special prime.
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The formula

Let I C Of be an ideal. Define

p(I) =#J C O INmE(]) =1},

sp(l) = p if p is unique with x(p) = —1 and v,(I) odd;
PLU= 1 otherwise.

Important: p(I) = 0 if and only if I has at least one special prime.

Let E; be an elliptic curve with CM by O; and E; an elliptic curve with CM by
3. Then by CM theory, j(Ei) € H; for i = 1,2, where H; is the Hilbert class
field of K;. For simplicity, assume D; ¢ {—3, —4}.
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The formula

Let I C Of be an ideal. Define

p(I) =#J C O INmE(]) =1},

sp(l) = p if p is unique with x(p) = —1 and v,(I) odd;
Py = 1 otherwise.

Important: p(I) = 0 if and only if I has at least one special prime.

Let E; be an elliptic curve with CM by O; and E; an elliptic curve with CM by
3. Then by CM theory, j(Ei) € H; for i = 1,2, where H; is the Hilbert class
field of K;. For simplicity, assume D; ¢ {—3, —4}.

Theorem (Gross-Zagier, 1984)

Setting « = v /D and D = (v/D), the following equality holds:

logNmHlHZ()(El)—j(Ez))Z Z p(sp(a) o) (Vsp(a) () + 1) log Nm(sp(e)).

veD
tr(v)=1
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Let D; = —7 and D, = —19. Then
Es:y?+xy=x>—x*—2x—1, j(E;3) =—3%5%;
Es:y?>+y=x>—38x+90, j(Es)=—213%
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Let D; = —7 and D, = —19. Then
Es:y?+xy=x>—x>—2x—1, j(E3) =-3%5%
Es:y?+y=x>—38x+90, j(Es) =213

Ifve Dt and tr(v) = 1, then

x4+ vD

x=vvD = 5 where x> < D = 133 and x is odd.
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Let D; = —7 and D, = —19. Then

Es:y?+xy=x>—x*—2x—1, j(E;3) =—3%5%;
Es:y?+y=x>—38x+90, j(E5) =23

Ifve Dt and tr(v) = 1, then

x=v D:X+2\5, where x> < D = 133 and x is odd.

| X [ £1 [43[45] &7 [ £9 [ £11]
(D —x2)/4 3-11 (313 [3-7]13] 3
sp(o) 3 31 | 3 3 13 3
(Vsp(a) () +1)/2 1 1 2 1 1 1
p(sp(a)x) 2 1 1 2 1 1
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Let D; = —7 and D, = —19. Then

Es:y?+xy=x>—x*—2x—1, j(E;3) =—3%5%;
Es:y?+y=x>—38x+90, j(E5) =23

Ifve Dt and tr(v) = 1, then

x=v D:X+2\5, where x> < D = 133 and x is odd.

| X [ £1 [43[45] &7 [ £9 [ £11]
(D —x2)/4 3-11 (313 [3-7]13] 3
sp(o) 3 31 | 3 3 13 3
(Vsp(a) () +1)/2 1 1 2 1 1 1
p(sp(a)x) 2 1 1 2 1 1

Let’s check:

j(E3) —j(E5) = —3%5° +21°3% = 881361
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Let D; = —7 and D, = —19. Then

Es:y?+xy=x>—x*—2x—1, j(E;3) =—3%5%;
Es:y?+y=x>—38x+90, j(E5) =23

Ifve Dt and tr(v) = 1, then

x=v D:X+2\5, where x> < D = 133 and x is odd.

| X [ £1 [43[45] &7 [ £9 [ £11]
(D —x2)/4 3-11 (313 [3-7]13] 3
sp(o) 3 31 | 3 3 13 3
(Vsp(a) () +1)/2 1 1 2 1 1 1
p(sp(a)x) 2 1 1 2 1 1

Let’s check:

j(E3) —j(E5) = —3%5° +2193% = 881361 =37 - 13- 31.
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD M+ 1(v)Dr
‘rr(v):l

CM-values of p-adic @-functions 3rd of June, 2024



Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Exx(z,z) = const + Z ( Z x(I)Nm(I kl)q

veD Mt My
tr(v)=n
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
@ Take its derivative and evaluate at s = 0;

CM-values of p-adic @-functions 3rd of June, 2024



Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
@ Take its derivative and evaluate at s = 0;
o Apply a so-called holomorphic projection.

This must be in M,(SL,(Z)) = 0.
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).

veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
@ Take its derivative and evaluate at s = 0;
@ Apply a so-called holomorphic projection.

This must be in M,(SL(Z)) = 0. The explicit formula for its Fourier
coefficients involves two terms, one for each side = equal. Hard.
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What is the j-function really?

Consider M;(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M (Z) € M;(Q).

Its units of norm 1 are precisely

SLz(Z) c M, (Z)
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What is the j-function really?

Consider M;(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M (Z) € M;(Q).

Its units of norm 1 are precisely
SL,(Z) Cc My(Z).
Since M;(Q) acts on C, we may consider the quotient
Y1(C) =SLy(Z) \ H.

Its function field is generated by the j-function.

CM-values of p-adic ©-functions 3rd of June, 2024



What is the j-function really?

Consider M;(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M (Z) € M;(Q).

Its units of norm 1 are precisely
SL,(Z) Cc My(Z).
Since M;(Q) acts on C, we may consider the quotient
Y1(C) =SLy(Z) \ H.

Its function field is generated by the j-function.

What happens if we change M, (Q) to a different quaternion algebra?
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Shimura curves

Choose two primes p # q and let N = pq. Let By denote the quaternion
algebra ramified at p and q. Let Ry be a maximal order and let Ry ; denote
the subgroup of units of norm 1. We may choose an embedding

RN, — M2(RR) to form the quotient

Xn(C) = R, \ 56

this is known as a Shimura curve, which is an algebraic curve /Q.

CM-values of p-adic ©-functions

3rd of June, 2024



Shimura curves

Choose two primes p # q and let N = pq. Let By denote the quaternion
algebra ramified at p and q. Let Ry be a maximal order and let Ry ; denote
the subgroup of units of norm 1. We may choose an embedding

RN, — M2(RR) to form the quotient

Xn(C) = R, \ 56

this is known as a Shimura curve, which is an algebraic curve /Q.

Proposition

The Shimura curve Xy is of genus 0 if and only if N € {6, 10, 22}.

Suppose henceforth that we are in one of these cases. Then there exists a
generator jn of the function field. Note this choice is not unique.
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Shimura curves

Choose two primes p # q and let N = pq. Let By denote the quaternion
algebra ramified at p and q. Let Ry be a maximal order and let Ry ; denote
the subgroup of units of norm 1. We may choose an embedding

RN, — M2(RR) to form the quotient

Xn(C) = R, \ 56

this is known as a Shimura curve, which is an algebraic curve /Q.

Proposition

The Shimura curve Xy is of genus 0 if and only if N € {6, 10, 22}.

Suppose henceforth that we are in one of these cases. Then there exists a
generator jn of the function field. Note this choice is not unique.
Let 71, T2 € H{ be CM points: fixed points in H of embeddings O; — Rn.
These exist when p and q are inert in both K;. We want to study

Nm (jn (1) —jn(T2)).

They are algebraic by Shimura reciprocity.
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rq[1/pl;

of units of norm 1.

Mike Daas
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1. Since B is split at p, it embeds into M,(Q,,) and as such,
we can take the quotient

P 5,
where 3, = P1(C,,) \ P}(Q,) is the p-adic upper half plane.
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1. Since B is split at p, it embeds into M,(Q,,) and as such,
we can take the quotient

P 5,
where 3, = P1(C,,) \ P}(Q,) is the p-adic upper half plane.
Theorem (Cerednik-Drinfeld)

The quotient I'} \ K, as a rigid p-adic space is isomorphic to Xy (Cp).
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1. Since B is split at p, it embeds into M,(Q,,) and as such,
we can take the quotient

P 5,
where 3, = P1(C,,) \ P}(Q,) is the p-adic upper half plane.
Theorem (Cerednik-Drinfeld)

The quotient I'} \ K, as a rigid p-adic space is isomorphic to Xy (Cp).

Which functions on I'§ \ H,, correspond to jn on the other side?
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Theta functions

Let wi,w;, € J(,. Then consider the expression

zZ— YWy
O(wy,wy;z) = I I p—— Yy

—Ywz
Yery

If N € {6,10, 22}, this expression descends to a rigid analytic meromorphic
function on FE \ Hp, with divisor [wq] — [wy].
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Theta functions

Let wi,w;, € J(,. Then consider the expression

zZ— YWy
O(wy,wy;z) = I I p—— Yy

—Ywz
Yery

If N € {6,10, 22}, this expression descends to a rigid analytic meromorphic
function on FE \ H,, with divisor [wq] — [w,]. We obtain

O(w1, wo; z) = c(wy, wy) - M

- , for some c(wy,wW,) € C,,.
in(z) —in(wa) (w1, w2) P
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Theta functions

Let wi,w;, € J(,. Then consider the expression

z—ywi
zZ—ywy

O(w1, wy;z) = H

yery

If N € {6,10, 22}, this expression descends to a rigid analytic meromorphic
function on FE \ H,, with divisor [wq] — [w,]. We obtain

O(w1, wo; z) = c(wy, wy) - M

- , for some c(wy,wW,) € C,,.
in(z) —in(wa) (w1, w2) P

Now choose w; = 11 and w, = T7; its Galois conjugate. Because we don't
know c(71,7]), we opt to study instead

in(T2) —in(T1) in(Ts) —in(T]) _ H =Y T, — YT

in(T2) = in(Ty) in(Ty) —in(T) LT — YT T — YT
YETY
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The conjecture

One can p-adically approximate the quantity

/ /

To—YT1 T, — YT

) =11 o — s
2 - 1
yery 172

and recognise it as an algebraic number.
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The conjecture

One can p-adically approximate the quantity

To—YT1 Ty — YT,
Fln, )= [] 2-Y0Bo0G
very 22— YT T, — YT
and recognise it as an algebraic number.
There are four ideals a of norm N = pq in Of; they come in two Gal(F/Q)
orbits. Assign one orbit 6(a) = +1, the other 6(a) = —1.
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The conjecture

One can p-adically approximate the quantity

! li
H To—YT1 T, — YT

Jh(t1,T2) =
ar- T — YT Ty — YT

yery

and recognise it as an algebraic number.
There are four ideals a of norm N = pq in Of; they come in two Gal(F/Q)
orbits. Assign one orbit 6(a) = +1, the other 6(a) = —1.

Conjecture (Giampietro, Darmon)

|

The expression
log Nmg'™*J§ (11, 72)

is up to sign explicitly equal to

Z 5(a) Z p(sp(aa Hoa™ 1)(\;51,(““71)(0((1_1)—|—1)logNm (sp(oa

Nm(a)=N veD T
tr(v)=1

).
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Rewriting the theta series

Note that we have a correspondence
M} =Rq[1/pl; ¢ lim {b € Ry [Nm(b) =p*"}.
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Rewriting the theta series

Note that we have a correspondence
M} =Rq[1/pl; ¢ lim {b € Ry [Nm(b) =p*"}.
(1, Ty, T2) T, — b1y T, — bT] Vo

_ —— = = = lim )
O(ty,T;T5) Ser T, — b1 1) —b1y  n-oo vy,
q

Nm(b)=p2"
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Rewriting the theta series

Note that we have a correspondence
M} =Rq[1/pl; ¢ lim {b € Ry [Nm(b) =p*"}.
(1, Ty, T2) T, — b1y T, — bT]

O(ty,T;T5) Ser T, — b1 1) —b1y  n-oo
q

Yo
/

v

Nm(b)=p2" b

Note vy, v{, € F and one can compute that tr(vy,) = Nm(b) = p>™. Then

O(71, 7, T2) . /
b Bl —Am, D #bERglve =vHog, (v/v))

log

tr(v)=p2"
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Rewriting the theta series

Note that we have a correspondence
P =Rqll/ply & lim {b € Rq | Nm(b) = p™}.

/. i li
O(ty, T1;T2) T, — bt 1) — b1y

_ —— = = I I = lim
O(ty,T;T5) Ser T, — b1 1) —b1y  n-oo
q

Yo
/

v

Nm(b)=p2" b

Note vy, v{, € F and one can compute that tr(vy,) = Nm(b) = p>™. Then

O(71, 7, T2) . /
b Bl —Am, D #bERglve =vHog, (v/v))

log

tr(v)=p2"

Proposition

Taking an average over the class groups, there is a bijection between

bR/} | vo=v} and {IC Or|Nm (1) = (v)a D).
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Rewriting the theta series

Note that we have a correspondence
P =Rqll/ply & lim {b € Rq | Nm(b) = p™}.

/. i li
O(ty, T1;T2) T, — bt 1) — b1y

_ —— = = I I = lim
O(ty,T;T5) Ser T, — b1 1) —b1y  n-oo
q

Yo
/

v

Nm(b)=p2" b

Note vy, v{, € F and one can compute that tr(vy,) = Nm(b) = p>™. Then

O(71, 7, T2) . /
b Bl —Am, D #bERglve =vHog, (v/v))

log

tr(v)=p2"

Proposition

Taking an average over the class groups, there is a bijection between

bR/} | vo=v} and {IC Or|Nm (1) = (v)a D).

/.
— log, Nmoo ) _ jim 37 p((v)a~Dr) log, (v/v').

(T1, T4, Ty)  n—eo
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:
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o Find explicit family of Hilbert modular forms around E, ,;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

Mike Daas CM-values of p-adic ©-functions 3rd of June, 2024



Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.
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We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
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We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
o Argue why these deformations are modular;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

o Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
o Argue why these deformations are modular;

@ Explicitly compute its Fourier coefficients a., for all v > 0;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

o Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
o Argue why these deformations are modular;
@ Explicitly compute its Fourier coefficients a., for all v > 0;
@ The e-part then yields a meaningful derivative.
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Deforming 1 ® x

Again let p =16 x and p be a deformation of p to GL,(Qp, [€]) where €2 = 0.
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Deforming 1 ® x

Again let p =16 x and p be a deformation of p to GL,(Qp, [€]) where €2 = 0.

Proposition

Leta,b,c,d: GF — Qp be those functions such that

o) = (14 (40 59)) -oto

for all T € Gr. Then these functions must respectively satisfy

a, de Hom(GF/Qp)/ and b,C S Hl(GF/Q‘p (X))
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Deforming 1 ® x

Again let p =16 x and p be a deformation of p to GL,(Qp, [€]) where €2 = 0.

Proposition

Leta,b,c,d: GF — Qp be those functions such that

p(t) = (1 +e (2((3 ZEID) -p(T)

for all T € Gr. Then these functions must respectively satisfy

a,d € Hom(Gr,Q;), and b,c € H(Gr, Qp(x)).

Note that dim Hom(Gr, Q) = 1 spanned by the p-adic cyclotomic character:

cve . lo:
¥ G — Gal(F(CX)/F) = Z —% Q.
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Deforming 1 ® x

Again let p =16 x and p be a deformation of p to GL,(Qp, [€]) where €2 = 0.

Proposition

Leta,b,c,d: GF — Qp be those functions such that

p(t) = (1 +e (2((3 ZEID) -p(T)

for all T € Gr. Then these functions must respectively satisfy

a,d € Hom(Gr,Q;), and b,c € H(Gr, Qp(x)).

Note that dim Hom(Gr, Q) = 1 spanned by the p-adic cyclotomic character:

lo:
¥ G — Gal(F(CX)/F) = Z —% Q.

For simplicity, choose
3 1+ ¢y e 0 )
T C C .
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Solving the recursion

Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
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Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
@ operators Tj, (I) for all primes | C Of prime to p;
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Solving the recursion

Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:

@ operators Tj, (I) for all primes | C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at p.
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Solving the recursion

Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
@ operators Tj, (I) for all primes | C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at p.
We recover ¢ from

o 2 ifx(I) =1;
©(Ty) = tr(p(Froby)) = {ZIng(Nm(I))e if x(I) = —1.
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Solving the recursion

Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
@ operators Tj, (I) for all primes | C Of prime to p;
@ operators U, and U, for all uniformisers 7w and 7’ at p.
We recover ¢ from
. 2 if x() =1;
¢(Tt) = tr(p(Frobi)) = {ZIOgP(Nm(I))e i (1) = —1.

Further, note that
@({()Nm(I)) = det(p(Froby)) = x(1).
Remember the essential recursion relation

TIn+1 = T{nT{ — <I>Nm(I)T|n71.
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Solving the recursion

Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:

@ operators Tj, (I) for all primes | C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at p.

We recover ¢ from
) 2 if x() =1;
f— F -
@(T;) = tr(p(Froby)) {ZIng(Nm(I))e if x(1) = —1.

Further, note that
@ ((HNm(1)) = det(p(Froby)) = x(I).
Remember the essential recursion relation
TIn+1 =TT — <I>Nm(I)T|n71.
We can solve this in each case explicitly:
n+1 ifx() =1
e(Tm) =< (n+1) logp (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.
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Unifying expressions

So we have
n+1 ifx()=1;
e(Tm) =< (n+1) log]3 (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.

Compare this to

n+1 ifx()=1;
Zx(l) =p(I") =<0 if x(I) = —1 and nis odd; .
I, 1 if x(I) = —1 and n is even.
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Unifying expressions

So we have
n+1 ifx()=1;
e(Tm) =< (n+1) log]3 (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.

Compare this to

n+1 ifx()=1;
Zx(l) =p(I") =<0 if x(I) = —1 and n is odd;
I, 1 if x(I) = —1 and n is even.

The integral parts are precisely p(I™). We can thus write

0(Ti) = pl1") + 3 (n + 1) (1~ x(1")) log, (Nm(1))e
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Unifying expressions

So we have
n+1 ifx()=1;
e(Tm) =< (n+1) log]3 (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.

Compare this to

n+1 ifx()=1;
Zx(l) =p(I") =<0 if x(I) = —1 and nis odd; .
I, 1 if x(I) = —1 and n is even.

The integral parts are precisely p(I™). We can thus write

0(Ti) = pl1") + 3 (n + 1) (1~ x(1")) log, (Nm(1))e

Let ] C Of be any ideal coprime to p. Then

o(T) = o))+ 5 3 ((m+1)(1—X(I")o(}/1)) log, (Nm(1)).
m
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The Magic Moment

o(T) = p(1) + 5 3 (In+1)(1 —x()p1/1)) Tog, (Nm(D)e.
)
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The Magic Moment

o(Ty) = p(J) + % > ((n +1)(1 —X(I“))p(l/ln)) log, (Nm(I))e.
"]
Proposition

If ] is a primitive ideal coprime to p, then the quantity
1
>3 (1 (1 =x1™)p(/1)) log, (Nm(1)
™y

is equal to
p(sp(N)) (vsp(y) (J) + 1) log, Nm (sp(])).
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The Magic Moment

o(Ty) = p(J) + % > ((n +1)(1 —X(I“))p(I/I")) log,, (Nm(I))e.
"]
Proposition

If ] is a primitive ideal coprime to p, then the quantity

>3 (n+ 11 —x(™)p(1/m™)) log, (Nm(1)
my

is equal to

p(sp(]) (Vsp(y)(J) +1) log,, Nm (sp(])).

Indeed, the factor 1 —x(I") = 0 unless | is a special prime of J, and if J/I™ still
has another special prime, p(J/1™) = 0. It can thus only be non-zero when lis
the unique special prime; the rest matches up.
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Fourier coefficients

For convenience, let us denote
log F(]) = p(sp(J)]) (vsp(y) (J) + 1) log(sp(])),
so that very concisely, for ] coprime to p,
¢(Ty) = p(J) +-log F(J)e.

Let | denote the ideal ] without its prime factors dividing p.
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Fourier coefficients

For convenience, let us denote
log F(]) = p(sp(J)]) (vsp(y) (J) + 1) log(sp(])),
so that very concisely, for ] coprime to p,
¢(Ty) = p(J) +-log F(J)e.

Let | denote the ideal ] without its prime factors dividing p.

Forany v € (D;lq)Jf, let J, = (v)Drq~!. Then it holds that

ay(fq) = (1)) () +log,, (F(Jv))e — p(J+) log,, (v/v')e).
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Fourier coefficients

For convenience, let us denote
log F(]) = p(sp(J)]) (vsp(y) (J) + 1) log(sp(])),
so that very concisely, for ] coprime to p,
¢(Ty) = p(J) +-log F(J)e.

Let | denote the ideal ] without its prime factors dividing p.

Forany v € (D;lq)Jf, let J, = (v)Drq~!. Then it holds that

ay(fq) = (1)) () +log,, (F(Jv))e — p(J+) log,, (v/v')e).

The term log(v/v’) comes from v at the two places above p, as

¢(Ux) = —1+1log, (me; ¢(Up)=1+log, (n')e.
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Ordinary projection

We take the diagonal restriction:

diag(f,) = i ( Z av)q“.
-
v)

n=1 '\/6(
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Ordinary projection

We take the diagonal restriction:
diag(f,) = Z ( Z av)q“.
: @7
v)

Taking its derivative amounts to considering only the e-part:

an(ddiag(fy)) = Y (=1)")(log,(F(Jv)) — p(J+) log, (v/v")).

ve(Dita)
tr(v)=n
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Ordinary projection

We take the diagonal restriction:

diag(f,) = i ( Z av)q“.
n=1 D
v)

ve(Dy

Taking its derivative amounts to considering only the e-part:

an(ddiag(fy)) = Y (=1)")(log,(F(Jv)) — p(J+) log, (v/v")).
ve(Dyta) "
tr(v)=n

Now we take the ordinary projection e°:

aie Ord(admg( ¢))) = lim a2« (0diag(f,))

n—o0

= lim Z (=1)*1¥) (log,, (F(J3)) — p(J) log,, (v/¥")) ).
ve(Dylg)t

tr(v)=p*"
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The crux!

One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

S2(To(6)) = S2(T6(10)) =0 and  S(Tp(22)) ~ 0.
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The crux!

One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

S2(To(6)) = S2(T6(10)) =0 and  S(Tp(22)) ~ 0.
In other words, if

RT 1y (V) AT /
A= lim > (=1)»Mp(Jy) log, (v/v')
VE(DF1Q)+
tr(v)=p"

and B:=lim Y  (—1)"Mlog,(F(].)),

n—oo
vE(Dita)*
tr(v)=p>"
then A = B.
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The crux!

One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

In other words, if

— 1; 1\ (V) AT /
A=lim 3y (=1)"Mp(]y)log, (v/v')
ve(Dilg)*
tr(v)=p2"
and B:= lim D> (=1 Miog,(F(),
vE(Drla)t
tr(v)=p>"

then A = B. Recall our expression for the theta series
Olt, ) . ,
log,, Ot i) Jim D ely)log, (v/v').

tr(v)=p2n
It easily follows that
A =log Nm ]g (Tt1,T2).
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Conclusion

One can show that the limit in B equals the first term:

B= Y (=1)""log,(F(J3))

vE(Da)+
tr(v)=1

log F(J) = p(sp()]) (vsp(y)(]) + 1) log,, (sp(])).

where
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Conclusion

One can show that the limit in B equals the first term:

B= Y (-1)"Mlog (5(J+)
vE(Da)+
tr(v)=1

log F(J) = p(sp(J)]) (vsp(y) (J) + 1) Tog,, (sp(]))-
Now use A = B to complete the proof:

Theorem (D., 2023)

The expression

where

log NmElHZJE (Tt1,T2)
is up to sign explicitly equal to

> 8@ Y plsplaa)aa ) (Vep(aa 1) (a ) + 1) log Nm (sp(oxa ).

Nm(a)=N veD Mt
tr(v)=1
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Conclusion

One can show that the limit in B equals the first term:

B= Y (-1)"Mlog (5(J+)
vE(Da)+
tr(v)=1

log F(J) = p(sp(J)]) (vsp(y) (J) + 1) Tog,, (sp(]))-
Now use A = B to complete the proof:

Theorem (D., 2023)

The expression

where

log NmElHZJE (Tt1,T2)
is up to sign explicitly equal to

> 8@ Y plsplaa)aa ) (Vep(aa 1) (a ) + 1) log Nm (sp(oxa ).

Nm(a)=N veD Mt
tr(v)=1

Preprint is on arXiv: https://arxiv.org/abs/2309.17251
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