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Backstory

A very easy exercise in a first course on group theory:

Problem
Let G be a group. Prove that the following are equivalent:

G is abelian;
For all a,b ∈ G, it holds that (ab)−1 = a−1b−1;
For all a,b ∈ G, it holds that (ab)2 = a2b2.

These problems are quite boring.

More interesting is:

Proposition

Suppose that a2 = 1 for all a ∈ G. Then G is abelian.

Proof: We see that (ab)2 = 1, so abab = 1. Hence

ba = a(abab)b = ab,

where we used that also a2 = b2 = 1. �
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The bridge

Proposition

Suppose that a2 = 1 for all a ∈ G. Then G is abelian.

There are two reasons why this result is interesting:
We used the given not just once, but three times.
The result does not generalise, i.e. the group

G =


1 x y

0 1 z

0 0 1

∣∣∣ x,y, z ∈ Z/3Z


satisfies the property that a3 = 1 for all a ∈ G, but G is not abelian.

So, something must be going on.
Question: How do we suitably generalise this result to rings?
For us, a ring will always have 1.
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Failed attempt

Clearly x2 = 1 cannot hold for all x ∈ R, because 02 = 1 forces R = {0}.
What happens if we exclude 0?

Proposition

Let R be a ring in which x2 = 1 for all x , 0. Then R � F2 or R � F3.

Proof: We split two cases.
Suppose that 2 = 0 and let x ∈ R \ {0, 1}. Then

1 = (x+ 1)2 = x2 + 2x+ 1 = 1 + 0 + 1 = 0,

a contradiction. Hence R = F2.
Suppose that 2 , 0. Then 22 = 1, so 3 = 0. Let x ∈ R \ {0, 1, 2}. Then

1 = (x+ 1)2 = 1 − x+ 1,

so x = 1; a contradiction. Hence R = F3. �
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The proper generalisation

So x2 = 1 for all x , 0 is too much. Sadly, only considering x ∈ R× is
not enough, for consider

R =

{(
x y

0 z

) ∣∣∣ x,y, z ∈ Z/2Z
}

.

The two units square to 1, but the ring is not commutative.

The right way to generalise the result on groups is as follows:

Proposition

Suppose x2 = x holds for all x ∈ R. Then R is commutative.

Proof: First observe that 1 = (−1)2 = −1. Hence

x+ y = (x+ y)2 = x2 + xy+ yx+ y2 = x+ xy+ yx+ y.

We see that xy+ yx = 0, and so xy = −yx = yx. �
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It generalises further

There are again two reasons why this result is interesting:
We again used the given not just once, but four times.
The result does in fact generalise!

Proposition

Suppose x3 = x holds for all x ∈ R. Then R is commutative.

There are mutliple ways to prove this, but the shortest ones all rely on
the following lemma.

Lemma
Let R be a reduced ring and e ∈ R an idempotent. Then e is central.

Proof: Let x ∈ R be arbitrary. Then observe that

(exe− ex)2 = exexe− exex− exexe+ exex = 0.

Hence by assumption, exe = ex. Completely analogously,
ex = exe = xe, showing that e is indeed central. �
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Proving the proposition

Proposition

Suppose x3 = x holds for all x ∈ R. Then R is commutative.

Proof: Clearly R is reduced, and x4 = x2, so that all squares in Rmust
be central by the lemma. We can now finish in three ways:

A. By purely multiplying,

xy = (xy)3 = x(yx)2y = yxyx2y = yx3y2 = y3x = yx.

B. Alternatively, consider x2 + x and compute that

(x2 + x)2 = x4 + 2x3 + x2 = 2(x2 + x).

Hence x2 + x = (x2 + x)3 = 2(x2 + x)2 is central, and thus x too.
C. Yet alternatively, note that 2x = (x2 + x)2 − 2x2 must be central,

and that since

x+ 1 = (x+ 1)3 = x3 + 3x2 + 3x+ 1 = x+ 1 + 3(x2 + x)

it follows that 3x = −3x2 must be central, and x = 3x− 2x. �
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Another explicit example

Proposition

Suppose x4 = x holds for all x ∈ R. Then R is commutative.

Proof: Again we have that 1 = (−1)4 = −1. We then compute that

(x2 + x)2 = x4 + 2x3 + x2 = x2 + x.

Hence x2 + x is an idempotent in the reduced ring R, which is thus
central by the lemma.

Hence also

(x+ y)2 + (x+ y) = (x2 + x) + xy+ yx+ (y2 + y)

is central, and as such, xy+ yxmust be central for all x,y ∈ R. In
particular, we find that

xyx+ yx2 = (xy+ yx)x = x(xy+ yx) = x2y+ xyx,

and hence yx2 = x2y for all x,y ∈ R. In other words, also x2 is central,
and thus so is x = (x2 + x) − x2. �
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Infinite famlies I

Proposition

Let n > 0 be an integer and suppose that x3·2n = x holds for all x ∈ R.
Then R is commutative.

Proof: We discussed n = 0. If n > 1, we again have that −1 = 1 and
hence we find that

x+ 1 = (x+ 1)3·2n = (x2n + 1)3 = x3·2n + x2·2n + x2n + 1.

We conclude that x2·2n = x2n for all x ∈ R, and hence
x2 = (x2)3·2n = (x3)2·2n = (x3)2n = x so R is in fact Boolean. �

Proposition

Let n > 1 be an integer and suppose that x5·2n = x holds for all x ∈ R.
Then R is commutative.

Proof: Exactly the same as before, but since (x+ 1)5 ≡ x5 + x4 + x+ 1
mod 2, we reduce to the solved x4 = x. Note we exclude n = 0. �
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Infinite families II

Lemma
Letm > 0 be an integer. Then the only odd entries in the 2m + 1-th row
of Pascal’s triangle are precisely the two 1’s and the two 2m + 1’s. �

Proposition (D., 2021)

Letm > 1 be an integer. Suppose that any ring R in which x2m = x for
all x ∈ Rmust be commutative. Then the same must hold for rings in
which x(2m+1)·2n = x for all x ∈ R for any integer n > 1.

Proof: We use the above lemma to write that

x+ 1 = (x+ 1)(2m+1)·2n = (x2n + 1)2m+1 = x(2m+1)·2n + x2m·2n + x2n + 1.

Hence x2m·2n = x2n for all x ∈ R, and as such,

x2m = (x2m)(2m+1)·2n = (x2m+1)2m·2n = (x2m+1)2n = x.

This establishes our reduction. �
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Infinite famlies III

Proposition (D., 2021)
Let n,m > 1 be a integers such that there is no odd prime p such that
2n ≡ 2m ≡ (p+ 1)/2 mod p. Suppose that x2n+2m = x holds for all
x ∈ R. Then R is Boolean and hence commutative.

Proof: We proceed along the same lines, by writing

x+ 1 = (x+ 1)2n+2m = (x+ 1)2n(x+ 1)2m = (x2n + 1)(x2m + 1)

= x2n+2m + x2n + x2m + 1.

It follows that x2n = x2m for all x ∈ R, and so x = x2n+2m = x2m+1
. We

may thus consider the exponent modulo 2m+1 − 1, whereas on the
other hand we may write that x = x2n+2m = x1+k·(2n+2m−1) for all
integers k > 0. The assumption on n andm is such that 2n + 2m − 1
and 2m+1 − 1 are coprime, so that we can find some k such that

1 + k · (2n + 2m − 1) ≡ 2 mod 2m+1 − 1.

It follows that x = x2, and so R is Boolean. �
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What we managed so far

Remark: The proof strategy above shows something slightly stronger:
if 1 + k · (2n + 2m − 1) can agree modulo 2m+1 − 1 with any exponent
for which we already know Rmust be commutative, then the result
follows for the exponent 2n + 2m as well by reduction.

The following table summarises for which values of n, we can prove
that any ring satisfying xn = xmust be commutative:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Comm? X X X ? X ? ? ? X ? X ? ? ?

n 16 17 18 19 20 21 22 23 24 25 26 27
Comm? ? ? X ? X ? ? ? X ? ? ?

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)
Let R be a ring in which for any x ∈ R there exists some integer
n(x) > 2 such that xn(x) = x. Then R is commutative.

MikeDaas Jacobson’s Commutativity Theorem June 18, 2021 12 / 22



What we managed so far

Remark: The proof strategy above shows something slightly stronger:
if 1 + k · (2n + 2m − 1) can agree modulo 2m+1 − 1 with any exponent
for which we already know Rmust be commutative, then the result
follows for the exponent 2n + 2m as well by reduction.
The following table summarises for which values of n, we can prove
that any ring satisfying xn = xmust be commutative:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Comm? X X X ? X ? ? ? X ? X ? ? ?

n 16 17 18 19 20 21 22 23 24 25 26 27
Comm? ? ? X ? X ? ? ? X ? ? ?

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)
Let R be a ring in which for any x ∈ R there exists some integer
n(x) > 2 such that xn(x) = x. Then R is commutative.

MikeDaas Jacobson’s Commutativity Theorem June 18, 2021 12 / 22



What we managed so far

Remark: The proof strategy above shows something slightly stronger:
if 1 + k · (2n + 2m − 1) can agree modulo 2m+1 − 1 with any exponent
for which we already know Rmust be commutative, then the result
follows for the exponent 2n + 2m as well by reduction.
The following table summarises for which values of n, we can prove
that any ring satisfying xn = xmust be commutative:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Comm? X X X ? X ? ? ? X ? X ? ? ?

n 16 17 18 19 20 21 22 23 24 25 26 27
Comm? ? ? X ? X ? ? ? X ? ? ?

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)
Let R be a ring in which for any x ∈ R there exists some integer
n(x) > 2 such that xn(x) = x. Then R is commutative.
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Proof sketch I

Herstein’s Lemma
Let D be a division ring of characteristic p > 0. Let a be a non-central
torsion element of D×. Then there exists some additive commutator
y ∈ D× such that yay−1 = ai , a for some i > 0.

Proof: (sketch) Let δa : x 7→ ax− xa be the derivation associated with
a and let K = Fp[a]. Then K is a finite field by assumption on which δa
vanishes, but δa , 0 on D as a K-linear operator. One can show that δa
has an eigenvector with eigenvalue in K×, so write ax− xa = bx for
some b ∈ K×. This really is the hard work.

In the cyclic group K×, the elements xax−1 = a− b ∈ K \ {a} and a
have the same order and hence generate the same subgroup, from
which we find xax−1 = ai , a. Then

(ax− xa)a = aaix− aixa = ai(ax− xa),

as claimed. �
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Proof sketch II

Theorem
Let D be a division ring in which for every x,y ∈ D, there exists some
integer n(x,y) > 2 such that (xy− yx)n(x,y) = xy− yx.
Then D is a field.

Proof: Write F for the centre of D. Then F is a field, and we claim that
every element in F has finite order. Indeed, for c ∈ F, also
c(xy− yx) = (cx)y− y(cx) is an additive commutator, and so for some
integer n,

cn(xy− yx)n = 1 = (xy− yx)n,

whence cn = 1. It follows that char(F) = char(D) > 0.

Let a ∈ D \ F.
Then Herstein’s Lemma gives us some additive commutator y ∈ D×
such that yay−1 = ai , a for some i > 0. Since y is also torsion in D×

and y normalises 〈a〉, it follows that 〈a〉 · 〈y〉 is a finite subgroup ofD×.
The Fp-span of this subgroup is a finite subring of D, and thus by
Wedderburn’s Theorem, it must be a field, i.e. commutative. But
yay−1 , a; a contradiction. �
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Proof sketch III

Definition
A ring R is called left-primitive it is has a simple faithful left-module.

Structure theorem for left-primitive rings
Let R be a left-primitive ring. Then either R �Mn(D) for some integer
n > 1 and division ring D, or for any integer n > 1, there is a subring
Rn of R that maps ontoMn(D).

Theorem
Let R be left-primitive with for every x,y ∈ R some integer n(x,y) > 2
such that (xy− yx)n(x,y) = xy− yx. Then R is commutative.

Proof: Note that a = E11 and b = E12 inMn(D) for n > 2 satisfy
(ab− ba)n = bn = 0, so it cannot satisfy the condition above. Hence
the second possibility from the structure theorem cannot hold, and the
first can only hold for n = 1; that is, R �M1(D) = D. �
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Proof sketch IV

We continue to expand our class of rings for which we know the
Jacobson-Herstein theorem to hold.

Definition
A ring R is called semi-primitive if its Jacobson radical is 0. Equivalently,
if R has a semisimple faithful (left-)module.

Definition
We say R is a subdirect product of some family of rings {Ri}i∈I if there
exists an injective ring morphism R→

∏
i∈I Ri such that each of the

induced maps R→ Ri is surjective.

Theorem
A ring R is semiprimitive if and only if it is a subdirect product of left
primitive rings.
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Proof sketch V

Theorem
Let R be a semi-primitive ring in which for every x,y ∈ R, there exists
some integer n(x,y) > 2 such that (xy− yx)n(x,y) = xy− yx.
Then R is commutative.

Proof: Consider any subdirect product representation R→
∏
Ri,

where all of the Ri are left-primitive rings. Since each projection is
surjective, each of the Ri must satisfy the conditions from the theorem,
and hence by our previous efforts, must be commutative. Since R
injects into

∏
Ri, we may view it as a subring of this commutative

ring. Hence it must also be commutative. �

We recall one fact about the Jacobson radical rad(R):

rad(R) = {x ∈ R | 1 + RxR ⊂ R×}.
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Proof sketch VI

Jacobson-Herstein Theorem
Let R be any ring in which for every x,y ∈ R, there exists some integer
n(x,y) > 2 such that (xy− yx)n(x,y) = xy− yx.
Then R is commutative.

Proof: Let rad(R) denote the Jacobson radical of R. Then R/rad(R) also
satisfies the conditions from the theorem and is semi-primitive, and
hence must be commutative. Hence any commutator z = xy− yxmust
fall inside rad(R). But zn = z for some n, and hence z(1 − zn−1) = 0.
However, since 1 − zn−1 ∈ 1 + rad(R) ⊂ R×, from this we see that
z = 0. Hence R is commutative. �

Question: So why bother with all our computations? The theorem is
known in greater generality, so who cares?
Answer: Because it is fun! As we have seen, there are elementary proofs
for these special cases. They are out there for any exponent. It would
be interesting to find them, and to bypass all this machinery.
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Jacobson’s Theorem

It should be noted that a shorter proof of Jacobson’s Theorem is
possible, losing a tiny bit of generality.

Structure theorem for reduced rings
A ring R is reduced if and only if R is a subdirect product of domains.

Jacobson’s Theorem
Let R be a ring in which for any x ∈ R there exists some integer
n(x) > 2 such that xn(x) = x. Then R is commutative.

Proof: Realise R as a subring of
∏

iDi, where the Di are all integral
domains. Since all projections are surjective, all the Di must satisfy the
same condition as R. But if xn = x in a domain, it follows that x = 0 or
xn−1 = 1. It follows thatDi is even a division ring, hence commutative
by our earlier efforts. �
There exist more such theorems, for example the Herstein-Kaplansky
theorem. (See the book “A first course on noncommutative rings.”)
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The smallest open case

Proposition (D., 2021)

Suppose x5 = x holds for all x ∈ R. Then R is commutative.

Proof: Note that (x4)2 = x5 · x3 = x4, so x4 is an idempotent in the
reduced ring R, hence central. We see that

(x+ 1)4 ∈ Z(R) =⇒ 4x3 + 6x2 + 4x ∈ Z(R);
(x− 1)4 ∈ Z(R) =⇒ 4x3 − 6x2 + 4x ∈ Z(R).

Adding these two results gives that 8x3 + 8x ∈ Z(R) for all x ∈ R.

Subtracting these two results gives that 12x2 ∈ Z(R) for all x ∈ R.
Hence also

12(x+ 1)2 ∈ Z(R) =⇒ 24x ∈ Z(R).

This is as much as we can deduce purely from the fact that fourth
powers are central.
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The smallest open case

Proposition (D., 2021)

Suppose x5 = x holds for all x ∈ R. Then R is commutative.

Proof (cont.): Now consider

(x+ 1)5 = x+ 1 =⇒ 10x3 + 10x2 + 5x ∈ Z(R);
(x− 1)5 = x− 1 =⇒ 10x3 − 10x2 + 5x ∈ Z(R).

Adding these two results gives that 20x3 + 10x ∈ Z(R) for all x ∈ R.

Recall that 8x3 + 8x ∈ Z(R) for all x ∈ R. Combining this, we obtain

5 · (8x3 + 8x) − 2 · (20x3 + 10x) ∈ Z(R) =⇒ 20x ∈ Z(R).

Recall that also 24x ∈ Z(R). Hence also 4x ∈ Z(R) for all x ∈ R. Hence

2 · (10x3 + 10x2 + 5x) ∈ Z(R) =⇒ 10x ∈ Z(R) =⇒ 2x ∈ Z(R);
10x3 + 10x2 + 5x ∈ Z(R) =⇒ 5x ∈ Z(R).

Hence also x ∈ Z(R), completing the proof. �
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Fin

Thanks for listening!
Research questions:

Can we write down an “elementary” proof or strategy for a
general exponent?
For which n are rings in which xn = x holds, necessarily boolean?

Exercises: If you are interested in messing around with rings with silly
properties, try one of the following:

Let n > 1 be an integer and suppose that xn+1 = xn for all x ∈ R.
Show that R is Boolean. (Medium.)
Let R be a ring in which (xy)2 = x2y2 for all x,y ∈ R. Show that R
is commutative. (Hard.)
Generalise the above to higher exponents. (Very hard!)
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