The L-group and local Langlands parameters

Mike Daas

7th of April, 2021
Recalling some definitions

- An affine group scheme over a field k is a functor

$$k\text{-Alg} \to \text{Grp}$$

that is representable by some k-algebra. An affine algebraic group over k is an affine group scheme of finite type over k.

- A matrix M is said to be unipotent if $M - \text{Id}$ is nilpotent. An element g of an algebraic group G is called unipotent if $\phi(g)$ is so for some, and thus for any, faithful (i.e. injective) representation $\phi: G \to \text{GL}_n$. The unipotent radical $R_u(G)$ of G is the maximal connected normal subgroup of G that consists of unipotent elements. We say an algebraic group is reductive if $R_u(G) = \{1\}$.

- An algebraic torus is an algebraic group T such that $T_{k\text{-sep}} \cong G^m$ for some m, which is called the rank of the torus. A character of an algebraic group G is an element of $X^*(G) = \text{Hom}(G, G^m)$. A one-parameter subgroup is an element from $X^*(G) = \text{Hom}(G_m, G)$.
Recalling some definitions

- An affine group scheme over a field \(k \) is a functor

\[
\mathcal{A} : k\text{-Alg} \rightarrow Grp
\]

that is representable by some \(k \)-algebra. An affine algebraic group over \(k \) is an affine group scheme of finite type over \(k \).

- A matrix \(M \) is said to be unipotent if \(M - \text{id} \) is nilpotent. An element \(g \) of an algebraic group \(G \) is called unipotent if \(\phi(g) \) is so for some, and thus for any, faithful (i.e. injective) representation \(\phi : G \rightarrow \text{GL}_n \). The unipotent radical \(R_u(G) \) of \(G \) is the maximal connected normal subgroup of \(G \) that consists of unipotent elements. We say an algebraic group is reductive if \(R_u(G) = \{1\} \).
Recalling some definitions

- An **affine group scheme** over a field k is a functor
 $$k\text{-Alg} \to \text{Grp}$$
 that is representable by some k-algebra. An **affine algebraic group**
 over k is an affine group scheme of finite type over k.

- A matrix M is said to be **unipotent** if $M - \text{id}$ is nilpotent. An
 element g of an algebraic group G is called **unipotent** if $\phi(g)$ is so
 for some, and thus for any, faithful (i.e. injective) representation
 $\phi : G \to \text{GL}_n$. The unipotent radical $R_u(G)$ of G is the maximal
 connected normal subgroup of G that consists of unipotent
 elements. We say an algebraic group is **reductive** if $R_u(G) = \{1\}$.

- An **algebraic torus** is an algebraic group T such that $T_{k\text{sep}} \cong \mathbb{G}_m^n$ for
 some n, which is called the **rank** of the torus. A **character** of an
 algebraic group G is an element of $X^*(G) = \text{Hom}(G, \mathbb{G}_m)$. A
 one-parameter subgroup is an element from $X_*(G) = \text{Hom}(\mathbb{G}_m, G)$.
Recalling more definitions

Let \(V \) be a finite dimensional \(\mathbb{R} \)-vector space, and \(\Phi \) a subset of \(V \). Then \((\Phi, V)\) is called a root system if:

- \(\Phi \) is finite, does not contain \(0 \), and spans \(V \);
- for each \(\alpha \in \Phi \) there exists a reflection operator \(s_\alpha \) that interchanges \(\alpha \) and \(-\alpha\) and maps \(\Phi \) to \(\Phi \);
- for each \(\beta \in \Phi \), the vector \(s_\alpha(\beta) - \beta \) is an integer multiple of \(\alpha \).
Recalling more definitions

Let V be a finite dimensional \mathbb{R}-vector space, and Φ a subset of V. Then (Φ, V) is called a root system if:

- Φ is finite, does not contain 0, and spans V;
- for each $\alpha \in \Phi$ there exists a reflection operator s_{α} that interchanges α and $-\alpha$ and maps Φ to Φ;
- for each $\beta \in \Phi$, the vector $s_{\alpha}(\beta) - \beta$ is an integer multiple of α.

There exists a pairing $(\cdot, \cdot) : V \times V \rightarrow \mathbb{C}$ such that all reflections are orthogonal transformations. If $\alpha \in \Phi$, we can find a unique α^\vee such that

$$\langle -, \alpha^\vee \rangle := \alpha^\vee(-) = 2(-, \alpha)/(\alpha, \alpha) \in \mathbb{Z}.$$

If $\Phi^\vee = \{ \alpha^\vee | \alpha \in \Phi \}$ and $V^\vee = \langle \Phi^\vee \rangle \otimes_\mathbb{Z} \mathbb{R}$, then (Φ^\vee, V^\vee) is called the dual root system.
Recalling more definitions

Let V be a finite dimensional \mathbb{R}-vector space, and Φ a subset of V. Then (Φ, V) is called a root system if:

- Φ is finite, does not contain 0, and spans V;
- for each $\alpha \in \Phi$ there exists a reflection operator s_α that interchanges α and $-\alpha$ and maps Φ to Φ;
- for each $\beta \in \Phi$, the vector $s_\alpha(\beta) - \beta$ is an integer multiple of α.

There exists a pairing $(\ ,\) : V \times V \to \mathbb{C}$ such that all reflections are orthogonal transformations. If $\alpha \in \Phi$, we can find a unique α^\vee such that

$$\langle -, \alpha^\vee \rangle := \alpha^\vee(-) = 2(\langle -, \alpha \rangle)/(\alpha, \alpha) \in \mathbb{Z}.$$

If $\Phi^\vee = \{\alpha^\vee | \alpha \in \Phi\}$ and $V^\vee = \langle \Phi^\vee \rangle \otimes_{\mathbb{Z}} \mathbb{R}$, then (Φ^\vee, V^\vee) is called the dual root system.

A root datum is a quadruple (X, Y, Φ, Φ^\vee) where X, Y are free abelian groups with a perfect pairing $\langle \ , \ \rangle : X \times Y \to \mathbb{Z}$ and where $\Phi \subset X$ and $\Phi^\vee \subset Y$ are finite subsets such that $\Phi \ni \alpha \iff \alpha^\vee \in \Phi^\vee$. In addition, $\langle \alpha, \alpha^\vee \rangle = 2$ and for each $\alpha \in \Phi$, the reflection $s_\alpha(x) = x - \langle x, \alpha^\vee \rangle \alpha$ satisfies $s_\alpha(\Phi) = \Phi$ and the group $\langle s_\alpha | \alpha \in \Phi \rangle$ is finite.
Combining these concepts

Let G be a connected reductive group over a perfect field k with maximal torus T. Recall the adjoint representation $\text{Ad} : G \to \text{GL}(\mathfrak{g})$ induced by the conjugation action of G onto itself. For any character $\alpha \in X^*(T)$, denote

$$\mathfrak{g}_\alpha = \{ X \in \mathfrak{g} \mid \text{Ad}(t)X = \alpha(t)X \text{ for all } t \in T(k) \}.$$
Combining these concepts

Let G be a connected reductive group over a perfect field k with maximal torus T. Recall the adjoint representation $\text{Ad} : G \to \text{GL}(g)$ induced by the conjugation action of G onto itself. For any character $\alpha \in X^*(T)$, denote

$$g_\alpha = \{X \in g \mid \text{Ad}(t)X = \alpha(t)X \text{ for all } t \in T(k)\}.$$

If $g_\alpha \neq 0$, it must be 1-dimensional, and they are called the root spaces. We have

$$g = t \oplus \bigoplus_{\alpha} g_\alpha,$$

where $t = \text{Lie}(T)$ and so the set of α for which $g \neq 0$ is finite and denoted by $\Phi(G, T)$. It turns out that $(X^*(T), X_*(T), \Phi, \Phi^\vee)$ is a root datum with the natural pairing between $X^*(T)$ and $X_*(T)$.
The dual group

Recall that a root datum \((X, Y, \Phi, \Phi^v)\) is said to be *reduced* if \(\alpha \in \Phi\) implies that \(2\alpha \not\in \Phi\). We have the following theorem:

Theorem

If \(k\) is algebraically closed, the association \(G \to (X^*(T), X_*(T), \Phi, \Phi^v)\) determines a bijection between isomorphism classes of connected reductive groups and isomorphism classes of reduced root data.

Examples:

- The group \(\text{GL}_n\) is its own dual.
- If \(G = \text{SL}_n\), then \(\hat{G} = \text{PGL}_n(C)\).
- If \(G = \text{Sp}_{2n}\), then \(\hat{G} = \text{SO}_{2n+1}(C)\).
The dual group

Recall that a root datum \((X, Y, \Phi, \Phi^v)\) is said to be reduced if \(\alpha \in \Phi\) implies that \(2\alpha \not\in \Phi\). We have the following theorem:

Theorem

If \(k\) is algebraically closed, the association \(G \rightarrow (X^*(T), X_*(T), \Phi, \Phi^v)\) determines a bijection between isomorphism classes of connected reductive groups and isomorphism classes of reduced root data.

A trivial remark on one side, now leads to an interesting concept on the other. Namely, if \((X, Y, \Phi, \Phi^v)\) is a root datum, then so is \((Y, X, \Phi^v, \Phi)\). According to the theorem, we may thus associate to \(G\) its so-called *complex dual* \(\hat{G}\) that has the corresponding dual root system.

Examples:

- The group \(\text{GL}_n\) is its own dual.
- If \(G = \text{SL}_n\), then \(\hat{G} = \text{PGL}_n(\mathbb{C})\).
- If \(G = \text{Sp}_{2n}\), then \(\hat{G} = \text{SO}_{2n+1}(\mathbb{C})\).
The dual group

Recall that a root datum \((X, Y, \Phi, \Phi^v)\) is said to be \textit{reduced} if \(\alpha \in \Phi\) implies that \(2\alpha \notin \Phi\). We have the following theorem:

Theorem

If \(k\) is algebraically closed, the association \(G \to (X^*(T), X_*(T), \Phi, \Phi^v)\) determines a bijection between isomorphism classes of connected reductive groups and isomorphism classes of reduced root data.

A trivial remark on one side, now leads to an interesting concept on the other. Namely, if \((X, Y, \Phi, \Phi^v)\) is a root datum, then so is \((Y, X, \Phi^v, \Phi)\). According to the theorem, we may thus associate to \(G\) its so-called \textit{complex dual} \(\hat{G}\) that has the corresponding dual root system.

Examples:

- The group \(\text{GL}_n\) is its own dual.
- If \(G = \text{SL}_n\), then \(\hat{G} = \text{PGL}_n(\mathbb{C})\).
- If \(G = \text{Sp}_{2n}\), then \(\hat{G} = \text{SO}_{2n+1}(\mathbb{C})\).
More on root data

Definition
Let Φ be a root system. A set of positive roots $\Phi^+ \subset \Phi$ is a subset such that for all $\alpha \in \Phi$, precisely one of α and $-\alpha$ is in Φ^+ and for any $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta \in \Phi$, we require that $\alpha + \beta \in \Phi^+$. We say a root in Φ^+ is called simple if it is not the sum of two positive roots.
More on root data

Definition
Let Φ be a root system. A set of *positive roots* $\Phi^+ \subset \Phi$ is a subset such that for all $\alpha \in \Phi$, precisely one of α and $-\alpha$ is in Φ^+ and for any $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta \in \Phi$, we require that $\alpha + \beta \in \Phi^+$. We say a root in Φ^+ is called *simple* if it is not the sum of two positive roots.

Note that Φ^+, v is a set of positive roots in Φ^v. If Δ is a maximal set of simple roots in Φ, then so is Δ^v in Φ^v. One can show that Δ and Δ^v determine Φ and Φ^v respectively.
More on root data

Definition
Let Φ be a root system. A set of positive roots $\Phi^+ \subset \Phi$ is a subset such that for all $\alpha \in \Phi$, precisely one of α and $-\alpha$ is in Φ^+ and for any $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta \in \Phi$, we require that $\alpha + \beta \in \Phi^+$. We say a root in Φ^+ is called simple if it is not the sum of two positive roots.

Note that Φ^+, v is a set of positive roots in Φ^v. If Δ is a maximal set of simple roots in Φ, then so is Δ^v in Φ^v. One can show that Δ and Δ^v determine Φ and Φ^v respectively.

Definition
We call a tuple (X, Y, Δ, Δ^v) a based root datum if $(X^*(T), X^*_*(T), \Phi, \Phi^v)$ is a root datum and Δ, Δ^v are maximal sets of simple roots as above.

Recall that a Borel subgroup of G is a maximal connected solvable subgroup.
Pinnings

Lemma
On the other side of the correspondence, choosing Δ amounts to choosing a Borel subgroup $T \subset B \subset G$.

Proof: (sketch) By definition of g_α, we have the map

$$\exp_\alpha : g_\alpha \to G(\mathbb{C})$$

that satisfies $g\exp_\alpha(x)g^{-1} = \exp(\alpha(g)x)$. Its image U_α naturally has g_α as Lie-algebra. Then one can show that the Borel subgroups of G are precisely those of the form

$$\langle T, \{U_\alpha\}_{\alpha \in \Delta} \rangle.$$

This would prove the claim. \qed
Pinnings

 Lemma
 On the other side of the correspondence, choosing Δ amounts to choosing a Borel subgroup $T \subset B \subset G$.

 Proof: (sketch) By definition of g_α, we have the map

$$\exp_{\alpha} : g_\alpha \rightarrow G(\mathbb{C})$$

that satisfies $g\exp_{\alpha}(x)g^{-1} = \exp(\alpha(g)x)$. Its image U_α naturally has g_α as Lie-algebra. Then one can show that the Borel subgroups of G are precisely those of the form

$$\langle T, \{U_{\alpha}\}_{\alpha \in \Delta} \rangle.$$

This would prove the claim. □

This proof naturally leads to the following definition.

 Definition
 A pinning of G is a tuple $(B, T, \{u_{\alpha}\}_{\alpha \in \Delta})$ where $u_{\alpha} \in U_{\alpha} - 1$ for all $\alpha \in \Delta$, where Δ corresponds to the Borel subgroup B.
A bit of group theory

Proposition
Let $T \subset B \subset G$ be as before. Then

- all Borel subgroups in G are conjugate;
- all maximal tori inside B are conjugate by an element of B;
- B is its own normaliser inside G;
- T is its own normaliser inside B.
A bit of group theory

Proposition

Let $T \subset B \subset G$ be as before. Then

- all Borel subgroups in G are conjugate;
- all maximal tori inside B are conjugate by an element of B;
- B is its own normaliser inside G;
- T is its own normaliser inside B.

Let $f \in \text{Aut}(G)$ and let denote $c_g \in \text{Aut}(G)$ conjugation by g. Then $f(B)$ is also a Borel subgroup, so $f(B) = gBg^{-1}$ for some $g \in G$, so $(c_g \circ f)(B) = B$. Now $(c_g \circ f)(T) = bTb^{-1}$ for some $b \in B$, so $(c_{gb} \circ f)(T) = T$ and this also fixes B. This element $gb \in G$ is unique up to an element from the normaliser of T inside B; that is, from T.
A bit of group theory

Proposition
Let $T \subset B \subset G$ be as before. Then

- all Borel subgroups in G are conjugate;
- all maximal tori inside B are conjugate by an element of B;
- B is its own normaliser inside G;
- T is its own normaliser inside B.

Let $f \in \text{Aut}(G)$ and let denote $c_g \in \text{Aut}(G)$ conjugation by g. Then $f(B)$ is also a Borel subgroup, so $f(B) = gBg^{-1}$ for some $g \in G$, so $(c_g \circ f)(B) = B$. Now $(c_g \circ f)(T) = bTb^{-1}$ for some $b \in B$, so $(c_{gb} \circ f)(T) = T$ and this also fixes B. This element $gb \in G$ is unique up to an element from the normaliser of T inside B; that is, from T. Hence $c_{gb} \circ f$ preserves both T and B, and thus acts on $(X^*(T), X_*(T), \Delta, \Delta^\vee)$. Since elements from T act trivially on the root system, this defines a homomorphism

$$
\text{Aut}(G) \to \text{Aut}(X^*(T), X_*(T), \Delta, \Delta^\vee).
$$

It is non-trivial, but it can be shown, that its kernel is precisely $\text{Inn}(G)$.
A note about F-forms

Note that elements from the Galois group need not induce algebraic automorphisms, i.e. if G is a matrix group, conjugating all entries by some $\sigma \in \text{Gal}(\bar{F}/F)$, an action commonly denoted τ_0, is not an algebraic automorphism of G. However, if τ is another action, then we do have a map

$$\alpha : \text{Gal}(\bar{F}/F) \to \text{Aut}_{\text{alg}}(G) : \gamma \mapsto \tau(\gamma) \circ \tau_0(\gamma)^{-1}.$$
A note about F-forms

Note that elements from the Galois group need not induce \textit{algebraic} automorphisms, i.e. if G is a matrix group, conjugating all entries by some $\sigma \in \text{Gal}(\bar{F}/F)$, an action commonly denoted τ_0, is not an algebraic automorphism of G. However, if τ is another action, then we do have a map

$$\alpha : \text{Gal}(\bar{F}/F) \to \text{Aut}_{\text{alg}}(G) : \gamma \mapsto \tau(\gamma) \circ \tau_0(\gamma)^{-1}.$$

However, this is not generally a homomorphism, but it is a 1-cocycle. We call this a \textit{rational structure} and they are characterised by the first group cohomology of $\text{Gal}(\bar{F}/F)$ with values in $\text{Aut}_{\text{alg}}(G)$. The invariants for any given τ are denoted $G_\tau(F)$ and two such groups define the same dual groups if and only if the τ’s differ by an \textit{inner} twist, i.e. something from $H^1(\text{Gal}(\bar{F}/F), \text{Int}_{\text{alg}}(G))$. For more details, ask Eric.
A note about F-forms

Note that elements from the Galois group need not induce *algebraic* automorphisms, i.e. if G is a matrix group, conjugating all entries by some $\sigma \in \Gal(\bar{F}/F)$, an action commonly denoted τ_0, is not an algebraic automorphism of G. However, if τ is another action, then we do have a map

$$\alpha : \Gal(\bar{F}/F) \to \Aut_{\text{alg}}(G) : \gamma \mapsto \tau(\gamma) \circ \tau_0(\gamma)^{-1}.$$

However, this is not generally a homomorphism, but it is a 1-cocycle. We call this a *rational structure* and they are characterised by the first group cohomology of $\Gal(\bar{F}/F)$ with values in $\Aut_{\text{alg}}(G)$. The invariants for any given τ are denoted $G_\tau(F)$ and two such groups define the same dual groups if and only if the τ’s differ by an *inner* twist, i.e. something from $H^1(\Gal(\bar{F}/F), \Int_{\text{alg}}(G))$. For more details, ask Eric.

Examples:

- Consider \GL_1 over \mathbb{R}. We can make the non-trivial automorphism act by $z \mapsto \bar{z}$ or by $z \mapsto 1/z$. Combining these gives the algebraic action $z \mapsto 1/\bar{z}$. Its fixed points are those on the unit circle.

- Consider \SU_3 over \mathbb{R}. We now have an algebraic automorphism $A \mapsto (A^T)^{-1}$. Unlike in the \SL_2-case, now \SU_3 is not an inner twist from \SL_3, by considering the action on the Dynkin diagram.
The Langland dual group

Suppose that all groups are defined over a local or global field F. Let $\hat{T} \subset \hat{B} \subset \hat{G}$ be the complex dual group associated with the based root datum $(X_*(T), X^*(T), \Delta^\vee, \Delta)$. From the previous slide, we obtain the exact sequence

$$1 \rightarrow \text{Inn}(G) \rightarrow \text{Aut}(G) \rightarrow \text{Aut}(X^*(T), X_*(T), \Delta, \Delta^\vee) \rightarrow 1$$
The Langland dual group

Suppose that all groups are defined over a local or global field F. Let $\hat{T} \subset \hat{B} \subset \hat{G}$ be the complex dual group associated with the based root datum $(X^*(T), X^*(T), \Delta^\vee, \Delta)$. From the previous slide, we obtain the exact sequence

$$1 \to \text{Inn}(G) \to \text{Aut}(G) \to \text{Aut}(X^*(T), X^*(T), \Delta, \Delta^\vee) \to 1$$

Proving surjectivity shows that it is split; choosing a pinning $\{u_\alpha\}_{\alpha \in \Delta}$ we see that any automorphism of the root datum induces an action on the u_α. These elements and their negatives generate G, and one can show that this defines a unique automorphism of G.

Since T and B are defined over F, the group $\text{Gal}(\bar{F}/F)$ acts on the root datum of G and so also on the root datum of \hat{G}. The above section for \hat{G} gives us an induced map $\text{Gal}(\bar{F}/F) \to \text{Aut}(\hat{G})$. We use it to define the Langlands dual group $L_G = \hat{G}(C) \rtimes \text{Gal}(\bar{F}/F)$. This is simply a direct product if G is split, i.e. if $T \sim \hat{G}$ over F, because then the Galois action will be trivial.
The Langland dual group

Suppose that all groups are defined over a local or global field F. Let $\hat{T} \subset \hat{B} \subset \hat{G}$ be the complex dual group associated with the based root datum $(X_*(T), X^*(T), \Delta^\vee, \Delta)$. From the previous slide, we obtain the exact sequence

$$1 \rightarrow \text{Inn}(G) \rightarrow \text{Aut}(G) \rightarrow \text{Aut}(X^*(T), X_*(T), \Delta, \Delta^\vee) \rightarrow 1$$

Proving surjectivity shows that it is split; choosing a pinning $\{u_\alpha\}_{\alpha \in \Delta}$ we see that any automorphism of the root datum induces an action on the u_α. These elements and their negatives generate G, and one can show that this defines a unique automorphism of G.

Since T and B are defined over F, the group $\text{Gal}(\bar{F}/F)$ acts on the root datum of G and so also on the root datum of \hat{G}. The above section for \hat{G} gives us an induced map $\text{Gal}(\bar{F}/F) \rightarrow \text{Aut}(\hat{G})$. We use it to define the Langlands dual group

$$L^G = \hat{G}(\mathbb{C}) \rtimes \text{Gal}(\bar{F}/F).$$

This is simply a direct product if G is split, i.e. if $T \cong \mathbb{G}_m^n$ over F, because then the Galois action will be trivial.
Class field theory

Recall the following facts about \textbf{local} class field theory:

- For any finite field extension E/F, there is an isomorphism
 \[\theta_{E/F} : F^\times / \mathcal{N}_{E/F} E^\times \xrightarrow{\sim} \text{Gal}(E/F)^{ab}. \]

- These maps are compatible and define a homomorphism
 \[\theta_F : F^\times \rightarrow \text{Gal}(\bar{F}/F)^{ab} \]

 called the \textit{local reciprocity map}.

- If $H \subset G$ and $[G : H] < \infty$, we have a \textit{transfer map} $G \rightarrow H^{ab}$.

Also recall the following facts about \textbf{global} class field theory:

- There exists a surjective continuous homomorphism
 \[A \times F \rightarrow \text{Gal}(\bar{F}/F)^{ab} : s \mapsto [s, F] \]

 called the \textit{global reciprocity map}.

- It has the property that for $s \in A \times F$ whose ideal is coprime to all the ramified places in a certain finite extension E/F,
 \[[s, F] \mid E = (s), \]

 where the latter denotes the \textit{Artin symbol}, extended multiplicatively from $(p, E/F) = \text{Frob}_p$ for all primes p in E.

Class field theory

Recall the following facts about **local** class field theory:

- For any finite field extension E/F, there is an isomorphism
 \[\theta_{E/F} : F^\times / N_{E/F} E^\times \cong \text{Gal}(E/F)^{ab}. \]

- These maps are compatible and define a homomorphism
 \[\theta_F : F^\times \to \text{Gal}(\bar{F}/F)^{ab} \]

 called the **local reciprocity map**.

- If $H \subset G$ and $[G : H] < \infty$, we have a **transfer map** $G \to H^{ab}$.

Also recall the following facts about **global** class field theory:

- There exists a surjective continuous homomorphism
 \[\mathbb{A}_F^\times \to \text{Gal}(\bar{F}/F)^{ab} : s \mapsto [s, F] \]

 called the **global reciprocity map**.

- It has the property that for $s \in \mathbb{A}_F^\times$ whose ideal is coprime to all the ramified places in a certain finite extension E/F,
 \[[s, F]|_E = ((s), E/F), \]

 where the latter denotes the **Artin symbol**, extended multiplicatively from $(p, E/F) = \text{Frob}_p$ for all primes p in E.
The Weil group

Let F be a local or a global field. Then a *Weil group* for F is a topological group W_F along with a continuous homomorphism $\phi : W_F \to \text{Gal}(\bar{F}/F)$ with dense image, and for each finite field extension E/F, the group $W_E = \phi^{-1}(\text{Gal}(\bar{E}/E))$ admits an isomorphism $r_E : C_E \to W_E^{\text{ab}}$, where

$$C_E = \begin{cases} E^\times & \text{if } F \text{ is local;} \\ E^\times \setminus \mathbb{A}_E^\times & \text{if } F \text{ is global.} \end{cases}$$
The Weil group

Let F be a local or a global field. Then a Weil group for F is a topological group W_F along with a continuous homomorphism $\phi : W_F \rightarrow \text{Gal}(\overline{F}/F)$ with dense image, and for each finite field extension E/F, the group $W_E = \phi^{-1}(\text{Gal}(\overline{E}/E))$ admits an isomorphism $r_E : C_E \rightarrow W_E^{ab}$, where

$$C_E = \begin{cases} E^\times & \text{if } F \text{ is local;} \\ E^\times \backslash \mathbb{A}_E^\times & \text{if } F \text{ is global.} \end{cases}$$

In addition, these groups and maps must satisfy that

$$C_E \xrightarrow{r_E} W_E^{ab} \xrightarrow{\phi} \text{Gal}(\overline{E}/E)^{ab}$$

is the reciprocity map from class field theory, that

$$W_F = \lim_{\leftarrow} W_F/W_E^{ab},$$
The Weil group

Let F be a local or a global field. Then a Weil group for F is a topological group W_F along with a continuous homomorphism $\phi : W_F \to \text{Gal}(\bar{F}/F)$ with dense image, and for each finite field extension E/F, the group $W_E = \phi^{-1}(\text{Gal}((\bar{E}/E)))$ admits an isomorphism $r_E : C_E \to W_E^{ab}$, where

$$C_E = \begin{cases} E^\times & \text{if } F \text{ is local}; \\ E^\times \setminus \mathbb{A}_E^\times & \text{if } F \text{ is global}. \end{cases}$$

In addition, these groups and maps must satisfy that

$$C_E \xrightarrow{r_E} W_E^{ab} \xrightarrow{\phi} \text{Gal}(\bar{E}/E)^{ab}$$

is the reciprocity map from class field theory, that

$$W_F = \lim_{\longleftarrow} W_F / W_E^{ab},$$

and that for all $w \in W_F$, $\sigma = \phi(w)$ and $E'/E/F$ these commute:
Examples of the Weil group

Let $F = \mathbb{C}$. Then the map $\phi : W_\mathbb{C} \to \text{Gal}(\mathbb{C}/\mathbb{C}) = \{1\}$ must be trivial. Since \mathbb{C}/\mathbb{C} is the only finite field extension, considering \mathbb{C} as a local field (as it is complete), we must have an isomorphism $r_\mathbb{C} : \mathbb{C}^\times \to W_\mathbb{C}$. All other conditions are now trivially satisfied.
Examples of the Weil group

Let $F = \mathbb{C}$. Then the map $\phi : W_\mathbb{C} \to \text{Gal}(\mathbb{C}/\mathbb{C}) = \{1\}$ must be trivial. Since \mathbb{C}/\mathbb{C} is the only finite field extension, considering \mathbb{C} as a local field (as it is complete), we must have an isomorphism $r_\mathbb{C} : \mathbb{C}^\times \to W_\mathbb{C}$. All other conditions are now trivially satisfied.

Let $F = \mathbb{R}$. Then $\phi : W_\mathbb{R} \to \{1, \sigma\}$ where σ denotes complex conjugation. Also, $r_\mathbb{C} : \mathbb{C}^\times \to W_\mathbb{C}$ must be an isomorphism, and be the kernel of ϕ. One can show that now $W_\mathbb{R} = \mathbb{C}^\times \cup j\mathbb{C}^\times$ where $j^2 = -1$ and $jzj^{-1} = \sigma(z)$ for all $z \in \mathbb{C}^\times$.

For number fields, it is highly non-trivial to show that the Weil group exists and there is no easy description of it. More on this in a few weeks.
Examples of the Weil group

- Let $F = \mathbb{C}$. Then the map $\phi : W_\mathbb{C} \to \text{Gal}(\mathbb{C}/\mathbb{C}) = \{1\}$ must be trivial. Since \mathbb{C}/\mathbb{C} is the only finite field extension, considering \mathbb{C} as a local field (as it is complete), we must have an isomorphism $r_\mathbb{C} : \mathbb{C}^\times \to W_\mathbb{C}$. All other conditions are now trivially satisfied.

- Let $F = \mathbb{R}$. Then $\phi : W_\mathbb{R} \to \{1, \sigma\}$ where σ denotes complex conjugation. Also, $r_\mathbb{C} : \mathbb{C}^\times \to W_\mathbb{C}$ must be an isomorphism, and be the kernel of ϕ. One can show that now $W_\mathbb{R} = \mathbb{C}^\times \cup j\mathbb{C}^\times$ where $j^2 = -1$ and $jzj^{-1} = \sigma(z)$ for all $z \in \mathbb{C}^\times$.

- Let F be a non-archimedian local field with finite residue field k. Then recall that we have a maximal unramified extension F^{unr} satisfying

\[1 \to I_F \to \text{Gal}(\bar{F}/F) \to \text{Gal}(F^{unr}/F) \cong \text{Gal}(\bar{k}/k) \cong \hat{\mathbb{Z}} \to 1, \]

where I_F denotes the inertia group. In this case, one can show that W_F is the dense subgroup of $\text{Gal}(\bar{F}/F)$ that maps to $\mathbb{Z} \subset \hat{\mathbb{Z}}$. For number fields, it is highly non-trivial to show that the Weil group exists and there is no easy description of it. More on this in a few weeks.
Examples of the Weil group

- Let $F = \mathbb{C}$. Then the map $\phi : W_{\mathbb{C}} \to \text{Gal}(\mathbb{C}/\mathbb{C}) = \{1\}$ must be trivial. Since \mathbb{C}/\mathbb{C} is the only finite field extension, considering \mathbb{C} as a local field (as it is complete), we must have an isomorphism $r_\mathbb{C} : \mathbb{C}^\times \to W_{\mathbb{C}}$. All other conditions are now trivially satisfied.

- Let $F = \mathbb{R}$. Then $\phi : W_{\mathbb{R}} \to \{1, \sigma\}$ where σ denotes complex conjugation. Also, $r_\mathbb{C} : \mathbb{C}^\times \to W_{\mathbb{C}}$ must be an isomorphism, and be the kernel of ϕ. One can show that now $W_{\mathbb{R}} = \mathbb{C}^\times \cup j\mathbb{C}^\times$ where $j^2 = -1$ and $jzj^{-1} = \sigma(z)$ for all $z \in \mathbb{C}^\times$.

- Let F be a non-archimedian local field with finite residue field k. Then recall that we have a maximal unramified extension F^{unr} satisfying

$$1 \to I_F \to \text{Gal}(\bar{F}/F) \to \text{Gal}(F^{\text{unr}}/F) \cong \text{Gal}(\bar{k}/k) \cong \hat{\mathbb{Z}} \to 1,$$

where I_F denotes the inertia group. In this case, one can show that W_F is the dense subgroup of $\text{Gal}(\bar{F}/F)$ that maps to $\mathbb{Z} \subset \hat{\mathbb{Z}}$.

For number fields, it is highly non-trivial to show that the Weil group exists and there is no easy description of it. More on this in a few weeks.
The Weil-Deligne group

We first record the following theorem about the Weil group.

Langlands for GL$_1$

There is a bijection between isomorphism classes of irreducible automorphic representations of $GL_1(\mathbb{A}_F)$ and continuous representations $W_F \rightarrow GL_1(\mathbb{C})$.

The proof follows from identifying a representation with its associated character of $F^\times \backslash \mathbb{A}_F^\times$, which is isomorphic to W_F^{ab} by definition of W_F.
The Weil-Deligne group

We first record the following theorem about the Weil group.

Langlands for GL_1

There is a bijection between isomorphism classes of irreducible automorphic representations of $\text{GL}_1(\mathbb{A}_F)$ and continuous representations $W_F \to \text{GL}_1(\mathbb{C})$.

The proof follows from identifying a representation with its associated character of $F^\times \backslash \mathbb{A}_F^\times$, which is isomorphic to W_F^{ab} by definition of W_F.

Definition

The *Weil-Deligne group* for a local field F is defined as

$$W'_F = W_F \times \text{SL}_2(\mathbb{C}).$$

It is interesting to remark that the correct analogue of this for global fields, the so-called Langlands group, is currently still only hypothetical.
Representations of W'_F

Recall the Weil group for a local field. It fit naturally into an exact sequence of the form

$$1 \rightarrow I_F \rightarrow W_F \rightarrow \mathbb{Z} \rightarrow 1,$$

and so we may write $W_F \cong I_F \rtimes \langle \text{Fr} \rangle$. Let G be a reductive group over \mathbb{C}. Recall that some $g \in G$ is said to be semi-simple if $\phi(g)$ is for some, and thus for any, faithful representation $\phi : G \rightarrow \text{GL}_n$.

Definition

A representation/admissible homomorphism of W'_F into $G(\mathbb{C})$ is a homomorphism $\phi : W'_F \rightarrow G(\mathbb{C})$ such that ϕ is trivial on an open subgroup of I_F, such that $\phi(\text{Fr})$ is semi-simple in G, and $\phi|_{\text{SL}_2(\mathbb{C})}$ is induced by a morphism of algebraic groups $\text{SL}_2(\mathbb{C}) \rightarrow G$.

Local Langlands for GL_n

There is a bijection between representations of W'_F into $\text{GL}_n(\mathbb{C})$ and irreducible admissible representations of $\text{GL}_n(F)$.
Representations of W'_F

Recall the Weil group for a local field. It fit naturally into an exact sequence of the form

$$1 \to I_F \to W_F \to \mathbb{Z} \to 1,$$

and so we may write $W_F \cong I_F \rtimes \langle \text{Fr} \rangle$. Let G be a reductive group over \mathbb{C}. Recall that some $g \in G$ is said to be semi-simple if $\phi(g)$ is for some, and thus for any, faithful representation $\phi : G \to \text{GL}_n$.

Definition

A representation / admissible homomorphism of W'_F into $G(\mathbb{C})$ is a homomorphism

$$\phi : W'_F \to G(\mathbb{C})$$

such that ϕ is trivial on an open subgroup of I_F, such that $\phi(\text{Fr})$ is semi-simple in G, and $\phi|_{\text{SL}_2(\mathbb{C})}$ is induced by a morphism of algebraic groups $\text{SL}_2 \to G$.

Local Langlands for GL_n

There is a bijection between representations of W'_F into $\text{GL}_n(\mathbb{C})$ and irreducible admissible representations of $\text{GL}_n(F)$.
Representations of W_F'

Recall the Weil group for a local field. It fit naturally into an exact sequence of the form

$$1 \to I_F \to W_F \to \mathbb{Z} \to 1,$$

and so we may write $W_F \cong I_F \rtimes \langle \text{Fr} \rangle$. Let G be a reductive group over \mathbb{C}. Recall that some $g \in G$ is said to be semi-simple if $\phi(g)$ is for some, and thus for any, faithful representation $\phi : G \to \text{GL}_n$.

Definition

A representation / admissible homomorphism of W_F' into $G(\mathbb{C})$ is a homomorphism

$$\phi : W_F' \to G(\mathbb{C})$$

such that ϕ is trivial on an open subgroup of I_F, such that $\phi(\text{Fr})$ is semi-simple in G, and $\phi|_{\text{SL}_2(\mathbb{C})}$ is induced by a morphism of algebraic groups $\text{SL}_2 \to G$.

Local Langlands for GL$_n$

There is a bijection between representations of W_F' into $\text{GL}_n(\mathbb{C})$ and irreducible admissible representations of $\text{GL}_n(F)$.
L-parameters

Recall that the Weil group W_F comes with a map $W_F \to \text{Gal} (\bar{F}/F)$ and that the Langlands dual of a reductive group G, denoted LG, is defined by taking a suitable semi-direct product of $\text{Gal} (\bar{F}/F)$ and \hat{G}.

Definition

An L-parameter is a representation of W_F' into LG that commutes with the projections to $\text{Gal} (\bar{F}/F)$. We say that two L-parameters are equivalent if they differ only by conjugation by some element of $\hat{G}(\mathbb{C})$.
L-parameters

Recall that the Weil group W_F comes with a map $W_F \to \text{Gal}(\bar{F}/F)$ and that the Langlands dual of a reductive group G, denoted $^L G$, is defined by taking a suitable semi-direct product of $\text{Gal}(\bar{F}/F)$ and \hat{G}.

Definition

An *L-parameter* is a representation of W'_F into $^L G$ that commutes with the projections to $\text{Gal}(\bar{F}/F)$. We say that two L-parameters are equivalent if they differ only by conjugation by some element of $\hat{G}(\mathbb{C})$.

Vague local Langlands correspondence conjectures

There is a bijection between *L-packets* of admissible $G(F)$-representations and equivalence classes of L-parameters satisfying certain conditions. Given a map $^L H \to ^L G$ that commutes with the projections to $\text{Gal}(\bar{F}/F)$, there is a corresponding transfer of L-packets compatible with the natural transfer of L-parameters.
L-parameters

Recall that the Weil group W_F comes with a map $W_F \to \text{Gal}(\bar{F}/F)$ and that the Langlands dual of a reductive group G, denoted LG, is defined by taking a suitable semi-direct product of $\text{Gal}(\bar{F}/F)$ and \hat{G}.

Definition

An *L-parameter* is a representation of W'_F into LG that commutes with the projections to $\text{Gal}(\bar{F}/F)$. We say that two L-parameters are equivalent if they differ only by conjugation by some element of $\hat{G}(\mathbb{C})$.

Vague local Langlands correspondence conjectures

There is a bijection between *L-packets* of admissible $G(F)$-representations and equivalence classes of L-parameters satisfying certain conditions. Given a map $^LH \to ^LG$ that commutes with the projections to $\text{Gal}(\bar{F}/F)$, there is a corresponding transfer of L-packets compatible with the natural transfer of L-parameters.

What are L-packets? In the case of GL_n, they are just singletons. In general? Hard to say. Everything is still only conjectural. Many definitions of L-packets are ad-hoc, and assume the conjectures to define the L-packets instead...
Why do we study all of this? Turns out, these representations are closely related to \textit{L-functions}. Let \(v \) be a place of a number field \(F \) and suppose that we have an L-parameter \(\phi : W'_F \to ^L G \) and a representation \(r : ^L G_{F_v} \to \text{GL}(V) \) for some \(F \)-vector space \(V \). Let \(q_v \) denote the cardinality of the residue field of \(F \). Define the \textit{local factor} by

\[
L(s, r \circ \phi) = \det(1 - r(F_{r,v})q_v^{-s}|V^{l_{F_v}})^{-1}.
\]
L-functions

Why do we study all of this? Turns out, these representations are closely related to \textit{L-functions}. Let \(v \) be a place of a number field \(F \) and suppose that we have an L-parameter \(\phi : W'_{F_v} \to L^G \) and a representation \(r : L^G_{F_v} \to \text{GL}(V) \) for some \(F \)-vector space \(V \). Let \(q_v \) denote the cardinality of the residue field of \(F \). Define the \textit{local factor} by

\[
L(s, r \circ \phi) = \det(1 - r(\text{Fr}_v)q_v^{-s}|V^l_{F_v})^{-1}.
\]

The L-function is defined by multiplying all the local factors at all the places together. It is conjecturally meromorphic and satisfies a functional equation relating the value at \(s \) to the value at \(1 - s \) of the \textit{adjoint} L-function, i.e. the one defined by the dual representation. Many properties of the representation can be recovered from the L-function. For example, the image of the representation has finite centraliser if and only if the dual L-function is regular at \(s = 0 \). More on L-functions will be treated in the near future.
Thanks for listening!