### The L-group and local Langlands parameters

Mike Daas

7th of April, 2021



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Recalling some definitions

An affine group scheme over a field k is a functor

#### $k\text{-}\mathbf{Alg}\to\mathbf{Grp}$

that is representable by some k-algebra. An *affine algebraic group* over k is an affine group scheme of finite type over k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Recalling some definitions

An affine group scheme over a field k is a functor

#### $k\text{-}\mathbf{Alg}\to\mathbf{Grp}$

that is representable by some k-algebra. An affine algebraic group over k is an affine group scheme of finite type over k.

• A matrix *M* is said to be *unipotent* if M – id is nilpotent. An element *g* of an algebraic group *G* is called *unipotent* if  $\phi(g)$  is so for some, and thus for any, faithful (i.e. injective) representation  $\phi : G \to GL_n$ . The unipotent radical  $R_u(G)$  of *G* is the maximal connected normal subgroup of *G* that consists of unipotent elements. We say an algebraic group is *reductive* if  $R_u(G) = \{1\}$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Recalling some definitions

An affine group scheme over a field k is a functor

#### $k\text{-}\mathbf{Alg}\to\mathbf{Grp}$

that is representable by some k-algebra. An affine algebraic group over k is an affine group scheme of finite type over k.

- A matrix M is said to be *unipotent* if M id is nilpotent. An element g of an algebraic group G is called *unipotent* if  $\phi(g)$  is so for some, and thus for any, faithful (i.e. injective) representation  $\phi : G \to GL_n$ . The unipotent radical  $R_u(G)$  of G is the maximal connected normal subgroup of G that consists of unipotent elements. We say an algebraic group is *reductive* if  $R_u(G) = \{1\}$ .
- An algebraic torus is an algebraic group T such that T<sub>k<sup>sep</sup></sub> ≃ G<sup>n</sup><sub>m</sub> for some n, which is called the rank of the torus. A character of an algebraic group G is an element of X<sup>\*</sup>(G) = Hom(G, G<sub>m</sub>). A one-parameter subgroup is an element from X<sub>\*</sub>(G) = Hom(G<sub>m</sub>, G).

### Recalling more definitions

Let V be a finite dimensional  $\mathbb{R}$ -vector space, and  $\Phi$  a subset of V. Then  $(\Phi, V)$  is called a *root system* if:

- $\Phi$  is finite, does not contain 0, and spans V;
- For each α ∈ Φ there exists a reflection operator s<sub>α</sub> that interchanges α and −α and maps Φ to Φ;
- for each  $\beta \in \Phi$ , the vector  $s_{\alpha}(\beta) \beta$  is an integer multiple of  $\alpha$ .

#### Recalling more definitions

Let V be a finite dimensional  $\mathbb{R}$ -vector space, and  $\Phi$  a subset of V. Then  $(\Phi, V)$  is called a *root system* if:

- Φ is finite, does not contain 0, and spans V;
- For each α ∈ Φ there exists a reflection operator s<sub>α</sub> that interchanges α and −α and maps Φ to Φ;
- for each  $\beta \in \Phi$ , the vector  $s_{\alpha}(\beta) \beta$  is an integer multiple of  $\alpha$ .

There exists a pairing  $(,): V \times V \to \mathbb{C}$  such that all reflections are orthogonal transformations. If  $\alpha \in \Phi$ , we can find a unique  $\alpha^{v}$  such that

$$\langle -, \alpha^{\nu} \rangle := \alpha^{\nu}(-) = 2(-, \alpha)/(\alpha, \alpha) \in \mathbb{Z}.$$

If  $\Phi^{\nu} = \{\alpha^{\nu} | \alpha \in \Phi\}$  and  $V^{\nu} = \langle \Phi^{\nu} \rangle \otimes_{\mathbb{Z}} \mathbb{R}$ , then  $(\Phi^{\nu}, V^{\nu})$  is called the *dual root system*.

#### Recalling more definitions

Let V be a finite dimensional  $\mathbb{R}$ -vector space, and  $\Phi$  a subset of V. Then  $(\Phi, V)$  is called a *root system* if:

- $\blacktriangleright$   $\Phi$  is finite, does not contain 0, and spans V;
- for each  $\alpha \in \Phi$  there exists a reflection operator  $s_{\alpha}$  that interchanges  $\alpha$  and  $-\alpha$  and maps  $\Phi$  to  $\Phi$ ;
- for each  $\beta \in \Phi$ , the vector  $s_{\alpha}(\beta) \beta$  is an integer multiple of  $\alpha$ .

There exists a pairing  $(,): V \times V \to \mathbb{C}$  such that all reflections are orthogonal transformations. If  $\alpha \in \Phi$ , we can find a unique  $\alpha^{\nu}$  such that

$$\langle -, \alpha^{\nu} \rangle := \alpha^{\nu}(-) = 2(-, \alpha)/(\alpha, \alpha) \in \mathbb{Z}.$$

If  $\Phi^{\nu} = \{\alpha^{\nu} | \alpha \in \Phi\}$  and  $V^{\nu} = \langle \Phi^{\nu} \rangle \otimes_{\mathbb{Z}} \mathbb{R}$ , then  $(\Phi^{\nu}, V^{\nu})$  is called the dual root system.

A root datum is a quadruple  $(X, Y, \Phi, \Phi^{\nu})$  where X, Y are free abelian groups with a perfect pairing  $\langle , \rangle : X \times Y \to \mathbb{Z}$  and where  $\Phi \subset X$  and  $\Phi^{\nu} \subset Y$  are finite subsets such that  $\Phi \ni \alpha \iff \alpha^{\nu} \in \Phi^{\nu}$ . In addition,  $\langle \alpha, \alpha^{\nu} \rangle = 2$  and for each  $\alpha \in \Phi$ , the reflection  $s_{\alpha}(x) = x - \langle x, \alpha^{\nu} \rangle \alpha$ satisfies  $s_{\alpha}(\Phi) = \Phi$  and the group  $\langle s_{\alpha} | \alpha \in \Phi \rangle$  is finite. ロ > 《 @ > 《 B > 《 B > B りへで

#### Combining these concepts

Let G be a connected reductive group over a perfect field k with maximal torus T. Recall the *adjoint representation* Ad :  $G \rightarrow GL(\mathfrak{g})$  induced by the conjugation action of G onto itself. For any character  $\alpha \in X^*(T)$ , denote

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} \mid \mathsf{Ad}(t)X = \alpha(t)X \text{ for all } t \in T(k)\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Combining these concepts

Let G be a connected reductive group over a perfect field k with maximal torus T. Recall the *adjoint representation* Ad :  $G \rightarrow GL(\mathfrak{g})$  induced by the conjugation action of G onto itself. For any character  $\alpha \in X^*(T)$ , denote

$$\mathfrak{g}_{lpha} = \{X \in \mathfrak{g} \mid \mathsf{Ad}(t)X = lpha(t)X \text{ for all } t \in T(k)\}$$

If  $\mathfrak{g}_{\alpha}\neq 0,$  it must be 1-dimensional, and they are called the root spaces. We have

$$\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha} \mathfrak{g}_{\alpha},$$

where  $\mathfrak{t} = \text{Lie}(T)$  and so the set of  $\alpha$  for which  $\mathfrak{g} \neq 0$  is finite and denoted by  $\Phi(G, T)$ . It turns out that  $(X^*(T), X_*(T), \Phi, \Phi^v)$  is a root datum with the natural pairing between  $X^*(T)$  and  $X_*(T)$ .

### The dual group

Recall that a root datum  $(X, Y, \Phi, \Phi^{v})$  is said to be *reduced* if  $\alpha \in \Phi$  implies that  $2\alpha \notin \Phi$ . We have the following theorem:

#### Theorem

If k is algebraically closed, the association  $G \to (X^*(T), X_*(T), \Phi, \Phi^v)$  determines a bijection between isomorphism classes of connected reductive groups and isomorphism classes of reduced root data.

### The dual group

Recall that a root datum  $(X, Y, \Phi, \Phi^{v})$  is said to be *reduced* if  $\alpha \in \Phi$  implies that  $2\alpha \notin \Phi$ . We have the following theorem:

#### Theorem

If k is algebraically closed, the association  $G \to (X^*(T), X_*(T), \Phi, \Phi^v)$  determines a bijection between isomorphism classes of connected reductive groups and isomorphism classes of reduced root data.

A trivial remark on one side, now leads to an interesting concept on the other. Namely, if  $(X, Y, \Phi, \Phi^{\nu})$  is a root datum, then so is  $(Y, X, \Phi^{\nu}, \Phi)$ . According to the theorem, we may thus associate to *G* its so-called *complex dual*  $\hat{G}$  that has the corresponding dual root system.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### The dual group

Recall that a root datum  $(X, Y, \Phi, \Phi^{v})$  is said to be *reduced* if  $\alpha \in \Phi$  implies that  $2\alpha \notin \Phi$ . We have the following theorem:

#### Theorem

If k is algebraically closed, the association  $G \to (X^*(T), X_*(T), \Phi, \Phi^v)$  determines a bijection between isomorphism classes of connected reductive groups and isomorphism classes of reduced root data.

A trivial remark on one side, now leads to an interesting concept on the other. Namely, if  $(X, Y, \Phi, \Phi^{\nu})$  is a root datum, then so is  $(Y, X, \Phi^{\nu}, \Phi)$ . According to the theorem, we may thus associate to *G* its so-called *complex dual*  $\hat{G}$  that has the corresponding dual root system.

#### **Examples:**

▶ The group GL<sub>n</sub> is its own dual.

• If 
$$G = SL_n$$
, then  $\hat{G} = PGL_n(\mathbb{C})$ .

• If 
$$G = \operatorname{Sp}_{2n}$$
, then  $\hat{G} = \operatorname{SO}_{2n+1}(\mathbb{C})$ .

#### More on root data

#### Definition

Let  $\Phi$  be a root system. A set of *positive roots*  $\Phi^+ \subset \Phi$  is a subset such that for all  $\alpha \in \Phi$ , precisely one of  $\alpha$  and  $-\alpha$  is in  $\Phi^+$  and for any  $\alpha, \beta \in \Phi^+$  such that  $\alpha + \beta \in \Phi$ , we require that  $\alpha + \beta \in \Phi^+$ . We say a root in  $\Phi^+$  is called *simple* if it is not the sum of two positive roots.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### More on root data

#### Definition

Let  $\Phi$  be a root system. A set of *positive roots*  $\Phi^+ \subset \Phi$  is a subset such that for all  $\alpha \in \Phi$ , precisely one of  $\alpha$  and  $-\alpha$  is in  $\Phi^+$  and for any  $\alpha, \beta \in \Phi^+$  such that  $\alpha + \beta \in \Phi$ , we require that  $\alpha + \beta \in \Phi^+$ . We say a root in  $\Phi^+$  is called *simple* if it is not the sum of two positive roots. Note that  $\Phi^{+,\nu}$  is a set of positive roots in  $\Phi^{\nu}$ . If  $\Delta$  is a maximal set of simple roots in  $\Phi$ , then so is  $\Delta^{\nu}$  in  $\Phi^{\nu}$ . One can show that  $\Delta$  and  $\Delta^{\nu}$  determine  $\Phi$  and  $\Phi^{\nu}$  respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### More on root data

#### Definition

Let  $\Phi$  be a root system. A set of *positive roots*  $\Phi^+ \subset \Phi$  is a subset such that for all  $\alpha \in \Phi$ , precisely one of  $\alpha$  and  $-\alpha$  is in  $\Phi^+$  and for any  $\alpha, \beta \in \Phi^+$  such that  $\alpha + \beta \in \Phi$ , we require that  $\alpha + \beta \in \Phi^+$ . We say a root in  $\Phi^+$  is called *simple* if it is not the sum of two positive roots.

Note that  $\Phi^{+,\nu}$  is a set of positive roots in  $\Phi^{\nu}$ . If  $\Delta$  is a maximal set of simple roots in  $\Phi$ , then so is  $\Delta^{\nu}$  in  $\Phi^{\nu}$ . One can show that  $\Delta$  and  $\Delta^{\nu}$  determine  $\Phi$  and  $\Phi^{\nu}$  respectively.

#### Definition

We call a tuple  $(X, Y, \Delta, \Delta^{\nu})$  a *based root datum* if  $(X^*(T), X_*(T), \Phi, \Phi^{\nu})$  is a root datum and  $\Delta$ ,  $\Delta^{\nu}$  are maximal sets of simple roots as above.

Recall that a Borel subgroup of G is a maximal connected solvable subgroup.

# Pinnings

#### Lemma

On the other side of the correspondence, choosing  $\Delta$  amounts to choosing a Borel subgroup  $T \subset B \subset G$ .

**Proof:** (sketch) By definition of  $\mathfrak{g}_{\alpha}$ , we have the map

$$\exp_lpha:\mathfrak{g}_lpha o {\mathcal G}(\mathbb{C})$$

that satisfies  $gexp_{\alpha}(x)g^{-1} = exp(\alpha(g)x)$ . Its image  $U_{\alpha}$  naturally has  $\mathfrak{g}_{\alpha}$  as Lie-algebra. Then one can show that the Borel subgroups of G are precisely those of the form

$$\langle T, \{U_{\alpha}\}_{\alpha\in\Delta}\rangle.$$

A D N A 目 N A E N A E N A B N A C N

This would prove the claim.

# Pinnings

#### Lemma

On the other side of the correspondence, choosing  $\Delta$  amounts to choosing a Borel subgroup  $T \subset B \subset G$ .

**Proof:** (sketch) By definition of  $\mathfrak{g}_{\alpha}$ , we have the map

$$\exp_lpha:\mathfrak{g}_lpha o {\mathcal G}(\mathbb{C})$$

that satisfies  $gexp_{\alpha}(x)g^{-1} = exp(\alpha(g)x)$ . Its image  $U_{\alpha}$  naturally has  $\mathfrak{g}_{\alpha}$  as Lie-algebra. Then one can show that the Borel subgroups of G are precisely those of the form

$$\langle T, \{U_{\alpha}\}_{\alpha\in\Delta}\rangle.$$

This would prove the claim.

This proof naturally leads to the following definition.

#### Definition

A pinning of G is a tuple  $(B, T, \{u_{\alpha}\}_{\alpha \in \Delta})$  where  $u_{\alpha} \in U_{\alpha} - 1$  for all  $\alpha \in \Delta$ , where  $\Delta$  corresponds to the Borel subgroup B.

# A bit of group theory

#### Proposition

- Let  $T \subset B \subset G$  be as before. Then
  - ▶ all Borel subgroups in *G* are conjugate;
  - > all maximal tori inside B are conjugate by an element of B;
  - $\blacktriangleright$  *B* is its own normaliser inside *G*;
  - $\blacktriangleright$  T is its own normaliser inside B.

### A bit of group theory

#### Proposition

Let  $T \subset B \subset G$  be as before. Then

- all Borel subgroups in G are conjugate;
- all maximal tori inside B are conjugate by an element of B;
- B is its own normaliser inside G;
- T is its own normaliser inside B.

Let  $f \in \operatorname{Aut}(G)$  and let denote  $c_g \in \operatorname{Aut}(G)$  conjugation by g. Then f(B) is also a Borel subgroup, so  $f(B) = gBg^{-1}$  for some  $g \in G$ , so  $(c_g \circ f)(B) = B$ . Now  $(c_g \circ f)(T) = bTb^{-1}$  for some  $b \in B$ , so  $(c_{gb} \circ f)(T) = T$  and this also fixes B. This element  $gb \in G$  is unique up to an element from the normaliser of T inside B; that is, from T.

# A bit of group theory

#### Proposition

Let  $T \subset B \subset G$  be as before. Then

- ▶ all Borel subgroups in *G* are conjugate;
- all maximal tori inside B are conjugate by an element of B;
- B is its own normaliser inside G;
- ► T is its own normaliser inside B.

Let  $f \in \operatorname{Aut}(G)$  and let denote  $c_g \in \operatorname{Aut}(G)$  conjugation by g. Then f(B) is also a Borel subgroup, so  $f(B) = gBg^{-1}$  for some  $g \in G$ , so  $(c_g \circ f)(B) = B$ . Now  $(c_g \circ f)(T) = bTb^{-1}$  for some  $b \in B$ , so  $(c_{gb} \circ f)(T) = T$  and this also fixes B. This element  $gb \in G$  is unique up to an element from the normaliser of T inside B; that is, from T. Hence  $c_{gb} \circ f$  preserves both T and B, and thus acts on  $(X^*(T), X_*(T), \Delta, \Delta^{\vee})$ . Since elements from T act trivially on the root system, this defines a homomorphism

$$\operatorname{Aut}(G) \to \operatorname{Aut}(X^*(T), X_*(T), \Delta, \Delta^{\vee}).$$

It is non-trivial, but it can be shown, that its kernel is precisely  $Inn(G)_{=}$ 

### A note about *F*-forms

Note that elements from the Galois group need not induce *algebraic* automorphisms, i.e. if G is a matrix group, conjugating all entries by some  $\sigma \in \text{Gal}(\overline{F}/F)$ , an action commonly denoted  $\tau_0$ , is not an algebraic automorphism of G. However, if  $\tau$  is another action, then we do have a map

$$\alpha: \mathsf{Gal}(\bar{F}/F) \to \mathsf{Aut}_{\mathsf{alg}}(G): \gamma \mapsto \tau(\gamma) \circ \tau_0(\gamma)^{-1}.$$

### A note about *F*-forms

Note that elements from the Galois group need not induce *algebraic* automorphisms, i.e. if G is a matrix group, conjugating all entries by some  $\sigma \in \text{Gal}(\overline{F}/F)$ , an action commonly denoted  $\tau_0$ , is not an algebraic automorphism of G. However, if  $\tau$  is another action, then we do have a map

$$\alpha: \mathsf{Gal}(\bar{\mathcal{F}}/\mathcal{F}) \to \mathsf{Aut}_{\mathsf{alg}}(\mathcal{G}): \gamma \mapsto \tau(\gamma) \circ \tau_0(\gamma)^{-1}.$$

However, this is not generally a homomorphism, but it is a 1-cocycle. We call this a *rational structure* and they are characterised by the first group cohomology of  $\operatorname{Gal}(\overline{F}/F)$  with values in  $\operatorname{Aut}_{\operatorname{alg}}(G)$ . The invariants for any given  $\tau$  are denoted  $G_{\tau}(F)$  and two such groups define the same dual groups if and only if the  $\tau$ 's differ by an *inner* twist, i.e. something from  $H^1(\operatorname{Gal}(\overline{F}/F), \operatorname{Int}_{\operatorname{alg}}(G))$ . For more details, ask Eric.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### A note about *F*-forms

Note that elements from the Galois group need not induce *algebraic* automorphisms, i.e. if G is a matrix group, conjugating all entries by some  $\sigma \in \text{Gal}(\overline{F}/F)$ , an action commonly denoted  $\tau_0$ , is not an algebraic automorphism of G. However, if  $\tau$  is another action, then we do have a map

$$\alpha: \mathsf{Gal}(\bar{\mathcal{F}}/\mathcal{F}) \to \mathsf{Aut}_{\mathsf{alg}}(\mathcal{G}): \gamma \mapsto \tau(\gamma) \circ \tau_0(\gamma)^{-1}.$$

However, this is not generally a homomorphism, but it is a 1-cocycle. We call this a *rational structure* and they are characterised by the first group cohomology of  $\operatorname{Gal}(\overline{F}/F)$  with values in  $\operatorname{Aut}_{\operatorname{alg}}(G)$ . The invariants for any given  $\tau$  are denoted  $G_{\tau}(F)$  and two such groups define the same dual groups if and only if the  $\tau$ 's differ by an *inner* twist, i.e. something from  $H^1(\operatorname{Gal}(\overline{F}/F), \operatorname{Int}_{\operatorname{alg}}(G))$ . For more details, ask Eric.

#### Examples:

- Consider GL<sub>1</sub> over ℝ. We can make the non-trivial automorphism act by z → z̄ or by z → 1/z. Combining these gives the algebraic action z → 1/z̄. Its fixed points are those on the unit circle.
- Consider SU<sub>3</sub> over ℝ. We now have an algebraic automorphism A → (A<sup>T</sup>)<sup>-1</sup>. Unlike in the SL<sub>2</sub>-case, now SU<sub>3</sub> is not an inner twist from SL<sub>3</sub>, by considering the action on the Dynkin diagram.

### The Langland dual group

Suppose that all groups are defined over a local or global field F. Let  $\hat{T} \subset \hat{B} \subset \hat{G}$  be the complex dual group associated with the based root datum  $(X_*(T), X^*(T), \Delta^v, \Delta)$ . From the previous slide, we obtain the exact sequence

 $1 \to \mathsf{Inn}(G) \to \mathsf{Aut}(G) \to \mathsf{Aut}(X^*(T), X_*(T), \Delta, \Delta^{\nu}) \to 1$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### The Langland dual group

Suppose that all groups are defined over a local or global field F. Let  $\hat{T} \subset \hat{B} \subset \hat{G}$  be the complex dual group associated with the based root datum  $(X_*(T), X^*(T), \Delta^{\nu}, \Delta)$ . From the previous slide, we obtain the exact sequence

 $1 \to \mathsf{Inn}(G) \to \mathsf{Aut}(G) \to \mathsf{Aut}(X^*(T), X_*(T), \Delta, \Delta^{\nu}) \to 1$ 

Proving surjectivity shows that it is split; choosing a pinning  $\{u_{\alpha}\}_{\alpha \in \Delta}$  we see that any automorphism of the root datum induces an action on the  $u_{\alpha}$ . These elements and their *negatives* generate G, and one can show that this defines a unique automorphism of G.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### The Langland dual group

Suppose that all groups are defined over a local or global field F. Let  $\hat{T} \subset \hat{B} \subset \hat{G}$  be the complex dual group associated with the based root datum  $(X_*(T), X^*(T), \Delta^{\nu}, \Delta)$ . From the previous slide, we obtain the exact sequence

 $1 \to \mathsf{Inn}(G) \to \mathsf{Aut}(G) \to \mathsf{Aut}(X^*(T), X_*(T), \Delta, \Delta^{\mathsf{v}}) \to 1$ 

Proving surjectivity shows that it is split; choosing a pinning  $\{u_{\alpha}\}_{\alpha\in\Delta}$  we see that any automorphism of the root datum induces an action on the  $u_{\alpha}$ . These elements and their *negatives* generate G, and one can show that this defines a unique automorphism of G. Since T and B are defined over F, the group  $\operatorname{Gal}(\overline{F}/F)$  acts on the root

datum of G and so also on the root datum of  $\hat{G}$ . The above section for  $\hat{G}$  gives us an induced map  $\operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}(\hat{G})$ . We use it to define the Langlands dual group

$${}^{L}G = \hat{G}(\mathbb{C}) \rtimes \operatorname{Gal}(\overline{F}/F).$$

This is simply a direct product if G is split, i.e. if  $T \cong \mathbb{G}_m^n$  over F, because then the Galois action will be trivial.

#### Class field theory

Recall the following facts about **local** class field theory:

For any finite field extension E/F, there is an isomorphism

$$\theta_{E/F}: F^{\times}/N_{E/F}E^{\times} \xrightarrow{\sim} \operatorname{Gal}(E/F)^{\operatorname{ab}}.$$

These maps are compatible and define a homomorphism

$$heta_{F}:F^{ imes}
ightarrow {\sf Gal}(ar{F}/F)^{\sf ab}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

called the local reciprocity map.

▶ If  $H \subset G$  and  $[G : H] < \infty$ , we have a *transfer map*  $G \to H^{ab}$ .

### Class field theory

Recall the following facts about **local** class field theory:

• For any finite field extension E/F, there is an isomorphism

$$\theta_{E/F}: F^{\times}/N_{E/F}E^{\times} \xrightarrow{\sim} \operatorname{Gal}(E/F)^{\operatorname{ab}}.$$

These maps are compatible and define a homomorphism

$$heta_{F}:F^{ imes}
ightarrow {
m Gal}(ar{F}/F)^{
m ab}$$

called the local reciprocity map.

• If  $H \subset G$  and  $[G : H] < \infty$ , we have a *transfer map*  $G \to H^{ab}$ . Also recall the following facts about **global** class field theory:

There exists a surjective continuous homomorphism

$$\mathbb{A}_F^{\times} \to \operatorname{Gal}(\bar{F}/F)^{\operatorname{ab}}: \ s \mapsto [s,F]$$

called the global reciprocity map.

It has the property that for s ∈ A<sub>F</sub><sup>×</sup> whose ideal is coprime to all the ramified places in a certain finite extension E/F,

$$[s,F]|_E=((s),E/F),$$

### The Weil group

Let F be a local or a global field. Then a *Weil group* for F is a topological group  $W_F$  along with a continuous homomorphism  $\phi: W_F \to \text{Gal}(\bar{F}/F)$  with dense image, and for each finite field extension E/F, the group  $W_E = \phi^{-1}(\text{Gal}(\bar{E}/E))$  admits an isomorphism  $r_E: C_E \to W_E^{ab}$ , where

$$C_E = \begin{cases} E^{\times} & \text{if } F \text{ is local;} \\ E^{\times} \setminus \mathbb{A}_E^{\times} & \text{if } F \text{ is global.} \end{cases}$$

### The Weil group

Let F be a local or a global field. Then a *Weil group* for F is a topological group  $W_F$  along with a continuous homomorphism  $\phi: W_F \to \text{Gal}(\bar{F}/F)$  with dense image, and for each finite field extension E/F, the group  $W_E = \phi^{-1}(\text{Gal}(\bar{E}/E))$  admits an isomorphism  $r_E: C_E \to W_E^{ab}$ , where

$$\mathcal{C}_{\mathcal{E}} = egin{cases} E^{ imes} & ext{if } \mathcal{F} ext{ is local;} \ E^{ imes} \setminus \mathbb{A}_{\mathcal{E}}^{ imes} & ext{if } \mathcal{F} ext{ is global.} \end{cases}$$

In addition, these groups and maps must satisfy that

$$C_E \xrightarrow{r_E} W_E^{ab} \xrightarrow{\phi} Gal(\overline{E}/E)^{ab}$$

is the reciprocity map from class field theory, that

$$W_F = \varprojlim W_F / \overline{W_E^{ab}},$$

A D N A 目 N A E N A E N A B N A C N

### The Weil group

Let F be a local or a global field. Then a *Weil group* for F is a topological group  $W_F$  along with a continuous homomorphism  $\phi: W_F \to \text{Gal}(\bar{F}/F)$  with dense image, and for each finite field extension E/F, the group  $W_E = \phi^{-1}(\text{Gal}(\bar{E}/E))$  admits an isomorphism  $r_E: C_E \to W_E^{ab}$ , where

$$\mathcal{C}_{\mathcal{E}} = egin{cases} E^{ imes} & ext{if } \mathcal{F} ext{ is local;} \ E^{ imes} \setminus \mathbb{A}_{\mathcal{E}}^{ imes} & ext{if } \mathcal{F} ext{ is global.} \end{cases}$$

In addition, these groups and maps must satisfy that

$$C_E \xrightarrow{r_E} W_E^{\mathsf{ab}} \xrightarrow{\phi} \mathsf{Gal}(\bar{E}/E)^{\mathsf{ab}}$$

is the reciprocity map from class field theory, that

$$W_F = \varprojlim W_F / \overline{W_E^{ab}},$$

and that for all  $w \in W_F$ ,  $\sigma = \phi(w)$  and E'/E/F these commute:



Let F = C. Then the map φ : W<sub>C</sub> → Gal(C/C) = {1} must be trivial. Since C/C is the only finite field extension, considering C as a local field (as it is complete), we must have an isomorphism r<sub>C</sub> : C<sup>×</sup> → W<sub>C</sub>. All other conditions are now trivially satisfied.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let F = C. Then the map φ : W<sub>C</sub> → Gal(C/C) = {1} must be trivial. Since C/C is the only finite field extension, considering C as a local field (as it is complete), we must have an isomorphism r<sub>C</sub> : C<sup>×</sup> → W<sub>C</sub>. All other conditions are now trivially satisfied.
- ▶ Let  $F = \mathbb{R}$ . Then  $\phi : W_{\mathbb{R}} \to \{1, \sigma\}$  where  $\sigma$  denotes complex conjugation. Also,  $r_{\mathbb{C}} : \mathbb{C}^{\times} \to W_{\mathbb{C}}$  must be an isomorphism, and be the kernel of  $\phi$ . One can show that now  $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j\mathbb{C}^{\times}$  where  $j^2 = -1$  and  $jzj^{-1} = \sigma(z)$  for all  $z \in \mathbb{C}^{\times}$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let F = C. Then the map φ : W<sub>C</sub> → Gal(C/C) = {1} must be trivial. Since C/C is the only finite field extension, considering C as a local field (as it is complete), we must have an isomorphism r<sub>C</sub> : C<sup>×</sup> → W<sub>C</sub>. All other conditions are now trivially satisfied.
- ▶ Let  $F = \mathbb{R}$ . Then  $\phi : W_{\mathbb{R}} \to \{1, \sigma\}$  where  $\sigma$  denotes complex conjugation. Also,  $r_{\mathbb{C}} : \mathbb{C}^{\times} \to W_{\mathbb{C}}$  must be an isomorphism, and be the kernel of  $\phi$ . One can show that now  $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j\mathbb{C}^{\times}$  where  $j^2 = -1$  and  $jzj^{-1} = \sigma(z)$  for all  $z \in \mathbb{C}^{\times}$ .
- Let F be a non-archimedian local field with finite residue field k. Then recall that we have a maximal unramified extension F<sup>unr</sup> satisfying

$$1 \to \mathit{I}_{\mathit{F}} \to \mathsf{Gal}(\bar{\mathit{F}}/\mathit{F}) \to \mathsf{Gal}(\mathit{F}^{\mathsf{unr}}/\mathit{F}) \cong \mathsf{Gal}(\bar{k}/k) \cong \hat{\mathbb{Z}} \to 1,$$

where  $I_F$  denotes the inertia group. In this case, one can show that  $W_F$  is the dense subgroup of  $\text{Gal}(\overline{F}/F)$  that maps to  $\mathbb{Z} \subset \hat{\mathbb{Z}}$ .

- Let F = C. Then the map φ : W<sub>C</sub> → Gal(C/C) = {1} must be trivial. Since C/C is the only finite field extension, considering C as a local field (as it is complete), we must have an isomorphism r<sub>C</sub> : C<sup>×</sup> → W<sub>C</sub>. All other conditions are now trivially satisfied.
- ▶ Let  $F = \mathbb{R}$ . Then  $\phi : W_{\mathbb{R}} \to \{1, \sigma\}$  where  $\sigma$  denotes complex conjugation. Also,  $r_{\mathbb{C}} : \mathbb{C}^{\times} \to W_{\mathbb{C}}$  must be an isomorphism, and be the kernel of  $\phi$ . One can show that now  $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j\mathbb{C}^{\times}$  where  $j^2 = -1$  and  $jzj^{-1} = \sigma(z)$  for all  $z \in \mathbb{C}^{\times}$ .
- Let F be a non-archimedian local field with finite residue field k. Then recall that we have a maximal unramified extension F<sup>unr</sup> satisfying

$$1 \to \mathit{I}_{\mathit{F}} \to \mathsf{Gal}(\bar{\mathit{F}}/\mathit{F}) \to \mathsf{Gal}(\mathit{F}^{\mathsf{unr}}/\mathit{F}) \cong \mathsf{Gal}(\bar{k}/k) \cong \hat{\mathbb{Z}} \to 1,$$

where  $I_F$  denotes the inertia group. In this case, one can show that  $W_F$  is the dense subgroup of  $Gal(\overline{F}/F)$  that maps to  $\mathbb{Z} \subset \hat{\mathbb{Z}}$ .

For number fields, it is highly non-trivial to show that the Weil group exists and there is no easy description of it. More on this in a few weeks.

# The Weil-Deligne group

We first record the following theorem about the Weil group.

### Langlands for GL<sub>1</sub>

There is a bijection between isomorphism classes of irreducible automorphic representations of  $GL_1(\mathbb{A}_F)$  and continuous representations  $W_F \to GL_1(\mathbb{C})$ .

The proof follows from identifying a representation with its associated character of  $F^{\times} \setminus \mathbb{A}_{F}^{\times}$ , which is isomorphic to  $W_{F}^{ab}$  by definition of  $W_{F}$ .

# The Weil-Deligne group

We first record the following theorem about the Weil group.

### Langlands for GL<sub>1</sub>

There is a bijection between isomorphism classes of irreducible automorphic representations of  $GL_1(\mathbb{A}_F)$  and continuous representations  $W_F \to GL_1(\mathbb{C})$ .

The proof follows from identifying a representation with its associated character of  $F^{\times} \setminus \mathbb{A}_{F}^{\times}$ , which is isomorphic to  $W_{F}^{ab}$  by definition of  $W_{F}$ .

#### Definition

The Weil-Deligne group for a local field F is defined as

$$W'_F = W_F \times SL_2(\mathbb{C}).$$

It is interesting to remark that the correct analogue of this for global fields, the so-called Langlands group, is currently still only hypothetical.

## Representations of $W'_F$

Recall the Weil group for a local field. It fit naturally into an exact sequence of the form

$$1 \rightarrow I_F \rightarrow W_F \rightarrow \mathbb{Z} \rightarrow 1,$$

and so we may write  $W_F \cong I_F \rtimes \langle Fr \rangle$ . Let G be a reductive group over  $\mathbb{C}$ . Recall that some  $g \in G$  is said to be semi-simple if  $\phi(g)$  is for some, and thus for any, faithful representation  $\phi : G \to GL_n$ .

# Representations of $W'_F$

Recall the Weil group for a local field. It fit naturally into an exact sequence of the form

$$1 \rightarrow I_F \rightarrow W_F \rightarrow \mathbb{Z} \rightarrow 1,$$

and so we may write  $W_F \cong I_F \rtimes \langle Fr \rangle$ . Let G be a reductive group over  $\mathbb{C}$ . Recall that some  $g \in G$  is said to be semi-simple if  $\phi(g)$  is for some, and thus for any, faithful representation  $\phi : G \to GL_n$ .

#### Definition

A representation / admissible homomorphism of  $W'_F$  into  $G(\mathbb{C})$  is a homomorphism

$$\phi: W'_F \to G(\mathbb{C})$$

such that  $\phi$  is trivial on an open subgroup of  $I_F$ , such that  $\phi(Fr)$  is semi-simple in G, and  $\phi|_{SL_2(\mathbb{C})}$  is induced by a morphism of algebraic groups  $SL_2 \rightarrow G$ .

# Representations of $W'_F$

Recall the Weil group for a local field. It fit naturally into an exact sequence of the form

$$1 \rightarrow I_F \rightarrow W_F \rightarrow \mathbb{Z} \rightarrow 1,$$

and so we may write  $W_F \cong I_F \rtimes \langle Fr \rangle$ . Let G be a reductive group over  $\mathbb{C}$ . Recall that some  $g \in G$  is said to be semi-simple if  $\phi(g)$  is for some, and thus for any, faithful representation  $\phi : G \to GL_n$ .

#### Definition

A representation / admissible homomorphism of  $W'_F$  into  $G(\mathbb{C})$  is a homomorphism

 $\phi: W'_{F} \to G(\mathbb{C})$ 

such that  $\phi$  is trivial on an open subgroup of  $I_F$ , such that  $\phi(Fr)$  is semi-simple in G, and  $\phi|_{SL_2(\mathbb{C})}$  is induced by a morphism of algebraic groups  $SL_2 \rightarrow G$ .

#### Local Langlands for GL<sub>n</sub>

There is a bijection between representations of  $W'_F$  into  $GL_n(\mathbb{C})$  and irreducible admissible representations of  $GL_n(F)$ .

### L-parameters

Recall that the Weil group  $W_F$  comes with a map  $W_F \to \text{Gal}(\overline{F}/F)$  and that the Langlands dual of a reductive group G, denoted  ${}^LG$ , is defined by taking a suitable semi-direct product of  $\text{Gal}(\overline{F}/F)$  and  $\hat{G}$ .

#### Definition

An *L*-parameter is a representation of  $W'_F$  into <sup>*L*</sup>*G* that commutes with the projections to  $\text{Gal}(\overline{F}/F)$ . We say that two *L*-parameters are equivalent if they differ only by conjugation by some element of  $\hat{G}(\mathbb{C})$ .

#### L-parameters

Recall that the Weil group  $W_F$  comes with a map  $W_F \to \text{Gal}(\overline{F}/F)$  and that the Langlands dual of a reductive group G, denoted  ${}^LG$ , is defined by taking a suitable semi-direct product of  $\text{Gal}(\overline{F}/F)$  and  $\hat{G}$ .

#### Definition

An *L*-parameter is a representation of  $W'_F$  into <sup>*L*</sup>*G* that commutes with the projections to  $\text{Gal}(\overline{F}/F)$ . We say that two L-parameters are equivalent if they differ only by conjugation by some element of  $\hat{G}(\mathbb{C})$ .

#### Vague local Langlands corresponcence conjectures

There is a bijection between *L*-packets of admissible G(F)-representations and equivalence classes of L-parameters satisfying certain conditions. Given a map  ${}^{L}H \rightarrow {}^{L}G$  that commutes with the projections to  $Gal(\bar{F}/F)$ , there is a corresponding transfer of L-packets compatible with the natural transfer of L-parameters.

(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

#### L-parameters

Recall that the Weil group  $W_F$  comes with a map  $W_F \to \text{Gal}(\overline{F}/F)$  and that the Langlands dual of a reductive group G, denoted  ${}^LG$ , is defined by taking a suitable semi-direct product of  $\text{Gal}(\overline{F}/F)$  and  $\hat{G}$ .

#### Definition

An *L*-parameter is a representation of  $W'_F$  into <sup>*L*</sup>*G* that commutes with the projections to  $\text{Gal}(\overline{F}/F)$ . We say that two L-parameters are equivalent if they differ only by conjugation by some element of  $\hat{G}(\mathbb{C})$ .

#### Vague local Langlands corresponcence conjectures

There is a bijection between *L*-packets of admissible G(F)-representations and equivalence classes of L-parameters satisfying certain conditions. Given a map  ${}^{L}H \rightarrow {}^{L}G$  that commutes with the projections to Gal $(\bar{F}/F)$ , there is a corresponding transfer of L-packets compatible with the natural transfer of L-parameters.

What are L-packets? In the case of  $GL_n$ , they are just singletons. In general? Hard to say. Everything is still only conjectural. Many definitions of L-packets are ad-hoc, and assume the conjectures to define the L-packets instead...

#### L-functions

Why do we study all of this? Turns out, these representations are closely related to *L*-functions. Let v be a place of a number field F and suppose that we have an L-parameter  $\phi: W'_{F_v} \to {}^LG$  and a representation  $r: {}^LG_{F_v} \to GL(V)$  for some F-vector space V. Let  $q_v$  denote the cardinality of the residue field of F. Define the *local factor* by

$$L(s, r \circ \phi) = \det(1 - r(\mathsf{Fr}_v)q_v^{-s}|V^{I_{\mathcal{F}_v}})^{-1}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### L-functions

Why do we study all of this? Turns out, these representations are closely related to *L*-functions. Let v be a place of a number field F and suppose that we have an L-parameter  $\phi: W'_{F_v} \to {}^LG$  and a representation  $r: {}^LG_{F_v} \to GL(V)$  for some F-vector space V. Let  $q_v$  denote the cardinality of the residue field of F. Define the *local factor* by

$$L(s, r \circ \phi) = \det(1 - r(\mathsf{Fr}_v)q_v^{-s}|V^{I_{\mathsf{F}_v}})^{-1}.$$

The L-function is defined by multiplying all the local factors at all the places together. It is conjecturally meromorphic and satisfies a functional equation relating the value at s to the value at 1 - s of the *adjoint* L-function, i.e. the one defined by the dual representation. Many properties of the representation can be recovered from the L-function. For example, the image of the representation has finite centraliser if and only if the dual L-function is regular at s = 0. More on L-functions will be treated in the near future.

# Thanks for listening!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ