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Recalling some definitions

» An affine group scheme over a field k is a functor
k-Alg — Grp

that is representable by some k-algebra. An affine algebraic group
over k is an affine group scheme of finite type over k.
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» An affine group scheme over a field k is a functor
k-Alg — Grp

that is representable by some k-algebra. An affine algebraic group
over k is an affine group scheme of finite type over k.

> A matrix M is said to be unipotent if M — id is nilpotent. An
element g of an algebraic group G is called unipotent if ¢(g) is so
for some, and thus for any, faithful (i.e. injective) representation
¢ : G — GL,. The unipotent radical R,(G) of G is the maximal
connected normal subgroup of G that consists of unipotent
elements. We say an algebraic group is reductive if R,(G) = {1}.

» An algebraic torus is an algebraic group T such that Ty = G, for
some n, which is called the rank of the torus. A character of an
algebraic group G is an element of X*(G) = Hom(G,G,). A
one-parameter subgroup is an element from X,(G) = Hom(G,, G).



Recalling more definitions
Let V be a finite dimensional R-vector space, and ® a subset of V. Then
(@, V) is called a root system if:
» & is finite, does not contain 0, and spans V;

> for each o € ® there exists a reflection operator s, that
interchanges a and —a: and maps ¢ to ¢;

> for each § € ®, the vector s,(8) — § is an integer multiple of a.
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Recalling more definitions

Let V be a finite dimensional R-vector space, and ® a subset of V. Then
(@, V) is called a root system if:

» & is finite, does not contain 0, and spans V;

> for each o € ® there exists a reflection operator s, that
interchanges a and —a: and maps ¢ to ¢;

> for each § € ®, the vector s,(8) — § is an integer multiple of a.

There exists a pairing (, ) : V x V — C such that all reflections are
orthogonal transformations. If a € ®, we can find a unique " such that

(= a") =a"(=) =2(—,a)/(x,a) € Z.

If &V = {a"|a € ®} and V¥ = (®") ®z R, then (¢¥, V) is called the
dual root system.

A root datum is a quadruple (X, Y, ®, ®¥) where X, Y are free abelian
groups with a perfect pairing (, ) : X X Y — Z and where & C X and
®Y C Y are finite subsets such that ® > o« <= «a" € ¢Y. In addition,
(a, ") = 2 and for each a € , the reflection s,(x) = x — (x,a")«a
satisfies s,(®) = ® and the group (s,|a € ®) is finite.



Combining these concepts

Let G be a connected reductive group over a perfect field k with
maximal torus T. Recall the adjoint representation Ad : G — GL(g)
induced by the conjugation action of G onto itself. For any character
a € X*(T), denote

0o = {X €g|Ad(t)X = a(t)X for all t € T(k)}.
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Let G be a connected reductive group over a perfect field k with
maximal torus T. Recall the adjoint representation Ad : G — GL(g)
induced by the conjugation action of G onto itself. For any character
a € X*(T), denote

0o = {X €g|Ad(t)X = a(t)X for all t € T(k)}.

If go # 0, it must be 1-dimensional, and they are called the root spaces.
We have
g= td @gou
(6%

where t = Lie(T) and so the set of « for which g # 0 is finite and
denoted by ®(G, T). It turns out that (X*(T), X.(T),®,dY) is a root
datum with the natural pairing between X*(T) and X.(T).



The dual group

Recall that a root datum (X, Y, ®, ") is said to be reduced if « € ¢
implies that 2a ¢ ®. We have the following theorem:

Theorem

If k is algebraically closed, the association G — (X*(T), Xi(T), d, d¥)
determines a bijection between isomorphism classes of connected
reductive groups and isomorphism classes of reduced root data.
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The dual group

Recall that a root datum (X, Y, ®, ") is said to be reduced if « € ¢
implies that 2a ¢ ®. We have the following theorem:

Theorem

If k is algebraically closed, the association G — (X*(T), Xi(T), d, d¥)
determines a bijection between isomorphism classes of connected
reductive groups and isomorphism classes of reduced root data.

A trivial remark on one side, now leads to an interesting concept on the
other. Namely, if (X, Y,®, ") is a root datum, then so is (Y, X, ®, ).
According to the theorem, we may thus associate to G its so-called
complex dual G that has the corresponding dual root system.

Examples:
» The group GL, is its own dual.
> If G =SL,, then G = PGL,(C).
> If G = Sp,,, then G = S0,,,1(C).



More on root data

Definition

Let ® be a root system. A set of positive roots @ C ® is a subset such
that for all o € @, precisely one of a and —a is in T and for any

o, € ®T such that o+ 8 € ®, we require that o+ 8 € dT. We say a
root in ®T is called simple if it is not the sum of two positive roots.
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More on root data

Definition

Let ® be a root system. A set of positive roots @ C ® is a subset such
that for all o € @, precisely one of a and —a is in T and for any

o, € ®T such that o+ 8 € ®, we require that o+ 8 € dT. We say a
root in ®T is called simple if it is not the sum of two positive roots.
Note that &1V is a set of positive roots in ®V. If A is a maximal set of
simple roots in ®, then so is A in V. One can show that A and AV
determine ® and ®" respectively.

Definition

We call a tuple (X, Y, A, AY) a based root datum if
(X*(T),X«(T),d,d") is a root datum and A, AV are maximal sets of
simple roots as above.

Recall that a Borel subgroup of G is a maximal connected solvable
subgroup.



Pinnings

Lemma
On the other side of the correspondence, choosing A amounts to

choosing a Borel subgroup T C B C G.
Proof: (sketch) By definition of g,, we have the map

exp, : ga — G(C)

that satisfies gexp,,(x)g~! = exp(a(g)x). Its image U, naturally has g,
as Lie-algebra. Then one can show that the Borel subgroups of G are
precisely those of the form

(T:{Ua}aen)-

This would prove the claim. O
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Lemma
On the other side of the correspondence, choosing A amounts to
choosing a Borel subgroup T C B C G.

Proof: (sketch) By definition of g,, we have the map

exp, : ga — G(C)
that satisfies gexp,,(x)g~! = exp(a(g)x). Its image U, naturally has g,
as Lie-algebra. Then one can show that the Borel subgroups of G are
precisely those of the form

(T:{Ua}aen)-

This would prove the claim. O
This proof naturally leads to the following definition.

Definition
A pinning of G is a tuple (B, T,{us}aca) where u, € U, — 1 for all
a € A, where A corresponds to the Borel subgroup B.



A bit of group theory
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all Borel subgroups in G are conjugate;
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» all maximal tori inside B are conjugate by an element of B;
» B is its own normaliser inside G:
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T is its own normaliser inside B.
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A bit of group theory

Proposition
Let T C B C G be as before. Then

» all Borel subgroups in G are conjugate;

» all maximal tori inside B are conjugate by an element of B;

» B is its own normaliser inside G:

» T is its own normaliser inside B.
Let f € Aut(G) and let denote ¢, € Aut(G) conjugation by g. Then
f(B) is also a Borel subgroup, so f(B) = gBg~* for some g € G, so
(cgo f)(B)=B. Now (cz 0 f)(T) = bTb~! for some b € B, so
(cgpo F)(T) = T and this also fixes B. This element gb € G is unique
up to an element from the normaliser of T inside B; that is, from T.
Hence ¢, o f preserves both T and B, and thus acts on

(X*(T), Xu(T), A, AV). Since elements from T act trivially on the root
system, this defines a homomorphism

Aut(G) — Aut(X*(T), X.(T), A, AY).

It is non-trivial, but it can be shown, that its kernel is precisely Inn(G).



A note about F-forms
Note that elements from the Galois group need not induce algebraic
automorphisms, i.e. if G is a matrix group, conjugating all entries by
some o € Gal(F/F), an action commonly denoted 79, is not an algebraic
automorphism of G. However, if 7 is another action, then we do have a

map
a: Gal(F/F) = Autag(G) : v — 7(7) o 7o(7)
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call this a rational structure and they are characterised by the first group
cohomology of Gal(F/F) with values in Aut,g(G). The invariants for
any given 7 are denoted G.(F) and two such groups define the same dual
groups if and only if the 7's differ by an inner twist, i.e. something from
H*(Gal(F/F),Intag(G)). For more details, ask Eric.



A note about F-forms
Note that elements from the Galois group need not induce algebraic
automorphisms, i.e. if G is a matrix group, conjugating all entries by
some o € Gal(F/F), an action commonly denoted 79, is not an algebraic
automorphism of G. However, if 7 is another action, then we do have a
map

a: Gal(F/F) — Autag(G) : v = 7(7) o o(7) 1.

However, this is not generally a homomorphism, but it is a 1-cocycle. We
call this a rational structure and they are characterised by the first group
cohomology of Gal(F/F) with values in Aut,g(G). The invariants for
any given 7 are denoted G.(F) and two such groups define the same dual
groups if and only if the 7's differ by an inner twist, i.e. something from
H*(Gal(F/F),Intag(G)). For more details, ask Eric.
Examples:

» Consider GL; over R. We can make the non-trivial automorphism
act by z— Z or by z+— 1/z. Combining these gives the algebraic
action z — 1/Z. Its fixed points are those on the unit circle.

» Consider SU3 over R. We now have an algebraic automorphism
A (AT)7L. Unlike in the SLy-case, now SU3 is not an inner twist
from SL3, by considering the action on the Dynkin diagram.



The Langland dual group

Suppose that all groups are defined over a local or global field F. Let
7 c B c G be the complex dual group associated with the based root
datum (X,.(T),X*(T),A",A). From the previous slide, we obtain the
exact sequence

1 - Inn(G) — Aut(G) — Aut(X*(T), X.(T), A, AY) — 1
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The Langland dual group
Suppose that all groups are defined over a local or global field F. Let
7 c B c G be the complex dual group associated with the based root
datum (X,.(T),X*(T),A",A). From the previous slide, we obtain the
exact sequence

1 - Inn(G) — Aut(G) — Aut(X*(T), X.(T), A, AY) — 1

Proving surjectivity shows that it is split; choosing a pinning {uq }aca we
see that any automorphism of the root datum induces an action on the
Uy. These elements and their negatives generate G, and one can show
that this defines a unique automorphism of G.

Since T and B are defined over F, the group Gal(F/F) acts on the root
datum of G and so also on the root datum of G. The above section for
G gives us an induced map Gal(F/F) — Aut(G). We use it to define the
Langlands dual group

LG = &(C) x Gal(F/F).

This is simply a direct product if G is split, i.e. if T = GJ, over F,
because then the Galois action will be trivial.



Class field theory
Recall the following facts about local class field theory:
» For any finite field extension E/F, there is an isomorphism

O/F : F*/Ng/pEX = Gal(E/F)™.
» These maps are compatible and define a homomorphism
0F : F* — Gal(F/F)®

called the local reciprocity map.
» If HC G and [G : H] < co, we have a transfer map G — H?®.



Class field theory
Recall the following facts about local class field theory:
» For any finite field extension E/F, there is an isomorphism
O/F : F*/Ng/pEX = Gal(E/F)™.
» These maps are compatible and define a homomorphism
OF - F* — Gal(F/F)®

called the local reciprocity map.
» If HC G and [G : H] < co, we have a transfer map G — H?®.
Also recall the following facts about global class field theory:
» There exists a surjective continuous homomorphism

AF — Gal(F/F)y®: s [s, F]

called the global reciprocity map.
> It has the property that for s € Af whose ideal is coprime to all the
ramified places in a certain finite extension E/F,

[55 F”E = ((5)’E/F)7

where the latter denotes the Artin symbol, extended multiplicatively
from (p, E/F) = Frob,, for all primes p in E.



The Weil group
Let F be a local or a global field. Then a Weil group for F is a topological
group W along with a continuous homomorphism ¢ : Wr — Gal(F/F)
with dense image, and for each finite field extension E/F, the group
We = ¢~1(Gal(E/E)) admits an isomorphism rg : Cg — WZ2P, where

E* if Fis local;
Ce = « . .
EX\Af if Fis global.
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The Weil group

Let F be a local or a global field. Then a Weil group for F is a topological
group W along with a continuous homomorphism ¢ : Wr — Gal(F/F)
with dense image, and for each finite field extension E/F, the group

We = ¢~1(Gal(E/E)) admits an isomorphism rg : Cg — WZ2P, where

E* if Fis local;
Ce = <

EX\Af if Fis global.

In addition, these groups and maps must satisfy that
Ce & W2 % Gal(E/E)™

is the reciprocity map from class field theory, that

Wg = I<£n W/ W2,
and that for all w € Wg, 0 = ¢(w) and E'/E/F these commute:

e b 3 b
Ce —=— wp Ce —=— wp

| [ Jeomte

rec
CEU L} WEE CE’ WE?



Examples of the Weil group

» Let F =C. Then the map ¢ : W — Gal(C/C) = {1} must be
trivial. Since C/C is the only finite field extension, considering C as
a local field (as it is complete), we must have an isomorphism
re : C* — We. All other conditions are now trivially satisfied.
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conjugation. Also, rc : C* — W must be an isomorphism, and be
the kernel of ¢. One can show that now Wg = C* U jC* where
j2=-1and jzi=! = o(z) for all z € C*.
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the kernel of ¢. One can show that now Wg = C* U jC* where
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» Let F be a non-archimedian local field with finite residue field k.
Then recall that we have a maximal unramified extension F"""
satisfying

1= Ir — Gal(F/F) — Gal(F'"/F) = Gal(k/k) = 7 — 1,

where [¢ denotes the inertia group. In this case, one can show that
WE is the dense subgroup of Gal(F/F) that maps to Z C Z.



Examples of the Weil group

» Let F =C. Then the map ¢ : W — Gal(C/C) = {1} must be
trivial. Since C/C is the only finite field extension, considering C as
a local field (as it is complete), we must have an isomorphism
re : C* — We. All other conditions are now trivially satisfied.

» Let F =R. Then ¢: Wg — {1,0} where o denotes complex
conjugation. Also, rc : C* — W must be an isomorphism, and be
the kernel of ¢. One can show that now Wg = C* U jC* where
j2=-1and jzi=! = o(z) for all z € C*.

» Let F be a non-archimedian local field with finite residue field k.
Then recall that we have a maximal unramified extension F"""
satisfying

1= Ir — Gal(F/F) — Gal(F'"/F) = Gal(k/k) = 7 — 1,

where [¢ denotes the inertia group. In this case, one can show that
WE is the dense subgroup of Gal(F/F) that maps to Z C Z.

For number fields, it is highly non-trivial to show that the Weil group
exists and there is no easy description of it. More on this in a few weeks.



The Weil-Deligne group

We first record the following theorem about the Weil group.
Langlands for GL;

There is a bijection between isomorphism classes of irreducible
automorphic representations of GL;(Af) and continuous representations
Wr — GLl(C)

The proof follows from identifying a representation with its associated
character of F* \ AZ, which is isomorphic to W2 by definition of We.



The Weil-Deligne group

We first record the following theorem about the Weil group.
Langlands for GL;

There is a bijection between isomorphism classes of irreducible
automorphic representations of GL;(Af) and continuous representations
Wr — GLl((C)

The proof follows from identifying a representation with its associated
character of F* \ AZ, which is isomorphic to W2 by definition of We.

Definition
The Weil-Deligne group for a local field F is defined as

WL = W x SLy(C).

It is interesting to remark that the correct analogue of this for global
fields, the so-called Langlands group, is currently still only hypothetical.



Representations of W[
Recall the Weil group for a local field. It fit naturally into an exact
sequence of the form

1=l Wr—>27Z—1,

and so we may write Wg 22 [g x (Fr). Let G be a reductive group over
C. Recall that some g € G is said to be semi-simple if ¢(g) is for some,
and thus for any, faithful representation ¢ : G — GL,.
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such that ¢ is trivial on an open subgroup of /g, such that ¢(Fr) is
semi-simple in G, and ¢|s,(c) is induced by a morphism of algebraic
groups SL, — G.



Representations of W[

Recall the Weil group for a local field. It fit naturally into an exact
sequence of the form

1=l Wr—>27Z—1,

and so we may write Wg 22 [g x (Fr). Let G be a reductive group over
C. Recall that some g € G is said to be semi-simple if ¢(g) is for some,
and thus for any, faithful representation ¢ : G — GL,.

Definition

A representation / admissible homomorphism of W[ into G(C) is a
homomorphism

¢: Wi — G(C)
such that ¢ is trivial on an open subgroup of /g, such that ¢(Fr) is
semi-simple in G, and ¢|s,(c) is induced by a morphism of algebraic
groups SL, — G.

Local Langlands for GL,

There is a bijection between representations of W/ into GL,(C) and
irreducible admissible representations of GL,(F).
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Recall that the Weil group Wr comes with a map Wr — Gal(F/F) and
that the Langlands dual of a reductive group G, denoted Lg, is defined
by taking a suitable semi-direct product of Gal(F/F) and G.

Definition

An L-parameter is a representation of W/ into LG that commutes with
the projections to Gal(F/F). We say that two L-parameters are
equivalent if they differ only by conjugation by some element of G(C).
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projections to GaI(IE/F), there is a corresponding transfer of L-packets
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L-parameters

Recall that the Weil group Wr comes with a map Wr — Gal(F/F) and
that the Langlands dual of a reductive group G, denoted Lg, is defined
by taking a suitable semi-direct product of Gal(F/F) and G.

Definition

An L-parameter is a representation of W/ into LG that commutes with
the projections to Gal(F/F). We say that two L-parameters are
equivalent if they differ only by conjugation by some element of G(C).

Vague local Langlands corresponcence conjectures

There is a bijection between L-packets of admissible
G(F)-representations and equivalence classes of L-parameters satisfying
certain conditions. Given a map tH — LG that commutes with the
projections to Gal(l—z/F), there is a corresponding transfer of L-packets
compatible with the natural transfer of L-parameters.

What are L-packets? In the case of GL,, they are just singletons. In
general? Hard to say. Everything is still only conjectural. Many
definitions of L-packets are ad-hoc, and assume the conjectures to define
the L-packets instead...



L-functions

Why do we study all of this? Turns out, these representations are closely
related to L-functions. Let v be a place of a number field F and suppose
that we have an L-parameter ¢ : Wﬁv — LG and a representation

r: LGr, — GL(V) for some F-vector space V. Let g, denote the
cardinality of the residue field of F. Define the local factor by

L(s,ro¢) =det(1 — r(Fr,)g, V')t



L-functions

Why do we study all of this? Turns out, these representations are closely
related to L-functions. Let v be a place of a number field F and suppose
that we have an L-parameter ¢ : Wﬁv — LG and a representation

r: LGr, — GL(V) for some F-vector space V. Let g, denote the
cardinality of the residue field of F. Define the local factor by

L(s,ro¢) =det(1 — r(Fr,)g, V')t

The L-function is defined by multiplying all the local factors at all the
places together. It is conjecturally meromorphic and satisfies a functional
equation relating the value at s to the value at 1 — s of the adjoint
L-function, i.e. the one defined by the dual representation. Many
properties of the representation can be recovered from the L-function.
For example, the image of the representation has finite centraliser if and
only if the dual L-function is regular at s = 0.

More on L-functions will be treated in the near future.



Fin

Thanks for listening!



