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Recalling some definitions

I An affine group scheme over a field k is a functor

k-Alg→ Grp

that is representable by some k-algebra. An affine algebraic group
over k is an affine group scheme of finite type over k.

I A matrix M is said to be unipotent if M − id is nilpotent. An
element g of an algebraic group G is called unipotent if φ(g) is so
for some, and thus for any, faithful (i.e. injective) representation
φ : G → GLn. The unipotent radical Ru(G ) of G is the maximal
connected normal subgroup of G that consists of unipotent
elements. We say an algebraic group is reductive if Ru(G ) = {1}.

I An algebraic torus is an algebraic group T such that Tksep ∼= Gn
m for

some n, which is called the rank of the torus. A character of an
algebraic group G is an element of X ∗(G ) = Hom(G ,Gm). A
one-parameter subgroup is an element from X∗(G ) = Hom(Gm,G ).
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Recalling more definitions
Let V be a finite dimensional R-vector space, and Φ a subset of V . Then
(Φ,V ) is called a root system if:

I Φ is finite, does not contain 0, and spans V ;

I for each α ∈ Φ there exists a reflection operator sα that
interchanges α and −α and maps Φ to Φ;

I for each β ∈ Φ, the vector sα(β)− β is an integer multiple of α.

There exists a pairing ( , ) : V × V → C such that all reflections are
orthogonal transformations. If α ∈ Φ, we can find a unique αv such that

〈−, αv 〉 := αv (−) = 2(−, α)/(α, α) ∈ Z.

If Φv = {αv |α ∈ Φ} and V v = 〈Φv 〉 ⊗Z R, then (Φv ,V v ) is called the
dual root system.
A root datum is a quadruple (X ,Y ,Φ,Φv ) where X ,Y are free abelian
groups with a perfect pairing 〈 , 〉 : X × Y → Z and where Φ ⊂ X and
Φv ⊂ Y are finite subsets such that Φ 3 α ⇐⇒ αv ∈ Φv . In addition,
〈α, αv 〉 = 2 and for each α ∈ Φ, the reflection sα(x) = x − 〈x , αv 〉α
satisfies sα(Φ) = Φ and the group 〈sα|α ∈ Φ〉 is finite.
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Combining these concepts

Let G be a connected reductive group over a perfect field k with
maximal torus T . Recall the adjoint representation Ad : G → GL(g)
induced by the conjugation action of G onto itself. For any character
α ∈ X ∗(T ), denote

gα = {X ∈ g | Ad(t)X = α(t)X for all t ∈ T (k)}.

If gα 6= 0, it must be 1-dimensional, and they are called the root spaces.
We have

g = t⊕
⊕
α

gα,

where t = Lie(T ) and so the set of α for which g 6= 0 is finite and
denoted by Φ(G ,T ). It turns out that (X ∗(T ),X∗(T ),Φ,Φv ) is a root
datum with the natural pairing between X ∗(T ) and X∗(T ).
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The dual group

Recall that a root datum (X ,Y ,Φ,Φv ) is said to be reduced if α ∈ Φ
implies that 2α /∈ Φ. We have the following theorem:

Theorem
If k is algebraically closed, the association G → (X ∗(T ),X∗(T ),Φ,Φv )
determines a bijection between isomorphism classes of connected
reductive groups and isomorphism classes of reduced root data.

A trivial remark on one side, now leads to an interesting concept on the
other. Namely, if (X ,Y ,Φ,Φv ) is a root datum, then so is (Y ,X ,Φv ,Φ).
According to the theorem, we may thus associate to G its so-called
complex dual Ĝ that has the corresponding dual root system.

Examples:

I The group GLn is its own dual.

I If G = SLn, then Ĝ = PGLn(C).

I If G = Sp2n, then Ĝ = SO2n+1(C).
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More on root data

Definition
Let Φ be a root system. A set of positive roots Φ+ ⊂ Φ is a subset such
that for all α ∈ Φ, precisely one of α and −α is in Φ+ and for any
α, β ∈ Φ+ such that α + β ∈ Φ, we require that α + β ∈ Φ+. We say a
root in Φ+ is called simple if it is not the sum of two positive roots.

Note that Φ+,v is a set of positive roots in Φv . If ∆ is a maximal set of
simple roots in Φ, then so is ∆v in Φv . One can show that ∆ and ∆v

determine Φ and Φv respectively.

Definition
We call a tuple (X ,Y ,∆,∆v ) a based root datum if
(X ∗(T ),X∗(T ),Φ,Φv ) is a root datum and ∆, ∆v are maximal sets of
simple roots as above.

Recall that a Borel subgroup of G is a maximal connected solvable
subgroup.
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Pinnings

Lemma
On the other side of the correspondence, choosing ∆ amounts to
choosing a Borel subgroup T ⊂ B ⊂ G .

Proof: (sketch) By definition of gα, we have the map

expα : gα → G (C)

that satisfies gexpα(x)g−1 = exp(α(g)x). Its image Uα naturally has gα
as Lie-algebra. Then one can show that the Borel subgroups of G are
precisely those of the form

〈T , {Uα}α∈∆〉.

This would prove the claim.

This proof naturally leads to the following definition.

Definition
A pinning of G is a tuple (B,T , {uα}α∈∆) where uα ∈ Uα − 1 for all
α ∈ ∆, where ∆ corresponds to the Borel subgroup B.
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A bit of group theory

Proposition
Let T ⊂ B ⊂ G be as before. Then

I all Borel subgroups in G are conjugate;

I all maximal tori inside B are conjugate by an element of B;

I B is its own normaliser inside G ;

I T is its own normaliser inside B.

Let f ∈ Aut(G ) and let denote cg ∈ Aut(G ) conjugation by g . Then
f (B) is also a Borel subgroup, so f (B) = gBg−1 for some g ∈ G , so
(cg ◦ f )(B) = B. Now (cg ◦ f )(T ) = bTb−1 for some b ∈ B, so
(cgb ◦ f )(T ) = T and this also fixes B. This element gb ∈ G is unique
up to an element from the normaliser of T inside B; that is, from T .
Hence cgb ◦ f preserves both T and B, and thus acts on
(X ∗(T ),X∗(T ),∆,∆v ). Since elements from T act trivially on the root
system, this defines a homomorphism

Aut(G )→ Aut(X ∗(T ),X∗(T ),∆,∆v ).

It is non-trivial, but it can be shown, that its kernel is precisely Inn(G ).
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A note about F -forms
Note that elements from the Galois group need not induce algebraic
automorphisms, i.e. if G is a matrix group, conjugating all entries by
some σ ∈ Gal(F̄/F ), an action commonly denoted τ0, is not an algebraic
automorphism of G . However, if τ is another action, then we do have a
map

α : Gal(F̄/F )→ Autalg(G ) : γ 7→ τ(γ) ◦ τ0(γ)−1.

However, this is not generally a homomorphism, but it is a 1-cocycle. We
call this a rational structure and they are characterised by the first group
cohomology of Gal(F̄/F ) with values in Autalg(G ). The invariants for
any given τ are denoted Gτ (F ) and two such groups define the same dual
groups if and only if the τ ’s differ by an inner twist, i.e. something from
H1(Gal(F̄/F ), Intalg(G )). For more details, ask Eric.
Examples:
I Consider GL1 over R. We can make the non-trivial automorphism

act by z 7→ z̄ or by z 7→ 1/z . Combining these gives the algebraic
action z 7→ 1/z̄ . Its fixed points are those on the unit circle.

I Consider SU3 over R. We now have an algebraic automorphism
A 7→ (AT )−1. Unlike in the SL2-case, now SU3 is not an inner twist
from SL3, by considering the action on the Dynkin diagram.
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The Langland dual group
Suppose that all groups are defined over a local or global field F . Let
T̂ ⊂ B̂ ⊂ Ĝ be the complex dual group associated with the based root
datum (X∗(T ),X ∗(T ),∆v ,∆). From the previous slide, we obtain the
exact sequence

1→ Inn(G )→ Aut(G )→ Aut(X ∗(T ),X∗(T ),∆,∆v )→ 1

Proving surjectivity shows that it is split; choosing a pinning {uα}α∈∆ we
see that any automorphism of the root datum induces an action on the
uα. These elements and their negatives generate G , and one can show
that this defines a unique automorphism of G .
Since T and B are defined over F , the group Gal(F̄/F ) acts on the root
datum of G and so also on the root datum of Ĝ . The above section for
Ĝ gives us an induced map Gal(F̄/F )→ Aut(Ĝ ). We use it to define the
Langlands dual group

LG = Ĝ (C) o Gal(F̄/F ).

This is simply a direct product if G is split, i.e. if T ∼= Gn
m over F ,

because then the Galois action will be trivial.
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Class field theory
Recall the following facts about local class field theory:
I For any finite field extension E/F , there is an isomorphism

θE/F : F×/NE/FE
× ∼−→ Gal(E/F )ab.

I These maps are compatible and define a homomorphism

θF : F× → Gal(F̄/F )ab

called the local reciprocity map.
I If H ⊂ G and [G : H] <∞, we have a transfer map G → Hab.

Also recall the following facts about global class field theory:
I There exists a surjective continuous homomorphism

A×F → Gal(F̄/F )ab : s 7→ [s,F ]

called the global reciprocity map.
I It has the property that for s ∈ A×F whose ideal is coprime to all the

ramified places in a certain finite extension E/F ,

[s,F ]|E = ((s),E/F ),

where the latter denotes the Artin symbol, extended multiplicatively
from (p,E/F ) = Frobp for all primes p in E .
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The Weil group
Let F be a local or a global field. Then a Weil group for F is a topological
group WF along with a continuous homomorphism φ : WF → Gal(F̄/F )
with dense image, and for each finite field extension E/F , the group
WE = φ−1(Gal(Ē/E )) admits an isomorphism rE : CE →W ab

E , where

CE =

{
E× if F is local;

E× \ A×E if F is global.

In addition, these groups and maps must satisfy that

CE
rE−→W ab

E
φ−→ Gal(Ē/E )ab

is the reciprocity map from class field theory, that

WF = lim←−WF/W ab
E ,

and that for all w ∈WF , σ = φ(w) and E ′/E/F these commute:

CE W ab
E CE W ab

E

CEσ W ab
Eσ CE ′ W ab

E ′

rE

σ

rE

incl. transfer

rEσ rE′
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Examples of the Weil group

I Let F = C. Then the map φ : WC → Gal(C/C) = {1} must be
trivial. Since C/C is the only finite field extension, considering C as
a local field (as it is complete), we must have an isomorphism
rC : C× →WC. All other conditions are now trivially satisfied.

I Let F = R. Then φ : WR → {1, σ} where σ denotes complex
conjugation. Also, rC : C× →WC must be an isomorphism, and be
the kernel of φ. One can show that now WR = C× ∪ jC× where
j2 = −1 and jzj−1 = σ(z) for all z ∈ C×.

I Let F be a non-archimedian local field with finite residue field k.
Then recall that we have a maximal unramified extension F unr

satisfying

1→ IF → Gal(F̄/F )→ Gal(F unr/F ) ∼= Gal(k̄/k) ∼= Ẑ→ 1,

where IF denotes the inertia group. In this case, one can show that
WF is the dense subgroup of Gal(F̄/F ) that maps to Z ⊂ Ẑ.

For number fields, it is highly non-trivial to show that the Weil group
exists and there is no easy description of it. More on this in a few weeks.
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For number fields, it is highly non-trivial to show that the Weil group
exists and there is no easy description of it. More on this in a few weeks.



The Weil-Deligne group

We first record the following theorem about the Weil group.

Langlands for GL1

There is a bijection between isomorphism classes of irreducible
automorphic representations of GL1(AF ) and continuous representations
WF → GL1(C).

The proof follows from identifying a representation with its associated
character of F× \ A×F , which is isomorphic to W ab

F by definition of WF .

Definition
The Weil-Deligne group for a local field F is defined as

W ′F = WF × SL2(C).

It is interesting to remark that the correct analogue of this for global
fields, the so-called Langlands group, is currently still only hypothetical.
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Representations of W ′
F

Recall the Weil group for a local field. It fit naturally into an exact
sequence of the form

1→ IF →WF → Z→ 1,

and so we may write WF
∼= IF o 〈Fr〉. Let G be a reductive group over

C. Recall that some g ∈ G is said to be semi-simple if φ(g) is for some,
and thus for any, faithful representation φ : G → GLn.

Definition
A representation / admissible homomorphism of W ′F into G (C) is a
homomorphism

φ : W ′F → G (C)

such that φ is trivial on an open subgroup of IF , such that φ(Fr) is
semi-simple in G , and φ|SL2(C) is induced by a morphism of algebraic
groups SL2 → G .

Local Langlands for GLn

There is a bijection between representations of W ′F into GLn(C) and
irreducible admissible representations of GLn(F ).
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L-parameters
Recall that the Weil group WF comes with a map WF → Gal(F̄/F ) and
that the Langlands dual of a reductive group G , denoted LG , is defined
by taking a suitable semi-direct product of Gal(F̄/F ) and Ĝ .

Definition
An L-parameter is a representation of W ′F into LG that commutes with
the projections to Gal(F̄/F ). We say that two L-parameters are
equivalent if they differ only by conjugation by some element of Ĝ (C).

Vague local Langlands corresponcence conjectures
There is a bijection between L-packets of admissible
G (F )-representations and equivalence classes of L-parameters satisfying
certain conditions. Given a map LH → LG that commutes with the
projections to Gal(F̄/F ), there is a corresponding transfer of L-packets
compatible with the natural transfer of L-parameters.

What are L-packets? In the case of GLn, they are just singletons. In
general? Hard to say. Everything is still only conjectural. Many
definitions of L-packets are ad-hoc, and assume the conjectures to define
the L-packets instead...
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Vague local Langlands corresponcence conjectures
There is a bijection between L-packets of admissible
G (F )-representations and equivalence classes of L-parameters satisfying
certain conditions. Given a map LH → LG that commutes with the
projections to Gal(F̄/F ), there is a corresponding transfer of L-packets
compatible with the natural transfer of L-parameters.

What are L-packets? In the case of GLn, they are just singletons. In
general? Hard to say. Everything is still only conjectural. Many
definitions of L-packets are ad-hoc, and assume the conjectures to define
the L-packets instead...



L-parameters
Recall that the Weil group WF comes with a map WF → Gal(F̄/F ) and
that the Langlands dual of a reductive group G , denoted LG , is defined
by taking a suitable semi-direct product of Gal(F̄/F ) and Ĝ .
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L-functions

Why do we study all of this? Turns out, these representations are closely
related to L-functions. Let v be a place of a number field F and suppose
that we have an L-parameter φ : W ′Fv

→ LG and a representation

r : LGFv → GL(V ) for some F -vector space V . Let qv denote the
cardinality of the residue field of F . Define the local factor by

L(s, r ◦ φ) = det(1− r(Frv )q−sv |V IFv )−1.

The L-function is defined by multiplying all the local factors at all the
places together. It is conjecturally meromorphic and satisfies a functional
equation relating the value at s to the value at 1− s of the adjoint
L-function, i.e. the one defined by the dual representation. Many
properties of the representation can be recovered from the L-function.
For example, the image of the representation has finite centraliser if and
only if the dual L-function is regular at s = 0.
More on L-functions will be treated in the near future.
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Fin

Thanks for listening!


