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Setting up
Let D1,D2 < 0 be coprime discriminants and write D = D1D2. Set

K1 = Q(
√
D1), K2 = Q(

√
D2),

F = Q(
√
D), L = Q(

√
D1,

√
D2).

Q

K2

L

K1 F

χ

Let χ be the genus character of L/F: if p ⊂ OF is prime, then

χ(p) =

{
1 if p splits in L/F;
−1 if p is inert in L/F.
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The formula

Let I ⊂ OF be an ideal. Define

ρ(I) = #{J ⊂ OL | NmL
F(J) = I};

sp(I) =

{
p if p is unique with χ(p) = −1 and vp(I) odd;
1 otherwise.

Important: ρ(I) = 0 if and only if I has at least one special prime.

Let E1 be an elliptic curve with CM by O1 and E2 an elliptic curve with CM by
O2. Then by CM theory, j(Ei) ∈ Hi for i = 1, 2, where Hi is the Hilbert class
field of Ki. For simplicity, assume Di , −3,−4.

Theorem (Gross-Zagier, 1984)

Setting α = ν
√
D and DF = (

√
D), the following equality holds:

log NmH1H2
Q

(
j(E1) − j(E2)

)
=

∑
ν∈D−1,+

F

tr(ν)=1

ρ(sp(α)α)(vsp(α)(α) + 1) log Nm(sp(α)).
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Example
Let D1 = −7 and D2 = −19. Then

E1 : y2 + xy = x3 − x2 − 2x− 1, j(E1) = −3353;

E2 : y2 + y = x3 − 38x+ 90, j(E2) = −21533.

If ν ∈ D−1,+
F and tr(ν) = 1, then

α = ν
√
D =

x+
√
D

2
, where x2 < D = 133 and x is odd.

x ±1 ±3 ±5 ±7 ±9 ±11
(D− x2)/4 3 · 11 31 33 3 · 7 13 3

sp(α) 3 31 3 3 13 3
(vsp(α)(α) + 1)/2 1 1 2 1 1 1

ρ(sp(α)α) 2 1 1 2 1 1

Let’s check:

j(E1) − j(E2) = −3353 + 21533 = 881361 = 37 · 13 · 31.
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Zagier’s proof

First step is to rewrite the task at hand to proving

log NmH1H2
Q

(
j(E1) − j(E2)

)
=

∑
ν∈D−1,+

F

tr(ν)=1

∑
I|(ν)DF

χ(I) log Nm(I).

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein
series:

Ek,χ(z, z) = const +
∑

ν∈D−1,+
F

tr(ν)=n

( ∑
I|(ν)DF

χ(I)Nm(I)k−1
)
qn.

Consider a family parametrised by a “weight” s ∈ C;
Take its derivative and evaluate at s = 0;
Apply a so-called holomorphic projection.

This must be in M2(SL2(Z)) = 0. The explicit formula for its Fourier
coefficients involves two terms, one for each side =⇒ equal. Hard.
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What is the j-function really?

Consider M2(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M2(Z) ⊂ M2(Q).

Its units of norm 1 are precisely

SL2(Z) ⊂ M2(Z).

Since M2(Q) acts on C, we may consider the quotient

Y1(C) = SL2(Z) \ H.

Its function field is generated by the j-function.

Question
What happens if we change M2(Q) to a different quaternion algebra?
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Shimura curves
Choose two primes p , q and let N = pq. Let BN denote the quaternion
algebra ramified at p and q. Let RN be a maximal order and let R×

N,1 denote
the subgroup of units of norm 1. We may choose an embedding
R×
N,1 → M2(R) to form the quotient

XN(C) = R×
N,1 \ H;

this is known as a Shimura curve, which is an algebraic curve /Q.

Proposition
The Shimura curve XN is of genus 0 if and only if N ∈ {6, 10, 22}.

Suppose henceforth that we are in one of these cases. Then there exists a
generator jN of the function field. Note this choice is not unique.
Let τ1, τ2 ∈ H be CM points: fixed points in C of embeddings Oi → RN. These
exist when p and q are inert in both Ki. We want to study

Nm
(
jN(τ1) − jN(τ2)

)
.

They are algebraic by Shimura reciprocity.
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Cerednik-Drinfeld

Let Bq denote the quaternion algebra ramified at q and ∞. Let Rq be a
maximal order. Now Bq is definite, so consider the group

Γpq = Rq[1/p]×1

of units of norm 1.

Since Bq is split at p, it embeds into M2(Qp) and as such,
we can take the quotient

Γpq \ Hp,

where Hp = P1(Cp) \ P
1(Qp) is the p-adic upper half plane.

Theorem (Cerednik-Drinfeld)
The quotient Γpq \ Hp is as rigid p-adic space isomorphic to XN(Cp).

Question
Which functions on Γpq \ Hp correspond to jN on the other side?
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Theta functions

Let w1,w2 ∈ Hp. Then consider the expression

Θ(w1,w2; z) =
∏
γ∈Γp

q

z− γw1

z− γw2
.

If N ∈ {6, 10, 22}, this expression descends to a rigid analytic meromorphic
function on Γpq \ Hp with divisor [w1] − [w2].

We obtain

Θ(w1,w2; z) = c(w1,w2) ·
jN(z) − jN(w1)

jN(z) − jN(w2)
, for some c(w1,w2) ∈ Cp.

Now choose w1 = τ1 and w2 = τ ′
1; its Galois conjugate. Because we don’t

know c(τ1, τ ′
1), we opt to study instead

jN(τ2) − jN(τ1)

jN(τ2) − jN(τ ′
1)

jN(τ ′
2) − jN(τ ′

1)

jN(τ ′
2) − jN(τ1)

=
∏
γ∈Γp

q

τ2 − γτ1

τ2 − γτ ′
1

τ ′
2 − γτ ′

1

τ ′
2 − γτ1

.
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The conjecture

One can p-adically approximate the quantity

Jpq(τ1, τ2) :=
∏
γ∈Γp

q

τ2 − γτ1

τ2 − γτ ′
1

τ ′
2 − γτ ′

1

τ ′
2 − γτ1

and recognise it as an algebraic number.

There are four ideals a of norm N = pq in OF; they come in two Gal(F/Q)
orbits. Assign one orbit δ(a) = +1, the other δ(a) = −1.

Conjecture (Giampietro, Darmon)
The expression

log NmH1H2
Q Jpq(τ1, τ2)

is up to sign explicitly equal to∑
Nm(a)=N

δ(a)
∑

ν∈D−1,+
F

tr(ν)=1

ρ(sp(αa−1)αa−1)(vsp(αa−1)(αa
−1) + 1) log Nm (sp(αa−1)).
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Intermezzo: rewriting the theta-series

Let τi be defined by an embedding αi : Oi → Rq for i = 1, 2. This yields
actions of the Oi on Bq, and as such, an action of L through

OL � O1 ⊗Z O2 : (x⊗ y) ∗ b = α1(x)bα2(y).

Since [L : Q] = [Bq : Q] = 4, so [Bq : L] = 1.

Proposition
There exists a unique F-linear quadratic form detF : Bq → F with the property
that trF/Q(detF(b)) = Nm(b).

It satisfies
τ2 − bτ1

τ2 − bτ ′
1

τ ′
2 − bτ ′

1

τ ′
2 − bτ1

=
detF(b)
det ′F(b)

.

As such,
Θ(τ1, τ ′

1; τ2)

Θ(τ1, τ ′
1; τ ′

2)
=

∏
b∈Γp

q

detF(b)
det ′F(b)

.
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From quaternions to ideals

Let ι : Bq → L be an isomorphism of L-vector spaces. For b ∈ Bq, define the
ideal

Ib = ι(b)/ι(Rq).

Proposition
Ranging over all possible pairs of embeddings α1,α2, the association b 7→ Ib
establishes a bijection between

{b ∈ Rq/{±1} | detF(b) = ν}

and
{I ⊂ OL | NmL/F(I) = (ν)q−1DF}.

MikeDaas CM-values of p-adic Θ-functions 6th of March, 2024 12 / 23



From quaternions to ideals

Let ι : Bq → L be an isomorphism of L-vector spaces. For b ∈ Bq, define the
ideal

Ib = ι(b)/ι(Rq).

Proposition
Ranging over all possible pairs of embeddings α1,α2, the association b 7→ Ib
establishes a bijection between

{b ∈ Rq/{±1} | detF(b) = ν}

and
{I ⊂ OL | NmL/F(I) = (ν)q−1DF}.

MikeDaas CM-values of p-adic Θ-functions 6th of March, 2024 12 / 23



Rewriting the theta series further
Note that we have a correspondence

Γpq = Rq[1/p]×1 ↔ lim
n→∞

{
b ∈ Rq | Nm(b) = p2n} .

As such,

Θ(τ1, τ ′
1; τ2)

Θ(τ1, τ ′
1; τ ′

2)
=

∏
b∈Γp

q

detF(b)
det ′F(b)

= lim
n→∞

∏
Nm(b)=p2n

detF(b)
det ′F(b)

.

Taking the logarithm;

logp

Θ(τ1, τ ′
1; τ2)

Θ(τ1, τ ′
1; τ ′

2)
= lim

n→∞
∑

tr(ν)=p2n

#{b ∈ Rq | detF(b) = ν} logp(ν/ν
′)

= lim
n→∞

∑
tr(ν)=p2n

ρ((ν)q−1DF) logp(ν/ν
′).
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series E1,χ.
We wish to do the following three steps:

Find explicit family of Hilbert modular forms around E1,χ;
Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;
Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
Consider its associated Galois representation 1 ⊕ χ;
Deform it infinitesimally (ϵ2 = 0) and explicitly;
Argue why these deformations are modular;
Explicitly compute its Fourier coefficients aν for all ν ≫ 0;
The ϵ-part then yields a meaningful derivative.
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Deforming 1 ⊕ χ

Again let ρ = 1 ⊕ χ. Write ρ̃ for a deformation of ρ to the ring GL2(Qp[ϵ])
where ϵ2 = 0.

Proposition
Let a,b, c,d : GF → Qp be those functions such that

ρ̃(τ) =

(
1 + ϵ

(
a(τ) b(τ)
c(τ) d(τ)

))
· ρ(τ)

for all τ ∈ GF. Then these functions must respectively satisfy

a,d ∈ Hom(GF,Qp), and b, c ∈ H1(GF,Qp(χ)).

Note that dim Hom(GF,Qp) = 1 spanned by the p-adic cyclotomic character:

ϕ
cyc
p : GF → Gal(F(ζ∞p )/F) � Z×

p

logp−−→ Qp.
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Hida’s Hecke Algebra
For simplicity, choose

ρ̃(τ) =

(
1 + ϕ

cyc
p ϵ 0

0 χ− χϕ
cyc
p ϵ

)
.

Suppose that this deformation is modular. That would yield a morphism
φ : T→ Qp[ϵ], where T is Hida’s p-adic Hecke algebra, generated by:

operators Tl, ⟨l⟩ for all primes l ⊂ OF prime to p;
operators Uπ and Uπ′ for all uniformisers π and π ′ at the two places of F
above p.

Theorem
LetK be the ring of fractions of Hida’s nearly ordinary cuspidal Hecke algebra.
There exists a semisimple Galois representation π : GF → GL2(K) with the
following properties:

π is continuous, odd and unramified outside p;
For each prime l ∤ p, it holds that

det
(
1 − π(Frobl)X

)
= 1 − TlX+ ⟨l⟩Nm(l)X2.
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above p.

Theorem
LetK be the ring of fractions of Hida’s nearly ordinary cuspidal Hecke algebra.
There exists a semisimple Galois representation π : GF → GL2(K) with the
following properties:

π is continuous, odd and unramified outside p;
For each prime l ∤ p, it holds that

det
(
1 − π(Frobl)X

)
= 1 − TlX+ ⟨l⟩Nm(l)X2.

MikeDaas CM-values of p-adic Θ-functions 6th of March, 2024 16 / 23



Solving the recursion

We recover φ from

φ(Tl) = tr(ρ̃(Frobl)) =

{
2 if χ(l) = 1;
2 logp(Nm(l))ϵ if χ(l) = −1.

Further, note that

φ(⟨l⟩Nm(l)) = det(ρ̃(Frobl)) = χ(l).

Remember the essential recursion relation

Tln+1 = TlnTl − ⟨l⟩Nm(l)Tln−1 .

We can solve this in each case explicitly:

φ(Tln) =


n+ 1 if χ(l) = 1;
(n+ 1) logp(Nm(l))ϵ if χ(l) = −1 and n is odd;
1 if χ(l) = −1 and n is even.
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Unifying expressions
So we have

φ(Tln) =


n+ 1 if χ(l) = 1;
(n+ 1) logp(Nm(l))ϵ if χ(l) = −1 and n is odd;
1 if χ(l) = −1 and n is even.

Compare this to

∑
I|ln

χ(I) = ρ(ln) =


n+ 1 if χ(l) = 1;
0 if χ(l) = −1 and n is odd;
1 if χ(l) = −1 and n is even.

.

The integral parts are precisely ρ(ln). We can thus write

φ(Tln) = ρ(ln) +
1
2
(n+ 1)

(
1 − χ(ln)

)
logp(Nm(l))ϵ.

Let J ⊂ OF be any ideal coprime to p. Then

φ(TJ) = ρ(J) +
1
2

∑
ln∥J

(
(n+ 1)

(
1 − χ(ln)

)
ρ(J/ln)

)
logp(Nm(l))ϵ.
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The Magic Moment

φ(TJ) = ρ(J) +
1
2

∑
ln∥J

(
(n+ 1)

(
1 − χ(ln)

)
ρ(J/ln)

)
logp(Nm(l))ϵ.

Proposition
If J is a primitive ideal coprime to p, then the quantity

1
2

∑
ln∥J

(
(n+ 1)

(
1 − χ(ln)

)
ρ(J/ln)

)
logp(Nm(l))

is equal to
ρ(sp(J)J)(vsp(J)(J) + 1) logp Nm (sp(J)).

Indeed, the factor 1 − χ(ln) = 0 unless l is a special prime of J, and if J/ln still
has another special prime, ρ(J/ln) = 0. It can thus only be non-zero when l is
the unique special prime; the rest matches up.
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Fourier coefficients

For convenience, let us denote

logF(J) = ρ(sp(J)J)(vsp(J)(J) + 1) log(sp(J)),

so that very concisely, for J coprime to p,

φ(TJ) = ρ(J) + logF(J)ϵ.

Let J̃ denote the ideal J without its prime factors dividing p.

Theorem
For any ν ∈ (D−1

F q)
+, let Jv = (ν)DFq

−1. Then it holds that

aν(fq) = (−1)vp(ν)
(
ρ(J̃ν) + logp(F(̃Jν))ϵ− ρ(J̃ν) logp(ν/ν

′)ϵ
)
.

The term log(ν/ν ′) comes from ν at the two places above p, as

φ(Uπ) = −1 + logp(π)ϵ; φ(Uπ′) = 1 + logp(π
′)ϵ.
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Ordinary projection
We take the diagonal restriction:

diag(fq) =
∞∑

n=1

( ∑
ν∈(D−1

F q)
+

tr(ν)=n

aν

)
qn.

Taking its derivative amounts to considering only the ϵ-part:

an(∂diag(fq)) =
∑

ν∈(D−1
F q)

+

tr(ν)=n

(−1)vp(ν)
(

logp(F(J̃ν)) − ρ(J̃ν) logp(ν/ν
′)
)
.

Now we take the ordinary projection eord:

a1(e
ord(∂diag(fq))) = lim

n→∞ap2n(∂diag(fq))

= lim
n→∞

∑
ν∈(D−1

F q)
+

tr(ν)=p2n

(−1)vp(ν)
(

logp(F(J̃ν)) − ρ(J̃ν) logp(ν/ν
′)
))

.
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The crux!
One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

S2(Γ0(6)) = S2(Γ0(10)) = 0 and S2(Γ0(22)) ≈ 0.

In other words, if

A := lim
n→∞

∑
ν∈(D−1

F q)
+

tr(ν)=p2n

(−1)vp(ν)ρ(J̃ν) logp(ν/ν
′)

and B := lim
n→∞

∑
ν∈(D−1

F q)
+

tr(ν)=p2n

(−1)vp(ν) logp(F(J̃ν)),

then A = B. Recall our expression for the theta series

logp

Θ(τ1, τ ′
1; τ2)

Θ(τ1, τ ′
1; τ ′

2)
= lim

n→∞
∑

tr(ν)=p2n

ρ(Jν) logp(ν/ν
′).

It easily follows that
A = log Nm Jpq(τ1, τ2).
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Conclusion
One can show that the limit in B equals the first term:

B =
∑

ν∈(D−1
F q)

+

tr(ν)=1

(−1)vp(ν) logp(F(J̃ν))

where
logF(J) = ρ(sp(J)J)(vsp(J)(J) + 1) logp(sp(J)).

Now use A = B to complete the proof:

Theorem (D., 2023)
The expression

log NmH1H2
Q Jpq(τ1, τ2)

is up to sign explicitly equal to∑
Nm(a)=N

δ(a)
∑

ν∈D−1,+
F

tr(ν)=1

ρ(sp(αa−1)αa−1)(vsp(αa−1)(αa
−1) + 1) log Nm (sp(αa−1)).

Preprint is on arXiv: https://arxiv.org/abs/2309.17251
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