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Let Dy, D, < 0 be coprime discriminants and write D = D1 D,. Set

Ki =Q(y/D1), K»=Q(VDy),
F=Q(VD), L=0Q(v/Di, vDy).
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Let Dy, D, < 0 be coprime discriminants and write D = D1 D,. Set

Ki =Q(y/D1), K»=Q(VDy),
F=Q(VD), L=0Q(v/Di, vDy).

1 if p splits in L/F;
x(p) = | PepTE IR
—1 ifpisinertin L/F.
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The formula

Let I C Of be an ideal. Define

p(I) =#J C O INmE(]) =1},

sp(l) = p if p is unique with x(p) = —1 and v,(I) odd;
PLU= 1 otherwise.

Important: p(I) = 0 if and only if I has at least one special prime.
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The formula

Let I C Of be an ideal. Define

p(I) =#J C O INmE(]) =1},

sp(l) = p if p is unique with x(p) = —1 and v,(I) odd;
PLU= 1 otherwise.

Important: p(I) = 0 if and only if I has at least one special prime.

Let E; be an elliptic curve with CM by O; and E; an elliptic curve with CM by
3. Then by CM theory, j(Ei) € H; for i = 1,2, where H; is the Hilbert class
field of K;. For simplicity, assume D; # —3, —4.
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The formula

Let I C Of be an ideal. Define

p(I) =#J C O INmE(]) =1},

sp(l) = p if p is unique with x(p) = —1 and v,(I) odd;
Py = 1 otherwise.

Important: p(I) = 0 if and only if I has at least one special prime.

Let E; be an elliptic curve with CM by O; and E; an elliptic curve with CM by
3. Then by CM theory, j(Ei) € H; for i = 1,2, where H; is the Hilbert class
field of K;. For simplicity, assume D; # —3, —4.

Theorem (Gross-Zagier, 1984)

Setting « = v /D and D¢ = ( /D), the following equality holds:

logNmHlHZ()(El)—j(Ez))Z Z p(sp(a) o) (Vsp(a) () + 1) log Nm(sp(e)).

veD
tr(v)=1
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Let D; = —7 and D, = —19. Then
By +xy=x>—x2—2x—1, j(E;)=-3%5%
Er:y?+y=x>—38x+90, j(Ey) =213
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Let D; = —7 and D, = —19. Then
By +xy=x>—x2—2x—1, j(E;)=-3%5%
Ey:y?+y=x>—38x+90, j(Ey) =213
Ifve Dt and tr(v) = 1, then

x4+ vD

x=vvD = 5 where x> < D = 133 and x is odd.
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Let D; = —7 and D, = —19. Then

Eriy?+xy=x>—x*—2x—1, j(E;) =-35;
Er:y?+y=x>—38x+90, j(Ey) =23

Ifve Dt and tr(v) = 1, then

x=v D:X+2\5, where x> < D = 133 and x is odd.

| X [ £1 [43[45] &7 [ £9 [ £11]
(D —x2)/4 3-11 (313 [3-7]13] 3
sp(o) 3 31 | 3 3 13 3
(Vsp(a) () +1)/2 1 1 2 1 1 1
p(sp(a)x) 2 1 1 2 1 1
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Let D; = —7 and D, = —19. Then

Eriy?+xy=x>—x*—2x—1, j(E;) =-35;
Er:y?+y=x>—38x+90, j(Ey) =23

Ifve Dt and tr(v) = 1, then

x=v D:X+2\5, where x> < D = 133 and x is odd.

| X [ £1 [43[45] &7 [ £9 [ £11]
(D —x2)/4 3-11 (313 [3-7]13] 3
sp(o) 3 31 | 3 3 13 3
(Vsp(a) () +1)/2 1 1 2 1 1 1
p(sp(a)x) 2 1 1 2 1 1

Let’s check:

j(E1) —j(Ep) = —3%5° +21°3% = 881361
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Let D; = —7 and D, = —19. Then

Eriy?+xy=x>—x*—2x—1, j(E;) =-35;
Er:y?+y=x>—38x+90, j(Ey) =23

Ifve Dt and tr(v) = 1, then

x=v D:X+2\5, where x> < D = 133 and x is odd.

| X [ £1 [43[45] &7 [ £9 [ £11]
(D —x2)/4 3-11 (313 [3-7]13] 3
sp(o) 3 31 | 3 3 13 3
(Vsp(a) () +1)/2 1 1 2 1 1 1
p(sp(a)x) 2 1 1 2 1 1

Let’s check:

j(E1) —j(Ep) = —3%5° +2193% = 881361 =37 - 13- 31.
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD M+ 1(v)Dr
‘rr(v):l
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Exx(z,z) = const + Z ( Z x(I)Nm(I kl)q

veD Mt My
tr(v)=n
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
@ Take its derivative and evaluate at s = 0;
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).
veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
@ Take its derivative and evaluate at s = 0;
o Apply a so-called holomorphic projection.

This must be in M,(SL,(Z)) = 0.
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Zagier’s proof

First step is to rewrite the task at hand to proving

logNmHlHZ (G(E1) —i(E2)) Z Z 1) log Nm(1).

veD Iy
‘rr(v):l

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein

series:
Ex (z,2z) = const + Z ( Z X(I)Nm(l)k—1>q“,
II(v)Dr

veD
tr(v)=n

@ Consider a family parametrised by a “weight” s € C;
@ Take its derivative and evaluate at s = 0;
@ Apply a so-called holomorphic projection.

This must be in M,(SL(Z)) = 0. The explicit formula for its Fourier
coefficients involves two terms, one for each side = equal. Hard.
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What is the j-function really?

Consider M;(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M (Z) € M;(Q).

Its units of norm 1 are precisely

SLz(Z) c M, (Z)
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What is the j-function really?

Consider M;(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M (Z) € M;(Q).

Its units of norm 1 are precisely
SL,(Z) Cc My(Z).
Since M;(Q) acts on C, we may consider the quotient
Y1(C) =SLy(Z) \ H.

Its function field is generated by the j-function.
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What is the j-function really?

Consider M;(Q); this is a quaternion algebra with norm det. Here, a maximal
order is given by

M (Z) € M;(Q).

Its units of norm 1 are precisely
SL,(Z) Cc My(Z).
Since M;(Q) acts on C, we may consider the quotient
Y1(C) =SLy(Z) \ H.

Its function field is generated by the j-function.

What happens if we change M, (Q) to a different quaternion algebra?
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Shimura curves

Choose two primes p # q and let N = pq. Let By denote the quaternion
algebra ramified at p and q. Let Ry be a maximal order and let Ry ; denote
the subgroup of units of norm 1. We may choose an embedding

RN, — M2(RR) to form the quotient

Xn(C) = R, \ 56

this is known as a Shimura curve, which is an algebraic curve /Q.
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Shimura curves

Choose two primes p # q and let N = pq. Let By denote the quaternion
algebra ramified at p and q. Let Ry be a maximal order and let Ry ; denote
the subgroup of units of norm 1. We may choose an embedding

RN, — M2(RR) to form the quotient

Xn(C) = R, \ 56

this is known as a Shimura curve, which is an algebraic curve /Q.

Proposition

The Shimura curve Xy is of genus 0 if and only if N € {6, 10, 22}.

Suppose henceforth that we are in one of these cases. Then there exists a
generator jn of the function field. Note this choice is not unique.
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Shimura curves

Choose two primes p # q and let N = pq. Let By denote the quaternion
algebra ramified at p and q. Let Ry be a maximal order and let Ry ; denote
the subgroup of units of norm 1. We may choose an embedding

RN, — M2(RR) to form the quotient

Xn(C) = R, \ 56

this is known as a Shimura curve, which is an algebraic curve /Q.

Proposition

The Shimura curve Xy is of genus 0 if and only if N € {6, 10, 22}.

Suppose henceforth that we are in one of these cases. Then there exists a
generator jn of the function field. Note this choice is not unique.

Let 71, 2 € H{ be CM points: fixed points in C of embeddings O; — Rn. These
exist when p and q are inert in both K;. We want to study

Nm (jn (1) —jn(T2)).

They are algebraic by Shimura reciprocity.
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1.

Mike Daas
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1. Since B is split at p, it embeds into M,(Q,,) and as such,
we can take the quotient

P 5,
where 3, = P1(C,,) \ P}(Q,) is the p-adic upper half plane.
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1. Since B is split at p, it embeds into M,(Q,,) and as such,
we can take the quotient

P 5,
where 3, = P1(C,,) \ P}(Q,) is the p-adic upper half plane.
Theorem (Cerednik-Drinfeld)

The quotient I'} \ H,, is as rigid p-adic space isomorphic to Xn (Cyp ).
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Cerednik-Drinfeld

Let B, denote the quaternion algebra ramified at q and co. Let R4 be a
maximal order. Now B is definite, so consider the group

Iy = Rqll/pl}

of units of norm 1. Since B is split at p, it embeds into M,(Q,,) and as such,
we can take the quotient

P 5,
where 3, = P1(C,,) \ P}(Q,) is the p-adic upper half plane.
Theorem (Cerednik-Drinfeld)

The quotient I'} \ H,, is as rigid p-adic space isomorphic to Xn (Cyp ).

Which functions on I'§ \ H,, correspond to jn on the other side?
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Theta functions

Let wi,w;, € J(,. Then consider the expression

zZ— YWy
O(wy,wy;z) = I I p—— Yy

—Ywz
Yery

If N € {6,10, 22}, this expression descends to a rigid analytic meromorphic
function on FE \ Hp, with divisor [wq] — [wy].
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Theta functions

Let wi,w;, € J(,. Then consider the expression

zZ— YWy
O(wy,wy;z) = I I p—— Yy

—Ywz
Yery

If N € {6,10, 22}, this expression descends to a rigid analytic meromorphic
function on FE \ H,, with divisor [wq] — [w,]. We obtain

O(w1, wo; z) = c(wy, wy) - M

- , for some c(wy,wW,) € C,,.
in(z) —in(wa) (w1, w2) P
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Theta functions

Let wi,w;, € J(,. Then consider the expression

z—ywi
zZ—ywy

O(w1, wy;z) = H

yery

If N € {6,10, 22}, this expression descends to a rigid analytic meromorphic
function on FE \ H,, with divisor [wq] — [w,]. We obtain

O(w1, wo; z) = c(wy, wy) - M

- , for some c(wy,wW,) € C,,.
in(z) —in(wa) (w1, w2) P

Now choose w; = 11 and w, = T7; its Galois conjugate. Because we don't
know c(71,7]), we opt to study instead

in(T2) —in(T1) in(Ts) —in(T]) _ H =Y T, — YT

in(T2) = in(Ty) in(Ty) —in(T) LT — YT T — YT
YETY
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The conjecture

One can p-adically approximate the quantity

/ /
To—YT1 T, — YT

Je(t, o) = | | Tyt T — 7yt
2= - 1
yery 172

and recognise it as an algebraic number.
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The conjecture

One can p-adically approximate the quantity

To—YT1 Ty — YT,
Fln, )= [] 2-Y0Bo0G
very 22— YT T, — YT
and recognise it as an algebraic number.
There are four ideals a of norm N = pq in Of; they come in two Gal(F/Q)
orbits. Assign one orbit 6(a) = +1, the other 6(a) = —1.
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The conjecture

One can p-adically approximate the quantity

! li
H To—YT1 T, — YT

Jh(t1,T2) =
ar- T — YT Ty — YT

yery

and recognise it as an algebraic number.
There are four ideals a of norm N = pq in Of; they come in two Gal(F/Q)
orbits. Assign one orbit 6(a) = +1, the other 6(a) = —1.

Conjecture (Giampietro, Darmon)

|

The expression
log Nmg'™*J§ (11, 72)

is up to sign explicitly equal to

Z 5(a) Z p(sp(aa Hoa™ 1)(\;51,(““71)(0((1_1)—|—1)logNm (sp(oa

Nm(a)=N veD T
tr(v)=1

).
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Intermezzo: rewriting the theta-series

Let t; be defined by an embedding o; : O; — Ry for i = 1,2. This yields
actions of the O; on By, and as such, an action of L through

OL=201®20;: (x®y) *xb=o1(x)bar(y).
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Intermezzo: rewriting the theta-series

Let t; be defined by an embedding o; : O; — Ry for i = 1,2. This yields
actions of the O; on By, and as such, an action of L through

OL=201®20;: (x®y) *xb=o1(x)bar(y).
Since [L: Q] =[B4:Ql=4,s0[B4: L] =1
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Intermezzo: rewriting the theta-series

Let t; be defined by an embedding o; : O; — Ry for i = 1,2. This yields
actions of the O; on By, and as such, an action of L through

OL=01®z02: (x®Yy)*b = oy(x)baz(y).

Since [L: Q] =[B4:Ql=4,s0[B4: L] =1

Proposition

There exists a unique F-linear quadratic form detr : B4 — F with the property
that trg /g (detr(b)) = Nm(b).
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Intermezzo: rewriting the theta-series

Let t; be defined by an embedding o; : O; — Ry for i = 1,2. This yields
actions of the O; on By, and as such, an action of L through

OL=01®z02: (x®Yy)*b = oy(x)baz(y).

Since [L: Q] =[B4:Ql=4,s0[B4: L] =1

Proposition

There exists a unique F-linear quadratic form detr : B4 — F with the property
that trg /g (detr(b)) = Nm(b).

It satisfies
Ty — b’[.'l Té — bT{ B detF (b)

T —bt{ T, —br  detp(b)’

As such,
O(t, ;) _ H detg(b)
O(t,t);Th) detr(b)’

bel¥
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From quaternions to ideals

Let t: B4 — L be an isomorphism of L-vector spaces. For b € B, define the
ideal

Iy = u(b)/URg).
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From quaternions to ideals

Let t: B4 — L be an isomorphism of L-vector spaces. For b € B, define the
ideal

Iy = u(b)/URg).

Proposition

Ranging over all possible pairs of embeddings x4, «,, the association b — Iy,
establishes a bijection between

{b € Rq/{£1} | det(b) = v}

and

{Ic O INmy/¢(I) = (v)q "D}
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Rewriting the theta series further

Note that we have a correspondence

I} =Rqll/ply ¢ lim {b € Rq|[Nm(b) =p™"}.
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Rewriting the theta series further

Note that we have a correspondence

I} =Rqll/ply ¢ lim {b € Rq|[Nm(b) =p™"}.

As such,
O(ty,T1;T2) detr(b)

O(t1,1{;1)) ery dety(b)
q

. detF (b)
= lim H —.
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Rewriting the theta series further

Note that we have a correspondence

I} =Rqll/ply ¢ lim {b € Rq|[Nm(b) =p™"}.

As such,
O(ty,T1;T2) detr(b)
O(t1,1{;1)) ery detr(b)
q
. detF(b)
= lim H —.
Taking the logarithm;
O, ;) _ o
log — 17727 _ # R = v}l !
%, ol re] ngrgoﬁ(v)z_pzn b € Ry | detr (b) = v}log, (v/v
R T —1 /
=lim Y p((v)a 'Dr)log, (v/v)).

tr(v)=p2"
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

@ Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
o Argue why these deformations are modular;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

o Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
o Argue why these deformations are modular;

@ Explicitly compute its Fourier coefficients a., for all v > 0;
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Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series Eq .
We wish to do the following three steps:

o Find explicit family of Hilbert modular forms around E, ,;

o Take its diagonal restriction, take its derivative with respect to the weight
parameter and compute its coefficients explicitly;

o Apply the ordinary projection; argue why the result must vanish and
obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
o Consider its associated Galois representation 1 @ x;
e Deform it infinitesimally (e? = 0) and explicitly;
o Argue why these deformations are modular;
@ Explicitly compute its Fourier coefficients a., for all v > 0;
@ The e-part then yields a meaningful derivative.
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Deforming 1 ® x

Again let p = 1 @ x. Write p for a deformation of p to the ring GL,(Qj, [e])
where €2 = 0.
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Deforming 1 ® x

Again let p = 1 @ x. Write p for a deformation of p to the ring GL,(Qj, [e])
where €2 = 0.

Proposition

Leta,b,c,d: GF — Qp be those functions such that

o) = (14 (40 59)) ot

for all T € Gr. Then these functions must respectively satisfy

a, de Hom(GF/Qp)/ and b,C S Hl(GF/Q‘p (X))
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Deforming 1 ® x

Again let p = 1 @ x. Write p for a deformation of p to the ring GL,(Qj, [e])
where €2 = 0.

Proposition

Leta,b,c,d: GF — Qp be those functions such that

o) = (14 (40 59)) ot

for all T € Gr. Then these functions must respectively satisfy

a, de Hom(GF/Qp)/ and b,C S Hl(GF/Q‘p (X))

Note that dim Hom(Gp, Qp) = 1 spanned by the p-adic cyclotomic character:

cyc 00 X o P
$I° : Gr — Gal(F(CX)/F) = ZX —22, .
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Hida’s Hecke Algebra

For simplicity, choose
o (1+dy 0
plt) = ( 0 x—xd3%)

Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
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Hida’s Hecke Algebra

For simplicity, choose
oy (1+dyCe 0
p(T) - ( 0 X_Xd)%yce .
Suppose that this deformation is modular. That would yield a morphism

@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
@ operators T;, (I) for all primes I C Of prime to p;
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Hida’s Hecke Algebra

For simplicity, choose

oy (1+dyCe 0
p(T) - ( 0 X_Xd)%yce .
Suppose that this deformation is modular. That would yield a morphism
@ : T — Qp[e], where T is Hida’s p-adic Hecke algebra, generated by:
@ operators T;, (I) for all primes I C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at the two places of F
above p.
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Hida’s Hecke Algebra

For simplicity, choose

cye
o) = (1T e

X —Xbp

Suppose that this deformation is modular. That would yield a morphism
o:T—Q, [e], where T is Hida's p-adic Hecke algebra, generated by:
@ operators T;, (I) for all primes I C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at the two places of F
above p.

Let K be the ring of fractions of Hida’s nearly ordinary cuspidal Hecke algebra.
There exists a semisimple Galois representation 7: Gr — GL,(K) with the
following properties:
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Hida’s Hecke Algebra

For simplicity, choose

cye
5(t) = (“?j 0 e )

X —Xbp

Suppose that this deformation is modular. That would yield a morphism
o:T—Q, [e], where T is Hida's p-adic Hecke algebra, generated by:
@ operators T;, (I) for all primes I C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at the two places of F
above p.

Let K be the ring of fractions of Hida’s nearly ordinary cuspidal Hecke algebra.
There exists a semisimple Galois representation 7: Gr — GL,(K) with the
following properties:

@ 7 is continuous, odd and unramified outside p;

CM-values of p-adic ©-functions 6th of March, 2024



Hida’s Hecke Algebra

For simplicity, choose

3 1+ ¢y e 0
p(T ) < 0 X—X d)cyc .
Suppose that this deformation is modular. That would yield a morphism
o:T—Q, [e], where T is Hida's p-adic Hecke algebra, generated by:
@ operators T;, (I) for all primes I C Of prime to p;

@ operators U, and U, for all uniformisers 7w and 7’ at the two places of F
above p.

Let K be the ring of fractions of Hida’s nearly ordinary cuspidal Hecke algebra.
There exists a semisimple Galois representation 7: Gr — GL,(K) with the
following properties:

@ 7 is continuous, odd and unramified outside p;
@ For each prime [ 1 p, it holds that

det (1 — 7(Frob;)X) = 1 — TX + ()Nm()X>.
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Solving the recursion

We recover ¢ from

2 ifx() =1,

@(Ty) = tr(p(Froby)) = {zlogp(Nm(I))e if x(I) = —1.
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Solving the recursion

We recover ¢ from

e 2 ifx(I)=1;
¢ (1) = trlp(Frobi)) = {Zlogp(Nm(I))e if x(1) = —1.
Further, note that
@ ((ONm(1)) = det(p(Froby)) = x(1).

Remember the essential recursion relation

TIr\+‘l = TInTI — <I>Nl’n(I)T|n 1.
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Solving the recursion

We recover ¢ from

2 ifx() =1
Zlogp(Nm(I))e if x(I) = —1.

@(Ti) = tr(p(Froby)) = {
Further, note that
@({()Nm(I)) = det(p(Froby)) = x(1).
Remember the essential recursion relation
TIr\+'l = TInTI - <I>Nm(I)T|n 1.

We can solve this in each case explicitly:

n+1 ifx( =1
e(Tn)=< (n+1) log]D (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.
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Solving the recursion

We recover ¢ from

2 ifx() =1
Zlogp(Nm(I))e if x(I) = —1.

@(Ti) = tr(p(Froby)) = {
Further, note that
@({()Nm(I)) = det(p(Froby)) = x(1).
Remember the essential recursion relation
TIr\+'l = TInTI - <I>Nm(I)T|n 1.

We can solve this in each case explicitly:

n+1 ifx( =1
e(Tn)=< (n+1) log]D (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.
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Unifying expressions

So we have
n+1 ifx()=1;
e(Tm) =< (n+1) log]3 (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.

Compare this to

n+1 ifx()=1;
Zx(l) =p(I") =<0 if x(I) = —1 and n is odd;
I, 1 if x(I) = —1 and n is even.

The integral parts are precisely p(I™). We can thus write

0(Ti) = pl1") + 3 (n + 1) (1~ x(1")) log, (Nm(1))e.
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Unifying expressions

So we have
n+1 ifx()=1;
e(Tm) =< (n+1) log]3 (Nm(I))e ifx(I) = —1and nis odd;
1 if x(I) = —1 and n is even.

Compare this to

n+1 ifx()=1;
Zx(l) =p(I") =<0 if x(I) = —1 and nis odd; .
I, 1 if x(I) = —1 and n is even.

The integral parts are precisely p(I™). We can thus write

0(Ti) = pl1") + 3 (n + 1) (1~ x(1")) log, (Nm(1))e.

Let ] C Of be any ideal coprime to p. Then

o(T) = o))+ 5 3 ((m+1)(1—X(I")o(}/1)) log, (Nm(1)).
m
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The Magic Moment

o(T) = p(1) + 5 3 (In+1)(1 —x()p1/1)) Tog, (Nm(D)e.
)
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The Magic Moment

o(Ty) = p(J) + % > ((n +1)(1 —X(I“))p(l/ln)) log, (Nm(I))e.
"]
Proposition

If ] is a primitive ideal coprime to p, then the quantity
1
>3 (1 (1 =x1™)p(/1)) log, (Nm(1)
™y

is equal to
p(sp(N)) (vsp(y) (J) + 1) log, Nm (sp(])).
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The Magic Moment

o(Ty) = p(J) + % > ((n +1)(1 —X(I“))p(I/I")) log,, (Nm(I))e.
"]
Proposition

If ] is a primitive ideal coprime to p, then the quantity

>3 (n+ 11 —x(™)p(1/m™)) log, (Nm(1)
my

is equal to

p(sp(]) (Vsp(y)(J) +1) log,, Nm (sp(])).

Indeed, the factor 1 —x(I") = 0 unless | is a special prime of J, and if J/I™ still
has another special prime, p(J/1™) = 0. It can thus only be non-zero when lis
the unique special prime; the rest matches up.
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Fourier coefficients

For convenience, let us denote
log F(]) = p(sp(J)]) (vsp(y) (J) + 1) log(sp(])),
so that very concisely, for ] coprime to p,
¢(Ty) = p(J) +-log F(J)e.

Let | denote the ideal ] without its prime factors dividing p.
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Fourier coefficients

For convenience, let us denote
log F(]) = p(sp(J)]) (vsp(y) (J) + 1) log(sp(])),
so that very concisely, for ] coprime to p,
¢(Ty) = p(J) +-log F(J)e.

Let | denote the ideal ] without its prime factors dividing p.

Forany v € (D;lq)Jf, let J, = (v)Drq~!. Then it holds that

ay(fq) = (1)) () +log,, (F(Jv))e — p(J+) log,, (v/v')e).
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Fourier coefficients

For convenience, let us denote
log F(]) = p(sp(J)]) (vsp(y) (J) + 1) log(sp(])),
so that very concisely, for ] coprime to p,
¢(Ty) = p(J) +-log F(J)e.

Let | denote the ideal ] without its prime factors dividing p.

Forany v € (D;lq)Jf, let J, = (v)Drq~!. Then it holds that

ay(fq) = (1)) () +log,, (F(Jv))e — p(J+) log,, (v/v')e).

The term log(v/v’) comes from v at the two places above p, as

¢(Ux) = —1+1log, (me; ¢(Up)=1+log, (n')e.
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Ordinary projection

We take the diagonal restriction:

diag(f,) = i ( Z av)q“.
-
v)

n=1 '\/6(
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Ordinary projection

We take the diagonal restriction:
diag(f,) = Z ( Z av)q“.
: @7
v)

Taking its derivative amounts to considering only the e-part:

an(ddiag(fy)) = Y (=1)")(log,(F(Jv)) — p(J+) log, (v/v")).

ve(Dita)
tr(v)=n
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Ordinary projection

We take the diagonal restriction:

diag(f,) = i ( Z av)q“.
n=1 D
v)

ve(Dy

Taking its derivative amounts to considering only the e-part:

an(ddiag(fy)) = Y (=1)")(log,(F(Jv)) — p(J+) log, (v/v")).
ve(Dyta) "
tr(v)=n

Now we take the ordinary projection e°:

aie Ord(admg( ¢))) = lim a2« (0diag(f,))

n—o0

= lim Z (=1)*1¥) (log,, (F(J3)) — p(J) log,, (v/¥")) ).
ve(Dylg)t

tr(v)=p*"
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The crux!

One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

S2(To(6)) = S2(T6(10)) =0 and  S(Tp(22)) ~ 0.
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The crux!

One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

S2(To(6)) = S2(T6(10)) =0 and  S(Tp(22)) ~ 0.
In other words, if

RT 1y (V) AT /
A= lim > (=1)»Mp(Jy) log, (v/v')
VE(DF1Q)+
tr(v)=p"

and B:=lim Y  (—1)"Mlog,(F(].)),

n—oo
vE(Dita)*
tr(v)=p>"
then A = B.
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The crux!

One can show that the result must be a classical cusp form of weight 2 and
level N, but one can check that

S2(To(6)) = S2(T6(10)) =0 and  S(Tp(22)) ~ 0.
In other words, if

— 1; 1\ (V) AT /
A=lim 3y (=1)"Mp(]y)log, (v/v')
ve(Drtg)+
tr(v)=p2"
and Bi=lim Y (=1)"(log,(F(.)),
ve(Dy'g) "
tr(v)=p>"

then A = B. Recall our expression for the theta series
Olt, ) . ,
log,, Ot i) Jim D ely)log, (v/v').

tr(v)=p2n
It easily follows that
A =log Nm ]g (Tt1,T2).
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Conclusion

One can show that the limit in B equals the first term:

B= Y (=1)""log,(F(J3))

vE(Da)+
tr(v)=1

log F(J) = p(sp()]) (vsp(y)(]) + 1) log,, (sp(])).

where
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Conclusion

One can show that the limit in B equals the first term:

B= Y (-1)"Mlog (5(J+)
vE(Da)+
tr(v)=1

log F(J) = p(sp(J)]) (vsp(y) (J) + 1) Tog,, (sp(]))-
Now use A = B to complete the proof:

Theorem (D., 2023)

The expression

where

log NmElHZJE (Tt1,T2)
is up to sign explicitly equal to

> 8@ Y plsplaa)aa ) (Vep(aa 1) (a ) + 1) log Nm (sp(oxa ).

Nm(a)=N veD Mt
tr(v)=1
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Conclusion

One can show that the limit in B equals the first term:

B= Y (-1)"Mlog (5(J+)
vE(Da)+
tr(v)=1

log F(J) = p(sp(J)]) (vsp(y) (J) + 1) Tog,, (sp(]))-
Now use A = B to complete the proof:

Theorem (D., 2023)

The expression

where

log NmElHZJE (Tt1,T2)
is up to sign explicitly equal to

> 8@ Y plsplaa)aa ) (Vep(aa 1) (a ) + 1) log Nm (sp(oxa ).

Nm(a)=N veD Mt
tr(v)=1

Preprint is on arXiv: https://arxiv.org/abs/2309.17251
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