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Recall the action of SLy(Z) on R := R U {oo}:

. a b ax+ b
if v= c d) then ’V.X:cx—kd’

On R(z) we have the weight 2 action:
f(2)|2y = (cz 4+ d)%f (7 - 2).

Let 7 € R be of degree 2 over Q. Its Galois conjugate is denoted 7.

Lemma
The stabiliser of 7 € R is infinite cyclic: ', = (v,) C PSLy(Z).
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Any pair (x,y) C R? defines a unique geodesic in H by drawing a half
circle:
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X w Y z

Two geodesics can intersect either positively or negatively, depending on
their orientations. We denote this intersection by

(x—=y)n(z—=w)e{-1,0,1}.
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Knopp's cocycle

Definition
The Knopp cocycle f, associated to 7 is defined by

£(7) = Z (67" —= o7) ﬂ(g*yoo — oo).
5€SLa(Z)/T > z-or

» So §7' — 7 contributes to the sum if and only if yoo € Q is in
between d7 and §7’. If 67 > oo it contributes 1, otherwise —1.

» Every element in SLy(Z) - 7 has the same discriminant as 7. So, the
set SLo(Z) /T bijects with the set of real quadratic irrationalities
satisfying disc(o) = disc(7) = D.

» This actually is a cocycle:

fr(1172) = f(m) + F(32)l1
Remark
This sum is finite. Consider e.g. yoo = 0. We look for zeroes of
px% + gx +r =0 with g? —4pr = D and ¢/ < 0 < 0. The latter means
that pr < 0. However, this bounds g> = D + 4pr < D, yielding only
finitely many possibilities.
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The multiplicative Knopp cocycle
Recall the dlog map on polynomials: if P(z) = [[(z — «;)™, then

dlog(P)(z) = 5 = 50 "

Z — O '
We want to lift our cocycle along dlog.

Proposition
For some appropriate choices of x, € Q(7), we have a cocycle defined by

FT(’Y) = x, H (Z _ 67)(67067')0(700—>oo).
SESLL(Z) /T~
Definition
For 7, 7 both real quadratic irrationalities, we define

F7'1 [7—2] = FTl (77’2)(7—2)'

This is independent on the choice of 7, in its SLy(Z)-orbit. However,
choosing 'y;zl instead will invert the outcome.
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Context

Why is this cocycle interesting?

Recent work by H. Darmon and J. Vonk uses a similar construction but
then for the group SLo(Z[1/p]) on the p-adic upper half plane.

Their goal is to do explicit class field theory for real quadratic fields (RM
theory) just like classical CM theory:

Hkx = K(j(7)) where 7 € Ok.
Better yet, produce formulas (a la Gross-Zagier) for the differences
(1) = j(72).

This Knopp cocycle is the R-baby case. Still interesting to study!
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Example
Set 7 = 1*‘[ and 7 = /3. Then

2 3
T = 1 2/ SO Yr,00 = 2.

In the SL»(Z)-orbit of 71 we have only

3—-V5 3445 5-5 5++5

5 <2< 5 and > <2< 5
As a result,
(-2 (- 2)
Fr (vr,)
3—v5 5-v5
(2-55) (- -*%7)
Hence
P (512V3-VE) (342V3-5)  21-8/5
1172] = = ’

(-5+2V3+5) (-3+2V3+v5) 11
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Mysterious factorisations |

P (512V3-VE) (342V3-46)  21-8v5
T s 3+ VB) (<3 +2v3+6) 11

There is no obvious reason for the /3 to disappear. In this case:
(~5+2v3-V5) (-3+2v3- VB) = ~4(v3-2)(V5 +4)
(-5+2v3+V5) (-3+2V3+ V) = 4(V3-2)(V5-4).

Coincidence? Let's try 71 = v/2 and 75 = v/3. Then F,,[72] equals

(4+v2-2V3) (1+v2—V3) 2+ v2—-+3) (3+v2-3)

(-3+V2+V3) (-2 +V2+V3) (-1+v2+V3) (-4 +v2+2V3)
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So F,[m2] equals

(4+v2-2V3) (1+v2-+3) 2+ v2-V3) 3+v2-V3)

(-3+V2+V3) (-2+V2+V3) (-1+vV2+V3) (-4 +vV2+2V3)

This equals
219 + 532
23 '

Again, we have factorisations

(4+v2-2v3) (2+v2- V3) = ~(v3-2)(8+3V2)
(1+\f2—f)(3+f \/§) —(vV3-2)(4+2V2)
(~1+v2+V3) (<34 V2+V3) = ~(V3-2)(4 - 2v2)
(—2+ﬁ+\/§)( 4+\f+2\f3) ~(vV3-2)(8 - 3V2).

What's going on here?
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Key Lemma

Lemma
Let M € GLy(Q) interchange 7 and 7/. Then M? acts trivially.
Proof: We claim that tr(M) = 0, so that M? = — det(M) acts trivially.
Indeed, we have M1 = 7/ precisely when

ar+b=cr’ +dr < (a+d)r=cr7' —b+d(r+7)€Q.
Since 7 ¢ Q, we must have a+ d = 0.
Key Lemma
If pr2 4+ g7 + r = 0 and M € GL,(Q) interchanges 7 and 7/, then

plx — 7)(Msx — 1) =

a—CT
— (P +ax+r)

X —
Proof: Just write everything out. The equation will be true when

pb=ga+ rc.
Rewrite this as
b=-a(tr+7)+crr = Mr=1

by the previous proof.
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|dea of the proof

Set x = 71 and 7 = 7. Then the lemma reads:
Key Lemma
If pr2 + q72 + r = 0 and M € GL»(Q) interchanges 7 and 73, then

a— CT-
2(pr? + qm +1).

p(r1 — ) (M1 — 1) = o
We make pairs 71, M7y in the numerator. This gives us (a — ¢72) - . ..
If we assume that 7{ € SLy(Z)7, then in the denominator we will have
the pairs 71, M7 which also give (a — c72) - ... These cancel, hence the
result is in Q(71). This assumption is generally necessary.
Concern: How do we choose M?
If M interchanges 7 and 75, then so does fyﬁzM for any k.
We need that M preserves being > 7,00 and < 7,,00.
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Choosing the right involution

Note that «,, acts on the number line as follows:

T, a
Cc

We see: let M interchange 7 and 75 and suppose that det(M) = —1.
Then there is a unique k € Z such that vX Moo > ~y,,00 = a/c.
Choose this involution to be M. Then M and YM act like:

/l‘/\\!/\ /\!//\\

A1
Vr, Moo

oy -
ERTE
S
3



More MS Paint pictures

a
ac Moo
c
?
M
77’2MOO
’y;leoo L
77_2 M ?
7_/
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The final steps

What about the questionmarks? We use the associations
! —1_
T—Y,T and T tT.

One can check these interchange the regions appropriately. Why do they
induce factorisations?

Lemma
There exists a unique involution N in GL(Q)/Q interchanging both 74,
71 and 7, 5.

Proof: We saw before that interchanging is equivalent to tr(N) = 0 and
pib=qia+nrnc and pb= ga+ nc.

These equations are independent over Q so give a unique solution up to
scalars. O
Consider v, N. It still interchanges 72, 75, but now maps 71 to v.,7{. So
our associations above are secretly acting by involutions and thus give
factorisations.



Fin




