
Mysterious factorisations and Knopp’s cocycle

Mike Daas

5th of July, 2022



Setting up

Recall the action of SL2(Z) on R̂ := R ∪ {∞}:

if γ =

(
a b
c d

)
, then γ · x =

ax + b

cx + d
.

On R(z) we have the weight 2 action:

f (z)|2γ = (cz + d)−2f (γ · z).

Let τ ∈ R be of degree 2 over Q. Its Galois conjugate is denoted τ ′.

Lemma
The stabiliser of τ ∈ R is infinite cyclic: Γτ = 〈γτ 〉 ⊂ PSL2(Z).
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Intersecting geodesics

Any pair (x , y) ⊂ R̂2 defines a unique geodesic in H by drawing a half
circle:

Two geodesics can intersect either positively or negatively, depending on
their orientations. We denote this intersection by

(x → y) ∩ (z → w) ∈ {−1, 0, 1}.
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Knopp’s cocycle

Definition
The Knopp cocycle fτ associated to τ is defined by

fτ (γ) =
∑

δ∈SL2(Z)/Γτ

(δτ ′ → δτ) ∩ (γ∞→∞)

z − δτ
.

I So δτ ′ → δτ contributes to the sum if and only if γ∞ ∈ Q is in
between δτ and δτ ′. If δτ > γ∞ it contributes 1, otherwise −1.

I Every element in SL2(Z) · τ has the same discriminant as τ . So, the
set SL2(Z)/Γτ bijects with the set of real quadratic irrationalities σ
satisfying disc(σ) = disc(τ) = D.

I This actually is a cocycle:

fτ (γ1γ2) = fτ (γ1) + fτ (γ2)|2γ−1
1 .

Remark
This sum is finite. Consider e.g. γ∞ = 0. We look for zeroes of
px2 + qx + r = 0 with q2 − 4pr = D and σ′ < 0 < σ. The latter means
that pr < 0. However, this bounds q2 = D + 4pr < D, yielding only
finitely many possibilities.
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The multiplicative Knopp cocycle
Recall the dlog map on polynomials: if P(z) =

∏
(z − αi )

ni , then

dlog(P)(z) =
P ′(z)

P(z)
=
∑ ni

z − αi
.

We want to lift our cocycle along dlog.

Proposition
For some appropriate choices of xγ ∈ Q(τ), we have a cocycle defined by

Fτ (γ) = xγ
∏

δ∈SL2(Z)/Γτ

(z − δτ)(δτ∩δτ ′)∩(γ∞→∞).

Definition
For τ1, τ2 both real quadratic irrationalities, we define

Fτ1 [τ2] := Fτ1 (γτ2 )(τ2).

This is independent on the choice of τ2 in its SL2(Z)-orbit. However,
choosing γ−1

τ2
instead will invert the outcome.
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Context

Why is this cocycle interesting?
Recent work by H. Darmon and J. Vonk uses a similar construction but
then for the group SL2(Z[1/p]) on the p-adic upper half plane.

Their goal is to do explicit class field theory for real quadratic fields (RM
theory) just like classical CM theory:

HK = K (j(τ)) where τ ∈ OK .

Better yet, produce formulas (à la Gross-Zagier) for the differences

j(τ1)− j(τ2).

This Knopp cocycle is the R-baby case. Still interesting to study!
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Example
Set τ1 = 1+

√
5

2 and τ2 =
√

3. Then

γτ2 =

(
2 3
1 2

)
, so γτ2∞ = 2.

In the SL2(Z)-orbit of τ1 we have only

3−
√

5

2
< 2 <

3 +
√

5

2
and

5−
√

5

2
< 2 <

5 +
√

5

2
.

As a result,

Fτ1 (γτ2 ) =

(
z − 3+

√
5

2

)(
z − 5+

√
5

2

)
(
z − 3−

√
5

2

)(
z − 5−

√
5

2

) .
Hence

Fτ1 [τ2] =

(
−5 + 2

√
3−
√

5
) (
−3 + 2

√
3−
√

5
)(

−5 + 2
√

3 +
√

5
) (
−3 + 2

√
3 +
√

5
) =

21− 8
√

5

11
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There is no obvious reason for the
√

3 to disappear.

In this case:(
−5 + 2

√
3−
√

5
)(
−3 + 2

√
3−
√

5
)

= −4(
√

3− 2)(
√

5 + 4)(
−5 + 2

√
3 +
√

5
)(
−3 + 2

√
3 +
√

5
)

= 4(
√

3− 2)(
√

5− 4).

Coincidence? Let’s try τ1 =
√

2 and τ2 =
√

3. Then Fτ1 [τ2] equals(
4 +
√

2− 2
√

3
) (

1 +
√
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√
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Mysterious factorisations II
So Fτ1 [τ2] equals(
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Key Lemma
Lemma
Let M ∈ GL2(Q) interchange τ and τ ′. Then M2 acts trivially.

Proof: We claim that tr(M) = 0, so that M2 = − det(M) acts trivially.

Indeed, we have Mτ = τ ′ precisely when

aτ + b = cττ ′ + dτ ′ ⇐⇒ (a + d)τ = cττ ′ − b + d(τ + τ ′) ∈ Q.

Since τ /∈ Q, we must have a + d = 0.

Key Lemma
If pτ 2 + qτ + r = 0 and M ∈ GL2(Q) interchanges τ and τ ′, then

p(x − τ)(Mx − τ) =
a− cτ

cx − a
(px2 + qx + r).

Proof: Just write everything out. The equation will be true when

pb = qa + rc .
Rewrite this as

b = −a(τ + τ ′) + cττ ′ ⇐⇒ Mτ = τ ′

by the previous proof.
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b = −a(τ + τ ′) + cττ ′ ⇐⇒ Mτ = τ ′

by the previous proof.
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Idea of the proof

Set x = τ1 and τ = τ2. Then the lemma reads:

Key Lemma
If pτ 2

2 + qτ2 + r = 0 and M ∈ GL2(Q) interchanges τ2 and τ ′2, then

p(τ1 − τ2)(Mτ1 − τ2) =
a− cτ2

cτ1 − a
(pτ 2

1 + qτ1 + r).

We make pairs τ1,Mτ1 in the numerator. This gives us (a− cτ2) · . . .
If we assume that τ ′1 ∈ SL2(Z)τ1, then in the denominator we will have
the pairs τ ′1,Mτ ′1 which also give (a− cτ2) · . . . These cancel, hence the
result is in Q(τ1). This assumption is generally necessary.
Concern: How do we choose M?
If M interchanges τ2 and τ ′2, then so does γkτ2

M for any k.
We need that M preserves being > γτ2∞ and < γτ2∞.
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Choosing the right involution
Note that γτ2 acts on the number line as follows:

We see: let M interchange τ2 and τ ′2 and suppose that det(M) = −1.
Then there is a unique k ∈ Z such that γkτ2

M∞ > γτ2∞ = a/c .
Choose this involution to be M. Then M and γM act like:
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More MS Paint pictures



The final steps

What about the questionmarks? We use the associations

τ 7→ γτ2τ
′ and τ 7→ γ−1

τ2
τ ′.

One can check these interchange the regions appropriately. Why do they
induce factorisations?

Lemma
There exists a unique involution N in GL2(Q)/Q interchanging both τ1,
τ ′1 and τ2, τ ′2.

Proof: We saw before that interchanging is equivalent to tr(N) = 0 and

p1b = q1a + r1c and p2b = q2a + r2c .

These equations are independent over Q so give a unique solution up to
scalars.
Consider γτ2N. It still interchanges τ2, τ ′2, but now maps τ1 to γτ2τ

′
1. So

our associations above are secretly acting by involutions and thus give
factorisations.
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