Mysterious factorisations and Knopp's cocycle

Mike Das

5th of July, 2022

Universiteit
Leiden

Setting up

Recall the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\widehat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$:

$$
\text { if } \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \text { then } \quad \gamma \cdot x=\frac{a x+b}{c x+d} \text {. }
$$

On $\mathbb{R}(z)$ we have the weight 2 action:

$$
\left.f(z)\right|_{2} \gamma=(c z+d)^{-2} f(\gamma \cdot z) .
$$

Setting up

Recall the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\widehat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$:

$$
\text { if } \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \text { then } \quad \gamma \cdot x=\frac{a x+b}{c x+d} \text {. }
$$

On $\mathbb{R}(z)$ we have the weight 2 action:

$$
\left.f(z)\right|_{2} \gamma=(c z+d)^{-2} f(\gamma \cdot z) .
$$

Let $\tau \in \mathbb{R}$ be of degree 2 over \mathbb{Q}. Its Galois conjugate is denoted τ^{\prime}.
Lemma
The stabiliser of $\tau \in \mathbb{R}$ is infinite cyclic: $\Gamma_{\tau}=\left\langle\gamma_{\tau}\right\rangle \subset \operatorname{PSL}_{2}(\mathbb{Z})$.

Intersecting geodesics

Any pair $(x, y) \subset \widehat{\mathbb{R}}^{2}$ defines a unique geodesic in \mathcal{H} by drawing a half circle:

Intersecting geodesics

Any pair $(x, y) \subset \widehat{\mathbb{R}}^{2}$ defines a unique geodesic in \mathcal{H} by drawing a half circle:

Two geodesics can intersect either positively or negatively, depending on their orientations. We denote this intersection by

$$
(x \rightarrow y) \cap(z \rightarrow w) \in\{-1,0,1\} .
$$

Knopp's cocycle

Definition

The Knopp cocycle f_{τ} associated to τ is defined by

$$
f_{\tau}(\gamma)=\sum_{\delta \in \mathrm{SL}_{2}(\mathbb{Z}) / \Gamma_{\tau}} \frac{\left(\delta \tau^{\prime} \rightarrow \delta \tau\right) \cap(\gamma \infty \rightarrow \infty)}{z-\delta \tau}
$$

Knopp's cocycle

Definition

The Knopp cocycle f_{τ} associated to τ is defined by

$$
f_{\tau}(\gamma)=\sum_{\delta \in S \mathrm{~L}_{2}(\mathbb{Z}) / \Gamma_{\tau}} \frac{\left(\delta \tau^{\prime} \rightarrow \delta \tau\right) \cap(\gamma \infty \rightarrow \infty)}{z-\delta \tau} .
$$

- So $\delta \tau^{\prime} \rightarrow \delta \tau$ contributes to the sum if and only if $\gamma \infty \in \mathbb{Q}$ is in between $\delta \tau$ and $\delta \tau^{\prime}$. If $\delta \tau>\gamma \infty$ it contributes 1 , otherwise -1 .

Knopp's cocycle

Definition

The Knopp cocycle f_{τ} associated to τ is defined by

$$
f_{\tau}(\gamma)=\sum_{\delta \in S \mathrm{~L}_{2}(\mathbb{Z}) / \Gamma_{\tau}} \frac{\left(\delta \tau^{\prime} \rightarrow \delta \tau\right) \cap(\gamma \infty \rightarrow \infty)}{z-\delta \tau}
$$

- So $\delta \tau^{\prime} \rightarrow \delta \tau$ contributes to the sum if and only if $\gamma \infty \in \mathbb{Q}$ is in between $\delta \tau$ and $\delta \tau^{\prime}$. If $\delta \tau>\gamma \infty$ it contributes 1 , otherwise -1 .
- Every element in $\mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau$ has the same discriminant as τ. So, the set $\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma_{\tau}$ bijects with the set of real quadratic irrationalities σ satisfying $\operatorname{disc}(\sigma)=\operatorname{disc}(\tau)=D$.

Knopp's cocycle

Definition

The Knopp cocycle f_{τ} associated to τ is defined by

$$
f_{\tau}(\gamma)=\sum_{\delta \in S \mathrm{~L}_{2}(\mathbb{Z}) / \Gamma_{\tau}} \frac{\left(\delta \tau^{\prime} \rightarrow \delta \tau\right) \cap(\gamma \infty \rightarrow \infty)}{z-\delta \tau}
$$

- So $\delta \tau^{\prime} \rightarrow \delta \tau$ contributes to the sum if and only if $\gamma \infty \in \mathbb{Q}$ is in between $\delta \tau$ and $\delta \tau^{\prime}$. If $\delta \tau>\gamma \infty$ it contributes 1 , otherwise -1 .
- Every element in $\mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau$ has the same discriminant as τ. So, the set $\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma_{\tau}$ bijects with the set of real quadratic irrationalities σ satisfying $\operatorname{disc}(\sigma)=\operatorname{disc}(\tau)=D$.
- This actually is a cocycle:

$$
f_{\tau}\left(\gamma_{1} \gamma_{2}\right)=f_{\tau}\left(\gamma_{1}\right)+\left.f_{\tau}\left(\gamma_{2}\right)\right|_{2} \gamma_{1}^{-1} .
$$

Knopp's cocycle

Definition

The Knopp cocycle f_{τ} associated to τ is defined by

$$
f_{\tau}(\gamma)=\sum_{\delta \in S \mathrm{~L}_{2}(\mathbb{Z}) / \Gamma_{\tau}} \frac{\left(\delta \tau^{\prime} \rightarrow \delta \tau\right) \cap(\gamma \infty \rightarrow \infty)}{z-\delta \tau}
$$

- So $\delta \tau^{\prime} \rightarrow \delta \tau$ contributes to the sum if and only if $\gamma \infty \in \mathbb{Q}$ is in between $\delta \tau$ and $\delta \tau^{\prime}$. If $\delta \tau>\gamma \infty$ it contributes 1 , otherwise -1 .
- Every element in $\mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau$ has the same discriminant as τ. So, the set $\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma_{\tau}$ bijects with the set of real quadratic irrationalities σ satisfying $\operatorname{disc}(\sigma)=\operatorname{disc}(\tau)=D$.
- This actually is a cocycle:

$$
f_{\tau}\left(\gamma_{1} \gamma_{2}\right)=f_{\tau}\left(\gamma_{1}\right)+\left.f_{\tau}\left(\gamma_{2}\right)\right|_{2} \gamma_{1}^{-1}
$$

Remark
This sum is finite. Consider e.g. $\gamma \infty=0$. We look for zeroes of $p x^{2}+q x+r=0$ with $q^{2}-4 p r=D$ and $\sigma^{\prime}<0<\sigma$. The latter means that $p r<0$. However, this bounds $q^{2}=D+4 p r<D$, yielding only finitely many possibilities.

The multiplicative Knopp cocycle

Recall the dlog map on polynomials: if $P(z)=\Pi\left(z-\alpha_{i}\right)^{n_{i}}$, then

$$
\operatorname{dlog}(P)(z)=\frac{P^{\prime}(z)}{P(z)}=\sum \frac{n_{i}}{z-\alpha_{i}}
$$

We want to lift our cocycle along dlog.

The multiplicative Knopp cocycle

Recall the dlog map on polynomials: if $P(z)=\Pi\left(z-\alpha_{i}\right)^{n_{i}}$, then

$$
\operatorname{dlog}(P)(z)=\frac{P^{\prime}(z)}{P(z)}=\sum \frac{n_{i}}{z-\alpha_{i}}
$$

We want to lift our cocycle along dlog.

Proposition

For some appropriate choices of $x_{\gamma} \in \mathbb{Q}(\tau)$, we have a cocycle defined by

$$
F_{\tau}(\gamma)=x_{\gamma} \prod_{\delta \in S L_{2}(\mathbb{Z}) / \Gamma_{\tau}}(z-\delta \tau)^{\left(\delta \tau \cap \delta \tau^{\prime}\right) \cap(\gamma \infty \rightarrow \infty)} .
$$

The multiplicative Knopp cocycle

Recall the dlog map on polynomials: if $P(z)=\Pi\left(z-\alpha_{i}\right)^{n_{i}}$, then

$$
\operatorname{dlog}(P)(z)=\frac{P^{\prime}(z)}{P(z)}=\sum \frac{n_{i}}{z-\alpha_{i}}
$$

We want to lift our cocycle along dlog.

Proposition

For some appropriate choices of $x_{\gamma} \in \mathbb{Q}(\tau)$, we have a cocycle defined by

$$
F_{\tau}(\gamma)=x_{\gamma} \prod_{\delta \in \mathrm{SL}_{2}(\mathbb{Z}) / \Gamma_{\tau}}(z-\delta \tau)^{\left(\delta \tau \cap \delta \tau^{\prime}\right) \cap(\gamma \infty \rightarrow \infty)}
$$

Definition

For τ_{1}, τ_{2} both real quadratic irrationalities, we define

$$
F_{\tau_{1}}\left[\tau_{2}\right]:=F_{\tau_{1}}\left(\gamma_{\tau_{2}}\right)\left(\tau_{2}\right) .
$$

This is independent on the choice of τ_{2} in its $\mathrm{SL}_{2}(\mathbb{Z})$-orbit. However, choosing $\gamma_{\tau_{2}}^{-1}$ instead will invert the outcome.

Context

Why is this cocycle interesting?
Recent work by H. Darmon and J. Vonk uses a similar construction but then for the group $\mathrm{SL}_{2}(\mathbb{Z}[1 / p])$ on the p-adic upper half plane.

Context

Why is this cocycle interesting?
Recent work by H. Darmon and J. Vonk uses a similar construction but then for the group $\mathrm{SL}_{2}(\mathbb{Z}[1 / p])$ on the p-adic upper half plane.
Their goal is to do explicit class field theory for real quadratic fields (RM theory) just like classical CM theory:

$$
H_{K}=K(j(\tau)) \quad \text { where } \quad \tau \in \mathcal{O}_{K} .
$$

Context

Why is this cocycle interesting?
Recent work by H. Darmon and J. Vonk uses a similar construction but then for the group $\mathrm{SL}_{2}(\mathbb{Z}[1 / p])$ on the p-adic upper half plane.
Their goal is to do explicit class field theory for real quadratic fields (RM theory) just like classical CM theory:

$$
H_{K}=K(j(\tau)) \quad \text { where } \quad \tau \in \mathcal{O}_{K} .
$$

Better yet, produce formulas (à la Gross-Zagier) for the differences

$$
j\left(\tau_{1}\right)-j\left(\tau_{2}\right)
$$

Context

Why is this cocycle interesting?
Recent work by H. Darmon and J. Vonk uses a similar construction but then for the group $\mathrm{SL}_{2}(\mathbb{Z}[1 / p])$ on the p-adic upper half plane.
Their goal is to do explicit class field theory for real quadratic fields (RM theory) just like classical CM theory:

$$
H_{K}=K(j(\tau)) \quad \text { where } \quad \tau \in \mathcal{O}_{K} .
$$

Better yet, produce formulas (à la Gross-Zagier) for the differences

$$
j\left(\tau_{1}\right)-j\left(\tau_{2}\right)
$$

This Knopp cocycle is the \mathbb{R}-baby case. Still interesting to study!

Example

Set $\tau_{1}=\frac{1+\sqrt{5}}{2}$ and $\tau_{2}=\sqrt{3}$. Then

$$
\gamma_{\tau_{2}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right), \quad \text { so } \quad \gamma_{\tau_{2}} \infty=2
$$

Example

Set $\tau_{1}=\frac{1+\sqrt{5}}{2}$ and $\tau_{2}=\sqrt{3}$. Then

$$
\gamma_{\tau_{2}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right), \quad \text { so } \quad \gamma_{\tau_{2}} \infty=2
$$

In the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit of τ_{1} we have only

$$
\frac{3-\sqrt{5}}{2}<2<\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \frac{5-\sqrt{5}}{2}<2<\frac{5+\sqrt{5}}{2}
$$

Example

Set $\tau_{1}=\frac{1+\sqrt{5}}{2}$ and $\tau_{2}=\sqrt{3}$. Then

$$
\gamma_{\tau_{2}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right), \quad \text { so } \quad \gamma_{\tau_{2}} \infty=2
$$

In the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit of τ_{1} we have only

$$
\frac{3-\sqrt{5}}{2}<2<\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \frac{5-\sqrt{5}}{2}<2<\frac{5+\sqrt{5}}{2}
$$

As a result,

$$
F_{\tau_{1}}\left(\gamma_{\tau_{2}}\right)=\frac{\left(z-\frac{3+\sqrt{5}}{2}\right)\left(z-\frac{5+\sqrt{5}}{2}\right)}{\left(z-\frac{3-\sqrt{5}}{2}\right)\left(z-\frac{5-\sqrt{5}}{2}\right)} .
$$

Example

Set $\tau_{1}=\frac{1+\sqrt{5}}{2}$ and $\tau_{2}=\sqrt{3}$. Then

$$
\gamma_{\tau_{2}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right), \quad \text { so } \quad \gamma_{\tau_{2}} \infty=2
$$

In the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit of τ_{1} we have only

$$
\frac{3-\sqrt{5}}{2}<2<\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \frac{5-\sqrt{5}}{2}<2<\frac{5+\sqrt{5}}{2}
$$

As a result,

$$
F_{\tau_{1}}\left(\gamma_{\tau_{2}}\right)=\frac{\left(z-\frac{3+\sqrt{5}}{2}\right)\left(z-\frac{5+\sqrt{5}}{2}\right)}{\left(z-\frac{3-\sqrt{5}}{2}\right)\left(z-\frac{5-\sqrt{5}}{2}\right)} .
$$

Hence

$$
F_{\tau_{1}}\left[\tau_{2}\right]=\frac{(-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})}{(-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})}
$$

Example

Set $\tau_{1}=\frac{1+\sqrt{5}}{2}$ and $\tau_{2}=\sqrt{3}$. Then

$$
\gamma_{\tau_{2}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right), \quad \text { so } \quad \gamma_{\tau_{2}} \infty=2
$$

In the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit of τ_{1} we have only

$$
\frac{3-\sqrt{5}}{2}<2<\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \frac{5-\sqrt{5}}{2}<2<\frac{5+\sqrt{5}}{2}
$$

As a result,

$$
F_{\tau_{1}}\left(\gamma_{\tau_{2}}\right)=\frac{\left(z-\frac{3+\sqrt{5}}{2}\right)\left(z-\frac{5+\sqrt{5}}{2}\right)}{\left(z-\frac{3-\sqrt{5}}{2}\right)\left(z-\frac{5-\sqrt{5}}{2}\right)} .
$$

Hence

$$
F_{\tau_{1}}\left[\tau_{2}\right]=\frac{(-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})}{(-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})}=\frac{21-8 \sqrt{5}}{11}
$$

Mysterious factorisations I

$$
F_{\tau_{1}}\left[\tau_{2}\right]=\frac{(-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})}{(-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})}=\frac{21-8 \sqrt{5}}{11} .
$$

There is no obvious reason for the $\sqrt{3}$ to disappear.

Mysterious factorisations I

$$
F_{\tau_{1}}\left[\tau_{2}\right]=\frac{(-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})}{(-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})}=\frac{21-8 \sqrt{5}}{11}
$$

There is no obvious reason for the $\sqrt{3}$ to disappear. In this case:

$$
\begin{aligned}
& (-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})=-4(\sqrt{3}-2)(\sqrt{5}+4) \\
& (-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})=4(\sqrt{3}-2)(\sqrt{5}-4) .
\end{aligned}
$$

Mysterious factorisations I

$$
F_{\tau_{1}}\left[\tau_{2}\right]=\frac{(-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})}{(-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})}=\frac{21-8 \sqrt{5}}{11} .
$$

There is no obvious reason for the $\sqrt{3}$ to disappear. In this case:

$$
\begin{aligned}
& (-5+2 \sqrt{3}-\sqrt{5})(-3+2 \sqrt{3}-\sqrt{5})=-4(\sqrt{3}-2)(\sqrt{5}+4) \\
& (-5+2 \sqrt{3}+\sqrt{5})(-3+2 \sqrt{3}+\sqrt{5})=4(\sqrt{3}-2)(\sqrt{5}-4)
\end{aligned}
$$

Coincidence? Let's try $\tau_{1}=\sqrt{2}$ and $\tau_{2}=\sqrt{3}$. Then $F_{\tau_{1}}\left[\tau_{2}\right]$ equals

$$
\frac{(4+\sqrt{2}-2 \sqrt{3})(1+\sqrt{2}-\sqrt{3})(2+\sqrt{2}-\sqrt{3})(3+\sqrt{2}-\sqrt{3})}{(-3+\sqrt{2}+\sqrt{3})(-2+\sqrt{2}+\sqrt{3})(-1+\sqrt{2}+\sqrt{3})(-4+\sqrt{2}+2 \sqrt{3})} .
$$

Mysterious factorisations II

So $F_{\tau_{1}}\left[\tau_{2}\right]$ equals

$$
\frac{(4+\sqrt{2}-2 \sqrt{3})(1+\sqrt{2}-\sqrt{3})(2+\sqrt{2}-\sqrt{3})(3+\sqrt{2}-\sqrt{3})}{(-3+\sqrt{2}+\sqrt{3})(-2+\sqrt{2}+\sqrt{3})(-1+\sqrt{2}+\sqrt{3})(-4+\sqrt{2}+2 \sqrt{3})} .
$$

This equals

$$
\frac{219+53 \sqrt{2}}{23}
$$

Mysterious factorisations II

So $F_{\tau_{1}}\left[\tau_{2}\right]$ equals
$\frac{(4+\sqrt{2}-2 \sqrt{3})(1+\sqrt{2}-\sqrt{3})(2+\sqrt{2}-\sqrt{3})(3+\sqrt{2}-\sqrt{3})}{(-3+\sqrt{2}+\sqrt{3})(-2+\sqrt{2}+\sqrt{3})(-1+\sqrt{2}+\sqrt{3})(-4+\sqrt{2}+2 \sqrt{3})}$.
This equals

$$
\frac{219+53 \sqrt{2}}{23}
$$

Again, we have factorisations

$$
\begin{aligned}
(4+\sqrt{2}-2 \sqrt{3})(2+\sqrt{2}-\sqrt{3}) & =-(\sqrt{3}-2)(8+3 \sqrt{2}) \\
(1+\sqrt{2}-\sqrt{3})(3+\sqrt{2}-\sqrt{3}) & =-(\sqrt{3}-2)(4+2 \sqrt{2}) \\
(-1+\sqrt{2}+\sqrt{3})(-3+\sqrt{2}+\sqrt{3}) & =-(\sqrt{3}-2)(4-2 \sqrt{2}) \\
(-2+\sqrt{2}+\sqrt{3})(-4+\sqrt{2}+2 \sqrt{3}) & =-(\sqrt{3}-2)(8-3 \sqrt{2}) .
\end{aligned}
$$

What's going on here?

Key Lemma

Lemma

Let $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchange τ and τ^{\prime}. Then M^{2} acts trivially.
Proof: We claim that $\operatorname{tr}(M)=0$, so that $M^{2}=-\operatorname{det}(M)$ acts trivially.

Key Lemma

Lemma

Let $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchange τ and τ^{\prime}. Then M^{2} acts trivially.
Proof: We claim that $\operatorname{tr}(M)=0$, so that $M^{2}=-\operatorname{det}(M)$ acts trivially. Indeed, we have $M \tau=\tau^{\prime}$ precisely when

$$
a \tau+b=c \tau \tau^{\prime}+d \tau^{\prime} \Longleftrightarrow(a+d) \tau=c \tau \tau^{\prime}-b+d\left(\tau+\tau^{\prime}\right) \in \mathbb{Q} .
$$

Since $\tau \notin \mathbb{Q}$, we must have $a+d=0$.

Key Lemma

Lemma

Let $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchange τ and τ^{\prime}. Then M^{2} acts trivially.
Proof: We claim that $\operatorname{tr}(M)=0$, so that $M^{2}=-\operatorname{det}(M)$ acts trivially. Indeed, we have $M \tau=\tau^{\prime}$ precisely when

$$
a \tau+b=c \tau \tau^{\prime}+d \tau^{\prime} \Longleftrightarrow(a+d) \tau=c \tau \tau^{\prime}-b+d\left(\tau+\tau^{\prime}\right) \in \mathbb{Q}
$$

Since $\tau \notin \mathbb{Q}$, we must have $a+d=0$.
Key Lemma
If $p \tau^{2}+q \tau+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ and τ^{\prime}, then

$$
p(x-\tau)(M x-\tau)=\frac{a-c \tau}{c x-a}\left(p x^{2}+q x+r\right)
$$

Key Lemma

Lemma

Let $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchange τ and τ^{\prime}. Then M^{2} acts trivially.
Proof: We claim that $\operatorname{tr}(M)=0$, so that $M^{2}=-\operatorname{det}(M)$ acts trivially. Indeed, we have $M \tau=\tau^{\prime}$ precisely when

$$
a \tau+b=c \tau \tau^{\prime}+d \tau^{\prime} \Longleftrightarrow(a+d) \tau=c \tau \tau^{\prime}-b+d\left(\tau+\tau^{\prime}\right) \in \mathbb{Q}
$$

Since $\tau \notin \mathbb{Q}$, we must have $a+d=0$.
Key Lemma
If $p \tau^{2}+q \tau+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ and τ^{\prime}, then

$$
p(x-\tau)(M x-\tau)=\frac{a-c \tau}{c x-a}\left(p x^{2}+q x+r\right) .
$$

Proof: Just write everything out. The equation will be true when

$$
p b=q a+r c
$$

Rewrite this as

$$
b=-a\left(\tau+\tau^{\prime}\right)+c \tau \tau^{\prime} \Longleftrightarrow M \tau=\tau^{\prime}
$$

by the previous proof.

Idea of the proof

Set $x=\tau_{1}$ and $\tau=\tau_{2}$. Then the lemma reads:
Key Lemma
If $p \tau_{2}^{2}+q \tau_{2}+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ_{2} and τ_{2}^{\prime}, then

$$
p\left(\tau_{1}-\tau_{2}\right)\left(M \tau_{1}-\tau_{2}\right)=\frac{a-c \tau_{2}}{c \tau_{1}-a}\left(p \tau_{1}^{2}+q \tau_{1}+r\right)
$$

Idea of the proof

Set $x=\tau_{1}$ and $\tau=\tau_{2}$. Then the lemma reads:
Key Lemma
If $p \tau_{2}^{2}+q \tau_{2}+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ_{2} and τ_{2}^{\prime}, then

$$
p\left(\tau_{1}-\tau_{2}\right)\left(M \tau_{1}-\tau_{2}\right)=\frac{a-c \tau_{2}}{c \tau_{1}-a}\left(p \tau_{1}^{2}+q \tau_{1}+r\right)
$$

We make pairs $\tau_{1}, M \tau_{1}$ in the numerator. This gives us $\left(a-c \tau_{2}\right) \cdot \ldots$

Idea of the proof

Set $x=\tau_{1}$ and $\tau=\tau_{2}$. Then the lemma reads:
Key Lemma
If $p \tau_{2}^{2}+q \tau_{2}+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ_{2} and τ_{2}^{\prime}, then

$$
p\left(\tau_{1}-\tau_{2}\right)\left(M \tau_{1}-\tau_{2}\right)=\frac{a-c \tau_{2}}{c \tau_{1}-a}\left(p \tau_{1}^{2}+q \tau_{1}+r\right)
$$

We make pairs $\tau_{1}, M \tau_{1}$ in the numerator. This gives us $\left(a-c \tau_{2}\right) \cdot \ldots$ If we assume that $\tau_{1}^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z}) \tau_{1}$, then in the denominator we will have the pairs $\tau_{1}^{\prime}, M \tau_{1}^{\prime}$ which also give $\left(a-c \tau_{2}\right) \cdot \ldots$ These cancel, hence the result is in $\mathbb{Q}\left(\tau_{1}\right)$. This assumption is generally necessary.

Idea of the proof

Set $x=\tau_{1}$ and $\tau=\tau_{2}$. Then the lemma reads:
Key Lemma
If $p \tau_{2}^{2}+q \tau_{2}+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ_{2} and τ_{2}^{\prime}, then

$$
p\left(\tau_{1}-\tau_{2}\right)\left(M \tau_{1}-\tau_{2}\right)=\frac{a-c \tau_{2}}{c \tau_{1}-a}\left(p \tau_{1}^{2}+q \tau_{1}+r\right)
$$

We make pairs $\tau_{1}, M \tau_{1}$ in the numerator. This gives us $\left(a-c \tau_{2}\right) \cdot \ldots$ If we assume that $\tau_{1}^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z}) \tau_{1}$, then in the denominator we will have the pairs $\tau_{1}^{\prime}, M \tau_{1}^{\prime}$ which also give $\left(a-c \tau_{2}\right) \cdot \ldots$ These cancel, hence the result is in $\mathbb{Q}\left(\tau_{1}\right)$. This assumption is generally necessary.
Concern: How do we choose M ?

Idea of the proof

Set $x=\tau_{1}$ and $\tau=\tau_{2}$. Then the lemma reads:
Key Lemma
If $p \tau_{2}^{2}+q \tau_{2}+r=0$ and $M \in \mathrm{GL}_{2}(\mathbb{Q})$ interchanges τ_{2} and τ_{2}^{\prime}, then

$$
p\left(\tau_{1}-\tau_{2}\right)\left(M \tau_{1}-\tau_{2}\right)=\frac{a-c \tau_{2}}{c \tau_{1}-a}\left(p \tau_{1}^{2}+q \tau_{1}+r\right)
$$

We make pairs $\tau_{1}, M \tau_{1}$ in the numerator. This gives us $\left(a-c \tau_{2}\right) \cdot \ldots$ If we assume that $\tau_{1}^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z}) \tau_{1}$, then in the denominator we will have the pairs $\tau_{1}^{\prime}, M \tau_{1}^{\prime}$ which also give $\left(a-c \tau_{2}\right) \cdot \ldots$ These cancel, hence the result is in $\mathbb{Q}\left(\tau_{1}\right)$. This assumption is generally necessary.
Concern: How do we choose M ?
If M interchanges τ_{2} and τ_{2}^{\prime}, then so does $\gamma_{\tau_{2}}^{k} M$ for any k.
We need that M preserves being $>\gamma_{T_{2}} \infty$ and $<\gamma_{T_{2}} \infty$.

Choosing the right involution

Note that $\gamma_{\tau_{2}}$ acts on the number line as follows:

Choosing the right involution

Note that $\gamma_{\tau_{2}}$ acts on the number line as follows:

We see: let M interchange τ_{2} and τ_{2}^{\prime} and suppose that $\operatorname{det}(M)=-1$.
Then there is a unique $k \in \mathbb{Z}$ such that $\gamma_{\tau_{2}}^{k} M \infty>\gamma_{\tau_{2}} \infty=a / c$.

Choosing the right involution

Note that $\gamma_{\tau_{2}}$ acts on the number line as follows:

We see: let M interchange τ_{2} and τ_{2}^{\prime} and suppose that $\operatorname{det}(M)=-1$.
Then there is a unique $k \in \mathbb{Z}$ such that $\gamma_{\tau_{2}}^{k} M \infty>\gamma_{\tau_{2}} \infty=a / c$.
Choose this involution to be M. Then M and γM act like:

More MS Paint pictures

The final steps

What about the questionmarks? We use the associations

$$
\tau \mapsto \gamma_{\tau_{2}} \tau^{\prime} \quad \text { and } \quad \tau \mapsto \gamma_{\tau_{2}}^{-1} \tau^{\prime}
$$

One can check these interchange the regions appropriately. Why do they induce factorisations?

The final steps

What about the questionmarks? We use the associations

$$
\tau \mapsto \gamma_{\tau_{2}} \tau^{\prime} \quad \text { and } \quad \tau \mapsto \gamma_{\tau_{2}}^{-1} \tau^{\prime}
$$

One can check these interchange the regions appropriately. Why do they induce factorisations?

Lemma
There exists a unique involution N in $\mathrm{GL}_{2}(\mathbb{Q}) / \mathbb{Q}$ interchanging both τ_{1}, τ_{1}^{\prime} and $\tau_{2}, \tau_{2}^{\prime}$.
Proof: We saw before that interchanging is equivalent to $\operatorname{tr}(N)=0$ and

$$
p_{1} b=q_{1} a+r_{1} c \quad \text { and } \quad p_{2} b=q_{2} a+r_{2} c .
$$

These equations are independent over \mathbb{Q} so give a unique solution up to scalars.

The final steps

What about the questionmarks? We use the associations

$$
\tau \mapsto \gamma_{\tau_{2}} \tau^{\prime} \quad \text { and } \quad \tau \mapsto \gamma_{\tau_{2}}^{-1} \tau^{\prime}
$$

One can check these interchange the regions appropriately. Why do they induce factorisations?

Lemma
There exists a unique involution N in $\mathrm{GL}_{2}(\mathbb{Q}) / \mathbb{Q}$ interchanging both τ_{1}, τ_{1}^{\prime} and $\tau_{2}, \tau_{2}^{\prime}$.
Proof: We saw before that interchanging is equivalent to $\operatorname{tr}(N)=0$ and

$$
p_{1} b=q_{1} a+r_{1} c \quad \text { and } \quad p_{2} b=q_{2} a+r_{2} c .
$$

These equations are independent over \mathbb{Q} so give a unique solution up to scalars.
Consider $\gamma_{\tau_{2}} N$. It still interchanges $\tau_{2}, \tau_{2}^{\prime}$, but now maps τ_{1} to $\gamma_{\tau_{2}} \tau_{1}^{\prime}$. So our associations above are secretly acting by involutions and thus give factorisations.

Fin

