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Plan for today

Let’s be honest.
You are not motivated to work on your PhD project 24/7.
That’s okay. Neither am I.
But not working on your maths makes you feel guilty :(
Solution: still work on maths. But fun maths :)

Today, I will discuss three problems that I came up with:
Monic polynomials that vanish mod m;
Scalar endomorphisms in abelian groups;
A Collatz-type problem.

Then I will solve them for you. Just for fun :)
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Part 1: Problems
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Problem I (1/4)

Question
Fix m ∈N. What is the smallest degree d of a polynomial p ∈ Z[X]
with with the property that p(n) is divisible by m for all n ∈ Z?

Answer: d = 0, for choose p(X) = m constant. That’s boring...

Definition

We say some p =
∑d

i=0 aix
i ∈ Z[X] is monic if ad = 1.

Question
Fix m ∈N. What is the smallest degree d of a monic p ∈ Z[X] with
with the property that p(n) is divisible by m for all n ∈ Z?

Clearly, if m = 1, then p = 1 works, so d = 0.
If m = 2, then p = X2 − X works, so d = 2.
If m = 3, then...?
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Problem I (2/4)

Can X2 + aX+ b always be divisible by 3?

X = 0 gives b ≡ 0 mod 3, so let’s say b = 0.
X = 1 gives 1 + a ≡ 0 mod 3 =⇒ a ≡ −1 mod 3.
X = 2 gives 4 + 2a ≡ 0 mod 3 =⇒ a ≡ −2 mod 3.

This is a contradiction, so the answer is no.
What about degree 3?
Consider p = X3 − X. Then

p(0) = 0, p(1) = 0, and p(2) = 6.

Since p(X+ 3) ≡ p(X) mod 3, this is indeed always divisible by 3.
But really p = (X− 1)X(X+ 1); one of three consecutive numbers will
always be divisible by 3. Therefore, for any m, we can take

p = (X+ 1) · · · (X+m);

this will always be divisible by m. Therefore, d ⩽ m.
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Problem I (3/4)

Can X3 + aX2 + bX+ c always be divisible by 4?

X = 0 gives c ≡ 0 mod 4, so let’s say c = 0.
X = 1 gives 1 + a+ b ≡ 0 mod 4 =⇒ a+ b ≡ −1 mod 4.
X = 2 gives 8 + 4a+ 2b ≡ 0 mod 4 =⇒ 2b ≡ 0 mod 4.
X = −1 gives −1 + a− b ≡ 0 mod 4 =⇒ a− b ≡ 1 mod 4.

The second and fourth give 2b ≡ 2 mod 4. This contradicts the third,
so the answer is no. Therefore, d = 4.
Let m = 5. This is prime, so the polynomial

p ∈ F5[X]

can only have d zeroes. It should have 5 zeroes, so d = 5 again.
So is m is prime, we must have d = m. Does this always hold?
Look back at p = (X− 1)X(X+ 1). This is always divisible by 3, but
also by 2. Therefore, for m = 6, we have d = 3...
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Problem I (4/4)

Are the polynomials p = (X+ 1) · · · (X+ d) sometimes better than
“just” divisible by d? Yes!

Lemma
For any n ∈ Z, the product (n+ 1) · · · (n+ d) is divisible by d!.

Proof.
Indeed, note that

(n+ 1) · · · (n+ d)

d!
=

(n+ d)!
n!d!

=

(
n+ d

d

)
∈ Z,

proving the claim. □

Conjecture
Let m ∈N. There exists a polynomial of degree d such that m | p(n)
for all n ∈ Z if and only if m | d!.
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Problem II (1/3)

Question
Let G be an abelian group and let f : G → G be a group
endomorphism. Suppose that for each g ∈ G, there exists some integer
kg ∈ Z such that f(g) = kgg. Does there necessarily exist some k ∈ Z
such that f(g) = kg for all g ∈ G?

Answer: no.

Definition
Let G1,G2, . . . be a sequence of abelian groups. Then define the direct
sum G of these groups as the set

G =

∞⊕
n=1

Gn =
{
(g1,g2, . . .) | gn = 0 for all but finitely many n

}
,

with coordinate-wise addition.

MikeDaas A curious collection of creative conundrums 13 mei 2024 8 / 25



Problem II (1/3)

Question
Let G be an abelian group and let f : G → G be a group
endomorphism. Suppose that for each g ∈ G, there exists some integer
kg ∈ Z such that f(g) = kgg. Does there necessarily exist some k ∈ Z
such that f(g) = kg for all g ∈ G?

Answer: no.

Definition
Let G1,G2, . . . be a sequence of abelian groups. Then define the direct
sum G of these groups as the set

G =

∞⊕
n=1

Gn =
{
(g1,g2, . . .) | gn = 0 for all but finitely many n

}
,

with coordinate-wise addition.

MikeDaas A curious collection of creative conundrums 13 mei 2024 8 / 25



Problem II (1/3)

Question
Let G be an abelian group and let f : G → G be a group
endomorphism. Suppose that for each g ∈ G, there exists some integer
kg ∈ Z such that f(g) = kgg. Does there necessarily exist some k ∈ Z
such that f(g) = kg for all g ∈ G?

Answer: no.

Definition
Let G1,G2, . . . be a sequence of abelian groups. Then define the direct
sum G of these groups as the set

G =

∞⊕
n=1

Gn =
{
(g1,g2, . . .) | gn = 0 for all but finitely many n

}
,

with coordinate-wise addition.

MikeDaas A curious collection of creative conundrums 13 mei 2024 8 / 25



Problem II (2/3)

Consider the group

G =

∞⊕
n=1

Z/3nZ.

Let f : G → G be given by “multiplication by 1/2”, i.e. 2f(g) = g for all
g ∈ G.

On each component,

Z/3nZ→ Z/3nZ : g 7→ 3n + 1
2

g.

Clearly f is not multiplication by a fixed k ∈ Z. However, if g ∈ G, then

g = (g1,g2, . . . ,gn, 0, 0, . . .)

for some n ∈N. Then
f(g) =

3n + 1
2

g.

Therefore we have found a counter-example.
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Problem II (3/3)

Question
Let G be a finitely generated abelian group and let f : G → G be a group
endomorphism. Suppose that for each g ∈ G, there exists some integer
kg ∈ Z such that f(g) = kgg. Does there necessarily exist some k ∈ Z
such that f(g) = kg for all g ∈ G?

Theorem
Let G be a finitely generated abelian group. Then

G � T ×Zn

for some finite abelian group T and n ∈N.

Suppose G is generated by one element g. Then every f : G → G is
mult. by some fixed k ∈ Z. Indeed, if f(g) = kg, then k always works.
But what about 2 generators? Or more?
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Problem III (1/3)

The Collatz Conjecture
Define a function f :N→N by

f(n) =

{
3n+ 1 if n is odd;
n/2 if n is even.

Does the sequence n, f(n), f(f(n)), . . . always eventually reach 1?

Famously difficult open problem. I won’t claim to be able to solve it.

Question
Define a function f :N \ {1} →N by

f(n) =

{
n2 − 1 if n is odd;
n/2 if n is even.

When does the sequence n, f(n), f(f(n)), . . . ever reach the number 1?
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Problem III (2/3)

Remark 1
If n is odd, then n2 ≡ 1 mod 8.
Fix t ∈ Z odd. Define a function f :N \ {1} →N by

f(n) =

{
n2 − t if n is odd;
n/2 if n is even.

If t . 1 mod 8, then n2 − t ∈ {2, 4, 6} mod 8, so we only divide by 2
at most once or twice. So as soon as n2 − t > 4n, the sequence grows
forever - not very interesting.

Remark 2
I proposed the t = −3 case to the Dutch mathematics olympiad; then
only 1 → 4 → 2 → 1 and 3 → 12 → 6 → 3 do not explode. It was
selected; a great problem for smart high schoolers :)
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Problem III (3/3)

3 7→ 8 7→ 4 7→ 2 7→ 1
5 7→ 24 7→ 12 7→ 6 7→ 3
7 7→ 48 7→ 24
9 7→ 80 7→ 40 7→ 20 7→ 10 7→ 5
11 7→ 120 7→ 60 7→ 30 7→ 15 7→ 224 7→ 112 7→ 56 7→ 28 7→ 14 7→ 7
13 7→ 168 7→ 84 7→ 42 7→ 21 7→ 440 7→ 220 7→ 110 7→ 55 7→ 3024 7→ . . .
17 7→ 288 7→ 144 7→ 72 7→ 36 7→ 18 7→ 9
19 7→ 360 7→ 180 7→ 90 7→ 45 7→ 2024 7→ 1012 7→ 506 7→ 253 7→ . . .
23 7→ 528 7→ 264 7→ 132 7→ 66 7→ 33 7→ 1088 7→ 544 7→ 272 7→ 136 7→

68 7→ 34 7→ 17

Remark
Since n2 − 1 = (n− 1)(n+ 1), if we have n = 2k ± 1, then
f(n) = 2k+1 · (2k−1 ± 1), so by induction these numbers will always go
down to 1. But this does not explain 11 or 23...
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Part 2: Solutions
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Solution I (1/2)

Conjecture
Let m ∈N. There exists a polynomial of degree d such that m | p(n)
for all n ∈ Z if and only if m | d!.

Definition
Let p ∈ Q[X] be any polynomial. Then define its discrete derivative by

(∆p)(X) = p(X+ 1) − p(X).

Lemma
Let p ∈ Q[X] be of degree d. Then:

The degree of ∆p is precisely d− 1;
If p(n) is an integer for all n ∈ Z, then so is (∆p)(n).
The leading coefficient of ∆p is precisely d times that of p.

The first two are trivial, and indeed (X+ 1)d − Xd = dXd−1 + . . ..
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Solution I (2/2)

Theorem
Let m ∈N. There exists a polynomial of degree d such that m | p(n)
for all n ∈ Z if and only if m | d!.

Proof.
Let p ∈ Z[X] be any polynomial with m | p(n) for all n ∈ Z and let d
denote its degree. Then the polynomial P = p/m ∈ Q[X] satisfies
P(n) ∈ Z for all n ∈ Z. Now consider ∆dP. Then:

Since the degree drops by 1 for each application of ∆, the degree of
∆dP is zero. In other words, it is constant.
Its leading coefficient is first multiplied by d, then by d− 1, then
by d− 2, etc. We started with 1/m, so we end up with d!/m.
(∆dP)(n) ∈ Z for all n ∈ Z, because this was true for P, and ∆

conserves this property.
In other words, ∆dP = d!/m ∈ Z. □
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Solution II (1/4)

Question
Let G be a finitely generated abelian group and let f : G → G be a group
endomorphism. Suppose that for each g ∈ G, there exists some integer
kg ∈ Z such that f(g) = kgg. Does there necessarily exist some k ∈ Z
such that f(g) = kg for all g ∈ G?

We will proceed by induction on the number of generators of G.

Two generators (1/2)
If G has two generators, then either

G � Cn × Cm, G � Z× Cn, or G � Z×Z.

In any case, we can find a,b ∈ G such that

⟨a,b⟩ = G and ⟨a⟩ ∩ ⟨b⟩ = {0}.
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Solution II (2/4)

Two generators (2/2)
So take a,b ∈ G such that

⟨a,b⟩ = G and ⟨a⟩ ∩ ⟨b⟩ = {0}.

By assumption, there exist x,y, z ∈ Z such that

f(a) = xa, f(b) = yb and f(a+ b) = z(a+ b).

But then

0 = f(a+ b) − f(a) − f(b) = (z− x)a+ (z− y)b.

Since ⟨a⟩ ∩ ⟨b⟩ = {0}, it thus follows that

(z− x)a = 0 and (z− y)b = 0 =⇒ xa = za and yb = zb.

Therefore f(a) = za and f(b) = zb, so f is mult. by z on all of G. □

MikeDaas A curious collection of creative conundrums 13 mei 2024 18 / 25



Solution II (2/4)

Two generators (2/2)
So take a,b ∈ G such that

⟨a,b⟩ = G and ⟨a⟩ ∩ ⟨b⟩ = {0}.

By assumption, there exist x,y, z ∈ Z such that

f(a) = xa, f(b) = yb and f(a+ b) = z(a+ b).

But then

0 = f(a+ b) − f(a) − f(b) = (z− x)a+ (z− y)b.

Since ⟨a⟩ ∩ ⟨b⟩ = {0}, it thus follows that

(z− x)a = 0 and (z− y)b = 0 =⇒ xa = za and yb = zb.

Therefore f(a) = za and f(b) = zb, so f is mult. by z on all of G. □

MikeDaas A curious collection of creative conundrums 13 mei 2024 18 / 25



Solution II (2/4)

Two generators (2/2)
So take a,b ∈ G such that

⟨a,b⟩ = G and ⟨a⟩ ∩ ⟨b⟩ = {0}.

By assumption, there exist x,y, z ∈ Z such that

f(a) = xa, f(b) = yb and f(a+ b) = z(a+ b).

But then

0 = f(a+ b) − f(a) − f(b) = (z− x)a+ (z− y)b.

Since ⟨a⟩ ∩ ⟨b⟩ = {0}, it thus follows that

(z− x)a = 0 and (z− y)b = 0 =⇒ xa = za and yb = zb.

Therefore f(a) = za and f(b) = zb, so f is mult. by z on all of G. □

MikeDaas A curious collection of creative conundrums 13 mei 2024 18 / 25



Solution II (2/4)

Two generators (2/2)
So take a,b ∈ G such that

⟨a,b⟩ = G and ⟨a⟩ ∩ ⟨b⟩ = {0}.

By assumption, there exist x,y, z ∈ Z such that

f(a) = xa, f(b) = yb and f(a+ b) = z(a+ b).

But then

0 = f(a+ b) − f(a) − f(b) = (z− x)a+ (z− y)b.

Since ⟨a⟩ ∩ ⟨b⟩ = {0}, it thus follows that

(z− x)a = 0 and (z− y)b = 0 =⇒ xa = za and yb = zb.

Therefore f(a) = za and f(b) = zb, so f is mult. by z on all of G. □

MikeDaas A curious collection of creative conundrums 13 mei 2024 18 / 25



Solution II (3/4)

Induction step
Now let G be an abelian group on n ⩾ 3 generators, say
G = ⟨a1, . . . ,an⟩. Then consider the subgroups

H1 = ⟨a1,an⟩, H2 = ⟨a1, . . . ,an−1⟩, H3 = ⟨a2, . . . ,an⟩.

By the induction hypothesis, the map f : G → G will be given by
multiplication by some fixed integers ki on Hi for i ∈ {1, 2, 3}. For
i, j ∈ {1, 2, 3}, this means that on Hi ∩Hj, multiplication by ki and kj is
the same. Therefore (ki − kj)(Hi ∩Hj) = 0, and f on Hi ∩Hj can be
described as multiplication by any number in the arithmetic
progression

Aij = {kj + (ki − kj)m | m ∈ Z}.

Do these arithmetic progressions all have a number in common?
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Solution II (4/4)

Proposition
Consider three arithmetic progressions inside Z. Suppose that
pairwise they have a number in common. Then all three of them have
a number in common.

I will leave the proof as an exercise :)

Completing the proof
Note that the arithmetic progressions Aij = {kj + (ki − kj)m | m ∈ Z}
contain by construction both the numbers ki and kj. Therefore, A12,
A23 and A31 pairwise have a number in common. It follows that all
three share some number k. By definition, this means that f on each of

a1 ∈ (H1 ∩H2) a2, . . . ,an−1 ∈ (H2 ∩H3) and an ∈ (H3 ∩H1)

is given by multiplication by k. This shows f(ai) = kai for all
generators ai of G, so f is multiplication by k on all of G. □
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Solution III (1/4)

Question
Define a function f :N \ {1} →N by

f(n) =

{
n2 − 1 if n is odd;
n/2 if n is even.

When does the sequence n, f(n), f(f(n)), . . . ever reach the number 1?

Let’s make our lives a little bit easier:

Question
Define a function g :Nodd \ {1} →Nodd by

g(n) = k where n2 − 1 = 2m · k with k odd.

When does the sequence n,g(n),g(g(n)), . . . ever reach the number 1?
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Solution III (2/4)

Lemma
It holds that g(n) < n if and only if n = 2t ± 1 for some t ∈N.

Proof.
We have seen before that g(2t ± 1) = 2t−1 ± 1. For other n, one of the
factors of n2 − 1 = (n+ 1)(n− 1) will contain precisely one factor of 2.
Since neither is a power of 2 by assumption, after taking away all
factors of 2, both will be at least 3. Therefore

g(n) ⩾ 3 · n− 1
2

⩾ n

for n ⩾ 3, completing the proof. □

Any sequence n,g(n),g(g(n)), . . . that ever ends at 1, must go down at
some point. Therefore, some number of the form 2t ± 1 must appear in
the sequence. We therefore reduce to solving g(n) = 2t ± 1.
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Solution III (3/4)

Proposition

The odd positive integers n for which g(n) = 2t ± 1 for some t ∈N are
precisely those 2t ± 1 themselves, and additionally the three
exceptional solutions n = 11, n = 23 and n = 181.

Proof.
We must find all solutions to the equations

n2 − 1 = (2t ± 1) · 2m ⇐⇒ n2 = 2t+m ± 2m + 1.

Fortunately, we may appeal to the 2002 article “The equations
2n ± 2m ± 2l = z2” by László Szalay and claim the result. □

So, we reduce to finding all n such that

g(n) ∈ {11, 23, 181}.

Note that all of these are prime.
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2n ± 2m ± 2l = z2” by László Szalay and claim the result. □

So, we reduce to finding all n such that

g(n) ∈ {11, 23, 181}.

Note that all of these are prime.

MikeDaas A curious collection of creative conundrums 13 mei 2024 23 / 25



Solution III (3/4)

Proposition

The odd positive integers n for which g(n) = 2t ± 1 for some t ∈N are
precisely those 2t ± 1 themselves, and additionally the three
exceptional solutions n = 11, n = 23 and n = 181.

Proof.
We must find all solutions to the equations

n2 − 1 = (2t ± 1) · 2m ⇐⇒ n2 = 2t+m ± 2m + 1.

Fortunately, we may appeal to the 2002 article “The equations
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Solution III (4/4)

Lemma
If g(n) = p is prime, then p = 2t ± 1 for some t ∈N.

Proof.
If g(n) = p is prime, then

(n− 1)(n+ 1) = p · 2m.
But one of n− 1 and n+ 1 will contain precisely one factor of 2.
Therefore, one is either 2, yielding n ∈ {1, 3}, or 2p, yielding
(n− 1)(n+ 1) = 2p(2p± 2). But then p± 1 = 2m−2. □

The remaining values 11, 23 and 181 are not of this form, so:

Theorem
The only odd numbers for which the sequence n, f(n), f(f(n)), . . .
eventually reaches 1 are precisely all numbers of the form 2t ± 1 and
additionally the exceptional values n ∈ {11, 23, 181}.

MikeDaas A curious collection of creative conundrums 13 mei 2024 24 / 25



Solution III (4/4)

Lemma
If g(n) = p is prime, then p = 2t ± 1 for some t ∈N.

Proof.
If g(n) = p is prime, then

(n− 1)(n+ 1) = p · 2m.
But one of n− 1 and n+ 1 will contain precisely one factor of 2.

Therefore, one is either 2, yielding n ∈ {1, 3}, or 2p, yielding
(n− 1)(n+ 1) = 2p(2p± 2). But then p± 1 = 2m−2. □

The remaining values 11, 23 and 181 are not of this form, so:

Theorem
The only odd numbers for which the sequence n, f(n), f(f(n)), . . .
eventually reaches 1 are precisely all numbers of the form 2t ± 1 and
additionally the exceptional values n ∈ {11, 23, 181}.

MikeDaas A curious collection of creative conundrums 13 mei 2024 24 / 25



Solution III (4/4)

Lemma
If g(n) = p is prime, then p = 2t ± 1 for some t ∈N.

Proof.
If g(n) = p is prime, then

(n− 1)(n+ 1) = p · 2m.
But one of n− 1 and n+ 1 will contain precisely one factor of 2.
Therefore, one is either 2, yielding n ∈ {1, 3}, or 2p, yielding
(n− 1)(n+ 1) = 2p(2p± 2). But then p± 1 = 2m−2. □

The remaining values 11, 23 and 181 are not of this form, so:

Theorem
The only odd numbers for which the sequence n, f(n), f(f(n)), . . .
eventually reaches 1 are precisely all numbers of the form 2t ± 1 and
additionally the exceptional values n ∈ {11, 23, 181}.

MikeDaas A curious collection of creative conundrums 13 mei 2024 24 / 25



Solution III (4/4)

Lemma
If g(n) = p is prime, then p = 2t ± 1 for some t ∈N.

Proof.
If g(n) = p is prime, then

(n− 1)(n+ 1) = p · 2m.
But one of n− 1 and n+ 1 will contain precisely one factor of 2.
Therefore, one is either 2, yielding n ∈ {1, 3}, or 2p, yielding
(n− 1)(n+ 1) = 2p(2p± 2). But then p± 1 = 2m−2. □

The remaining values 11, 23 and 181 are not of this form, so:

Theorem
The only odd numbers for which the sequence n, f(n), f(f(n)), . . .
eventually reaches 1 are precisely all numbers of the form 2t ± 1 and
additionally the exceptional values n ∈ {11, 23, 181}.

MikeDaas A curious collection of creative conundrums 13 mei 2024 24 / 25



Thanks for listening!

181 7→ 16380 7→ 8190 7→ 4095 7→ 16769024 7→ 8384512 7→ 4192256
7→ 2096128 7→ 1048064 7→ 524032 7→ 262016 7→ 131008 7→ 65504
7→ 32752 7→ 16376 7→ 8188 7→ 4094 7→ 2047 7→ 4190208 7→ 2095104
7→ 1047552 7→ 523776 7→ 261888 7→ 130944 7→ 65472 7→ 32736
7→ 16368 7→ 8184 7→ 4092 7→ 2046 7→ 1023 7→ 1046528 7→ 523264
7→ 261632 7→ 130816 7→ 65408 7→ 32704 7→ 16352 7→ 8176 7→ 4088
7→ 2044 7→ 1022 7→ 511 7→ 261120 7→ 130560 7→ 65280 7→ 32640
7→ 16320 7→ 8160 7→ 4080 7→ 2040 7→ 1020 7→ 510 7→ 255 7→ 65024
7→ 32512 7→ 16256 7→ 8128 7→ 4064 7→ 2032 7→ 1016 7→ 508 7→ 254
7→ 127 7→ 16128 7→ 8064 7→ 4032 7→ 2016 7→ 1008 7→ 504 7→ 252
7→ 126 7→ 63 7→ 3968 7→ 1984 7→ 992 7→ 496 7→ 248 7→ 124 7→ 62
7→ 31 7→ 960 7→ 480 7→ 240 7→ 120 7→ 60 7→ 30 7→ 15 7→ 224 7→ 112
7→ 56 7→ 28 7→ 14 7→ 7 7→ 48 7→ 24 7→ 12 7→ 6 7→ 3 7→ 8 7→ 4 7→ 2 7→ 1.
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