A curious collection of creative conundrums

Mike Daas

Universiteit Leiden

13 mei 2024

Plan for today

Let's be honest. You are not motivated to work on your PhD project 24/7.

Let's be honest. You are not motivated to work on your PhD project 24/7. That's okay. Neither am I.

You are not motivated to work on your PhD project 24/7.

That's okay. Neither am I.

But not working on your maths makes you feel guilty :(

You are not motivated to work on your PhD project 24/7.

That's okay. Neither am I.

But not working on your maths makes you feel guilty :(

Solution: still work on maths. But fun maths :)

You are not motivated to work on your PhD project 24/7. That's okay. Neither am I. But not working on your maths makes you feel guilty :(Solution: still work on maths. But fun maths :)

Today, I will discuss three problems that I came up with:

You are not motivated to work on your PhD project 24/7. That's okay. Neither am I. But not working on your maths makes you feel guilty :(Solution: still work on maths. But fun maths :)

Today, I will discuss three problems that I came up with:

• Monic polynomials that vanish mod m;

You are not motivated to work on your PhD project 24/7. That's okay. Neither am I. But not working on your maths makes you feel guilty :(Solution: still work on maths. But fun maths :)

Today, I will discuss three problems that I came up with:

- Monic polynomials that vanish mod m;
- Scalar endomorphisms in abelian groups;

You are not motivated to work on your PhD project 24/7. That's okay. Neither am I. But not working on your maths makes you feel guilty :(Solution: still work on maths. But fun maths :)

Today, I will discuss three problems that I came up with:

- Monic polynomials that vanish mod m;
- Scalar endomorphisms in abelian groups;
- A Collatz-type problem.

You are not motivated to work on your PhD project 24/7. That's okay. Neither am I. But not working on your maths makes you feel guilty :(Solution: still work on maths. But fun maths :)

Today, I will discuss three problems that I came up with:

- Monic polynomials that vanish mod m;
- Scalar endomorphisms in abelian groups;
- A Collatz-type problem.

Then I will solve them for you. Just for fun :)

Part 1: Problems

Question

Fix $m \in \mathbb{N}$. What is the smallest degree d of a polynomial $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Question

Fix $m \in \mathbb{N}$. What is the smallest degree d of a polynomial $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Answer: $d = 0$, for choose $p(X) = m$ constant. That's boring...

Question

Fix $m \in \mathbb{N}$. What is the smallest degree d of a polynomial $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Answer: $d = 0$, for choose $p(X) = m$ constant. That's boring...

Definition

We say some
$$
p = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[X]
$$
 is *monic* if $a_d = 1$.

Question

Fix $m \in \mathbb{N}$. What is the smallest degree d of a polynomial $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Answer: $d = 0$, for choose $p(X) = m$ constant. That's boring...

Definition

We say some
$$
p = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[X]
$$
 is *monic* if $a_d = 1$.

Ouestion

Fix $m \in \mathbb{N}$. What is the smallest degree d of a *monic* $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Question

Fix $m \in \mathbb{N}$. What is the smallest degree d of a polynomial $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Answer: $d = 0$, for choose $p(X) = m$ constant. That's boring...

Definition

We say some
$$
p = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[X]
$$
 is *monic* if $a_d = 1$.

Ouestion

Fix $m \in \mathbb{N}$. What is the smallest degree d of a *monic* $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

- Clearly, if $m = 1$, then $p = 1$ works, so $d = 0$.
- If $m = 2$, then

Question

Fix $m \in \mathbb{N}$. What is the smallest degree d of a polynomial $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

Answer: $d = 0$, for choose $p(X) = m$ constant. That's boring...

Definition

We say some
$$
p = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[X]
$$
 is *monic* if $a_d = 1$.

Ouestion

Fix $m \in \mathbb{N}$. What is the smallest degree d of a *monic* $p \in \mathbb{Z}[X]$ with with the property that $p(n)$ is divisible by m for all $n \in \mathbb{Z}$?

- Clearly, if $m = 1$, then $p = 1$ works, so $d = 0$.
- If $m = 2$, then $p = X^2 X$ works, so $d = 2$.
- If $m = 3$, then...?

Can $X^2 + aX + b$ always be divisible by 3?

Can $X^2 + aX + b$ always be divisible by 3? • $X = 0$ gives $b \equiv 0 \mod 3$, so let's say $b = 0$.

Can $X^2 + aX + b$ always be divisible by 3?

- $X = 0$ gives $b \equiv 0 \mod 3$, so let's say $b = 0$.
- $X = 1$ gives $1 + a \equiv 0 \mod 3 \implies a \equiv -1 \mod 3$.
- $X = 2$ gives $4 + 2a \equiv 0 \mod 3 \implies a \equiv -2 \mod 3$.

Can $X^2 + aX + b$ always be divisible by 3?

- $X = 0$ gives $b \equiv 0 \mod 3$, so let's say $b = 0$.
- $X = 1$ gives $1 + a \equiv 0 \mod 3 \implies a \equiv -1 \mod 3$.
- $X = 2$ gives $4 + 2a \equiv 0 \mod 3 \implies a \equiv -2 \mod 3$.

This is a contradiction, so the answer is *no*. What about degree 3?

Can $X^2 + aX + b$ always be divisible by 3?

- $X = 0$ gives $b \equiv 0 \mod 3$, so let's say $b = 0$.
- $X = 1$ gives $1 + a \equiv 0 \mod 3 \implies a \equiv -1 \mod 3$.
- \bullet X = 2 gives $4 + 2a \equiv 0 \mod 3 \implies a \equiv -2 \mod 3$.

This is a contradiction, so the answer is *no*.

What about degree 3? Consider $p = X^3 - X$. Then

$$
p(0) = 0
$$
, $p(1) = 0$, and $p(2) = 6$.

Since $p(X + 3) \equiv p(X) \mod 3$, this is indeed always divisible by 3.

Can $X^2 + aX + b$ always be divisible by 3?

- $X = 0$ gives $b \equiv 0 \mod 3$, so let's say $b = 0$.
- $X = 1$ gives $1 + a \equiv 0 \mod 3 \implies a \equiv -1 \mod 3$.
- \bullet X = 2 gives $4 + 2a \equiv 0 \mod 3 \implies a \equiv -2 \mod 3$.

This is a contradiction, so the answer is *no*.

What about degree 3? Consider $p = X^3 - X$. Then

$$
p(0) = 0
$$
, $p(1) = 0$, and $p(2) = 6$.

Since $p(X + 3) \equiv p(X) \mod 3$, this is indeed always divisible by 3. But really $p = (X - 1)X(X + 1)$; one of three consecutive numbers will always be divisible by 3. Therefore, for any m, we can take

$$
p=(X+1)\cdots(X+m);
$$

this will always be divisible by m. Therefore, $d \leq m$.

Can $X^3 + aX^2 + bX + c$ always be divisible by 4?

Can $X^3 + aX^2 + bX + c$ always be divisible by 4? • $X = 0$ gives $c \equiv 0 \mod 4$, so let's say $c = 0$.

Can $X^3 + aX^2 + bX + c$ always be divisible by 4?

- $X = 0$ gives $c \equiv 0 \mod 4$, so let's say $c = 0$.
- \bullet X = 1 gives 1 + a + b \equiv 0 mod 4 \implies a + b \equiv -1 mod 4.
- $X = 2$ gives $8 + 4a + 2b \equiv 0 \mod 4 \implies 2b \equiv 0 \mod 4$.
- \bullet X = -1 gives -1 + $a b \equiv 0 \mod 4 \implies a b \equiv 1 \mod 4$.

Can $X^3 + aX^2 + bX + c$ always be divisible by 4?

- $X = 0$ gives $c \equiv 0 \mod 4$, so let's say $c = 0$.
- \bullet X = 1 gives 1 + a + b \equiv 0 mod 4 \implies a + b \equiv -1 mod 4.
- $X = 2$ gives $8 + 4a + 2b \equiv 0 \mod 4 \implies 2b \equiv 0 \mod 4$.
- \bullet X = -1 gives -1 + $a b \equiv 0 \mod 4 \implies a b \equiv 1 \mod 4$.

The second and fourth give $2b \equiv 2 \mod 4$. This contradicts the third, so the answer is *no*. Therefore, $d = 4$.

Can $X^3 + aX^2 + bX + c$ always be divisible by 4?

•
$$
X = 0
$$
 gives $c \equiv 0 \mod 4$, so let's say $c = 0$.

•
$$
X = 1
$$
 gives $1 + a + b \equiv 0 \mod 4 \implies a + b \equiv -1 \mod 4$.

•
$$
X = 2
$$
 gives $8 + 4a + 2b \equiv 0 \mod 4 \implies 2b \equiv 0 \mod 4$.

•
$$
X = -1
$$
 gives $-1 + a - b \equiv 0 \mod 4 \implies a - b \equiv 1 \mod 4$.

The second and fourth give $2b \equiv 2 \mod 4$. This contradicts the third, so the answer is *no*. Therefore, $d = 4$.

Let $m = 5$. This is prime, so the polynomial

$$
\overline{p}\in\mathbb{F}_5[X]
$$

can only have d zeroes. It should have 5 zeroes, so $d = 5$ again.

Can $X^3 + aX^2 + bX + c$ always be divisible by 4?

• $X = 0$ gives $c \equiv 0 \mod 4$, so let's say $c = 0$.

 \bullet X = 1 gives 1 + a + b \equiv 0 mod 4 \implies a + b \equiv -1 mod 4.

•
$$
X = 2
$$
 gives $8 + 4a + 2b \equiv 0 \mod 4 \implies 2b \equiv 0 \mod 4$.

•
$$
X = -1
$$
 gives $-1 + a - b \equiv 0 \mod 4 \implies a - b \equiv 1 \mod 4$.

The second and fourth give $2b \equiv 2 \mod 4$. This contradicts the third, so the answer is *no*. Therefore, $d = 4$.

Let $m = 5$. This is prime, so the polynomial

$$
\overline{p}\in\mathbb{F}_5[X]
$$

can only have d zeroes. It should have 5 zeroes, so $d = 5$ again. So is m is prime, we must have $d = m$. Does this always hold?

Can $X^3 + aX^2 + bX + c$ always be divisible by 4?

- $X = 0$ gives $c \equiv 0 \mod 4$, so let's say $c = 0$.
- \bullet X = 1 gives 1 + a + b \equiv 0 mod 4 \implies a + b \equiv -1 mod 4.
- $X = 2$ gives $8 + 4a + 2b \equiv 0 \mod 4 \implies 2b \equiv 0 \mod 4$.
- \bullet X = -1 gives -1 + a b \equiv 0 mod 4 \implies a b \equiv 1 mod 4.

The second and fourth give $2b \equiv 2 \mod 4$. This contradicts the third, so the answer is *no*. Therefore, $d = 4$.

Let $m = 5$. This is prime, so the polynomial

$$
\overline{p}\in\mathbb{F}_5[X]
$$

can only have d zeroes. It should have 5 zeroes, so $d = 5$ again. So is m is prime, we must have $d = m$. Does this always hold? Look back at $p = (X - 1)X(X + 1)$. This is always divisible by 3, but also by 2. Therefore, for $m = 6$, we have $d = 3...$

Are the polynomials $p = (X + 1) \cdots (X + d)$ sometimes *better* than "just" divisible by d? Yes!

Are the polynomials $p = (X + 1) \cdots (X + d)$ sometimes *better* than "just" divisible by d? Yes!

Lemma

For any $n \in \mathbb{Z}$, the product $(n + 1) \cdots (n + d)$ is divisible by d!.

Are the polynomials $p = (X + 1) \cdots (X + d)$ sometimes *better* than "just" divisible by d? Yes!

Lemma

For any $n \in \mathbb{Z}$, the product $(n + 1) \cdots (n + d)$ is divisible by d!.

Proof.

Indeed, note that

$$
\frac{(n+1)\cdots(n+d)}{d!} = \frac{(n+d)!}{n!d!} = {n+d \choose d} \in \mathbb{Z},
$$

proving the claim. \Box

Are the polynomials $p = (X + 1) \cdots (X + d)$ sometimes *better* than "just" divisible by d? Yes!

Lemma

For any $n \in \mathbb{Z}$, the product $(n+1)\cdots(n+d)$ is divisible by d!.

Proof.

Indeed, note that

$$
\frac{(n+1)\cdots(n+d)}{d!} = \frac{(n+d)!}{n!d!} = \binom{n+d}{d} \in \mathbb{Z},
$$

proving the claim. \Box

Conjecture

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.
Problem II (1/3)

Question

Let G be an abelian group and let $f: G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(g) = kg$ for all $g \in G$?

Problem II (1/3)

Question

Let G be an abelian group and let $f: G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(g) = kg$ for all $g \in G$?

Answer: *no*.

Problem II (1/3)

Question

Let G be an abelian group and let f : $G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(g) = kg$ for all $g \in G$?

Answer: *no*.

Definition

Let G_1, G_2, \ldots be a sequence of abelian groups. Then define the *direct sum* G of these groups as the set

$$
G = \bigoplus_{n=1}^{\infty} G_n = \big\{ (g_1, g_2, \ldots) \mid g_n = 0 \text{ for all but finitely many } n \big\},\
$$

with coordinate-wise addition.

Problem II (2/3)

Consider the group

$$
G=\bigoplus_{n=1}^{\infty} \mathbb{Z}/3^n\mathbb{Z}.
$$

Let $f : G \to G$ be given by "multiplication by $1/2$ ", i.e. $2f(g) = g$ for all $g \in G$.

Problem II (2/3)

Consider the group

$$
G=\bigoplus_{n=1}^{\infty} \mathbb{Z}/3^n\mathbb{Z}.
$$

Let f : $G \rightarrow G$ be given by "multiplication by 1/2", i.e. $2f(g) = g$ for all $g \in G$. On each component,

$$
\mathbb{Z}/3^{n}\mathbb{Z} \to \mathbb{Z}/3^{n}\mathbb{Z} : g \mapsto \frac{3^{n}+1}{2}g.
$$

Clearly f is not multiplication by a fixed $k \in \mathbb{Z}$.

Problem II (2/3)

Consider the group

$$
G=\bigoplus_{n=1}^{\infty} \mathbb{Z}/3^n\mathbb{Z}.
$$

Let f : $G \rightarrow G$ be given by "multiplication by 1/2", i.e. $2f(g) = g$ for all $g \in G$. On each component,

$$
\mathbb{Z}/3^{n}\mathbb{Z} \to \mathbb{Z}/3^{n}\mathbb{Z} : g \mapsto \frac{3^{n}+1}{2}g.
$$

Clearly f is not multiplication by a fixed $k \in \mathbb{Z}$. However, if $q \in G$, then

$$
g=(g_1,g_2,\ldots,g_n,0,0,\ldots)
$$

for some $n \in \mathbb{N}$. Then

$$
f(g)=\frac{3^n+1}{2}g.
$$

Therefore we have found a counter-example.

Problem II (3/3)

Ouestion

Let G be a *finitely generated* abelian group and let $f : G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(g) = kg$ for all $g \in G$?

Ouestion

Let G be a *finitely generated* abelian group and let $f : G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(q) = kq$ for all $q \in G$?

Theorem

Let G be a finitely generated abelian group. Then

 $G \cong T \times \mathbb{Z}^n$

for some finite abelian group T and $n \in \mathbb{N}$.

Ouestion

Let G be a *finitely generated* abelian group and let $f : G \rightarrow G$ be a group endomorphism. Suppose that for each $q \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(g) = kg$ for all $g \in G$?

Theorem

Let G be a finitely generated abelian group. Then

 $G \cong T \times \mathbb{Z}^n$

for some finite abelian group T and $n \in \mathbb{N}$.

Suppose G is generated by one element g. Then every $f : G \to G$ is mult. by some fixed $k \in \mathbb{Z}$. Indeed, if $f(q) = kq$, then k always works.

Ouestion

Let G be a *finitely generated* abelian group and let $f : G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(g) = kg$ for all $g \in G$?

Theorem

Let G be a finitely generated abelian group. Then

 $G \cong T \times \mathbb{Z}^n$

for some finite abelian group T and $n \in \mathbb{N}$.

Suppose G is generated by one element g. Then every $f : G \to G$ is mult. by some fixed $k \in \mathbb{Z}$. Indeed, if $f(q) = kq$, then k always works. But what about 2 generators? Or more?

Problem III (1/3)

The Collatz Conjecture

Define a function $f : \mathbb{N} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} 3n + 1 & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

Does the sequence $n, f(n), f(f(n)), \ldots$ always eventually reach 1?

Problem III (1/3)

The Collatz Conjecture

Define a function $f : \mathbb{N} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} 3n + 1 & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

Does the sequence n , $f(n)$, $f(f(n))$, ... always eventually reach 1?

Famously difficult open problem. I won't claim to be able to solve it.

Problem III (1/3)

The Collatz Conjecture

Define a function $f : \mathbb{N} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} 3n + 1 & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

Does the sequence n, $f(n)$, $f(f(n))$, ... always eventually reach 1?

Famously difficult open problem. I won't claim to be able to solve it.

Question

Define a function $f : \mathbb{N} \setminus \{1\} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} n^2 - 1 & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

When does the sequence $n, f(n), f(f(n)), \ldots$ ever reach the number 1?

Problem III^(2/3)

Remark 1

If n is odd, then $n^2 \equiv 1 \mod 8$. Fix $t \in \mathbb{Z}$ odd. Define a function $f : \mathbb{N} \setminus \{1\} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} n^2 - t & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

Problem III (2/3)

Remark 1

If n is odd, then $n^2 \equiv 1 \mod 8$. Fix $t \in \mathbb{Z}$ odd. Define a function $f : \mathbb{N} \setminus \{1\} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} n^2 - t & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

If $t \neq 1 \mod 8$, then $n^2 - t \in \{2, 4, 6\}$ mod 8, so we only divide by 2 at most once or twice. So as soon as $n^2 - t > 4n$, the sequence grows forever - not very interesting.

Problem III (2/3)

Remark 1

If n is odd, then $n^2 \equiv 1 \mod 8$. Fix $t \in \mathbb{Z}$ odd. Define a function $f : \mathbb{N} \setminus \{1\} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} n^2 - t & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

If $t \neq 1 \mod 8$, then $n^2 - t \in \{2, 4, 6\}$ mod 8, so we only divide by 2 at most once or twice. So as soon as $n^2 - t > 4n$, the sequence grows forever - not very interesting.

Remark 2

I proposed the $t = -3$ case to the Dutch mathematics olympiad; then only $1 \rightarrow 4 \rightarrow 2 \rightarrow 1$ and $3 \rightarrow 12 \rightarrow 6 \rightarrow 3$ do not explode. It was selected; a great problem for smart high schoolers :)

Problem III (3/3)

- $3 \mapsto 8 \mapsto 4 \mapsto 2 \mapsto 1$
- $5 \mapsto 24 \mapsto 12 \mapsto 6 \mapsto 3$
- $7 \mapsto 48 \mapsto 24$
- $9 \mapsto 80 \mapsto 40 \mapsto 20 \mapsto 10 \mapsto 5$
- $11 \mapsto 120 \mapsto 60 \mapsto 30 \mapsto 15 \mapsto 224 \mapsto 112 \mapsto 56 \mapsto 28 \mapsto 14 \mapsto 7$
- $13 \mapsto 168 \mapsto 84 \mapsto 42 \mapsto 21 \mapsto 440 \mapsto 220 \mapsto 110 \mapsto 55 \mapsto 3024 \mapsto \dots$
- $17 \mapsto 288 \mapsto 144 \mapsto 72 \mapsto 36 \mapsto 18 \mapsto 9$
- $19 \mapsto 360 \mapsto 180 \mapsto 90 \mapsto 45 \mapsto 2024 \mapsto 1012 \mapsto 506 \mapsto 253 \mapsto \dots$
- $23 \mapsto 528 \mapsto 264 \mapsto 132 \mapsto 66 \mapsto 33 \mapsto 1088 \mapsto 544 \mapsto 272 \mapsto 136 \mapsto$ $68 \mapsto 34 \mapsto 17$

Problem III (3/3)

- $3 \mapsto 8 \mapsto 4 \mapsto 2 \mapsto 1$
- $5 \mapsto 24 \mapsto 12 \mapsto 6 \mapsto 3$
- $7 \mapsto 48 \mapsto 24$
- $9 \mapsto 80 \mapsto 40 \mapsto 20 \mapsto 10 \mapsto 5$
- $11 \mapsto 120 \mapsto 60 \mapsto 30 \mapsto 15 \mapsto 224 \mapsto 112 \mapsto 56 \mapsto 28 \mapsto 14 \mapsto 7$
- $13 \mapsto 168 \mapsto 84 \mapsto 42 \mapsto 21 \mapsto 440 \mapsto 220 \mapsto 110 \mapsto 55 \mapsto 3024 \mapsto \dots$
- $17 \mapsto 288 \mapsto 144 \mapsto 72 \mapsto 36 \mapsto 18 \mapsto 9$
- $19 \mapsto 360 \mapsto 180 \mapsto 90 \mapsto 45 \mapsto 2024 \mapsto 1012 \mapsto 506 \mapsto 253 \mapsto \dots$
- $23 \mapsto 528 \mapsto 264 \mapsto 132 \mapsto 66 \mapsto 33 \mapsto 1088 \mapsto 544 \mapsto 272 \mapsto 136 \mapsto$

 $68 \mapsto 34 \mapsto 17$

Remark

Since $\mathfrak{n}^2-1=(\mathfrak{n}-1)(\mathfrak{n}+1)$, if we have $\mathfrak{n}=2^{\mathrm{k}}\pm 1$, then $f(n) = 2^{k+1} \cdot (2^{k-1} \pm 1)$, so by induction these numbers will always go down to 1. But this does not explain 11 or 23...

Part 2: Solutions

Conjecture

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Conjecture

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if m | d!.

Definition

Let $p \in \mathbb{Q}[X]$ be any polynomial. Then define its *discrete derivative* by

 $(\Delta p)(X) = p(X + 1) - p(X).$

Conjecture

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Definition

Let $p \in \mathbb{Q}[X]$ be any polynomial. Then define its *discrete derivative* by

$$
(\Delta p)(X) = p(X+1) - p(X).
$$

Lemma

Let $p \in \mathbb{Q}[X]$ be of degree d. Then:

• The degree of Δp is precisely $d - 1$;

Conjecture

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if m | d!.

Definition

Let $p \in \mathbb{Q}[X]$ be any polynomial. Then define its *discrete derivative* by

$$
(\Delta p)(X) = p(X+1) - p(X).
$$

Lemma

Let $p \in \mathbb{Q}[X]$ be of degree d. Then:

- The degree of Δp is precisely $d 1$;
- \bullet If p(n) is an integer for all $n \in \mathbb{Z}$, then so is $(\Delta p)(n)$.

Conjecture

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Definition

Let $p \in \mathbb{Q}[X]$ be any polynomial. Then define its *discrete derivative* by

$$
(\Delta p)(X) = p(X+1) - p(X).
$$

Lemma

Let $p \in \mathbb{Q}[X]$ be of degree d. Then:

- The degree of Δp is precisely $d 1$;
- **•** If $p(n)$ is an integer for all $n \in \mathbb{Z}$, then so is $(\Delta p)(n)$.
- The leading coefficient of Δp is precisely d times that of p.

The first two are trivial, and indeed $(X + 1)^d - X^d = dX^{d-1} + \ldots$

Theorem

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Theorem

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Proof.

Let $p \in \mathbb{Z}[X]$ be any polynomial with $m | p(n)$ for all $n \in \mathbb{Z}$ and let d denote its degree. Then the polynomial $P = p/m \in O[X]$ satisfies $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Theorem

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Proof.

Let $p \in \mathbb{Z}[X]$ be any polynomial with $m | p(n)$ for all $n \in \mathbb{Z}$ and let d denote its degree. Then the polynomial $P = p/m \in O[X]$ satisfies $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Now consider $\Delta^d P$. Then:

Theorem

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Proof.

Let $p \in \mathbb{Z}[X]$ be any polynomial with $m | p(n)$ for all $n \in \mathbb{Z}$ and let d denote its degree. Then the polynomial $P = p/m \in O[X]$ satisfies $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Now consider $\Delta^d P$. Then:

• Since the degree drops by 1 for each application of Δ , the degree of $\Delta^{\text{d}}P$ is zero. In other words, it is constant.

Theorem

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Proof.

Let $p \in \mathbb{Z}[X]$ be any polynomial with $m | p(n)$ for all $n \in \mathbb{Z}$ and let d denote its degree. Then the polynomial $P = p/m \in O[X]$ satisfies $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Now consider $\Delta^d P$. Then:

- Since the degree drops by 1 for each application of Δ , the degree of $\Delta^{\text{d}}P$ is zero. In other words, it is constant.
- Its leading coefficient is first multiplied by d, then by $d 1$, then by $d - 2$, etc. We started with $1/m$, so we end up with d!/m.

Theorem

Let $m \in \mathbb{N}$. There exists a polynomial of degree d such that $m \mid p(n)$ for all $n \in \mathbb{Z}$ if and only if $m \mid d!$.

Proof.

Let $p \in \mathbb{Z}[X]$ be any polynomial with $m | p(n)$ for all $n \in \mathbb{Z}$ and let d denote its degree. Then the polynomial $P = p/m \in O[X]$ satisfies $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Now consider $\Delta^d P$. Then:

- Since the degree drops by 1 for each application of Δ , the degree of $\Delta^{\text{d}}P$ is zero. In other words, it is constant.
- Its leading coefficient is first multiplied by d, then by $d-1$, then by $d - 2$, etc. We started with $1/m$, so we end up with d!/m.
- $(\Delta^d P)(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$, because this was true for P, and Δ conserves this property.

In other words, $\Delta^d P = d! / m \in \mathbb{Z}$.

Question

Let G be a *finitely generated* abelian group and let f : $G \rightarrow G$ be a group endomorphism. Suppose that for each $g \in G$, there exists some integer $k_q \in \mathbb{Z}$ such that $f(g) = k_q g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(q) = kq$ for all $q \in G$?

Question

Let G be a *finitely generated* abelian group and let $f : G \rightarrow G$ be a group endomorphism. Suppose that for each $q \in G$, there exists some integer $k_a \in \mathbb{Z}$ such that $f(g) = k_a g$. Does there necessarily exist some $k \in \mathbb{Z}$ such that $f(q) = kq$ for all $q \in G$?

We will proceed by induction on the number of generators of G.

Two generators (1/2)

If G has two generators, then either

$$
G\cong C_n\times C_m,\quad G\cong\mathbb{Z}\times C_n,\quad\text{or}\quad G\cong\mathbb{Z}\times\mathbb{Z}.
$$

In any case, we can find $a, b \in G$ such that

$$
\langle \mathfrak{a},\mathfrak{b}\rangle=G\quad\text{and}\quad \langle \mathfrak{a}\rangle\cap \langle \mathfrak{b}\rangle=\{0\}.
$$

Two generators (2/2)

So take $a, b \in G$ such that

$$
\langle a, b \rangle = G
$$
 and $\langle a \rangle \cap \langle b \rangle = \{0\}.$

By assumption, there exist $x, y, z \in \mathbb{Z}$ such that

 $f(a) = xa$, $f(b) = yb$ and $f(a + b) = z(a + b)$.

Two generators (2/2)

So take $a, b \in G$ such that

$$
\langle \mathfrak{a},\mathfrak{b}\rangle=G\quad\text{and}\quad \langle \mathfrak{a}\rangle\cap\langle \mathfrak{b}\rangle=\{0\}.
$$

By assumption, there exist $x, y, z \in \mathbb{Z}$ such that

 $f(a) = xa$, $f(b) = yb$ and $f(a + b) = z(a + b)$.

But then

$$
0=f(\mathfrak{a}+\mathfrak{b})-f(\mathfrak{a})-f(\mathfrak{b})=(z-x)\mathfrak{a}+(z-y)\mathfrak{b}.
$$

Two generators (2/2)

So take $a, b \in G$ such that

$$
\langle \mathfrak{a},\mathfrak{b}\rangle=G\quad\text{and}\quad \langle \mathfrak{a}\rangle\cap\langle \mathfrak{b}\rangle=\{0\}.
$$

By assumption, there exist $x, y, z \in \mathbb{Z}$ such that

 $f(a) = xa$, $f(b) = yb$ and $f(a + b) = z(a + b)$.

But then

$$
0=f(\mathfrak{a}+\mathfrak{b})-f(\mathfrak{a})-f(\mathfrak{b})=(z-x)\mathfrak{a}+(z-y)\mathfrak{b}.
$$

Since $\langle \alpha \rangle \cap \langle \beta \rangle = \{0\}$, it thus follows that

 $(z-x)a = 0$ and $(z-u)b = 0 \implies xa = za$ and $yb = zb$.

Two generators (2/2)

So take $a, b \in G$ such that

$$
\langle \mathfrak{a},\mathfrak{b}\rangle=G\quad\text{and}\quad \langle \mathfrak{a}\rangle\cap\langle \mathfrak{b}\rangle=\{0\}.
$$

By assumption, there exist $x, y, z \in \mathbb{Z}$ such that

 $f(a) = xa$, $f(b) = yb$ and $f(a + b) = z(a + b)$.

But then

$$
0=f(\mathfrak{a}+\mathfrak{b})-f(\mathfrak{a})-f(\mathfrak{b})=(z-x)\mathfrak{a}+(z-y)\mathfrak{b}.
$$

Since $\langle \alpha \rangle \cap \langle \beta \rangle = \{0\}$, it thus follows that

 $(z-x)a = 0$ and $(z-u)b = 0 \implies xa = za$ and $yb = zb$.

Therefore $f(a) = za$ and $f(b) = zb$, so f is mult. by z on all of G. \Box
Induction step

Now let G be an abelian group on $n \geq 3$ generators, say $G = \langle a_1, \ldots, a_n \rangle$. Then consider the subgroups

$$
H_1=\langle \alpha_1,\alpha_n\rangle, \quad H_2=\langle \alpha_1,\ldots,\alpha_{n-1}\rangle, \quad H_3=\langle \alpha_2,\ldots,\alpha_n\rangle.
$$

Induction step

Now let G be an abelian group on $n \geq 3$ generators, say $G = \langle a_1, \ldots, a_n \rangle$. Then consider the subgroups

$$
H_1=\langle \alpha_1, \alpha_n \rangle, \quad H_2=\langle \alpha_1, \ldots, \alpha_{n-1} \rangle, \quad H_3=\langle \alpha_2, \ldots, \alpha_n \rangle.
$$

By the induction hypothesis, the map $f: G \rightarrow G$ will be given by multiplication by some fixed integers k_i on H_i for $i \in \{1,2,3\}$.

Induction step

Now let G be an abelian group on $n \geq 3$ generators, say $G = \langle a_1, \ldots, a_n \rangle$. Then consider the subgroups

$$
H_1=\langle \alpha_1,\alpha_n\rangle, \quad H_2=\langle \alpha_1,\ldots,\alpha_{n-1}\rangle, \quad H_3=\langle \alpha_2,\ldots,\alpha_n\rangle.
$$

By the induction hypothesis, the map $f: G \rightarrow G$ will be given by multiplication by some fixed integers k_i on H_i for $i \in \{1, 2, 3\}$. For $i,j \in \{1,2,3\}$, this means that on $H_i \cap H_j$, multiplication by k_i and k_j is the same. Therefore $(k_i - k_j)(H_i \cap H_j) = 0$,

Induction step

Now let G be an abelian group on $n \geq 3$ generators, say $G = \langle a_1, \ldots, a_n \rangle$. Then consider the subgroups

$$
H_1=\langle \alpha_1, \alpha_n\rangle, \quad H_2=\langle \alpha_1, \ldots, \alpha_{n-1}\rangle, \quad H_3=\langle \alpha_2, \ldots, \alpha_n\rangle.
$$

By the induction hypothesis, the map $f : G \rightarrow G$ will be given by multiplication by some fixed integers k_i on H_i for $i \in \{1, 2, 3\}$. For $i,j \in \{1,2,3\}$, this means that on $H_i \cap H_j$, multiplication by k_i and k_j is the same. Therefore $(k_i - k_j)(H_i \cap H_j) = 0$, and f on $H_i \cap H_j$ can be described as multiplication by any number in the arithmetic progression

$$
A_{ij} = \{k_j + (k_i - k_j)m \mid m \in \mathbb{Z}\}.
$$

Induction step

Now let G be an abelian group on $n \geq 3$ generators, say $G = \langle a_1, \ldots, a_n \rangle$. Then consider the subgroups

$$
H_1=\langle \alpha_1, \alpha_n\rangle, \quad H_2=\langle \alpha_1, \ldots, \alpha_{n-1}\rangle, \quad H_3=\langle \alpha_2, \ldots, \alpha_n\rangle.
$$

By the induction hypothesis, the map $f: G \rightarrow G$ will be given by multiplication by some fixed integers k_i on H_i for $i \in \{1, 2, 3\}$. For $i,j \in \{1,2,3\}$, this means that on $H_i \cap H_j$, multiplication by k_i and k_j is the same. Therefore $(k_i - k_j)(H_i \cap H_j) = 0$, and f on $H_i \cap H_j$ can be described as multiplication by any number in the arithmetic progression

$$
A_{ij} = \{k_j + (k_i - k_j)m \mid m \in \mathbb{Z}\}.
$$

Do these arithmetic progressions all have a number in common?

Proposition

Consider three arithmetic progressions inside Z. Suppose that pairwise they have a number in common. Then all three of them have a number in common.

Solution II $\overline{(4/4)}$

Proposition

Consider three arithmetic progressions inside Z. Suppose that pairwise they have a number in common. Then all three of them have a number in common.

I will leave the proof as an exercise :)

Proposition

Consider three arithmetic progressions inside Z. Suppose that pairwise they have a number in common. Then all three of them have a number in common.

I will leave the proof as an exercise :)

Completing the proof

Note that the arithmetic progressions $A_{ij} = {k_i + (k_i - k_j)m \mid m \in \mathbb{Z}}$ contain by construction both the numbers k_i and k_j . Therefore, A_{12} , A_{23} and A_{31} pairwise have a number in common. It follows that all three share some number k.

Proposition

Consider three arithmetic progressions inside Z. Suppose that pairwise they have a number in common. Then all three of them have a number in common.

I will leave the proof as an exercise :)

Completing the proof

Note that the arithmetic progressions $A_{ij} = {k_i + (k_i - k_j)m \mid m \in \mathbb{Z}}$ contain by construction both the numbers k_i and k_j . Therefore, A_{12} , A_{23} and A_{31} pairwise have a number in common. It follows that all three share some number k. By definition, this means that f on each of

$$
\mathfrak{a}_1 \in (H_1 \cap H_2) \quad \mathfrak{a}_2, \ldots, \mathfrak{a}_{n-1} \in (H_2 \cap H_3) \quad \text{and} \quad \mathfrak{a}_n \in (H_3 \cap H_1)
$$

is given by multiplication by k.

Proposition

Consider three arithmetic progressions inside Z. Suppose that pairwise they have a number in common. Then all three of them have a number in common.

I will leave the proof as an exercise :)

Completing the proof

Note that the arithmetic progressions $A_{ij} = {k_j + (k_i - k_j)m \mid m \in \mathbb{Z}}$ contain by construction both the numbers k_i and k_j . Therefore, A_{12} , A_{23} and A_{31} pairwise have a number in common. It follows that all three share some number k. By definition, this means that f on each of

$$
\mathfrak{a}_1 \in (H_1 \cap H_2) \quad \mathfrak{a}_2, \ldots, \mathfrak{a}_{n-1} \in (H_2 \cap H_3) \quad \text{and} \quad \mathfrak{a}_n \in (H_3 \cap H_1)
$$

is given by multiplication by k. This shows $f(a_i) = ka_i$ for all generators a_i of G, so f is multiplication by k on all of G. \Box

Question

Define a function $f : \mathbb{N} \setminus \{1\} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} n^2 - 1 & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

When does the sequence $n, f(n), f(f(n)), \ldots$ ever reach the number 1?

Question

Define a function $f : \mathbb{N} \setminus \{1\} \to \mathbb{N}$ by

$$
f(n) = \begin{cases} n^2 - 1 & \text{if } n \text{ is odd;} \\ n/2 & \text{if } n \text{ is even.} \end{cases}
$$

When does the sequence $n, f(n), f(f(n)), \ldots$ ever reach the number 1?

Let's make our lives a little bit easier:

Ouestion

Define a function $g : N_{odd} \setminus \{1\} \to N_{odd}$ by

$$
g(n) = k
$$
 where $n^2 - 1 = 2^m \cdot k$ with k odd.

When does the sequence n , $g(n)$, $g(g(n))$,... ever reach the number 1?

Solution III^(2/4)

Lemma

It holds that $g(n) < n$ if and only if $n = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Lemma

It holds that $g(n) < n$ if and only if $n = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Proof.

We have seen before that $g(2^t \pm 1) = 2^{t-1} \pm 1.$ For other $\mathfrak n$, one of the factors of $\mathfrak{n}^2-1=(\mathfrak{n}+1)(\mathfrak{n}-1)$ will contain precisely one factor of 2. Since neither is a power of 2 by assumption, after taking away all factors of 2, both will be at least 3.

Lemma

It holds that $g(n) < n$ if and only if $n = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Proof.

We have seen before that $g(2^t \pm 1) = 2^{t-1} \pm 1.$ For other $\mathfrak n$, one of the factors of $\mathfrak{n}^2-1=(\mathfrak{n}+1)(\mathfrak{n}-1)$ will contain precisely one factor of 2. Since neither is a power of 2 by assumption, after taking away all factors of 2, both will be at least 3. Therefore

$$
g(n) \geqslant 3 \cdot \frac{n-1}{2} \geqslant n
$$

for $n \geq 3$, completing the proof.

Lemma

It holds that $g(n) < n$ if and only if $n = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Proof.

We have seen before that $g(2^t \pm 1) = 2^{t-1} \pm 1.$ For other $\mathfrak n$, one of the factors of $\mathfrak{n}^2-1=(\mathfrak{n}+1)(\mathfrak{n}-1)$ will contain precisely one factor of 2. Since neither is a power of 2 by assumption, after taking away all factors of 2, both will be at least 3. Therefore

$$
g(n) \geqslant 3 \cdot \frac{n-1}{2} \geqslant n
$$

for $n \geq 3$, completing the proof. \Box

Any sequence $n, g(n), g(g(n)), \ldots$ that ever ends at 1, must go down at some point. Therefore, some number of the form $2^t \pm 1$ must appear in the sequence. We therefore reduce to solving $g(n) = 2^t \pm 1$.

Proposition

The odd positive integers $\mathfrak n$ for which $\mathfrak g(\mathfrak n) = 2^{\mathsf t} \pm 1$ for some $\mathfrak t \in \mathbb N$ are precisely those $2^t \pm 1$ themselves, and additionally the three exceptional solutions $n = 11$, $n = 23$ and $n = 181$.

Proposition

The odd positive integers $\mathfrak n$ for which $\mathfrak g(\mathfrak n) = 2^{\mathsf t} \pm 1$ for some $\mathfrak t \in \mathbb N$ are precisely those $2^t \pm 1$ themselves, and additionally the three exceptional solutions $n = 11$, $n = 23$ and $n = 181$.

Proof.

We must find all solutions to the equations

$$
n^2-1=(2^t\pm 1)\cdot 2^m\iff n^2=2^{t+m}\pm 2^m+1.
$$

Proposition

The odd positive integers $\mathfrak n$ for which $\mathfrak g(\mathfrak n) = 2^{\mathsf t} \pm 1$ for some $\mathfrak t \in \mathbb N$ are precisely those $2^t \pm 1$ themselves, and additionally the three exceptional solutions $n = 11$, $n = 23$ and $n = 181$.

Proof.

We must find all solutions to the equations

$$
n^2-1 = (2^t \pm 1) \cdot 2^m \iff n^2 = 2^{t+m} \pm 2^m + 1.
$$

Fortunately, we may appeal to the 2002 article "The equations $2^{n} \pm 2^{m} \pm 2^{l} = z^{2n}$ by László Szalay and claim the result.

Proposition

The odd positive integers $\mathfrak n$ for which $\mathfrak g(\mathfrak n) = 2^{\mathsf t} \pm 1$ for some $\mathfrak t \in \mathbb N$ are precisely those $2^t \pm 1$ themselves, and additionally the three exceptional solutions $n = 11$, $n = 23$ and $n = 181$.

Proof.

We must find all solutions to the equations

$$
n^2-1 = (2^t \pm 1) \cdot 2^m \iff n^2 = 2^{t+m} \pm 2^m + 1.
$$

Fortunately, we may appeal to the 2002 article "The equations $2^{n} \pm 2^{m} \pm 2^{l} = z^{2n}$ by László Szalay and claim the result.

So, we reduce to finding all n such that

 $q(n) \in \{11, 23, 181\}.$

Note that all of these are prime.

Lemma

If $g(n) = p$ is prime, then $p = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Lemma

If
$$
g(n) = p
$$
 is prime, then $p = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Proof.

If $g(n) = p$ is prime, then

$$
(n-1)(n+1)=p\cdot 2^m.
$$

But one of $n - 1$ and $n + 1$ will contain precisely one factor of 2.

Lemma

If
$$
g(n) = p
$$
 is prime, then $p = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Proof.

If $q(n) = p$ is prime, then

$$
(n-1)(n+1)=p\cdot 2^m.
$$

But one of $n - 1$ and $n + 1$ will contain precisely one factor of 2. Therefore, one is either 2, yielding $n \in \{1, 3\}$, or 2p, yielding $(n-1)(n+1) = 2p(2p \pm 2)$. But then $p \pm 1 = 2^{m-2}$. . □ □
. □

The remaining values 11, 23 and 181 are not of this form, so:

Lemma

If
$$
g(n) = p
$$
 is prime, then $p = 2^t \pm 1$ for some $t \in \mathbb{N}$.

Proof.

If $q(n) = p$ is prime, then

$$
(n-1)(n+1)=p\cdot 2^m.
$$

But one of $n - 1$ and $n + 1$ will contain precisely one factor of 2. Therefore, one is either 2, yielding $n \in \{1, 3\}$, or 2p, yielding $(n-1)(n+1) = 2p(2p \pm 2)$. But then $p \pm 1 = 2^{m-2}$. . □ □
. □

The remaining values 11, 23 and 181 are not of this form, so:

Theorem

The only odd numbers for which the sequence $n, f(n), f(f(n)), \ldots$ eventually reaches 1 are precisely all numbers of the form $2^t \pm 1$ and additionally the exceptional values $n \in \{11, 23, 181\}$.

 $181 \rightarrow 16380 \rightarrow 8190 \rightarrow 4095 \rightarrow 16769024 \rightarrow 8384512 \rightarrow 4192256$ \rightarrow 2096128 \rightarrow 1048064 \rightarrow 524032 \rightarrow 262016 \rightarrow 131008 \rightarrow \rightarrow 32752 \rightarrow 16376 \rightarrow 8188 \rightarrow 4094 \rightarrow 2047 \rightarrow 4190208 \rightarrow \rightarrow 1047552 \rightarrow 523776 \rightarrow 261888 \rightarrow 130944 \rightarrow 65472 \rightarrow \rightarrow 16368 \rightarrow 8184 \rightarrow 4092 \rightarrow 2046 \rightarrow 1023 \rightarrow 1046528 \rightarrow \rightarrow 261632 \rightarrow 130816 \rightarrow 65408 \rightarrow 32704 \rightarrow 16352 \rightarrow 8176 \rightarrow \rightarrow 2044 \rightarrow 1022 \rightarrow 511 \rightarrow 261120 \rightarrow 130560 \rightarrow 65280 \rightarrow \rightarrow 16320 \rightarrow 8160 \rightarrow 4080 \rightarrow 2040 \rightarrow 1020 \rightarrow 510 \rightarrow 255 \rightarrow \rightarrow 32512 \rightarrow 16256 \rightarrow 8128 \rightarrow 4064 \rightarrow 2032 \rightarrow 1016 \rightarrow 508 \rightarrow \rightarrow 127 \rightarrow 16128 \rightarrow 8064 \rightarrow 4032 \rightarrow 2016 \rightarrow 1008 \rightarrow 504 \rightarrow \rightarrow 126 \rightarrow 63 \rightarrow 3968 \rightarrow 1984 \rightarrow 992 \rightarrow 496 \rightarrow 248 \rightarrow 124 \rightarrow \rightarrow 31 \rightarrow 960 \rightarrow 480 \rightarrow 240 \rightarrow 120 \rightarrow 60 \rightarrow 30 \rightarrow 15 \rightarrow 224 \rightarrow \rightarrow 56 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 48 \rightarrow 24 \rightarrow 12 \rightarrow 6 \rightarrow 3 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1.