CM values of p-adic theta-functions

Mike Daas

Universiteit Leiden

3rd of April, 2023
Let $D_1, D_2 < 0$ be coprime discriminants and write $D = D_1 D_2$. Set

$$K_1 = \mathbb{Q}(\sqrt{D_1}), \quad K_2 = \mathbb{Q}(\sqrt{D_2}),$$

$$F = \mathbb{Q}(\sqrt{D}), \quad L = \mathbb{Q}(\sqrt{D_1}, \sqrt{D_2}).$$
Let $D_1, D_2 < 0$ be coprime discriminants and write $D = D_1D_2$. Set

$$K_1 = \mathbb{Q}(\sqrt{D_1}), \quad K_2 = \mathbb{Q}(\sqrt{D_2}),$$

$$F = \mathbb{Q}(\sqrt{D}), \quad L = \mathbb{Q}(\sqrt{D_1}, \sqrt{D_2}).$$

Let χ be the genus character of L/F: if $p \subset \mathfrak{o}_F$ is prime, then

$$\chi(p) = \begin{cases}
1 & \text{if } p \text{ splits in } L/F; \\
-1 & \text{if } p \text{ is inert in } L/F.
\end{cases}$$
Let \(I \subset \mathcal{O}_F \) be an ideal. Define
\[
\rho(I) = \#\{J \subset \mathcal{O}_L \mid \text{Nm}_{F/F}(J) = I\};
\]
\[
\text{sp}(I) = \begin{cases}
\nu & \text{if } \nu \text{ is unique with } \chi(\nu) = -1 \text{ and } \nu_p(I) \text{ odd}; \\
1 & \text{otherwise}.
\end{cases}
\]

Important: \(\rho(I) = 0 \) if and only if \(I \) has at least one special prime.
Let $I \subset \mathcal{O}_F$ be an ideal. Define
\[
\rho(I) = \#\{J \subset \mathcal{O}_L \mid Nm_F^L(J) = I\};
\]
\[
sp(I) = \begin{cases}
\mathfrak{p} & \text{if } \mathfrak{p} \text{ is unique with } \chi(\mathfrak{p}) = -1 \text{ and } v_\mathfrak{p}(I) \text{ odd}; \\
1 & \text{otherwise.}
\end{cases}
\]

Important: $\rho(I) = 0$ if and only if I has at least one special prime.

Let E_1 be an elliptic curve with CM by \mathcal{O}_1 and E_2 an elliptic curve with CM by \mathcal{O}_2. Then by CM theory, $j(E_i) \in H_i$ for $i = 1, 2$, where H_i is the Hilbert class field of K_i. For simplicity, assume $D_i \neq -3, -4$.
Let $I \subset \mathcal{O}_F$ be an ideal. Define

$$\rho(I) = \#\{J \subset \mathcal{O}_L \mid \text{Nm}_F^L(J) = I\};$$

$$\text{sp}(I) = \begin{cases}
\mathfrak{p} & \text{if } \mathfrak{p} \text{ is unique with } \chi(\mathfrak{p}) = -1 \text{ and } \nu_{\mathfrak{p}}(I) \text{ odd}; \\
1 & \text{otherwise}.
\end{cases}$$

Important: $\rho(I) = 0$ if and only if I has at least one special prime.

Let E_1 be an elliptic curve with CM by \mathcal{O}_1 and E_2 an elliptic curve with CM by \mathcal{O}_2. Then by CM theory, $j(E_i) \in H_i$ for $i = 1, 2$, where H_i is the Hilbert class field of K_i. For simplicity, assume $D_i \neq -3, -4$.

Theorem (Gross-Zagier, 1984)

Setting $\alpha = \nu \sqrt{D}$ and $D_F = (\sqrt{D})$, the following equality holds:

$$\log \text{Nm}_{Q}^{H_1H_2}(j(E_1) - j(E_2)) = \sum_{\nu \in D_F^{-1,+}, \ \text{tr}(\nu) = 1} \rho(\text{sp}(\alpha)\alpha)(\nu_{\text{sp}(\alpha)}(\alpha) + 1) \log(\text{sp}(\alpha)).$$
Example

Let $D_1 = -7$ and $D_2 = -19$. Then

$E_1 : y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(E_1) = -3^35^3$;

$E_2 : y^2 + y = x^3 - 38x + 90, \quad j(E_2) = -2^{15}3^3$.
Let $D_1 = -7$ and $D_2 = -19$. Then

$E_1 : y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(E_1) = -3^3 5^3$;

$E_2 : y^2 + y = x^3 - 38x + 90, \quad j(E_2) = -2^{15} 3^3$.

If $\nu \in \mathcal{D}_F^{-1,+}$ and $\text{tr}(\nu) = 1$, then

$$\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2},$$

where $x^2 < D = 133$ and x is odd.
Example

Let $D_1 = -7$ and $D_2 = -19$. Then

$E_1 : y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(E_1) = -3^35^3$;

$E_2 : y^2 + y = x^3 - 38x + 90, \quad j(E_2) = -2^{15}3^3$.

If $\nu \in \mathcal{D}_F^{-1,+}$ and $\text{tr}(\nu) = 1$, then

$$\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}, \quad \text{where } x^2 < D = 133 \text{ and } x \text{ is odd.}$$

<table>
<thead>
<tr>
<th>x</th>
<th>± 1</th>
<th>± 3</th>
<th>± 5</th>
<th>± 7</th>
<th>± 9</th>
<th>± 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(D - x^2)/4$</td>
<td>$3 \cdot 11$</td>
<td>31</td>
<td>3^3</td>
<td>$3 \cdot 7$</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>$\text{sp}(\alpha)$</td>
<td>3</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>$(\nu_{\text{sp}(\alpha)}(\alpha) + 1)/2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\rho(\text{sp}(\alpha)\alpha)$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

Let $D_1 = -7$ and $D_2 = -19$. Then

$E_1 : y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(E_1) = -3^3 5^3$;

$E_2 : y^2 + y = x^3 - 38x + 90, \quad j(E_2) = -2^{15} 3^3$.

If $\nu \in D_F^{-1,+}$ and $\text{tr}(\nu) = 1$, then

$\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}$, where $x^2 < D = 133$ and x is odd.

<table>
<thead>
<tr>
<th>χ</th>
<th>± 1</th>
<th>± 3</th>
<th>± 5</th>
<th>± 7</th>
<th>± 9</th>
<th>± 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(D - \chi^2)/4$</td>
<td>$3 \cdot 11$</td>
<td>31</td>
<td>3^3</td>
<td>$3 \cdot 7$</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>$\text{sp}(\alpha)$</td>
<td>3</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>$(\nu_{\text{sp}(\alpha)}(\alpha) + 1)/2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\rho(\text{sp}(\alpha)\alpha)$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s check:

$$j(E_1) - j(E_2) = -3^3 5^3 + 2^{15} 3^3 = 881361$$
Example

Let \(D_1 = -7 \) and \(D_2 = -19 \). Then

\[
E_1 : y^2 + xy = x^3 - x^2 - 2x - 1, \quad j(E_1) = -3^35^3;
\]
\[
E_2 : y^2 + y = x^3 - 38x + 90, \quad j(E_2) = -2^{15}3^3.
\]

If \(\nu \in \mathcal{D}_F^{-1,+} \) and \(\text{tr}(\nu) = 1 \), then

\[
\alpha = \nu \sqrt{D} = \frac{x + \sqrt{D}}{2}, \quad \text{where } x^2 < D = 133 \text{ and } x \text{ is odd}.
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\pm 1)</th>
<th>(\pm 3)</th>
<th>(\pm 5)</th>
<th>(\pm 7)</th>
<th>(\pm 9)</th>
<th>(\pm 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((D - x^2)/4)</td>
<td>(3 \cdot 11)</td>
<td>31</td>
<td>(3^3)</td>
<td>(3 \cdot 7)</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>(\text{sp}(\alpha))</td>
<td>3</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>((\nu_{\text{sp}(\alpha)}(\alpha) + 1)/2)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\rho(\text{sp}(\alpha)\alpha))</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s check:

\[
j(E_1) - j(E_2) = -3^35^3 + 2^{15}3^3 = 881361 = 3^7 \cdot 13 \cdot 31.
\]
Zagier’s proof

First step is to rewrite the task at hand to proving

$$\log Nm_Q^{H_1 H_2}(j(E_1) - j(E_2)) = \sum_{\nu \in D_F^{-1,+}} \sum_{I | (\nu) \mathcal{D}_F \text{ and } \text{tr}(\nu) = 1} \chi(I) \log Nm(I).$$
Zagier’s proof

First step is to rewrite the task at hand to proving

\[
\log Nm_Q^{H_1 H_2} \left(j(E_1) - j(E_2) \right) = \sum_{\nu \in \mathbb{D}_F^{-1,+}} \sum_{I|\nu \mathbb{D}_F, \text{tr}(\nu)=1} \chi(I) \log Nm(I).
\]

This reminds one of a diagonal restriction of a weight \(k\) Hilbert Eisenstein series:

\[
E_{k,\chi}(z, z) = \text{const} + \sum_{\nu \in \mathbb{D}_F^{-1,+}} \left(\sum_{I|\nu \mathbb{D}_F, \text{tr}(\nu)=n} \chi(I) Nm(I)^{k-1} \right) q^n.
\]
Zagier’s proof

First step is to rewrite the task at hand to proving

\[
\log Nm_{Q}^{H_1H_2}(j(E_1) - j(E_2)) = \sum_{\nu \in D_F^{-1,+}} \sum_{I|\nu \in D_F \at \text{tr}(\nu) = 1} \chi(I) \log Nm(I).
\]

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

\[
E_{k,\chi}(z, z) = \text{const} + \sum_{\nu \in D_F^{-1,+}} \left(\sum_{I|\nu \in D_F \at \text{tr}(\nu) = n} \chi(I) Nm(I)^{k-1} \right) q^n.
\]

- Consider a family parametrised by a “weight” \(s \in \mathbb{C}; \)
Zagier’s proof

First step is to rewrite the task at hand to proving

$$\log \text{Nm}_{Q}^{H_1 H_2} (j(E_1) - j(E_2)) = \sum_{\nu \in \mathcal{D}_{F}^{-1,+}} \sum_{I|\nu \mathcal{D}_{F}} \chi(I) \log \text{Nm}(I).$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$E_{k,\chi}(z,z) = \text{const} + \sum_{\nu \in \mathcal{D}_{F}^{-1,+}} \left(\sum_{I|\nu \mathcal{D}_{F}} \chi(I) \text{Nm}(I)^{k-1} \right) q^{n}.$$

- Consider a family parametrised by a “weight” $s \in \mathbb{C}$;
- Take its derivative and evaluate at $s = 0$;
Zagier’s proof

First step is to rewrite the task at hand to proving

\[
\log Nm_Q^{H_1H_2}(j(E_1) - j(E_2)) = \sum_{\nu \in D_{F}^{-1,+}} \sum_{I | (\nu) D_{F} \text{tr}(\nu)=1} \chi(I) \log Nm(I).
\]

This reminds one of a diagonal restriction of a weight \(k \) Hilbert Eisenstein series:

\[
E_{k,\chi}(z, z) = \text{const} + \sum_{\nu \in D_{F}^{-1,+}} \left(\sum_{I | (\nu) D_{F} \text{tr}(\nu)=n} \chi(I) Nm(I)^{k-1} \right) q^n.
\]

- Consider a family parametrised by a “weight” \(s \in \mathbb{C} \);
- Take its derivative and evaluate at \(s = 0 \);
- Apply a so-called holomorphic projection.

This must be in \(M_2(\text{SL}_2(\mathbb{Z})) = 0 \).
Zagier’s proof

First step is to rewrite the task at hand to proving

$$\log Nm_{Q}^{H_{1}H_{2}}(j(E_{1}) - j(E_{2})) = \sum_{\nu \in \mathcal{D}_{F}^{-1,+}} \sum_{I|\nu, \text{tr}(\nu)=1} \chi(I) \log Nm(I).$$

This reminds one of a diagonal restriction of a weight k Hilbert Eisenstein series:

$$E_{k,\chi}(z, z) = \text{const} + \sum_{\nu \in \mathcal{D}_{F}^{-1,+}} \left(\sum_{I|\nu, \text{tr}(\nu)=n} \chi(I) Nm(I)^{k-1} \right) q^{n}.$$

- Consider a family parametrised by a “weight” $s \in \mathbb{C}$;
- Take its derivative and evaluate at $s = 0$;
- Apply a so-called holomorphic projection.

This must be in $M_{2}(SL_{2}(\mathbb{Z})) = 0$. The explicit formula for its Fourier coefficients involves two terms, one for each side \implies equal. Hard.
What is the \(j \)-function really?

Consider \(M_2(\mathbb{Q}) \); this is a quaternion algebra with norm det. Here, a maximal order is given by

\[
M_2(\mathbb{Z}) \subset M_2(\mathbb{Q}).
\]

Its units of norm 1 are precisely

\[
SL_2(\mathbb{Z}) \subset M_2(\mathbb{Z}).
\]
What is the j-function really?

Consider $M_2(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

$$M_2(\mathbb{Z}) \subset M_2(\mathbb{Q}).$$

Its units of norm 1 are precisely

$$\text{SL}_2(\mathbb{Z}) \subset M_2(\mathbb{Z}).$$

Since $M_2(\mathbb{Q})$ acts on \mathbb{C}, we may consider the quotient

$$Y_1(\mathbb{C}) = \text{SL}_2(\mathbb{Z}) \setminus \mathcal{H}.$$

Its function field is generated by the j-function.
What is the j-function really?

Consider $M_2(\mathbb{Q})$; this is a quaternion algebra with norm det. Here, a maximal order is given by

$$M_2(\mathbb{Z}) \subset M_2(\mathbb{Q}).$$

Its units of norm 1 are precisely

$$SL_2(\mathbb{Z}) \subset M_2(\mathbb{Z}).$$

Since $M_2(\mathbb{Q})$ acts on \mathbb{C}, we may consider the quotient

$$Y_1(\mathbb{C}) = SL_2(\mathbb{Z}) \setminus \mathcal{H}.$$

Its function field is generated by the j-function.

Question

What happens if we change $M_2(\mathbb{Q})$ to a different quaternion algebra?
Choose two primes $p \neq q$ and let $N = pq$. Let B_N denote the quaternion algebra ramified at p and q. Let R_N be a maximal order and let $R_{N,1}^\times$ denote the subgroup of units of norm 1. We may choose an embedding $R_{N,1}^\times \to M_2(\mathbb{R})$ to form the quotient

$$X_N(\mathbb{C}) = R_{N,1}^\times \setminus \mathcal{H};$$

this is known as a Shimura curve, which is an algebraic curve over \mathbb{Q}.

Proposition

The Shimura curve X_N is of genus 0 if and only if $N \in \{6, 10, 22\}$. Suppose henceforth that we are in one of these cases. Then there exists a generator j_N of the function field. Note this choice is not unique. Let $\tau_1, \tau_2 \in \mathcal{H}$ be CM points: fixed points in \mathbb{C} of embeddings $\mathcal{O}_i \to R_N$. These exist when p and q are inert in both K_i. We want to study $N m_{j_N}(\tau_1) - j_N(\tau_2)$. They are algebraic by Shimura reciprocity.
Shimura curves

Choose two primes \(p \neq q \) and let \(N = pq \). Let \(B_N \) denote the quaternion algebra ramified at \(p \) and \(q \). Let \(R_N \) be a maximal order and let \(R_N^\times \) denote the subgroup of units of norm 1. We may choose an embedding \(R_N^\times \to M_2(\mathbb{R}) \) to form the quotient

\[X_N(\mathbb{C}) = R_N^\times \backslash \mathcal{H}; \]

this is known as a Shimura curve, which is an algebraic curve \(/\mathbb{Q} \).

Proposition

The Shimura curve \(X_N \) is of genus 0 if and only if \(N \in \{6, 10, 22\} \).

Suppose henceforth that we are in one of these cases. Then there exists a generator \(j_N \) of the function field. Note this choice is not unique.
Shimura curves

Choose two primes $p \neq q$ and let $N = pq$. Let B_N denote the quaternion algebra ramified at p and q. Let R_N be a maximal order and let $R_{N,1}^\times$ denote the subgroup of units of norm 1. We may choose an embedding $R_{N,1}^\times \to M_2(\mathbb{R})$ to form the quotient

$$X_N(\mathbb{C}) = R_{N,1}^\times \backslash \mathcal{H};$$

this is known as a Shimura curve, which is an algebraic curve over \mathbb{Q}.

Proposition

The Shimura curve X_N is of genus 0 if and only if $N \in \{6, 10, 22\}$.

Suppose henceforth that we are in one of these cases. Then there exists a generator j_N of the function field. Note this choice is not unique. Let $\tau_1, \tau_2 \in \mathcal{H}$ be CM points: fixed points in \mathbb{C} of embeddings $\mathcal{O}_i \to R_N$. These exist when p and q are inert in both K_i. We want to study

$$\text{Nm}(j_N(\tau_1) - j_N(\tau_2)).$$

They are algebraic by Shimura reciprocity.
Let B_q denote the quaternion algebra ramified at q and ∞. Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma_q^p = R_q [1/p]^\times$$

of units of norm 1.
Cerednik-Drinfeld

Let B_q denote the quaternion algebra ramified at q and ∞. Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma_q^p = R_q[1/p]_1^\times$$

of units of norm 1. Since B_q is split at p, it embeds into $M_2(\mathbb{Q}_p)$ and as such, we can take the quotient

$$\Gamma_q^p \backslash \mathcal{H}_p,$$

where $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(\mathbb{Q}_p)$ is the p-adic upper half plane.
Let B_q denote the quaternion algebra ramified at q and ∞. Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma_q^p = R_q[1/p]_1^\times$$

of units of norm 1. Since B_q is split at p, it embeds into $M_2(\mathbb{Q}_p)$ and as such, we can take the quotient

$$\Gamma_q^p \backslash \mathcal{H}_p,$$

where $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(\mathbb{Q}_p)$ is the p-adic upper half plane.

Theorem (Cerednik-Drinfeld)

The quotient $\Gamma_q^p \backslash \mathcal{H}_p$ is as rigid p-adic space isomorphic to $X_N(\mathbb{C}_p)$.
Let B_q denote the quaternion algebra ramified at q and ∞. Let R_q be a maximal order. Now B_q is definite, so consider the group

$$\Gamma_p^q = R_q [1/p]_1^\times$$

of units of norm 1. Since B_q is split at p, it embeds into $M_2(Q_p)$ and as such, we can take the quotient

$$\Gamma_p^q \backslash \mathcal{H}_p,$$

where $\mathcal{H}_p = P^1(C_p) \backslash P^1(Q_p)$ is the p-adic upper half plane.

Theorem (Cerednik-Drinfeld)

The quotient $\Gamma_p^q \backslash \mathcal{H}_p$ is as rigid p-adic space isomorphic to $X_N(C_p)$.

Question

Which functions on $\Gamma_p^q \backslash \mathcal{H}_p$ correspond to j_N on the other side?
Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1, w_2; z) = \prod_{\gamma \in \Gamma_q^p} \frac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_q^p \backslash \mathcal{H}_p$ with divisor $[w_1] - [w_2]$.

Theta functions

Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1, w_2; z) = \prod_{\gamma \in \Gamma_q^p} \frac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_q^p \backslash \mathcal{H}_p$ with divisor $[w_1] - [w_2]$.

Mike Daas
CM values of p-adic theta-functions
3rd of April, 2023
Theta functions

Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1, w_2; z) = \prod_{\gamma \in \Gamma_p^p} \frac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma_q^p \backslash \mathcal{H}_p$ with divisor $[w_1] - [w_2]$. We obtain

$$\Theta(w_1, w_2; z) = c(w_1, w_2) \cdot \frac{j_N(z) - j_N(w_1)}{j_N(z) - j_N(w_2)},$$

for some $c(w_1, w_2) \in \mathbb{C}_p$.

Mike Daas
CM values of p-adic theta-functions
3rd of April, 2023
Let $w_1, w_2 \in \mathcal{H}_p$. Then consider the expression

$$\Theta(w_1, w_2; z) = \prod_{\gamma \in \Gamma^p_q} \frac{z - \gamma w_1}{z - \gamma w_2}.$$

If $N \in \{6, 10, 22\}$, this expression descends to a rigid analytic meromorphic function on $\Gamma^p_q \setminus \mathcal{H}_p$ with divisor $[w_1] - [w_2]$. We obtain

$$\Theta(w_1, w_2; z) = c(w_1, w_2) \cdot \frac{j_N(z) - j_N(w_1)}{j_N(z) - j_N(w_2)}, \text{ for some } c(w_1, w_2) \in \mathbb{C}_p.$$

Now choose $w_1 = \tau_1$ and $w_2 = \tau'_1$; its Galois conjugate. Because we don’t know $c(\tau_1, \tau'_1)$, we opt to study instead

$$\frac{j_N(\tau_2) - j_N(\tau_1) j_N(\tau'_2) - j_N(\tau'_1)}{j_N(\tau_2) - j_N(\tau'_1) j_N(\tau'_2) - j_N(\tau_1)} = \prod_{\gamma \in \Gamma^p_q} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau'_1} \frac{\tau'_2 - \gamma \tau_1}{\tau'_2 - \gamma \tau'_1}.$$
The conjecture

One can p-adically approximate the quantity

$$J_p^{q}(\tau_1, \tau_2) := \prod_{\gamma \in \Gamma_p^q} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau'_1} \frac{\tau'_2 - \gamma \tau_1}{\tau'_2 - \gamma \tau'_1}$$

and recognise it as an algebraic number.
The conjecture

One can p-adically approximate the quantity

$$J^p_{pq}(\tau_1, \tau_2) := \prod_{\gamma \in \Gamma^p_{pq}} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau_1'} \frac{\tau_2' - \gamma \tau_1}{\tau_2' - \gamma \tau_1'}$$

and recognise it as an algebraic number.

There are four ideals a of norm $N = pq$ in \mathcal{O}_F; they come in two $\text{Gal}(F/Q)$ orbits. Assign one orbit $\delta(a) = +1$, the other $\delta(a) = -1$.
The conjecture

One can p-adically approximate the quantity

$$J_p^q(\tau_1, \tau_2) := \prod_{\gamma \in \Gamma_p^q} \frac{\tau_2 - \gamma \tau_1}{\tau_2 - \gamma \tau_1'} \frac{\tau_2' - \gamma \tau_1}{\tau_2' - \gamma \tau_1'}$$

and recognise it as an algebraic number.

There are four ideals a of norm $N = pq$ in \mathcal{O}_F; they come in two $\text{Gal}(F/Q)$ orbits. Assign one orbit $\delta(a) = +1$, the other $\delta(a) = -1$.

Conjecture (Giampietro, Darmon)

The expression

$$\log Nm_Q^{H_1 H_2} J_p^q(\tau_1, \tau_2)$$

is up to sign explicitly equal to

$$\sum_{Nm(a) = N} \delta(a) \sum_{\nu \in D_F^{-1, +}} \rho(sp(\alpha a^{-1}) \alpha a^{-1})(\nu_{sp(\alpha a^{-1})}(\alpha a^{-1}) + 1) \log(sp(\alpha a^{-1})).$$
Intermezzo: rewriting the theta-series

Let \(\tau_i \) be defined by an embedding \(\alpha_i : \mathcal{O}_i \rightarrow \mathbb{R}_q \) for \(i = 1, 2 \). This yields actions of the \(\mathcal{O}_i \) on \(B_q \), and as such, an action of \(L \) through

\[
\mathcal{O}_L \cong \mathcal{O}_1 \otimes \mathbb{Z} \mathcal{O}_2 : (x \otimes y) * b = \alpha_1(x)b\alpha_2(y).
\]
Intermezzo: rewriting the theta-series

Let τ_i be defined by an embedding $\alpha_i : \mathcal{O}_i \to \mathbb{R}_q$ for $i = 1, 2$. This yields actions of the \mathcal{O}_i on B_q, and as such, an action of L through

$$\mathcal{O}_L \cong \mathcal{O}_1 \otimes_{\mathbb{Z}} \mathcal{O}_2 : (x \otimes y) * b = \alpha_1(x)b\alpha_2(y).$$

Since $[L : \mathbb{Q}] = [B_q : \mathbb{Q}] = 4$, so $[B_q : L] = 1$.

Let τ_i be defined by an embedding $\alpha_i : \mathcal{O}_i \to \mathbb{R}_q$ for $i = 1, 2$. This yields actions of the \mathcal{O}_i on B_q, and as such, an action of L through

$$\mathcal{O}_L \cong \mathcal{O}_1 \otimes_{\mathbb{Z}} \mathcal{O}_2 : (x \otimes y) \ast b = \alpha_1(x)b\alpha_2(y).$$

Since $[L : \mathbb{Q}] = [B_q : \mathbb{Q}] = 4$, so $[B_q : L] = 1$.

Proposition

There exists a unique F-linear quadratic form $\det_F : B_q \to F$ with the property that $\text{tr}_{F/\mathbb{Q}}(\det_F(b)) = \text{Nm}(b)$.

Intermezzo: rewriting the theta-series

Let τ_i be defined by an embedding $\alpha_i : \mathcal{O}_i \rightarrow \mathbb{R}_q$ for $i = 1, 2$. This yields actions of the \mathcal{O}_i on B_q, and as such, an action of L through

$$\mathcal{O}_L \cong \mathcal{O}_1 \otimes \mathbb{Z} \mathcal{O}_2 : (x \otimes y) \ast b = \alpha_1(x)b\alpha_2(y).$$

Since $[L : \mathbb{Q}] = [B_q : \mathbb{Q}] = 4$, so $[B_q : L] = 1$.

Proposition

There exists a unique F-linear quadratic form $\det_F : B_q \rightarrow F$ with the property that $\text{tr}_{F/\mathbb{Q}}(\det_F(b)) = \text{Nm}(b)$.

It satisfies

$$\frac{\tau_2 - b\tau_1 \tau'_2 - b\tau_1}{\tau_2 - b\tau'_1 \tau'_2 - b\tau'_1} = \frac{\det_F(b)}{\det'_F(b)}.$$

As such,

$$\frac{\Theta(\tau_1, \tau'_1; \tau_2)}{\Theta(\tau_1, \tau'_1; \tau'_2)} = \prod_{b \in \Gamma_q^p} \frac{\det_F(b)}{\det'_F(b)}.$$
Let $\iota : B \rightarrow L$ be an isomorphism of L-vector spaces. For $b \in B_q$, define the ideal

$$I_b = \iota(b)/\iota(R_q).$$
Let $\iota : B \rightarrow L$ be an isomorphism of L-vector spaces. For $b \in B_q$, define the ideal

$$I_b = \iota(b)/\iota(R_q).$$

Proposition

Ranging over all possible pairs of embeddings α_1, α_2, the association $b \mapsto I_b$ establishes a bijection between

$$\{ b \in R_q/\{\pm 1\} \mid \det_F(b) = \nu \}$$

and

$$\{ I \subset O_L \mid Nm_{L/F}(I) = (\nu)q^{-1}D_F \}. $$
Rewriting the theta series further

Note that we have a correspondence

\[\Gamma_p^q = R_q[1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \{ b \in R_q \mid Nm(b) = p^{2n} \} . \]
Rewriting the theta series further

Note that we have a correspondence

$$\Gamma_p^q = \mathbb{R}_q[1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \{ b \in \mathbb{R}_q \mid \text{Nm}(b) = p^{2n} \}.$$

As such,

$$\frac{\Theta(\tau_1, \tau'_1; \tau_2)}{\Theta(\tau_1, \tau'_1; \tau'_2)} = \prod_{b \in \Gamma_p^q} \frac{\text{det}_F(b)}{\text{det}'_F(b)}$$

$$= \lim_{n \to \infty} \prod_{\text{Nm}(b) = p^{2n}} \frac{\text{det}_F(b)}{\text{det}'_F(b)}.$$
Rewriting the theta series further

Note that we have a correspondence

$$\Gamma_p^q = R_q[1/p]_1^\times \leftrightarrow \lim_{n \to \infty} \left\{ b \in R_q \mid Nm(b) = p^{2n} \right\}.$$

As such,

$$\frac{\Theta(\tau_1, \tau'_1; \tau_2)}{\Theta(\tau_1, \tau'_1; \tau'_2)} = \prod_{b \in \Gamma_p^q} \frac{\det_F(b)}{\det'_F(b)}$$

$$= \lim_{n \to \infty} \prod_{Nm(b) = p^{2n}} \frac{\det_F(b)}{\det'_F(b)}.$$

Taking the logarithm;

$$\log_p \frac{\Theta(\tau_1, \tau'_1; \tau_2)}{\Theta(\tau_1, \tau'_1; \tau'_2)} = \lim_{n \to \infty} \sum_{\text{tr}(\nu) = p^{2n}} \# \left\{ b \in R_q \mid \det_F(b) = \nu \right\} \log_p \left(\frac{\nu}{\nu'} \right)$$

$$= \lim_{n \to \infty} \sum_{\text{tr}(\nu) = p^{2n}} \rho((\nu)q^{-1}D_F) \log_p \left(\frac{\nu}{\nu'} \right).$$
Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

1. Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
2. Take its derivative and compute its coefficients explicitly;
3. Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea: Consider its associated Galois representation $1 \oplus \chi$; deform it infinitesimally ($\epsilon^2 = 0$) and explicitly; argue why these deformations are modular; explicitly compute its Fourier coefficients a_ν for all $\nu \gg 0$; the ϵ-part then yields a meaningful derivative.
Idea of the proof

We consider a \(p \)-stabilisation of the Hilbert Eisenstein series \(E_{1,\chi} \). We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around \(E_{1,\chi} \);
- Take its derivative and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea: Consider its associated Galois representation \(1 \oplus \chi \);
- Deform it infinitesimally (\(\epsilon^2 = 0 \)) and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients \(a_\nu \) for all \(\nu \gg 0 \);
- The \(\epsilon \)-part then yields a meaningful derivative.
Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the ordinary projection and argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea: Consider its associated Galois representation $1 \otimes \chi$; deform it infinitesimally ($\epsilon^2 = 0$) and explicitly; argue why these deformations are modular; explicitly compute its Fourier coefficients a_ν for all $\nu \gg 0$; the ϵ-part then yields a meaningful derivative.
Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the *ordinary projection*; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

Consider its associated Galois representation $1 \oplus \chi$;

Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;

Argue why these deformations are modular;

Explicitly compute its Fourier coefficients a_{ν} for all $\nu \gg 0$;

The ϵ-part then yields a meaningful derivative.
We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the *ordinary projection*; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:
Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

- Consider its associated Galois representation $1 \oplus \chi$;
We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the *ordinary projection*; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;
Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the *ordinary projection*; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;
- Argue why these deformations are modular;
Idea of the proof

We consider a p-stabilisation of the Hilbert Eisenstein series $E_{1,\chi}$. We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around $E_{1,\chi}$;
- Take its derivative and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

- Consider its associated Galois representation $1 \oplus \chi$;
- Deform it infinitesimally ($\epsilon^2 = 0$) and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients a_ν for all $\nu \gg 0$;
We consider a \(p \)-stabilisation of the Hilbert Eisenstein series \(E_{1, \chi} \).

We wish to do the following three steps:

- Find explicit family of Hilbert modular forms around \(E_{1, \chi} \);
- Take its derivative and compute its coefficients explicitly;
- Apply the ordinary projection; argue why the result must vanish and obtain an equality by equating its coefficients to 0.

But writing down explicit families of modular forms is hard. Idea:

- Consider its associated Galois representation \(1 \oplus \chi \);
- Deform it infinitesimally \((\epsilon^2 = 0) \) and explicitly;
- Argue why these deformations are modular;
- Explicitly compute its Fourier coefficients \(a_\nu \) for all \(\nu \gg 0 \);
- The \(\epsilon \)-part then yields a meaningful derivative.
Again let $\rho = 1 \oplus \chi$. Write $\tilde{\rho}$ for a deformation of ρ to the ring $GL_2(\mathbb{Q}_p[\epsilon])$ where $\epsilon^2 = 0$.

Proposition

Let $a, b, c, d : GF \to \mathbb{Q}_p$ be those functions such that $\tilde{\rho}(\tau) = (1 + \epsilon(a(\tau)b(\tau)c(\tau)d(\tau))) \cdot \rho(\tau)$ for all $\tau \in GF$. Then these functions must respectively satisfy $a, d \in \text{Hom}(GF, \mathbb{Q}_p)$, and $b, c \in H^1(GF, \mathbb{Q}_p[\chi])$.

Note that $\dim \text{Hom}(GF, \mathbb{Q}_p) = 1$ spanned by the p-adic cyclotomic character: $\phi_{\text{cyc}} : GF \to \text{Gal}(F(\zeta_{\infty}^p)/F) \overset{\sim}{\longrightarrow} \mathbb{Z} \times p \log p \overset{\sim}{\longrightarrow} \mathbb{Q}_p$.

Mike Daas
CM values of p-adic theta-functions
3rd of April, 2023
Deforming $1 \oplus \chi$

Again let $\rho = 1 \oplus \chi$. Write $\tilde{\rho}$ for a deformation of ρ to the ring $GL_2(Q_p[\epsilon])$ where $\epsilon^2 = 0$.

Proposition

Let $a, b, c, d : G_F \rightarrow Q_p$ be those functions such that

$$\tilde{\rho}(\tau) = \left(1 + \epsilon \begin{pmatrix} a(\tau) & b(\tau) \\ c(\tau) & d(\tau) \end{pmatrix} \right) \cdot \rho(\tau)$$

for all $\tau \in G_F$. Then these functions must respectively satisfy

$$a, d \in \text{Hom}(G_F, Q_p), \quad \text{and} \quad b, c \in H^1(G_F, Q_p(\chi)).$$
Deforming $1 \oplus \chi$

Again let $\rho = 1 \oplus \chi$. Write $\tilde{\rho}$ for a deformation of ρ to the ring $GL_2(Q_p[\epsilon])$ where $\epsilon^2 = 0$.

Proposition

Let $a, b, c, d : G_F \rightarrow Q_p$ be those functions such that

$$\tilde{\rho}(\tau) = \left(1 + \epsilon \begin{pmatrix} a(\tau) & b(\tau) \\ c(\tau) & d(\tau) \end{pmatrix}\right) \cdot \rho(\tau)$$

for all $\tau \in G_F$. Then these functions must respectively satisfy

$$a, d \in \text{Hom}(G_F, Q_p), \quad \text{and} \quad b, c \in H^1(G_F, Q_p(\chi)).$$

Note that $\dim \text{Hom}(G_F, Q_p) = 1$ spanned by the p-adic cyclotomic character:

$$\phi_p^{\text{cyc}} : G_F \rightarrow \text{Gal}(F(\zeta_p^\infty)/F) \cong \mathbb{Z}_p^\times \xrightarrow{\log_p} Q_p.$$
For simplicity, choose

$$\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \phi_p^{\text{cyc}} \epsilon & 0 \\ 0 & \chi - \chi \phi_p^{\text{cyc}} \epsilon \end{pmatrix}. $$

Suppose that this deformation is modular. That would yield a morphism $\varphi : \mathbb{T} \to \mathbb{Q}_p[\epsilon]$, where \mathbb{T} is Hida’s p-adic Hecke algebra, generated by adèles of F, but in practice:
For simplicity, choose
\[\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \phi_p^{\text{cyc}} \epsilon & 0 \\ 0 & \chi - \chi \phi_p^{\text{cyc}} \epsilon \end{pmatrix}. \]

Suppose that this deformation is modular. That would yield a morphism \(\varphi : T \to \mathbb{Q}_p[\epsilon] \), where \(T \) is Hida’s \(p \)-adic Hecke algebra, generated by \text{adèles} of \(F \), but in practice:

- operators \(T_l, \langle l \rangle \) for all primes \(l \subset \mathcal{O}_F \) prime to \(p \);
For simplicity, choose

\[\tilde{\rho}(\tau) = \left(\begin{array}{cc} 1 + \phi_p^{\text{cyc}} \epsilon & 0 \\ 0 & \chi - \chi \phi_p^{\text{cyc}} \epsilon \end{array} \right). \]

Suppose that this deformation is modular. That would yield a morphism \(\varphi : \mathbb{T} \rightarrow \mathbb{Q}_p[\epsilon] \), where \(\mathbb{T} \) is Hida’s \(p \)-adic Hecke algebra, generated by \textbf{adèles} of \(F \), but in practice:

- operators \(T_l, \langle l \rangle \) for all primes \(l \subset \mathcal{O}_F \) prime to \(p \);
- operators \(U_\pi \) and \(U_{\pi'} \) for all uniformisers \(\pi \) and \(\pi' \) at the two places of \(F \) above \(p \).
Images of Frobenius

For simplicity, choose

$$\tilde{\rho}(\tau) = \begin{pmatrix} 1 + \phi_p^{cyc} \epsilon & 0 \\ 0 & \chi - \chi \phi_p^{cyc} \epsilon \end{pmatrix}.$$

Suppose that this deformation is modular. That would yield a morphism $\varphi : T \rightarrow \mathbb{Q}_p[\epsilon]$, where T is Hida’s p-adic Hecke algebra, generated by adèles of F, but in practice:

- operators $T_l, \langle l \rangle$ for all primes $l \subset \mathcal{O}_F$ prime to p;
- operators U_π and $U_{\pi'}$ for all uniformisers π and π' at the two places of F above p.

We recover φ from

$$\varphi(T_l) = \text{tr}(\tilde{\rho}(\text{Frob}_l)) = \begin{cases} 2 & \text{if } \chi(l) = 1; \\ 2 \log_p(Nm(l)) \epsilon & \text{if } \chi(l) = -1. \end{cases}$$
Images of Frobenius

For simplicity, choose

\[\bar{\rho}(\tau) = \begin{pmatrix} 1 + \phi_p^{\text{cyc}} \epsilon & 0 \\ 0 & \chi - \chi \phi_p^{\text{cyc}} \epsilon \end{pmatrix}. \]

Suppose that this deformation is modular. That would yield a morphism \(\varphi : \mathbb{T} \to \mathbb{Q}_p[\epsilon] \), where \(\mathbb{T} \) is Hida’s \(p \)-adic Hecke algebra, generated by adèles of \(F \), but in practice:

- operators \(T_l, \langle I \rangle \) for all primes \(I \subset \mathcal{O}_F \) prime to \(p \);
- operators \(U_{\pi} \) and \(U_{\pi'} \) for all uniformisers \(\pi \) and \(\pi' \) at the two places of \(F \) above \(p \).

We recover \(\varphi \) from

\[\varphi(T_I) = \text{tr}(\bar{\rho}(\text{Frob}_I)) = \begin{cases} 2 & \text{if } \chi(I) = 1; \\ 2 \log_p(Nm(I)) \epsilon & \text{if } \chi(I) = -1. \end{cases} \]

Further, note that

\[\varphi(\langle I \rangle Nm(I)) = \det(\bar{\rho}(\text{Frob}_I)) = \chi(I). \]
Solving the recursion

Remember the essential recursion relation

\[T_{n+1} = T_n T_I - \langle I \rangle Nm(I) T_{n-1}. \]
Solving the recursion

Remember the essential recursion relation

$$T_{n+1} = T_n T_I - \langle I \rangle Nm(I) T_{n-1}.$$

We can solve this in each case explicitly:

$$\varphi(T_n) = \begin{cases}
 n + 1 & \text{if } \chi(I) = 1; \\
 (n + 1) \log_p (Nm(I)) \epsilon & \text{if } \chi(I) = -1 \text{ and } n \text{ is odd}; \\
 1 & \text{if } \chi(I) = -1 \text{ and } n \text{ is even}.
\end{cases}$$
Solving the recursion

Remember the essential recursion relation

\[T_{n+1} = T_n T_I - \langle I \rangle Nm(I) T_{n-1}. \]

We can solve this in each case explicitly:

\[\varphi(T_n) = \begin{cases}
 n + 1 & \text{if } \chi(I) = 1; \\
 (n + 1) \log_p (Nm(I)) \epsilon & \text{if } \chi(I) = -1 \text{ and } n \text{ is odd}; \\
 1 & \text{if } \chi(I) = -1 \text{ and } n \text{ is even.}
\end{cases} \]

Compare this to

\[\sum_{I | l^n} \chi(I) = \rho(l^n) = \begin{cases}
 n + 1 & \text{if } \chi(I) = 1; \\
 0 & \text{if } \chi(I) = -1 \text{ and } n \text{ is odd}; \\
 1 & \text{if } \chi(I) = -1 \text{ and } n \text{ is even.}
\end{cases} \]
Unifying expressions

So we have

\[
\varphi(T_l^n) = \begin{cases}
 n + 1 & \text{if } \chi(l) = 1; \\
 (n + 1) \log_p(Nm(l)) \epsilon & \text{if } \chi(l) = -1 \text{ and } n \text{ is odd;} \\
 1 & \text{if } \chi(l) = -1 \text{ and } n \text{ is even.}
\end{cases}
\]

The integral parts are precisely \(\rho(l^n) \). We can thus write

\[
\varphi(T_l^n) = \rho(l^n) + \frac{1}{2} (n + 1)(1 - \chi(l^n)) \log_p(Nm(l)) \epsilon.
\]
Unifying expressions

So we have

\[
\varphi(T_{ln}) = \begin{cases}
 n + 1 & \text{if } \chi(l) = 1; \\
 (n + 1) \log_p(Nm(l))\epsilon & \text{if } \chi(l) = -1 \text{ and } n \text{ is odd}; \\
 1 & \text{if } \chi(l) = -1 \text{ and } n \text{ is even.}
\end{cases}
\]

The integral parts are precisely \(\rho(l^n)\). We can thus write

\[
\varphi(T_{ln}) = \rho(l^n) + \frac{1}{2}(n + 1)(1 - \chi(l^n)) \log_p(Nm(l))\epsilon.
\]

Let \(J \subset O_F\) be any ideal coprime to \(p\). Then

\[
\varphi(T_J) = \rho(J) + \frac{1}{2} \sum_{nm||J} \left((n + 1)(1 - \chi(l^n)) \rho(J/l^n) \right) \log_p(Nm(l))\epsilon.
\]
\[\varphi(T_J) = \rho(J) + \frac{1}{2} \sum_{m \mid J} \left((n + 1) \left(1 - \chi(l^n) \right) \rho(J/l^n) \right) \log_p(Nm(l)) \varepsilon. \]
The Magic Moment

\[\varphi(T_J) = \rho(J) + \frac{1}{2} \sum_{m \parallel J} \left((n + 1)(1 - \chi(I^n)) \rho(J/I^n) \right) \log_p(Nm(I)) \epsilon. \]

Proposition

If \(J \) is a primitive ideal coprime to \(p \), then the quantity

\[\frac{1}{2} \sum_{m \parallel J} \left((n + 1)(1 - \chi(I^n)) \rho(J/I^n) \right) \log_p(Nm(I)) \]

is equal to

\[\rho(sp(J)J)(\nu_{sp(J)}(J) + 1) \log_p(sp(J)). \]
The Magic Moment

\[\varphi(T_J) = \rho(J) + \frac{1}{2} \sum_{\lVert n \rVert \parallel J} \left((n + 1) (1 - \chi(l^n)) \rho(J/l^n) \right) \log_p (Nm(I)) \epsilon. \]

Proposition

If \(J \) is a primitive ideal coprime to \(p \), then the quantity

\[\frac{1}{2} \sum_{\lVert n \rVert \parallel J} \left((n + 1) (1 - \chi(l^n)) \rho(J/l^n) \right) \log_p (Nm(I)) \]

is equal to

\[\rho(sp(J)J)(\nu_{sp(J)}(J) + 1) \log_p (sp(J)). \]

Indeed, the factor \(1 - \chi(l^n) = 0 \) unless \(l \) is a special prime of \(J \), and if \(J/l^n \) still has another special prime, \(\rho(J/l^n) = 0 \). It can thus only be non-zero when \(l \) is the unique special prime; the rest matches up.
Fourier coefficients

For convenience, let us denote

$$\log \mathcal{F}(J) = \rho(\text{sp}(J)J)(\nu_{\text{sp}(J)}(J) + 1) \log(\text{sp}(J)),$$

so that very concisely, for J coprime to p,

$$\varphi(T_J) = \rho(J) + \log \mathcal{F}(J)\epsilon.$$

Let \widetilde{J} denote the ideal J without its prime factors dividing p.
Fourier coefficients

For convenience, let us denote

$$\log F(J) = \rho(sp(J)J) (\nu_{sp(J)}(J) + 1) \log(sp(J)),$$

so that very concisely, for J coprime to p,

$$\phi(T_J) = \rho(J) + \log F(J) \epsilon.$$

Let \widetilde{J} denote the ideal J without its prime factors dividing p.

Theorem

For any $\nu \in (D_{F}^{-1}q)^+$, let $J_{\nu} = (\nu)D_{F}q^{-1}$. Then it holds that

$$a_{\nu}(f_{q}) = (-1)^{\nu_{\pi}(\nu)} \left(\rho(\widetilde{J}_{\nu}) + \log_{p}(F(\widetilde{J}_{\nu})) \epsilon - \rho(\widetilde{J}_{\nu}) \log_{p}(\nu/\nu') \epsilon \right).$$
Fourier coefficients

For convenience, let us denote

$$\log F(J) = \rho(sp(J)J)(\nu_{sp(J)}(J) + 1) \log(sp(J)),$$

so that very concisely, for J coprime to p,

$$\varphi(T_J) = \rho(J) + \log F(J)\epsilon.$$

Let \(\tilde{J} \) denote the ideal J without its prime factors dividing p.

Theorem

For any \(\nu \in (D_F^{-1}q^+) \), let \(J_\nu = (\nu)D_Fq^{-1} \). Then it holds that

$$a_\nu(f_q) = (-1)^{\nu\pi(\nu)}(\rho(\tilde{J}_\nu) + \log_p (F(\tilde{J}_\nu))\epsilon - \rho(\tilde{J}_\nu) \log_p (\nu/\nu')\epsilon).$$

The term \(\log(\nu/\nu') \) comes from \(\nu \) at the two places above p, as

$$\varphi(U_\pi) = -1 + \log_p (\pi)\epsilon; \quad \varphi(U_{\pi'}) = 1 + \log_p (\pi')\epsilon.$$
We take the diagonal restriction:

$$\text{diag}(f_q) = \sum_{n=1}^{\infty} \left(\sum_{\nu \in (D_F^{-1}q)^+, \text{tr}(\nu)=n} a_{\nu} \right) q^n.$$
Ordinary projection

We take the diagonal restriction:

$$\text{diag}(f_q) = \sum_{n=1}^{\infty} \left(\sum_{\nu \in (D_F^{-1}q)^+ \atop \text{tr}(\nu) = n} a_\nu \right) q^n.$$

Taking its derivative amounts to considering only the ϵ-part:

$$a_n(\partial \text{diag}(f_q)) = \sum_{\nu \in (D_F^{-1}q)^+ \atop \text{tr}(\nu) = n} (-1)^{\nu, \pi(\nu)} \left(\log_p (F(\tilde{J}_\nu)) - \rho(\tilde{J}_\nu) \log_p (\nu/\nu') \right).$$
Ordinary projection

We take the diagonal restriction:

$$\text{diag}(f_q) = \sum_{n=1}^{\infty} \left(\sum_{\nu \in (D_F^{-1}q)^+ \atop \text{tr}(\nu) = n} a_\nu \right) q^n.$$

Taking its derivative amounts to considering only the ϵ-part:

$$a_n(\partial \text{diag}(f_q)) = \sum_{\nu \in (D_F^{-1}q)^+ \atop \text{tr}(\nu) = n} (-1)^{\nu \pi(\nu)} \left(\log_p (\mathcal{F}(\tilde{J}_\nu)) - \rho(\tilde{J}_\nu) \log_p (\nu/\nu') \right).$$

Now we take the ordinary projection e^{ord}:

$$a_1(e^{\text{ord}}(\partial \text{diag}(f_q))) = \lim_{n \to \infty} a_{p^{2n}}(\partial \text{diag}(f_q))$$

$$= \lim_{n \to \infty} \sum_{\nu \in (D_F^{-1}q)^+ \atop \text{tr}(\nu) = p^{2n}} (-1)^{\nu \pi(\nu)} \left(\log_p (\mathcal{F}(\tilde{J}_\nu)) - \rho(\tilde{J}_\nu) \log_p (\nu/\nu') \right).$$
One can show that the result must be a classical cusp form of weight 2 and level N, but one can check that

$$S_2(\Gamma_0(6)) = S_2(\Gamma_0(10)) = S_2(\Gamma_0(22)) = 0.$$
The crux!

One can show that the result must be a classical cusp form of weight 2 and level \(N\), but one can check that

\[
S_2(\Gamma_0(6)) = S_2(\Gamma_0(10)) = S_2(\Gamma_0(22)) = 0.
\]

In other words, if

\[
A := \lim_{n \to \infty} \sum_{\nu \in (D_F^{-1}q)^+, \text{tr}(\nu) = p^{2n}} (-1)^{\nu \pi(\nu)} \rho(\tilde{J}_\nu) \log_p (\nu/\nu')
\]

and

\[
B := \lim_{n \to \infty} \sum_{\nu \in (D_F^{-1}q)^+, \text{tr}(\nu) = p^{2n}} (-1)^{\nu \pi(\nu)} \log_p (\mathcal{F}(\tilde{J}_\nu)),
\]

then \(A = B\).
Conclusion

One can show that the limit in B equals the first term:

\[B = \sum_{\nu \in (D_F^{-1}q)^+} (-1)^{\nu \pi(\nu)} \log_p(\mathcal{F}(\tilde{J}_\nu)) \]

where

\[\log \mathcal{F}(J) = \rho(\text{sp}(J)J)(\nu_{\text{sp}(J)}(J) + 1) \log_p(\text{sp}(J)). \]
One can show that the limit in B equals the first term:

$$B = \sum_{\nu \in (\mathcal{D}^{-1}Fq)^+ \atop \text{tr}(\nu) = 1} (-1)^{\nu \pi(\nu)} \log_p (\mathcal{F}(\tilde{J}_\nu))$$

where

$$\log \mathcal{F}(J) = \rho(\text{sp}(J)J)(\nu_{\text{sp}(J)}(J) + 1) \log_p (\text{sp}(J)).$$

Recall our expression for the theta series

$$\log_p \frac{\Theta(\tau_1, \tau'_1; \tau_2)}{\Theta(\tau_1, \tau'_1; \tau'_2)} = \sum_{\text{tr}(\nu) = p^{2n}} \rho((\nu)q^{-1}\mathcal{D}_F) \log_p (\nu/\nu').$$

This shows that

$$A \approx \log_p \frac{\Theta(\tau_1, \tau'_1; \tau_2)}{\Theta(\tau_1, \tau'_1; \tau'_2)}.$$

This pretty much proves the conjecture.