The projective model structure on chain complexes of modules

Mike Daas

13th of May, 2020

Model Categories

A model category C has three classes of morphisms: weak equivalences, fibrations and cofibrations, satisfying:

Model Categories

A model category C has three classes of morphisms: weak equivalences, fibrations and cofibrations, satisfying:

1. Small limits and colimits exist in C.

Model Categories

A model category C has three classes of morphisms: weak equivalences, fibrations and cofibrations, satisfying:

1. Small limits and colimits exist in C.
2. If f, g and $f g$ are morphisms in C such that two out of three are weak equivalences, then so is the third.

Model Categories

A model category C has three classes of morphisms: weak equivalences, fibrations and cofibrations, satisfying:

1. Small limits and colimits exist in C.
2. If f, g and $f g$ are morphisms in C such that two out of three are weak equivalences, then so is the third.
3. If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.

Model Categories

A model category C has three classes of morphisms: weak equivalences, fibrations and cofibrations, satisfying:

1. Small limits and colimits exist in C.
2. If f, g and $f g$ are morphisms in C such that two out of three are weak equivalences, then so is the third.
3. If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
4. A commutative square admits a lift if either (i) i is a cofibration and p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a fibration.

Model Categories

A model category C has three classes of morphisms: weak equivalences, fibrations and cofibrations, satisfying:

1. Small limits and colimits exist in C.
2. If f, g and $f g$ are morphisms in C such that two out of three are weak equivalences, then so is the third.
3. If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
4. A commutative square admits a lift if either (i) i is a cofibration and p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a fibration.

5. Any morphism f can be factored as $f=p i$ where (i) i is a cofibration and p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a fibration.

The main result

Let R be a ring. We write $\mathbf{C h}_{R}$ for the category of complexes of left R-modules

$$
M: \ldots \rightarrow M_{2} \rightarrow M_{1} \rightarrow M_{0}
$$

with boundary maps $\partial: M_{k} \rightarrow M_{k-1}$ satisfying $\partial^{2}=0$.

The main result

Let R be a ring. We write $\mathbf{C h}_{R}$ for the category of complexes of left R-modules

$$
M: \ldots \rightarrow M_{2} \rightarrow M_{1} \rightarrow M_{0}
$$

with boundary maps $\partial: M_{k} \rightarrow M_{k-1}$ satisfying $\partial^{2}=0$. Define a morphism $f: M \rightarrow N$ to be

- a weak equivalence if the induced maps $H_{k} M \rightarrow H_{k} N$ on the homology are all isomorphisms;
- a cofibration if for each $k \geq 0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is injective and has a projective R-module as cokernel;
- a fibration if for each $k>0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is surjective.

The main result

Let R be a ring. We write $\mathbf{C h}_{R}$ for the category of complexes of left R-modules

$$
M: \ldots \rightarrow M_{2} \rightarrow M_{1} \rightarrow M_{0}
$$

with boundary maps $\partial: M_{k} \rightarrow M_{k-1}$ satisfying $\partial^{2}=0$.
Define a morphism $f: M \rightarrow N$ to be

- a weak equivalence if the induced maps $H_{k} M \rightarrow H_{k} N$ on the homology are all isomorphisms;
- a cofibration if for each $k \geq 0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is injective and has a projective R-module as cokernel;
- a fibration if for each $k>0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is surjective.

Theorem
These choices make $\mathbf{C h}_{R}$ into a model category.

The first few conditions

Condition 0

The identity is in all classes and all classes are closed under composition.

The first few conditions

Condition 0

The identity is in all classes and all classes are closed under composition.
The first statement is trivial, and so are compositions of weak equivalences and fibrations. For the composition of cofibrations it suffices to show that B / A and C / B projective implies C / A projective. Indeed,

$$
0 \rightarrow B / A \rightarrow C / A \rightarrow C / B \rightarrow 0
$$

is a split short exact sequence, and so C / A is also projective.

The first few conditions

Condition 0

The identity is in all classes and all classes are closed under composition.
The first statement is trivial, and so are compositions of weak equivalences and fibrations. For the composition of cofibrations it suffices to show that B / A and C / B projective implies C / A projective. Indeed,

$$
0 \rightarrow B / A \rightarrow C / A \rightarrow C / B \rightarrow 0
$$

is a split short exact sequence, and so C / A is also projective.

Condition 1

The category $\mathbf{C h}_{R}$ has small limits and colimits.
Indeed, recall that Mod_{R} has small limits and colimits, thus so has $\mathbf{C h}_{R}$.

The first few conditions

Condition 0

The identity is in all classes and all classes are closed under composition.
The first statement is trivial, and so are compositions of weak equivalences and fibrations. For the composition of cofibrations it suffices to show that B / A and C / B projective implies C / A projective. Indeed,

$$
0 \rightarrow B / A \rightarrow C / A \rightarrow C / B \rightarrow 0
$$

is a split short exact sequence, and so C / A is also projective.

Condition 1

The category $\mathbf{C h}_{R}$ has small limits and colimits.
Indeed, recall that $\mathbf{M o d}_{R}$ has small limits and colimits, thus so has $\mathbf{C h}_{R}$.

Condition 2

If f, g and $f g$ are morphisms in C such that two out of three are weak equivalences, then so is the third.
Indeed, if two of f, g and $f g$ are isos on homology, then so is the third.

The third condition

Condition 3
If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.

The third condition

Condition 3

If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
Proof: First note that retracts of some $M \in \operatorname{Mod}_{R}$ are given by N such that $M=N \oplus N^{\prime}$ for some N^{\prime}, because the short exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

splits by assumption. So retracts of projective modules are projective.

The third condition

Condition 3

If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
Proof: First note that retracts of some $M \in \operatorname{Mod}_{R}$ are given by N such that $M=N \oplus N^{\prime}$ for some N^{\prime}, because the short exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

splits by assumption. So retracts of projective modules are projective. If g is injective, then also every retract f of g is injective. Namely, if $f(x)=0$, then $g(i(x))=0$ gives $i(x)=0$, so $x=r(i(x))=r(0)=0$.

The third condition

Condition 3

If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
Proof: First note that retracts of some $M \in \operatorname{Mod}_{R}$ are given by N such that $M=N \oplus N^{\prime}$ for some N^{\prime}, because the short exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

splits by assumption. So retracts of projective modules are projective. If g is injective, then also every retract f of g is injective. Namely, if $f(x)=0$, then $g(i(x))=0$ gives $i(x)=0$, so $x=r(i(x))=r(0)=0$.

The bottom row induces maps $X^{\prime} / X \rightarrow Y^{\prime} / Y \rightarrow X^{\prime} / X$ making X^{\prime} / X a retract of Y^{\prime} / Y. Since the latter is projective, so is the former.

The next condition

Condition 3

If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.

If g is surjective, then so is every retract f of g. Indeed, if $x^{\prime} \in X^{\prime}$, then $i^{\prime}\left(x^{\prime}\right) \in Y^{\prime}$ and so $g(y)=i^{\prime}\left(x^{\prime}\right)$ for some $y \in Y$. Then $f(r(y))=r^{\prime}(g(y))=r^{\prime}\left(i^{\prime}\left(x^{\prime}\right)\right)=x^{\prime}$. Hence the result also follows for fibrations.

The next condition

Condition 3

If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f.
If g is surjective, then so is every retract f of g. Indeed, if $x^{\prime} \in X^{\prime}$, then $i^{\prime}\left(x^{\prime}\right) \in Y^{\prime}$ and so $g(y)=i^{\prime}\left(x^{\prime}\right)$ for some $y \in Y$. Then $f(r(y))=r^{\prime}(g(y))=r^{\prime}\left(i^{\prime}\left(x^{\prime}\right)\right)=x^{\prime}$. Hence the result also follows for fibrations.

Lastly, for weak equivalences we note that if g is an isomorphism in any category, then so is every retract f of g. To see this, observe that $i^{\prime} g^{-1} r$ is an inverse of f. Hence if g is an isomorphism on homology, then so is f. The result for weak equivalences follows.

Starting the fourth condition

Condition 4(i)
If i is a cofibration and p is an acyclic fibration, then the following diagram admits a lift.

Starting the fourth condition

Condition 4(i)
If i is a cofibration and p is an acyclic fibration, then the following diagram admits a lift.

Proof: We first claim that $p_{0}: X_{0} \rightarrow Y_{0}$ is surjective. To see this, since p_{0} is an isomorphism on homology, for any $y_{0} \in Y_{0}$ we can find some $x_{0} \in X_{0}$ such that $p_{0}\left(x_{0}\right)=y_{0}+\partial^{\prime}\left(y_{1}\right)$ for some $y_{1} \in Y_{1}$. But if $p_{1}\left(x_{1}\right)=y_{1}$, it follows that $p_{0}\left(x_{0}-\partial\left(x_{1}\right)\right)=y_{0}$, showing surjectivity.

Continuing the fourth condition

Condition 4(i)

If i is a cofibration and p is an acyclic fibration, then the following diagram admits a lift.

If we let $K_{i}=\operatorname{ker}\left(X_{i} \rightarrow Y_{i}\right)$ we can construct a short exact sequence of complexes

$$
0 \rightarrow K \rightarrow X \rightarrow Y \rightarrow 0
$$

which has long exact sequence looking like

$$
\ldots \rightarrow H_{n} K \rightarrow H_{n} X \xrightarrow{\sim} H_{n} Y \rightarrow H_{n-1} K \rightarrow \ldots
$$

and so $H_{n} K=0$ for all $n \geq 0$. We will now construct the map $B \rightarrow X$.

Constructing the lift

We will use induction. For $k=0$, we note that since $i_{0}: A_{0} \rightarrow B_{0}$ is injective with projective quotient, we may write $B_{0} \cong A_{0} \oplus P_{0}$ with P_{0} projective. Then h_{0} induces a map $P_{0} \rightarrow Y_{0}$ which lifts to a map $P_{0} \rightarrow X_{0}$ because $p_{0}: X_{0} \rightarrow Y_{0}$ is surjective. Combined with $g_{0}: A_{0} \rightarrow X_{0}$ we obtain a map $f_{0}: B_{0} \rightarrow X_{0}$ making the diagram commute.

Constructing the lift

We will use induction. For $k=0$, we note that since $i_{0}: A_{0} \rightarrow B_{0}$ is injective with projective quotient, we may write $B_{0} \cong A_{0} \oplus P_{0}$ with P_{0} projective. Then h_{0} induces a map $P_{0} \rightarrow Y_{0}$ which lifts to a map $P_{0} \rightarrow X_{0}$ because $p_{0}: X_{0} \rightarrow Y_{0}$ is surjective. Combined with $g_{0}: A_{0} \rightarrow X_{0}$ we obtain a map $f_{0}: B_{0} \rightarrow X_{0}$ making the diagram commute.

Now suppose that for some $k>0$ we have constructed maps $f_{j}: B_{j} \rightarrow X_{j}$ for all $j<k$ such that $\partial f_{j}=f_{j-1} \partial$ for all $0<j<k$ and each f_{j} makes the corresponding lift diagram commute. Construct \tilde{f}_{k} using the decomposition $B_{k} \cong A_{k} \oplus P_{k}$ as above. Then the lift diagram commutes, but we need to make adjustments to ensure $\partial f_{k}=f_{k-1} \partial$.

Completing the proof of $4(\mathrm{i})$

Define $\mathcal{E}=\partial \tilde{f}_{k}-f_{k-1} \partial$. Using the commuting diagrams we see

$$
\partial \mathcal{E}=-\partial f_{k-1} \partial=f_{k-2} \partial^{2}=0, \quad p_{k-1} \mathcal{E}=\partial p_{k} \tilde{f}_{k}-h_{k-1} \partial=0
$$

and similarly $\mathcal{E} i_{k}=\partial g_{k}-f_{k-1} i_{k-1} \partial=0$. Hence \mathcal{E} induces a map

$$
\mathcal{E}^{\prime}: B_{k} / i_{k} A_{k} \cong P_{k} \rightarrow \operatorname{ker}\left(K_{k-1} \rightarrow K_{k-2}\right)
$$

Completing the proof of 4 (i)

Define $\mathcal{E}=\partial \tilde{f}_{k}-f_{k-1} \partial$. Using the commuting diagrams we see

$$
\partial \mathcal{E}=-\partial f_{k-1} \partial=f_{k-2} \partial^{2}=0, \quad p_{k-1} \mathcal{E}=\partial p_{k} \tilde{f}_{k}-h_{k-1} \partial=0
$$

and similarly $\mathcal{E} i_{k}=\partial g_{k}-f_{k-1} i_{k-1} \partial=0$. Hence \mathcal{E} induces a map

Since $H_{k-1} K=0$, the map $K_{k} \rightarrow \operatorname{ker}\left(K_{k-1} \rightarrow K_{k-2}\right)$ is surjective. We thus obtain a map $P_{k} \rightarrow K_{k}$, and so a map

$$
\phi: B_{k} \rightarrow P_{k} \rightarrow K_{k} \rightarrow X_{k} .
$$

We leave it as an exercise to check that $f_{k}=\tilde{f}_{k}-\phi$ satisfies all the necessary conditions.

Disks

Definition

For any R-module A and $n \geq 1$, define the $\operatorname{disk} D_{n}(A)$ as the complex with $D_{n}(A)_{n}=D_{n}(A)_{n-1}=A$ and $D_{n}(A)_{k}=0$ otherwise, with sole nontrivial boundary map id_{A}.

Disks

Definition

For any R-module A and $n \geq 1$, define the $\operatorname{disk} D_{n}(A)$ as the complex with $D_{n}(A)_{n}=D_{n}(A)_{n-1}=A$ and $D_{n}(A)_{k}=0$ otherwise, with sole nontrivial boundary map id_{A}.
Considering the diagram

it is clear that for any morphism we must have $\partial f_{n}=f_{n-1}$, and so we obtain

$$
\operatorname{Hom}_{\mathbf{C h}_{R}}\left(D_{n}(A), M\right) \rightarrow \operatorname{Hom}_{M_{o d}}\left(A, M_{n}\right)
$$

which is a bijection.

Disks

Definition

For any R-module A and $n \geq 1$, define the $\operatorname{disk} D_{n}(A)$ as the complex with $D_{n}(A)_{n}=D_{n}(A)_{n-1}=A$ and $D_{n}(A)_{k}=0$ otherwise, with sole nontrivial boundary map id_{A}.
Considering the diagram

it is clear that for any morphism we must have $\partial f_{n}=f_{n-1}$, and so we obtain

$$
\operatorname{Hom}_{\mathbf{C h}_{R}}\left(D_{n}(A), M\right) \rightarrow \operatorname{Hom}_{M_{o d}}\left(A, M_{n}\right)
$$

which is a bijection. It follows that for A projective and epimorphism $M \rightarrow N$ in $\mathbf{C h}_{R}$, any map $D_{n}(A) \rightarrow N$ lifts to a map $D_{n}(A) \rightarrow M$. It is not hard to see that this property is also satisfied for any direct sum $\oplus_{i} D_{n_{i}}\left(A_{i}\right)$. These complexes are called projective.

A useful lemma for 4(ii)

Lemma
Suppose that $P \in \mathbf{C h}_{R}$ satisfies that P_{k} is projective and that $H_{k} P=0$ for all $k \geq 0$. Then all of $K_{k}:=\operatorname{ker}\left(P_{k} \rightarrow P_{k-1}\right)$ are also projective, and

$$
P \cong \bigoplus_{k \geq 1} D_{k}\left(K_{k-1}\right) .
$$

A useful lemma for 4(ii)

Lemma

Suppose that $P \in \mathbf{C h}_{R}$ satisfies that P_{k} is projective and that $H_{k} P=0$ for all $k \geq 0$. Then all of $K_{k}:=\operatorname{ker}\left(P_{k} \rightarrow P_{k-1}\right)$ are also projective, and

$$
P \cong \bigoplus_{k \geq 1} D_{k}\left(K_{k-1}\right)
$$

Proof: For convenience we define

$$
P^{(k)}: \ldots \rightarrow P_{k+1} \rightarrow P_{k} \rightarrow K_{k-1} \rightarrow 0 \rightarrow \ldots
$$

Then using $H_{k-1} P=0$ it follows that $P^{(k)} / P^{(k+1)} \cong D_{k}\left(K_{k-1}\right)$.

A useful lemma for 4(ii)

Lemma

Suppose that $P \in \mathbf{C h}_{R}$ satisfies that P_{k} is projective and that $H_{k} P=0$ for all $k \geq 0$. Then all of $K_{k}:=\operatorname{ker}\left(P_{k} \rightarrow P_{k-1}\right)$ are also projective, and

$$
P \cong \bigoplus_{k \geq 1} D_{k}\left(K_{k-1}\right)
$$

Proof: For convenience we define

$$
P^{(k)}: \ldots \rightarrow P_{k+1} \rightarrow P_{k} \rightarrow K_{k-1} \rightarrow 0 \rightarrow \ldots
$$

Then using $H_{k-1} P=0$ it follows that $P^{(k)} / P^{(k+1)} \cong D_{k}\left(K_{k-1}\right)$. For $k=1$ the short exact sequence

$$
0 \rightarrow P^{(2)} \rightarrow P^{(1)} \rightarrow P^{(1)} / P^{(2)} \cong D_{1}\left(P_{0}\right) \rightarrow 0
$$

splits because the identity on $D_{1}\left(P_{0}\right)$ lifts to a map $D_{1}\left(P_{0}\right) \rightarrow P^{(1)}$ by the property discussed before.

A useful lemma for 4(ii)

Lemma

Suppose that $P \in \mathbf{C h}_{R}$ satisfies that P_{k} is projective and that $H_{k} P=0$ for all $k \geq 0$. Then all of $K_{k}:=\operatorname{ker}\left(P_{k} \rightarrow P_{k-1}\right)$ are also projective, and

$$
P \cong \bigoplus_{k \geq 1} D_{k}\left(K_{k-1}\right)
$$

Proof: For convenience we define

$$
P^{(k)}: \ldots \rightarrow P_{k+1} \rightarrow P_{k} \rightarrow K_{k-1} \rightarrow 0 \rightarrow \ldots
$$

Then using $H_{k-1} P=0$ it follows that $P^{(k)} / P^{(k+1)} \cong D_{k}\left(K_{k-1}\right)$. For $k=1$ the short exact sequence

$$
0 \rightarrow P^{(2)} \rightarrow P^{(1)} \rightarrow P^{(1)} / P^{(2)} \cong D_{1}\left(P_{0}\right) \rightarrow 0
$$

splits because the identity on $D_{1}\left(P_{0}\right)$ lifts to a map $D_{1}\left(P_{0}\right) \rightarrow P^{(1)}$ by the property discussed before. It follows that $P=P^{(1)}=P^{(2)} \oplus D_{1}\left(P_{0}\right)$. Thus $P^{(2)}$ satisfies the conditions on P from the theorem, so we can now proceed with induction.

Proving condition 4(ii)

Condition 4(ii)

If i is an acyclic cofibration and p is a fibration, then the following diagram admits a lift.

Proving condition 4(ii)

Condition 4(ii)

If i is an acyclic cofibration and p is a fibration, then the following diagram admits a lift.

Defining $P_{k}=\operatorname{coker}\left(A_{k} \rightarrow B_{k}\right)$ and observing that i_{k} is injective, we obtain a short exact sequence of complexes

$$
0 \rightarrow A \rightarrow B \rightarrow P \rightarrow 0
$$

Now P contains only projectives and the long exact sequence gives

$$
\ldots \rightarrow H_{k+1} P \rightarrow H_{k} A \xrightarrow{\sim} H_{k} B \rightarrow H_{k} P \rightarrow \ldots
$$

and so $H_{k} P=0$ for all $k \geq 0$.

Proving condition 4(ii)

Condition 4(ii)
If i is an acyclic cofibration and p is a fibration, then the following diagram admits a lift.

Defining $P_{k}=\operatorname{coker}\left(A_{k} \rightarrow B_{k}\right)$ and observing that i_{k} is injective, we obtain a short exact sequence of complexes

$$
0 \rightarrow A \rightarrow B \rightarrow P \rightarrow 0
$$

Now P contains only projectives and the long exact sequence gives

$$
\ldots \rightarrow H_{k+1} P \rightarrow H_{k} A \xrightarrow{\sim} H_{k} B \rightarrow H_{k} P \rightarrow \ldots
$$

and so $H_{k} P=0$ for all $k \geq 0$. So the previous lemma applies, and thus P is a direct sum of disks. As before, this means that the short exact sequence splits, and we obtain $B \cong A \oplus P$. Then a map $B \rightarrow X$ is obtained by taking $g: A \rightarrow X$ and combining it with any lift $P \rightarrow X$ of the $\operatorname{map} P \rightarrow Y$, using that $p_{k}: X_{k} \rightarrow Y_{k}$ is surjective for $k \geqq 1$.

A helpful concept

Definition

Let \mathbf{Z}^{+}denote the category

$$
\star_{1} \rightarrow \star_{2} \rightarrow \star_{3} \rightarrow \ldots
$$

A helpful concept

Definition

Let \mathbf{Z}^{+}denote the category

$$
\star_{1} \rightarrow \star_{2} \rightarrow \star_{3} \rightarrow \ldots
$$

Let \mathbf{C} be any category, $A \in \mathbf{C}$ be any object and let $B: \mathbf{Z}^{+} \rightarrow \mathbf{C}$ be any functor. Then there are natural maps $B_{n} \rightarrow$ colim B and so natural maps $\operatorname{Hom}\left(A, B_{n}\right) \rightarrow \operatorname{Hom}(A$, colim $B)$. These combine to form a map

$$
\operatorname{colim} \operatorname{Hom}\left(A, B_{n}\right) \rightarrow \operatorname{Hom}(A, \text { colim } B) .
$$

A helpful concept

Definition

Let \mathbf{Z}^{+}denote the category

$$
\star_{1} \rightarrow \star_{2} \rightarrow \star_{3} \rightarrow \ldots
$$

Let \mathbf{C} be any category, $A \in \mathbf{C}$ be any object and let $B: \mathbf{Z}^{+} \rightarrow \mathbf{C}$ be any functor. Then there are natural maps $B_{n} \rightarrow \operatorname{colim} B$ and so natural maps $\operatorname{Hom}\left(A, B_{n}\right) \rightarrow \operatorname{Hom}(A$, colim $B)$. These combine to form a map

$$
\operatorname{colim} \operatorname{Hom}\left(A, B_{n}\right) \rightarrow \operatorname{Hom}(A, \text { colim } B) .
$$

If this is a bijection for every B, we say that $A \in \mathbf{C}$ is sequentially small.

A helpful concept

Definition

Let \mathbf{Z}^{+}denote the category

$$
\star_{1} \rightarrow \star_{2} \rightarrow \star_{3} \rightarrow \ldots
$$

Let \mathbf{C} be any category, $A \in \mathbf{C}$ be any object and let $B: \mathbf{Z}^{+} \rightarrow \mathbf{C}$ be any functor. Then there are natural maps $B_{n} \rightarrow$ colim B and so natural maps $\operatorname{Hom}\left(A, B_{n}\right) \rightarrow \operatorname{Hom}(A$, colim $B)$. These combine to form a map

$$
\operatorname{colim} \operatorname{Hom}\left(A, B_{n}\right) \rightarrow \operatorname{Hom}(A, \text { colim } B) .
$$

If this is a bijection for every B, we say that $A \in \mathbf{C}$ is sequentially small.
Recall that a map $p: X \rightarrow Y$ is said to have the RLP (right lifting property) with respect to $i: A \rightarrow B$ if every diagram of the following form admits a lift.

Some helpful results

Lemma 1
A map $f: X \rightarrow Y$ in $\mathbf{C h}_{R}$ is a fibration if and only if it has the RLP with respect to the maps $0 \rightarrow D_{n}(R)$ for all $n \geq 1$.

Some helpful results

Lemma 1

A map $f: X \rightarrow Y$ in $\mathbf{C h}_{R}$ is a fibration if and only if it has the RLP with respect to the maps $0 \rightarrow D_{n}(R)$ for all $n \geq 1$.
Proof: Recall that a map $D_{n}(R) \rightarrow Y$ is given by a map $R \rightarrow Y_{n}$, which can have any image of $1 \in R$. So if a lift always exists, f_{n} must be surjective. Similarly, if f_{n} is surjective for $n>0$, then we can always choose a lift.

Some helpful results

Lemma 1

A map $f: X \rightarrow Y$ in $\mathbf{C h}_{R}$ is a fibration if and only if it has the RLP with respect to the maps $0 \rightarrow D_{n}(R)$ for all $n \geq 1$.
Proof: Recall that a map $D_{n}(R) \rightarrow Y$ is given by a map $R \rightarrow Y_{n}$, which can have any image of $1 \in R$. So if a lift always exists, f_{n} must be surjective. Similarly, if f_{n} is surjective for $n>0$, then we can always choose a lift.

Lemma 2

A map $f: X \rightarrow Y$ in $\mathbf{C h}_{R}$ is an acyclic fibration if and only if it has the RLP with respect to the inclusions $K_{n-1}(R) \rightarrow D_{n}(R)$ for all $n \geq 1$, where $K_{n}(A)$ denotes the complex consisting of A in degree n and zeroes elsewhere.
Again some diagram chasing, which we leave as an exercise.

The gluing construction

Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be a set of morphisms in C. Let $p: X \rightarrow Y$ be any morphism. Let S_{i} be the set of pairs of morphisms (g, h) such that

commutes for all i.

The gluing construction

Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be a set of morphisms in C. Let $p: X \rightarrow Y$ be any morphism. Let S_{i} be the set of pairs of morphisms (g, h) such that

commutes for all i. Now let $G^{1}(\mathcal{F}, p)$ be the pushout of the diagram

It is important that this pushout gives us a natural map $p_{1}: G^{1}(\mathcal{F}, p) \rightarrow Y$ such that $p=p_{1} i_{1}$.

The infinite gluing construction

Continuing, we can inductively define $G^{k}(\mathcal{F}, p)=G^{1}\left(\mathcal{F}, p_{k-1}\right)$ and $p_{k}=\left(p_{k-1}\right)_{1}$. We obtain a commutative diagram

The infinite gluing construction

Continuing, we can inductively define $G^{k}(\mathcal{F}, p)=G^{1}\left(\mathcal{F}, p_{k-1}\right)$ and $p_{k}=\left(p_{k-1}\right)_{1}$. We obtain a commutative diagram

Define $G^{\infty}(\mathcal{F}, p)$ to be the colimit of the top row. This comes naturally with a map $i_{\infty}: X \rightarrow G^{\infty}(\mathcal{F}, p)$ and a map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$. These still satisfy $p=p_{\infty} i_{\infty}$.

The infinite gluing construction

Continuing, we can inductively define $G^{k}(\mathcal{F}, p)=G^{1}\left(\mathcal{F}, p_{k-1}\right)$ and $p_{k}=\left(p_{k-1}\right)_{1}$. We obtain a commutative diagram

Define $G^{\infty}(\mathcal{F}, p)$ to be the colimit of the top row. This comes naturally with a map $i_{\infty}: X \rightarrow G^{\infty}(\mathcal{F}, p)$ and a map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$. These still satisfy $p=p_{\infty} i_{\infty}$.
Proposition
Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be such that each A_{i} is sequentially small. Then the map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$ has the RLP with respect to every map in \mathcal{F}.

Proving the proposition

Proposition

Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be such that each A_{i} is sequentially small. Then the map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$ has the RLP with respect to every map in \mathcal{F}.
Proof: Consider any diagram of the form

Proving the proposition

Proposition

Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be such that each A_{i} is sequentially small. Then the map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$ has the RLP with respect to every map in \mathcal{F}.
Proof: Consider any diagram of the form

Since A_{i} is sequentially small, we have a bijection

$$
\operatorname{colim} \operatorname{Hom}\left(A, G^{k}(\mathcal{F}, p)\right) \rightarrow \operatorname{Hom}\left(A, G^{\infty}(\mathcal{F}, p)\right)
$$

so g comes from a map $A \rightarrow G^{k}(\mathcal{F}, p)$ for some k. Therefore it factors

$$
g: A_{i} \rightarrow G^{k}(\mathcal{F}, p) \rightarrow G^{k+1}(\mathcal{F}, p) \rightarrow G^{\infty}(\mathcal{F}, p)
$$

Completing the proof

Proposition

Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be such that each A_{i} is sequentially small. Then the map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$ has the RLP with respect to every map in \mathcal{F}.

$$
\begin{array}{cc}
A_{i} \xrightarrow{g} G^{\infty}(\mathcal{F}, p) \\
f_{i} \mid & \\
& \downarrow p_{\infty} \\
B_{i} \xrightarrow{h} & \downarrow
\end{array}
$$

Completing the proof

Proposition

Let $\mathcal{F}=\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be such that each A_{i} is sequentially small. Then the map $p_{\infty}: G^{\infty}(\mathcal{F}, p) \rightarrow Y$ has the RLP with respect to every map in \mathcal{F}.

Hence we obtain a commutative diagram

But now the leftmost square contributes the pair (g, h) to the construction of $G^{k+1}(\mathcal{F}, p)$, so from the pushout diagram we have a natural map $B_{i} \rightarrow G^{k+1}(\mathcal{F}, p)$. Hence we obtain a natural map $B_{i} \rightarrow G^{\infty}(\mathcal{F}, p)$, which is the desired lift.

Proving condition 5

To show:
Any morphism f can be factored as $f=p i$ where (i) i is a cofibration and p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a fibration.

Proof: For (i), let \mathcal{F} be the set of inclusions $K_{n}(R) \rightarrow D_{n}(R)$ and consider

$$
X \xrightarrow{i_{\infty}} G^{\infty}(\mathcal{F}, f) \xrightarrow{p_{\infty}} Y
$$

Since R is sequentially small, we conclude that p_{∞} has the RLP with respect to every map $K_{n-1}(R) \rightarrow D_{n}(R)$. Hence by the lemma, it is an acyclic fibration. The map i_{∞} is a cofibration because each $G^{k}(\mathcal{F}, f)_{n}$ and so also $G^{\infty}(\mathcal{F}, f)_{n}$ is formed by taking the direct sum of X_{n} with many copies of R. Hence i_{∞} is injective and its quotient is projective.

Proving condition 5

To show:
Any morphism f can be factored as $f=p i$ where (i) i is a cofibration and p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a fibration.

Proof: For (i), let \mathcal{F} be the set of inclusions $K_{n}(R) \rightarrow D_{n}(R)$ and consider

$$
X \xrightarrow{i_{\infty}} G^{\infty}(\mathcal{F}, f) \xrightarrow{p_{\infty}} Y
$$

Since R is sequentially small, we conclude that p_{∞} has the RLP with respect to every map $K_{n-1}(R) \rightarrow D_{n}(R)$. Hence by the lemma, it is an acyclic fibration. The map i_{∞} is a cofibration because each $G^{k}(\mathcal{F}, f)_{n}$ and so also $G^{\infty}(\mathcal{F}, f)_{n}$ is formed by taking the direct sum of X_{n} with many copies of R. Hence i_{∞} is injective and its quotient is projective. For (ii) we let \mathcal{F} be the set of maps $0 \rightarrow D_{n}(R)$ instead and using the other lemma, p_{∞} will be a fibration. Lastly, i_{∞} is a cofibration as before, and it is even acyclic because now each $D_{n}(R)$ is "pasted" to X along 0 , so it is just the direct sum of X with many $0 \rightarrow R \rightarrow R \rightarrow 0$. These do not change the homology.

Bridge to next week

Now that $\mathbf{C h}_{R}$ is a model category, it enjoys all the general results about model categories.

Proposition

For any R-modules A and B and integers $m, n \geq 0$, we have a natural isomorphism

$$
\operatorname{Hom}_{\mathrm{Ho}\left(\mathrm{Cn}_{R}\right)}\left(K_{m}(A), K_{n}(B)\right) \cong \operatorname{Ext}_{R}^{n-m}(A, B) .
$$

Here $\mathrm{Ho}\left(\mathbf{C h}_{R}\right)$ is the homotopy category associated to the model catagory $\mathbf{C h}_{R}$. This will be introduced next week.

Bridge to next week

Now that $\mathbf{C h}_{R}$ is a model category, it enjoys all the general results about model categories.

Proposition

For any R-modules A and B and integers $m, n \geq 0$, we have a natural isomorphism

$$
\operatorname{Hom}_{\mathrm{Ho}\left(\mathrm{Cn}_{R}\right)}\left(K_{m}(A), K_{n}(B)\right) \cong \operatorname{Ext}_{R}^{n-m}(A, B) .
$$

Here $\mathrm{Ho}\left(\mathbf{C h}_{R}\right)$ is the homotopy category associated to the model catagory $\mathbf{C h}_{R}$. This will be introduced next week.

That was it, thanks for listening. Any questions?

