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Model Categories
A model category C has three classes of morphisms: weak equivalences,
fibrations and cofibrations, satisfying:

1. Small limits and colimits exist in C .

2. If f , g and fg are morphisms in C such that two out of three are
weak equivalences, then so is the third.

3. If f is a retract of g and g is a weak equivalence, fibration or
cofibration, then so is f .

4. A commutative square admits a lift if either (i) i is a cofibration and
p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a
fibration.

A X

B Y

f

i p

g

5. Any morphism f can be factored as f = pi where (i) i is a
cofibration and p is an acyclic fibration, or (ii) i is an acyclic
cofibration and p is a fibration.
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The main result

Let R be a ring. We write ChR for the category of complexes of left
R-modules

M : . . .→ M2 → M1 → M0

with boundary maps ∂ : Mk → Mk−1 satisfying ∂2 = 0.

Define a morphism f : M → N to be

I a weak equivalence if the induced maps HkM → HkN on the
homology are all isomorphisms;

I a cofibration if for each k ≥ 0 the map fk : Mk → Nk is injective and
has a projective R-module as cokernel;

I a fibration if for each k > 0 the map fk : Mk → Nk is surjective.

Theorem
These choices make ChR into a model category.
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The first few conditions

Condition 0
The identity is in all classes and all classes are closed under composition.

The first statement is trivial, and so are compositions of weak
equivalences and fibrations. For the composition of cofibrations it suffices
to show that B/A and C/B projective implies C/A projective. Indeed,

0→ B/A→ C/A→ C/B → 0

is a split short exact sequence, and so C/A is also projective.

Condition 1
The category ChR has small limits and colimits.

Indeed, recall that ModR has small limits and colimits, thus so has ChR .

Condition 2
If f , g and fg are morphisms in C such that two out of three are weak
equivalences, then so is the third.

Indeed, if two of f , g and fg are isos on homology, then so is the third.
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The third condition

Condition 3
If f is a retract of g and g is a weak equivalence, fibration or cofibration,
then so is f .

Proof: First note that retracts of some M ∈ModR are given by N such
that M = N ⊕ N ′ for some N ′, because the short exact sequence

0→ N → M → M/N → 0

splits by assumption. So retracts of projective modules are projective.
If g is injective, then also every retract f of g is injective. Namely, if
f (x) = 0, then g(i(x)) = 0 gives i(x) = 0, so x = r(i(x)) = r(0) = 0.

X Y X

X ′ Y ′ X ′

i

f g

r

f

i ′ r ′

The bottom row induces maps X ′/X → Y ′/Y → X ′/X making X ′/X a
retract of Y ′/Y . Since the latter is projective, so is the former.
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The next condition

Condition 3
If f is a retract of g and g is a weak equivalence, fibration or cofibration,
then so is f .

If g is surjective, then so is every retract f of g . Indeed, if x ′ ∈ X ′, then
i ′(x ′) ∈ Y ′ and so g(y) = i ′(x ′) for some y ∈ Y . Then
f (r(y)) = r ′(g(y)) = r ′(i ′(x ′)) = x ′. Hence the result also follows for
fibrations.

X Y X

X ′ Y ′ X ′

i

f g

r

f

i ′ r ′

Lastly, for weak equivalences we note that if g is an isomorphism in any
category, then so is every retract f of g . To see this, observe that i ′g−1r
is an inverse of f . Hence if g is an isomorphism on homology, then so is
f . The result for weak equivalences follows.
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Starting the fourth condition

Condition 4(i)
If i is a cofibration and p is an acyclic fibration, then the following
diagram admits a lift.

A X

B Y

g

i p

h

Proof: We first claim that p0 : X0 → Y0 is surjective. To see this, since
p0 is an isomorphism on homology, for any y0 ∈ Y0 we can find some
x0 ∈ X0 such that p0(x0) = y0 + ∂′(y1) for some y1 ∈ Y1. But if
p1(x1) = y1, it follows that p0(x0 − ∂(x1)) = y0, showing surjectivity.

X1 X0 X0/im(∂)

Y1 Y0 Y0/im(∂′)

∂

p1 p0 ∼

∂′
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Continuing the fourth condition

Condition 4(i)
If i is a cofibration and p is an acyclic fibration, then the following
diagram admits a lift.

A X

B Y

g

i p

h

If we let Ki = ker(Xi → Yi ) we can construct a short exact sequence of
complexes

0→ K → X → Y → 0,

which has long exact sequence looking like

. . .→ HnK → HnX
∼−→ HnY → Hn−1K → . . .

and so HnK = 0 for all n ≥ 0. We will now construct the map B → X .



Constructing the lift

We will use induction. For k = 0, we note that since i0 : A0 → B0 is
injective with projective quotient, we may write B0

∼= A0 ⊕ P0 with P0

projective. Then h0 induces a map P0 → Y0 which lifts to a map
P0 → X0 because p0 : X0 → Y0 is surjective. Combined with
g0 : A0 → X0 we obtain a map f0 : B0 → X0 making the diagram
commute.

A X

B Y

g

i p

h

Now suppose that for some k > 0 we have constructed maps fj : Bj → Xj

for all j < k such that ∂fj = fj−1∂ for all 0 < j < k and each fj makes

the corresponding lift diagram commute. Construct f̃k using the
decomposition Bk

∼= Ak ⊕ Pk as above. Then the lift diagram commutes,
but we need to make adjustments to ensure ∂fk = fk−1∂.
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Completing the proof of 4(i)
Define E = ∂ f̃k − fk−1∂. Using the commuting diagrams we see

∂E = −∂fk−1∂ = fk−2∂
2 = 0, pk−1E = ∂pk f̃k − hk−1∂ = 0

and similarly E ik = ∂gk − fk−1ik−1∂ = 0. Hence E induces a map

E ′ : Bk/ikAk
∼= Pk → ker(Kk−1 → Kk−2).

A X

B Y

g

i p

h

Since Hk−1K = 0, the map Kk → ker(Kk−1 → Kk−2) is surjective. We
thus obtain a map Pk → Kk , and so a map

φ : Bk → Pk → Kk → Xk .

We leave it as an exercise to check that fk = f̃k − φ satisfies all the
necessary conditions.
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Disks

Definition
For any R-module A and n ≥ 1, define the disk Dn(A) as the complex
with Dn(A)n = Dn(A)n−1 = A and Dn(A)k = 0 otherwise, with sole
nontrivial boundary map idA.

Considering the diagram

. . . 0 A A 0 . . .

. . . Mn+1 Mn Mn−1 Mn−2 . . .

id

fn fn−1

∂

it is clear that for any morphism we must have ∂fn = fn−1, and so we
obtain

HomChR (Dn(A),M)→ HomModR (A,Mn)

which is a bijection. It follows that for A projective and epimorphism
M → N in ChR , any map Dn(A)→ N lifts to a map Dn(A)→ M. It is
not hard to see that this property is also satisfied for any direct sum
⊕iDni (Ai ). These complexes are called projective.
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A useful lemma for 4(ii)

Lemma
Suppose that P ∈ ChR satisfies that Pk is projective and that HkP = 0
for all k ≥ 0. Then all of Kk := ker(Pk → Pk−1) are also projective, and

P ∼=
⊕
k≥1

Dk(Kk−1).

Proof: For convenience we define

P(k) : . . .→ Pk+1 → Pk → Kk−1 → 0→ . . .

Then using Hk−1P = 0 it follows that P(k)/P(k+1) ∼= Dk(Kk−1).
For k = 1 the short exact sequence

0→ P(2) → P(1) → P(1)/P(2) ∼= D1(P0)→ 0

splits because the identity on D1(P0) lifts to a map D1(P0)→ P(1) by
the property discussed before. It follows that P = P(1) = P(2) ⊕ D1(P0).
Thus P(2) satisfies the conditions on P from the theorem, so we can now
proceed with induction.
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Proving condition 4(ii)
Condition 4(ii)
If i is an acyclic cofibration and p is a fibration, then the following
diagram admits a lift.

A X

B Y

g

i p

h

Defining Pk = coker(Ak → Bk) and observing that ik is injective, we
obtain a short exact sequence of complexes

0→ A→ B → P → 0,

Now P contains only projectives and the long exact sequence gives

. . .→ Hk+1P → HkA
∼−→ HkB → HkP → . . .

and so HkP = 0 for all k ≥ 0. So the previous lemma applies, and thus P
is a direct sum of disks. As before, this means that the short exact
sequence splits, and we obtain B ∼= A⊕ P. Then a map B → X is
obtained by taking g : A→ X and combining it with any lift P → X of
the map P → Y , using that pk : Xk → Yk is surjective for k ≥ 1.
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A helpful concept
Definition
Let Z+ denote the category

?1 → ?2 → ?3 → . . .

Let C be any category, A ∈ C be any object and let B : Z+ → C be any
functor. Then there are natural maps Bn → colim B and so natural maps
Hom(A,Bn)→ Hom(A, colim B). These combine to form a map

colim Hom(A,Bn)→ Hom(A, colim B).

If this is a bijection for every B, we say that A ∈ C is sequentially small.

Recall that a map p : X → Y is said to have the RLP (right lifting
property) with respect to i : A→ B if every diagram of the following
form admits a lift.

A X

B Y

g

i p
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Some helpful results

Lemma 1
A map f : X → Y in ChR is a fibration if and only if it has the RLP with
respect to the maps 0→ Dn(R) for all n ≥ 1.

Proof: Recall that a map Dn(R)→ Y is given by a map R → Yn, which
can have any image of 1 ∈ R. So if a lift always exists, fn must be
surjective. Similarly, if fn is surjective for n > 0, then we can always
choose a lift.

Lemma 2
A map f : X → Y in ChR is an acyclic fibration if and only if it has the
RLP with respect to the inclusions Kn−1(R)→ Dn(R) for all n ≥ 1,
where Kn(A) denotes the complex consisting of A in degree n and zeroes
elsewhere.

Again some diagram chasing, which we leave as an exercise.
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The gluing construction

Let F = {fi : Ai → Bi}i∈I be a set of morphisms in C. Let p : X → Y be
any morphism. Let Si be the set of pairs of morphisms (g , h) such that

Ai X

Bi Y

g

fi p

h

commutes for all i .

Now let G 1(F , p) be the pushout of the diagram∐
i∈I

∐
(g ,h)∈Si

Ai X

∐
i∈I

∐
(g ,h)∈Si

Bi G 1(F , p)

i1

It is important that this pushout gives us a natural map
p1 : G 1(F , p)→ Y such that p = p1i1.
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The infinite gluing construction

Continuing, we can inductively define G k(F , p) = G 1(F , pk−1) and
pk = (pk−1)1. We obtain a commutative diagram

X G 1(F , p) G 2(F , p1) G 3(F , p2) . . .

Y Y Y Y . . .

i1

p

i2

p1 p2

i3 i4

p3

id id id id

Define G∞(F , p) to be the colimit of the top row. This comes naturally
with a map i∞ : X → G∞(F , p) and a map p∞ : G∞(F , p)→ Y . These
still satisfy p = p∞i∞.

Proposition
Let F = {fi : Ai → Bi}i∈I be such that each Ai is sequentially small.
Then the map p∞ : G∞(F , p)→ Y has the RLP with respect to every
map in F .
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Proving the proposition

Proposition
Let F = {fi : Ai → Bi}i∈I be such that each Ai is sequentially small.
Then the map p∞ : G∞(F , p)→ Y has the RLP with respect to every
map in F .

Proof: Consider any diagram of the form

Ai G∞(F , p)

Bi Y

g

fi p∞

h

Since Ai is sequentially small, we have a bijection

colim Hom(A,G k(F , p))→ Hom(A,G∞(F , p)),

so g comes from a map A→ G k(F , p) for some k. Therefore it factors

g : Ai → G k(F , p)→ G k+1(F , p)→ G∞(F , p).
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Completing the proof
Proposition
Let F = {fi : Ai → Bi}i∈I be such that each Ai is sequentially small.
Then the map p∞ : G∞(F , p)→ Y has the RLP with respect to every
map in F .

Ai G∞(F , p)

Bi Y

g

fi p∞

h

Hence we obtain a commutative diagram

Ai G k(F , p) G k+1(F , p) G∞(F , p)

Bi Y Y Y

fi

ik+1

pk pk+1 p∞

h id id

But now the leftmost square contributes the pair (g , h) to the
construction of G k+1(F , p), so from the pushout diagram we have a
natural map Bi → G k+1(F , p). Hence we obtain a natural map
Bi → G∞(F , p), which is the desired lift.
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Proving condition 5

To show:
Any morphism f can be factored as f = pi where (i) i is a cofibration
and p is an acyclic fibration, or (ii) i is an acyclic cofibration and p is a
fibration.

Proof: For (i), let F be the set of inclusions Kn(R)→ Dn(R) and
consider

X
i∞−→ G∞(F , f )

p∞−−→ Y .

Since R is sequentially small, we conclude that p∞ has the RLP with
respect to every map Kn−1(R)→ Dn(R). Hence by the lemma, it is an
acyclic fibration. The map i∞ is a cofibration because each G k(F , f )n
and so also G∞(F , f )n is formed by taking the direct sum of Xn with
many copies of R. Hence i∞ is injective and its quotient is projective.

For (ii) we let F be the set of maps 0→ Dn(R) instead and using the
other lemma, p∞ will be a fibration. Lastly, i∞ is a cofibration as before,
and it is even acyclic because now each Dn(R) is “pasted” to X along 0,
so it is just the direct sum of X with many 0→ R → R → 0. These do
not change the homology.
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Bridge to next week

Now that ChR is a model category, it enjoys all the general results about
model categories.

Proposition
For any R-modules A and B and integers m, n ≥ 0, we have a natural
isomorphism

HomHo(ChR )(Km(A),Kn(B)) ∼= Extn−mR (A,B).

Here Ho(ChR) is the homotopy category associated to the model
catagory ChR . This will be introduced next week.

That was it, thanks for listening. Any questions?
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