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Prerequisites (1/3)

A group G is a set of things that we can multiply, write g - h. We insist
that there is a neutral element such that1-g =g =g -1, and we

require that there are inverses; g~ ! -
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A group G is a set of things that we can multiply, write g - h. We insist
that there is a neutral element such that1-g =g =g -1, and we

require that there are inverses; g~ ! -

Ifg-h=h-gforall g, h € G, then G is abelian and write - = +.

A ring R is a set of things that we can add and multiply, write g + h and
g - h. We insist that there is a neutral element such that1-g=g=g-1
and that everything works nicely (associative, distributative, etc...).

Important: We do not require that we have inverses for multiplication!
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Prerequisites (1/3)

A group G is a set of things that we can multiply, write g - h. We insist
that there is a neutral element such that1-g =g =g -1, and we

require that there are inverses; g~ ! -

Ifg-h=h-gforall g, h € G, then G is abelian and write - = +.

A ring R is a set of things that we can add and multiply, write g + h and
g - h. We insist that there is a neutral element such that1-g=g=g-1
and that everything works nicely (associative, distributative, etc...).

Important: We do not require that we have inverses for multiplication!
If we do have inverses (except 0) and R is commutative, then we say
that the ring is a field. Example: Q, R and C are fields.

@ Z/pZ for p prime is a field; typically denoted IFp,.

@ Z is aring, but not a field. Similar for Z/4Z.
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Prerequisites (2/3)

Proposition

For any prime p and positive integer k, there exists a unique finite field
with p¥ elements, denoted Fx.
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For any prime p and positive integer k, there exists a unique finite field
with p¥ elements, denoted Fx.

Another important example of rings:
RIX] ={anX™+...+ag| a; € RL

o If x -y = 0 implies x = 0 or y = 0, then we say R is an integral
domain. Example: Z/6Z. is not an integral domain; 2 - 3 = 0.
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For any prime p and positive integer k, there exists a unique finite field
with p¥ elements, denoted Fx.

Another important example of rings:
RIX] ={anX™+...+ag| a; € RL

o If x -y = 0 implies x = 0 or y = 0, then we say R is an integral
domain. Example: Z/6Z. is not an integral domain; 2 - 3 = 0.

e We say some x € Ris idempotent if x> = x. Examples: x € {0, 1}.
More interestingly, x = 3 in Z/6Z.
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For any prime p and positive integer k, there exists a unique finite field
with p¥ elements, denoted Fx.

Another important example of rings:
RIX] ={anX™+...+ag| a; € RL

o If x -y = 0 implies x = 0 or y = 0, then we say R is an integral
domain. Example: Z/6Z. is not an integral domain; 2 - 3 = 0.

e We say some x € Ris idempotent if x> = x. Examples: x € {0, 1}.
More interestingly, x = 3 in Z/6Z.

e We ssay a ring Ris reduced if x> =0 == x = 0. Examples: all fields
are reduced, but so is Z/6Z.. However, Z/47. is not reduced.
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Prerequisites (2/3)

Proposition

For any prime p and positive integer k, there exists a unique finite field
with p¥ elements, denoted Fx.

Another important example of rings:
RIX] ={anX™+...+ag| a; € RL

o If x -y = 0 implies x = 0 or y = 0, then we say R is an integral
domain. Example: Z/6Z. is not an integral domain; 2 - 3 = 0.

e We say some x € Ris idempotent if x> = x. Examples: x € {0, 1}.
More interestingly, x = 3 in Z/6Z.

e We ssay a ring Ris reduced if x> =0 == x = 0. Examples: all fields
are reduced, but so is Z/6Z.. However, Z/47. is not reduced.

@ Multiplication in R need not be commutative. Define the center of
Rtobe Z(R) = {x € R|xy =yx for all y € R}. This is a subring.
Example: if R = Mat,, (C), then Z(R) ={A-idy | A € C} = C.
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Prerequisites (3/3)

We say some x € Ris a unit if xy = 1 = yx for some y € R. Denote
R* ={x € R|xis aunit.}. Then R* is a group, and 1 € R*.
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Prerequisites (3/3)

We say some x € Ris a unit if xy = 1 = yx for some y € R. Denote
R* ={x € R|xis aunit.}. Then R* is a group, and 1 € R*.

Proposition

For any finite field IF.,x, the group IF ;k = i \ {0} is cyclic, i.e. it is
isomorphic to Z/(p* —1)Z. In fact, P =x < x€ Fox C Fpk.
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Prerequisites (3/3)

We say some x € Ris a unit if xy = 1 = yx for some y € R. Denote
R* ={x € R|xis aunit.}. Then R* is a group, and 1 € R*.

Proposition

For any finite field IF.,x, the group IF :k = i \ {0} is cyclic, i.e. it is
isomorphic to Z/(p* —1)Z. In fact, P =x < x€ Fox C Fpk.

Anideal I C R satisfies forany x € Rand any a € [, thatx-a € L.

@ Thesubset2-Z ={2,4,6,...} C Z is an ideal.
@ More generally, if x € R, the ideal I = x - R denotes the set
{x -y |y € R}. We say that L is principal.
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We say some x € Ris a unit if xy = 1 = yx for some y € R. Denote
R* ={x € R|xis aunit.}. Then R* is a group, and 1 € R*.

Proposition

For any finite field IF.,x, the group IF ;k = IF,« \ {0} is cyclic, i.e. _it is
isomorphic to Z/(p* —1)Z. In fact, P =x < x€ Fox C Fpx.

Anideal I C R satisfies forany x € Rand any a € [, thatx-a € L.

@ Thesubset2-Z ={2,4,6,...} C Z is an ideal.

@ More generally, if x € R, the ideal I = x - R denotes the set
{x -y |y € R}. We say that I is principal. Not every ideal is
principal; for example I = {f € Z[X] | f(0) is even}.
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Prerequisites (3/3)

We say some x € Ris a unit if xy = 1 = yx for some y € R. Denote
R* ={x € R|xis aunit.}. Then R* is a group, and 1 € R*.

Proposition

For any finite field IF.,x, the group IF ;k = IF,« \ {0} is cyclic, i.e. _it is
isomorphic to Z/(p* —1)Z. In fact, P =x < x€ Fox C Fpx.

Anideal I C R satisfies forany x € Rand any a € [, thatx-a € L.

@ Thesubset2-Z ={2,4,6,...} C Z is an ideal.

@ More generally, if x € R, the ideal I = x - R denotes the set
{x -y |y € R}. We say that I is principal. Not every ideal is
principal; for example I = {f € Z[X] | f(0) is even}.

@ If every ideal in R is principal and R is a domain, we say that Ris a
principal ideal domain, or p.i.d. Example: Z is a p.i.d., Z[X] is not.
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A very easy exercise in a first course on group theory:

Let G be a group. Prove that the following are equivalent:

@ G is abelian;
@ Forall a,b € G, it holds that (ab) ™! = a b~ 1;
e Forall a,b € G, it holds that (ab)? = a?b?.

These problems are quite boring.
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A very easy exercise in a first course on group theory:

Let G be a group. Prove that the following are equivalent:

@ G is abelian;
@ Forall a,b € G, it holds that (ab) ™! = a b~ 1;
e Forall a,b € G, it holds that (ab)? = a?b?.

These problems are quite boring. More interesting is:

Proposition
Suppose that a? = 1 for all a € G. Then G is abelian.

Proof: We see that (ab)? =1, so abab = 1. Hence

ab = a(abab)b = bq,

where we used that also a2 = b% = 1. O
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The bridge

Proposition

Suppose that a? =1 for all a € G. Then G is abelian.

There are two reasons why this result is interesting:
@ We used the given not just once, but three times.
@ The result does not generalise, i.e. the group

1 x
G= 0 1 x, Y,z € 2/37Z
0

0

—_ N e

satisfies the property that a® = 1 for all a € G, but G is not abelian.
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The bridge

Proposition

Suppose that a? =1 for all a € G. Then G is abelian.

There are two reasons why this result is interesting:
@ We used the given not just once, but three times.
@ The result does not generalise, i.e. the group

1 x
G= 0 1 x, Y,z € 2/37Z
0

0

—_ N e

satisfies the property that a® = 1 for all a € G, but G is not abelian.

So, something must be going on.
Question: How do we suitably generalise this result to rings?
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Failed attempt

Clearly x2 = 1 cannot hold for all x € R, because 0> = 1 forces R = {0}.
What happens if we exclude 0?
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Failed attempt

Clearly x2 = 1 cannot hold for all x € R, because 0> = 1 forces R = {0}.
What happens if we exclude 0?

Proposition

Let R be a ring in which x> = 1 for all x # 0. Then R = IF, or R = TFs.
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Failed attempt

Clearly x2 = 1 cannot hold for all x € R, because 0> = 1 forces R = {0}.
What happens if we exclude 0?

Proposition

Let R be a ring in which x> = 1 for all x # 0. Then R = IF, or R = TFs.

Proof: We split two cases.
@ Suppose that 2 = 0 and let x € R\ {0,1}. Then

1=(x+1?=x*4+2x+1=140+1=0,

a contradiction. Hence R = .
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Failed attempt

Clearly x> = 1 cannot hold for all x € R, because 0> = 1 forces R = {0}.
What happens if we exclude 0?

Proposition

Let R be a ring in which x> = 1 for all x # 0. Then R = IF, or R = TFs.

Proof: We split two cases.
@ Suppose that 2 = 0 and let x € R\ {0,1}. Then

1=(x+1?=x*4+2x+1=140+1=0,

a contradiction. Hence R = IF,.
@ Suppose that2 # 0. Then22 = 1,503 = 0. Letx € R\ {0,1,2}. Then

I=(x+12*=1-x+1,

so x = 1; a contradiction. Hence R = 3. |
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The proper generalisation

So x? =1 for all x # 0 is too much. Sadly, only considering x € R* is
not enough, for consider

R = {(’5 §> ‘x,y,z e Z/ZZ}.

The two units square to 1, but the ring is not commutative.

Mike Daas
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The proper generalisation

So x? =1 for all x # 0 is too much. Sadly, only considering x € R* is
not enough, for consider

R = {(’5 §> ‘X,y,z e Z/ZZ}.

The two units square to 1, but the ring is not commutative.
The right way to generalise the result on groups is as follows:

Proposition
Suppose x> = x holds for all x € R. Then R is commutative.

Proof: First observe that 1 = (—1)? = —1. Hence

x+y=x+y?=x*+xy+yx+y’=x+xy+yx+y.

We see that xy + yx = 0, and so xy = —yx = yx. ]
These rings are called boolean.
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It generalises further

There are again two reasons why this result is interesting:
@ We again used the given not just once, but four times.
@ The result does in fact generalise!
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It generalises further

There are again two reasons why this result is interesting:
@ We again used the given not just once, but four times.
@ The result does in fact generalise!

Proposition

Suppose x*> = x holds for all x € R. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on
the following lemma.
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It generalises further

There are again two reasons why this result is interesting:
@ We again used the given not just once, but four times.
@ The result does in fact generalise!

Proposition

Suppose x*> = x holds for all x € R. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on
the following lemma.

Let R be a reduced ring and e € R an idempotent. Then e is central. \

Proof: Let x € R be arbitrary. Then observe that
2

(exe — ex)” = exexe — exex — exexe + exex = 0.

Hence by assumption, exe = ex. Completely analogously,
ex = exe = xe, showing that e is indeed central. O
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Proving the proposition

Proposition

Suppose x> = x holds for all x € R. Then R is commutative.

Proof: Clearly R is reduced, and x* = x?, so that all squares in R must
be central by the lemma. We now compute that:
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Proving the proposition

Proposition
3

Suppose x° = x holds for all x € R. Then R is commutative.

Proof: Clearly R is reduced, and x* = x?, so that all squares in R must
be central by the lemma. We now compute that:

xy = (xy)?
= x(yx)7y
= yxyx’y
— yxdy?
= y3x

= yx.

)2
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Proving the proposition

Proposition
3

Suppose x° = x holds for all x € R. Then R is commutative.

Proof: Clearly R is reduced, and x* = x?, so that all squares in R must
be central by the lemma. We now compute that:

xy = (xy)?
= x(yx)7y
= yxyx’y
— yxdy?
= YX.

)2

What about even higher exponents? O
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Another explicit example

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Again we have that 1 = (—=1)* = —1. We then compute that
(X +x)? =x+ 23 +x* =x% +x.

Hence x? + x is an idempotent in the reduced ring R, which is thus
central by the lemma.
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Another explicit example

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Again we have that 1 = (—=1)* = —1. We then compute that
(X +x)? =x+ 23 +x* =x% +x.

Hence x? + x is an idempotent in the reduced ring R, which is thus
central by the lemma. Hence also

(x+y)P?+(x+y)=(%+x)+xy +yx+ (Y2 +vy)

is central, and as such, xy + yx must be central for all x,y € R.
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Another explicit example

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Again we have that 1 = (—=1)* = —1. We then compute that
(X +x)? =x+ 23 +x* =x% +x.

Hence x? + x is an idempotent in the reduced ring R, which is thus
central by the lemma. Hence also

(x+y)P?+(x+y)=(%+x)+xy +yx+ (Y2 +vy)

is central, and as such, xy + yx must be central for all x,y € R.
In particular, we find that

xyx + yx? = (xy +yx)x = x(xy +yx) = x>y + xyx,

and hence yx2 = x2y for all x,y € R. In other words, also x2 is central,
and thus so is x = (x% + x) — x2. O
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We power through...

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Note that (x*)2 = x° - x3 = x* sox*isan idempotent in the
reduced ring R, hence central. We see that

(x+1)* € Z(R) = 4x>+6x> +4x € Z(R);
(x—1)* e Z(R) = 4x> —6x> +4x € Z(R).

Subtracting these two results gives that 12x> € Z(R) for all x € R.

Mike Daas Jacobson’s Commutativity Theorem November 2nd, 2023



We power through...

Proposition

5

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Note that (x*)2 =x° - x3 = x*, so x*is an idempotent in the
reduced ring R, hence central. We see that
(x+1D* € Z(R) = 4> +6x* +4x € Z(R);
(x—1)* e Z(R) = 4x> —6x> +4x € Z(R).

Subtracting these two results gives that 12x> € Z(R) for all x € R.

Hence also
12(x +1)% € Z(R) = 24x € Z(R).
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We power through...

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Note that (x*)2 =x° - x3 = x*, so x*is an idempotent in the
reduced ring R, hence central. We see that
(x+1D* € Z(R) = 4> +6x* +4x € Z(R);
(x—1)* e Z(R) = 4x> —6x> +4x € Z(R).

Subtracting these two results gives that 12x> € Z(R) for all x € R.

Hence also
12(x +1)% € Z(R) = 24x € Z(R).

But 2° = 2 implies 30 = 0 so also 6x € Z(R).
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We power through...

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof: Note that (x*)2 = x° - x3 = x* sox*isan idempotent in the
reduced ring R, hence central. We see that

(x+1)* € Z(R) = 4x>+6x> +4x € Z(R);
(x—1)* e Z(R) = 4x> —6x> +4x € Z(R).

Subtracting these two results gives that 12x> € Z(R) for all x € R.

Hence also
12(x +1)% € Z(R) = 24x € Z(R).

But 2° = 2 implies 30 = 0 so also 6x € Z(R). So

43 +6x*+4x € Z(R) = 2x° +2x € Z(R).
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We power through...

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof (cont.): Now consider

(x+1)P°=x+1 = 10x> +10x*> + 5x € Z(R);
(x—1P =x—1 = 10x> —10x* + 5x € Z(R).

Adding these two results gives that 20x> + 10x € Z(R) for all x € R.
Hence also 2x° + 4x € Z(R).
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We power through...

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof (cont.): Now consider

(x+1P°=x4+1 = 10x>+ 10x> + 5x € Z(R);
(x—1P =x—1 = 10x> — 10x*> + 5x € Z(R).
Adding these two results gives that 20x> + 10x € Z(R) for all x € R.

Hence also 2x3 + 4x € Z(R). Recall that 2x® +2x € Z(R) for all x € R.
Combining this, we obtain 2x € Z(R) for all x € R.
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We power through...

Proposition

Suppose x* = x holds for all x € R. Then R is commutative.

Proof (cont.): Now consider

(x+1P°=x4+1 = 10x>+ 10x> + 5x € Z(R);
(x—1P =x—1 = 10x> — 10x*> + 5x € Z(R).

Adding these two results gives that 20x> + 10x € Z(R) for all x € R.
Hence also 2x3 + 4x € Z(R). Recall that 2x® +2x € Z(R) for all x € R.
Combining this, we obtain 2x € Z(R) for all x € R. Hence

10x® 4+ 10x*> 4+ 5x € Z(R) = 5x € Z(R).

Hence also x € Z(R), completing the proof. |
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A curious case

Proposition

Suppose x® = x holds for all x € R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x 4+ 1)® = x + 1 gives that

X0+ 6x° + 15x* +20x3 + 15x> + 6x + 1 = x + 1.
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A curious case

Proposition

Suppose x® = x holds for all x € R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x 4+ 1)® = x + 1 gives that

X0+ 6x° + 15x* +20x3 + 15x> + 6x + 1 = x + 1.

In other words, x* = x? for all x € R.
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A curious case

Proposition

Suppose x® = x holds for all x € R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x 4+ 1)® = x + 1 gives that

X0+ 6x° + 15x* +20x3 + 15x> + 6x + 1 = x + 1.

In other words, x* = x? for all x € R. Hence

Hence R is boolean and in particular commutative. |
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A curious case

Proposition

Suppose x® = x holds for all x € R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x 4+ 1)® = x + 1 gives that

X0+ 6x° + 15x* +20x3 + 15x> + 6x + 1 = x + 1.

In other words, x* = x? for all x € R. Hence

Hence R is boolean and in particular commutative. |

Observation

Suppose x® = x holds for all x € R. Then even x? = x for all x € R.
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Secretly boolean?

When are rings in which x™ = x for all x secretly boolean?
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Secretly boolean?

When are rings in which x™ = x for all x secretly boolean?

What are all relations we can deduce from 1 variable for even n?
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Secretly boolean?

When are rings in which x™ = x for all x secretly boolean? \
What are all relations we can deduce from 1 variable for even n? \

For any x € Rand f € [F»[X], we have that f(x)™ = f(x). So we define
I, C Fp[X] generated by f(X)™ —f(X) forall f e F[X].
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Secretly boolean?

When are rings in which x™ = x for all x secretly boolean? \
What are all relations we can deduce from 1 variable for even n?

For any x € Rand f € [F»[X], we have that f(x)™ = f(x). So we define
I, C Fp[X] generated by f(X)™ —f(X) forall f e F[X].

Proposition
The ring IF>[X] is a principal ideal domain.
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When are rings in which x™ = x for all x secretly boolean?
What are all relations we can deduce from 1 variable for even n?

For any x € Rand f € [F»[X], we have that f(x)™ = f(x). So we define
I, C Fp[X] generated by f(X)™ —f(X) forall f e F[X].

Proposition

The ring IF>[X] is a principal ideal domain.

There exists some g, € [F»[X] such that [,, = (gn).
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Secretly boolean?

When are rings in which x™ = x for all x secretly boolean?
What are all relations we can deduce from 1 variable for even n?

For any x € Rand f € [F»[X], we have that f(x)™ = f(x). So we define
I, C Fp[X] generated by f(X)™ —f(X) forall f e F[X].

Proposition

The ring IF>[X] is a principal ideal domain.

There exists some g, € [F»[X] such that [,, = (gn).

Then gy, is the minimal relation. Can we determine it?
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Let’s re-examine the exponent 6 case in this language. By definition:

(x+1°—(x+1)ely = x*+x*cl.
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Let’s re-examine the exponent 6 case in this language. By definition:
(x+1°—(x+1)ely = x*+x*cl.

Then also
X2 (x4 x2) =x +xt e L.
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Let’s re-examine the exponent 6 case in this language. By definition:

(x+1°—(x+1)ely = x*+x*cl.

Then also
X2 (x4 x2) =x +xt e L.

By definition, we also have

X6-|—X€ Ig.
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Let’s re-examine the exponent 6 case in this language. By definition:
(x+1°—(x+1)ely = x*+x*cl.
Then also
X2 (x4 x2) =x +xt e L.
By definition, we also have
x4+ x € Ig.
But then also
x+x)+ X +x) +(x+xH) =x*+x el

This means that Iy = (x> + x). Can we do this in general?
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The main result

Define theset S;, ={m € N:2™ —1 | n — 1}. Then we have
gn = lcm{sz —X|me Sn}.
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The main result

Define theset S;, ={m € N:2™ —1 | n — 1}. Then we have
T, — lcm{sz —X|me Sn}.

Ifn=2thenS, ={1}so gn = X>—X.
Ifn=4thenS, ={1,2}s0 g, = X* - X.
Ifn=6thenS, ={1}sogn = X*>—X.
Ifn=8thenS, ={1,3}s0 g, = X8 —X.
If n =10 then S, ={1,2}s0 gn = X* — X.
Ifn =12then S, ={1}so gn, = X2 —X.

If n =14 then S, ={1}so gn, = X>—X.

If n =16 then S, ={1,2,4}so gn = X1® - X.
If n =18 then S, = {1}so gn = X2 — X.

If n =20 then S, ={1}so0 gn = X>—X.

If n =22 then S;, ={1,2,3}s0 gn = (X2 + X +1)(X8 — X).
Ifn =24thenS, ={1}so g, =X>—X.
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Proof part 1/2

Define theset S;, ={m € N:2™ —1 | n — 1}. Then we have
gn = lcm{sz —X|me Sn}.

Proof: Two (squarefree) polynomials over [F; are equal if and only if
they have the same zeroes in .
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Proof part 1/2

Define theset S;, ={m € N:2™ —1 | n — 1}. Then we have
T, — lcm{sz —X|me Sn}.

Proof: Two (squarefree) polynomials over [F; are equal if and only if
they have the same zeroes in .

@ Zeroes of the RHS: if and only if it is a zero of X*" — X for some
m € Sy. Equivalently, if and only if o € Fom for some m € S,,.
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Proof part 1/2

Define theset S;, ={m € N:2™ —1 | n — 1}. Then we have
T, — lcm{sz —X|me Sn}.

Proof: Two (squarefree) polynomials over [F; are equal if and only if
they have the same zeroes in .

@ Zeroes of the RHS: if and only if it is a zero of X*" — X for some
m € Sy. Equivalently, if and only if o € Fom for some m € S,,.

@ Zeroes of the LHS: if and only if it is a zero of all h™ — h for
h € F>[X]. We have thus reduced to showing that for « € Fy,

h(x)™ = h(x) forallh € F;[X] <= « € Fom for some m € S,.
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Proof part 2/2

h(x)™ =h(x) forallh € F,[X] <= « € Fom for some m € S,,.
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Proof part 2/2

h(x)™ =h(x) forallh € F,[X] <= « € Fom for some m € S,,.

@ Let « € Fom for some m € Sy,. If h(«) = 0, we are done.
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Proof part 2/2

h(x)™ =h(x) forallh € F,[X] <= « € Fom for some m € S,,.

@ Let « € Fom for some m € Sy,. If h(«) = 0, we are done. If
h(«x) € FJ,, then h(e)2" 1 =1. By definition of m, raising this to
some power yields that h(a)™ ! = 1, as desired.
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Proof part 2/2

h(x)™ =h(x) forallh € F,[X] <= « € Fom for some m € S,,.

@ Let « € Fom for some m € Sy,. If h(«) = 0, we are done. If
h(«x) € FJ,, then h(e)2" 1 =1. By definition of m, raising this to
some power yields that h(a)™ ! = 1, as desired.

@ Now let « € [F, and suppose that h(x)™ = h(«) for all h € F,[X].
If we write IFp[] = Fom for some m € IN, we must show that
m € S,.

Mike Daas Jacobson’s Commutativity Theorem November 2nd, 2023 19/22



Proof part 2/2

h(x)™ =h(x) forallh € F,[X] <= « € Fom for some m € S,,.

@ Let « € Fom for some m € Sy,. If h(«) = 0, we are done. If
h(«x) € FJ,, then h(e)2" 1 =1. By definition of m, raising this to
some power yields that h(a)™ ! = 1, as desired.

@ Now let « € [F, and suppose that h(x)™ = h(«) for all h € F,[X].
If we write IFp[] = Fom for some m € IN, we must show that
m € S,,. Observe that

{h(a) | h € B:[X]} = Falod = Fpm.
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Proof part 2/2

h(x)™ =h(x) forallh € F,[X] <= « € Fom for some m € S,,.

@ Let « € Fom for some m € Sy,. If h(«) = 0, we are done. If
h(«x) € FJ,, then h(e)2" 1 =1. By definition of m, raising this to
some power yields that h(a)™ ! = 1, as desired.

@ Now let « € [F, and suppose that h(x)™ = h(«) for all h € F,[X].
If we write IFp[] = Fom for some m € IN, we must show that
m € S,,. Observe that

{h(a) | h € B:[X]} = Falod = Fpm.

In other words, ™ = B for all B € Fom. Since FF5;, is cyclic of order
2™ —1, we may choose f3 to be a generator. It then follows
immediately that 2™ — 1 | n — 1, showing m € S,. O
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How many cases can we solve?

When are rings in which x™ = x for all x secretly boolean?
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How many cases can we solve?
When are rings in which x™ = x for all x secretly boolean? \

Precisely when n — 1 is not divisible by any 2™ — 1 for m > 2.
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How many cases can we solve?
When are rings in which x™ = x for all x secretly boolean? \

Precisely when n — 1 is not divisible by any 2™ — 1 for m > 2.

How many rings in which x™ = x for all x are secretly boolean? \

20/22
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How many cases can we solve?
When are rings in which x™ = x for all x secretly boolean?

Precisely when n — 1 is not divisible by any 2™ — 1 for m > 2.

How many rings in which x™ = x for all x are secretly boolean?

Let m,n € N. Then ged(2™ —1,2™ — 1) = 28cd(mm) _ 1,
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How many cases can we solve?
When are rings in which x™ = x for all x secretly boolean?

Precisely when n — 1 is not divisible by any 2™ — 1 for m > 2.

How many rings in which x™ = x for all x are secretly boolean?

Let m,n € N. Then ged(2™ —1,2™ — 1) = 28cd(mm) _ 1,

@ n—1isnot divisible by any 2™ — 1 as soon as n — 1 is not divisible
by any 2P — 1 for p prime. Example: not divisible by 23 —1 =7
implies also not divisible by 26 — 1 = 63.
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How many cases can we solve?
When are rings in which x™ = x for all x secretly boolean?

Precisely when n — 1 is not divisible by any 2™ — 1 for m > 2.

How many rings in which x™ = x for all x are secretly boolean?

Let m,n € N. Then ged(2™ —1,2™ — 1) = 28cd(mm) _ 1,

@ n—1isnot divisible by any 2™ — 1 as soon as n — 1 is not divisible
by any 2P — 1 for p prime. Example: not divisible by 23 —1 =7
implies also not divisible by 26 — 1 = 63.

@ For primes p # ¢, the numbers 2P — 1 and 29 — 1 are coprime.
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Densities and probabilities

The density of even n for which any ring R in which x™ = x for all
x € R is necessarily boolean is given by

2P 2
o= H T 0.54830.

P prime
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Densities and probabilities

The density of even n for which any ring R in which x™ = x for all
x € R is necessarily boolean is given by

2P 2
o= H T 0.54830.

P prime

Proof: The probability of not being divisible by 2P — 1 for a prime p is
equal to

1 202

1-— = .
2r—1 2r—1
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Densities and probabilities

The density of even n for which any ring R in which x™ = x for all
x € R is necessarily boolean is given by

2P 2
o= H o~ 0.54830.

P prime

Proof: The probability of not being divisible by 2P — 1 for a prime p is
equal to

1 2r-2
2p—1 2P -1
Since all these numbers are coprime, these events are independent. O

1

Using just the techniques from this presentation, we can prove
commutativity for a density of 7a/5 ~ 0.76762 of even exponents.
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2]3|4|5/6|7|8]9|10|11 12|13 14|15
Comm? |V |V |V |V |V |22 2|V |2 |V ]2 |V |?
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2[3|/4|5|6|7]|8
Comm? |V |V |V |V |V

911011 |12 |13 |14 | 15
[ A S A B O VA B O VA ¢
For even exponents our results are even better:

n | 2468|1012 |14 |16
Comm? |V |/ |V |?

18 120 |22 |24 |26 |28
VAN VA VA Y O BV BV

30
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2]3|4|5/6|7|8]9|10|11 12|13 14|15
Comm? |V |V |V |V |V |22 2|V |2 |V ]2 |V |?

For even exponents our results are even better:

n 2|14|6|8]10|12|14 16|18 |20 |22 |24 |26 |28 |30
Comm? |V |/ |V |? |/ |V |V || V| V|2 |||/

Question: is it true in general?
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2]3|4|5/6|7|8]9|10|11 12|13 14|15
Comm? |V |V |V |V |V |22 2|V |2 |V ]2 |V |?

For even exponents our results are even better:

n 2|14|6|8]10|12|14 16|18 |20 |22 |24 |26 |28 |30
Comm? |V |/ |V |? |/ |V |V || V| V|2 |||/

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any x € R there exists some integer
n(x) > 2 such that x™(*) = x. Then R is commutative.

Mike Daas

Jacobson’s Commutativity Theorem November 2nd, 2023 22/22



Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2]3|4|5/6|7|8]9|10|11 12|13 14|15
Comm? |V |V |V |V |V |22 2|V |2 |V ]2 |V |?

For even exponents our results are even better:

n 2|14|6|8]10|12|14 16|18 |20 |22 |24 |26 |28 |30
Comm? |V |/ |V |? |/ |V |V || V| V|2 |||/

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any x € R there exists some integer
n(x) > 2 such that x™(*) = x. Then R is commutative.

So why look for these kinds of proofs? Because it’s fun!
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2]3|4|5/6|7|8]9|10|11 12|13 14|15
Comm? |V |V |V |V |V |22 2|V |2 |V ]2 |V |?

For even exponents our results are even better:

n 2|14|6|8]10|12|14 16|18 |20 |22 |24 |26 |28 |30
Comm? |V |/ |V |? |/ |V |V || V| V|2 |||/

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any x € R there exists some integer
n(x) > 2 such that x™(*) = x. Then R is commutative.

So why look for these kinds of proofs? Because it’s fun! (to me)
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying x™ = x must be commutative:

n |2]3|4|5/6|7|8]9|10|11 12|13 14|15
Comm? |V |V |V |V |V |22 2|V |2 |V ]2 |V |?

For even exponents our results are even better:

n 2|14|6|8]10|12|14 16|18 |20 |22 |24 |26 |28 |30
Comm? |V |/ |V |? |/ |V |V || V| V|2 |||/

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any x € R there exists some integer
n(x) > 2 such that x™(*) = x. Then R is commutative.

So why look for these kinds of proofs? Because it’s fun! (to me)

Thanks for listening!
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