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Prerequisites (1/3)

Groups
A group G is a set of things that we can multiply, write g · h. We insist
that there is a neutral element such that 1 · g = g = g · 1, and we
require that there are inverses; g−1 · g = 1 = g · g−1.

If g · h = h · g for all g,h ∈ G, then G is abelian and write · = +.

Rings
A ring R is a set of things that we can add and multiply, write g+ h and
g · h. We insist that there is a neutral element such that 1 · g = g = g · 1
and that everything works nicely (associative, distributative, etc...).

Important: We do not require that we have inverses for multiplication!
If we do have inverses (except 0) and R is commutative, then we say
that the ring is a field. Example: Q, R and C are fields.

Z/pZ for p prime is a field; typically denoted Fp.
Z is a ring, but not a field. Similar for Z/4Z.
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Prerequisites (2/3)

Proposition
For any prime p and positive integer k, there exists a unique finite field
with pk elements, denoted Fpk .

Another important example of rings:

R[X] = {anX
n + . . . + a0 | ai ∈ R}.

If x · y = 0 implies x = 0 or y = 0, then we say R is an integral
domain. Example: Z/6Z is not an integral domain; 2 · 3 = 0.
We say some x ∈ R is idempotent if x2 = x. Examples: x ∈ {0, 1}.
More interestingly, x = 3 in Z/6Z.
We say a ring R is reduced if x2 = 0 =⇒ x = 0. Examples: all fields
are reduced, but so is Z/6Z. However, Z/4Z is not reduced.
Multiplication in R need not be commutative. Define the center of
R to be Z(R) = {x ∈ R | xy = yx for all y ∈ R}. This is a subring.
Example: if R = Matn(C), then Z(R) = {λ · idn | λ ∈ C} � C.
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Prerequisites (3/3)

We say some x ∈ R is a unit if xy = 1 = yx for some y ∈ R. Denote
R× = {x ∈ R | x is a unit.}. Then R× is a group, and 1 ∈ R×.

Proposition

For any finite field Fpk , the group F×
pk = Fpk \ {0} is cyclic, i.e. it is

isomorphic to Z/(pk − 1)Z. In fact, xp
k
= x ⇐⇒ x ∈ Fpk ⊂ Fpk .

Ideals
An ideal I ⊂ R satisfies for any x ∈ R and any a ∈ I, that x · a ∈ I.

The subset 2 ·Z = {2, 4, 6, . . .} ⊂ Z is an ideal.
More generally, if x ∈ R, the ideal I = x · R denotes the set
{x · y | y ∈ R}. We say that I is principal. Not every ideal is
principal; for example I = {f ∈ Z[X] | f(0) is even}.
If every ideal in R is principal and R is a domain, we say that R is a
principal ideal domain, or p.i.d. Example: Z is a p.i.d., Z[X] is not.
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Backstory

A very easy exercise in a first course on group theory:

Problem
Let G be a group. Prove that the following are equivalent:

G is abelian;
For all a,b ∈ G, it holds that (ab)−1 = a−1b−1;
For all a,b ∈ G, it holds that (ab)2 = a2b2.

These problems are quite boring.

More interesting is:

Proposition

Suppose that a2 = 1 for all a ∈ G. Then G is abelian.

Proof: We see that (ab)2 = 1, so abab = 1. Hence

ab = a(abab)b = ba,

where we used that also a2 = b2 = 1. □
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The bridge

Proposition

Suppose that a2 = 1 for all a ∈ G. Then G is abelian.

There are two reasons why this result is interesting:
We used the given not just once, but three times.
The result does not generalise, i.e. the group

G =


1 x y

0 1 z

0 0 1

∣∣∣ x,y, z ∈ Z/3Z


satisfies the property that a3 = 1 for all a ∈ G, but G is not abelian.

So, something must be going on.
Question: How do we suitably generalise this result to rings?
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Failed attempt

Clearly x2 = 1 cannot hold for all x ∈ R, because 02 = 1 forces R = {0}.
What happens if we exclude 0?

Proposition

Let R be a ring in which x2 = 1 for all x , 0. Then R � F2 or R � F3.

Proof: We split two cases.
Suppose that 2 = 0 and let x ∈ R \ {0, 1}. Then

1 = (x+ 1)2 = x2 + 2x+ 1 = 1 + 0 + 1 = 0,

a contradiction. Hence R = F2.
Suppose that 2 , 0. Then 22 = 1, so 3 = 0. Let x ∈ R \ {0, 1, 2}. Then

1 = (x+ 1)2 = 1 − x+ 1,

so x = 1; a contradiction. Hence R = F3. □
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The proper generalisation

So x2 = 1 for all x , 0 is too much. Sadly, only considering x ∈ R× is
not enough, for consider

R =

{(
x y

0 z

) ∣∣∣ x,y, z ∈ Z/2Z
}

.

The two units square to 1, but the ring is not commutative.

The right way to generalise the result on groups is as follows:

Proposition

Suppose x2 = x holds for all x ∈ R. Then R is commutative.

Proof: First observe that 1 = (−1)2 = −1. Hence

x+ y = (x+ y)2 = x2 + xy+ yx+ y2 = x+ xy+ yx+ y.

We see that xy+ yx = 0, and so xy = −yx = yx. □
These rings are called boolean.
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The right way to generalise the result on groups is as follows:

Proposition

Suppose x2 = x holds for all x ∈ R. Then R is commutative.

Proof: First observe that 1 = (−1)2 = −1. Hence

x+ y = (x+ y)2 = x2 + xy+ yx+ y2 = x+ xy+ yx+ y.

We see that xy+ yx = 0, and so xy = −yx = yx. □
These rings are called boolean.
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It generalises further

There are again two reasons why this result is interesting:
We again used the given not just once, but four times.
The result does in fact generalise!

Proposition

Suppose x3 = x holds for all x ∈ R. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on
the following lemma.

Lemma
Let R be a reduced ring and e ∈ R an idempotent. Then e is central.

Proof: Let x ∈ R be arbitrary. Then observe that

(exe− ex)2 = exexe− exex− exexe+ exex = 0.

Hence by assumption, exe = ex. Completely analogously,
ex = exe = xe, showing that e is indeed central. □

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 9 / 22



It generalises further

There are again two reasons why this result is interesting:
We again used the given not just once, but four times.
The result does in fact generalise!

Proposition

Suppose x3 = x holds for all x ∈ R. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on
the following lemma.

Lemma
Let R be a reduced ring and e ∈ R an idempotent. Then e is central.

Proof: Let x ∈ R be arbitrary. Then observe that

(exe− ex)2 = exexe− exex− exexe+ exex = 0.

Hence by assumption, exe = ex. Completely analogously,
ex = exe = xe, showing that e is indeed central. □

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 9 / 22



It generalises further

There are again two reasons why this result is interesting:
We again used the given not just once, but four times.
The result does in fact generalise!

Proposition

Suppose x3 = x holds for all x ∈ R. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on
the following lemma.

Lemma
Let R be a reduced ring and e ∈ R an idempotent. Then e is central.

Proof: Let x ∈ R be arbitrary. Then observe that

(exe− ex)2 = exexe− exex− exexe+ exex = 0.

Hence by assumption, exe = ex. Completely analogously,
ex = exe = xe, showing that e is indeed central. □

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 9 / 22



Proving the proposition

Proposition

Suppose x3 = x holds for all x ∈ R. Then R is commutative.

Proof: Clearly R is reduced, and x4 = x2, so that all squares in R must
be central by the lemma. We now compute that:

xy = (xy)3

= x(yx)2y

= yxyx2y

= yx3y2

= y3x

= yx.

□What about even higher exponents?
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Another explicit example

Proposition

Suppose x4 = x holds for all x ∈ R. Then R is commutative.

Proof: Again we have that 1 = (−1)4 = −1. We then compute that

(x2 + x)2 = x4 + 2x3 + x2 = x2 + x.

Hence x2 + x is an idempotent in the reduced ring R, which is thus
central by the lemma.

Hence also

(x+ y)2 + (x+ y) = (x2 + x) + xy+ yx+ (y2 + y)

is central, and as such, xy+ yx must be central for all x,y ∈ R.
In particular, we find that

xyx+ yx2 = (xy+ yx)x = x(xy+ yx) = x2y+ xyx,

and hence yx2 = x2y for all x,y ∈ R. In other words, also x2 is central,
and thus so is x = (x2 + x) − x2. □

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 11 / 22



Another explicit example

Proposition

Suppose x4 = x holds for all x ∈ R. Then R is commutative.

Proof: Again we have that 1 = (−1)4 = −1. We then compute that

(x2 + x)2 = x4 + 2x3 + x2 = x2 + x.

Hence x2 + x is an idempotent in the reduced ring R, which is thus
central by the lemma. Hence also

(x+ y)2 + (x+ y) = (x2 + x) + xy+ yx+ (y2 + y)

is central, and as such, xy+ yx must be central for all x,y ∈ R.

In particular, we find that

xyx+ yx2 = (xy+ yx)x = x(xy+ yx) = x2y+ xyx,

and hence yx2 = x2y for all x,y ∈ R. In other words, also x2 is central,
and thus so is x = (x2 + x) − x2. □

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 11 / 22



Another explicit example

Proposition

Suppose x4 = x holds for all x ∈ R. Then R is commutative.

Proof: Again we have that 1 = (−1)4 = −1. We then compute that

(x2 + x)2 = x4 + 2x3 + x2 = x2 + x.

Hence x2 + x is an idempotent in the reduced ring R, which is thus
central by the lemma. Hence also

(x+ y)2 + (x+ y) = (x2 + x) + xy+ yx+ (y2 + y)

is central, and as such, xy+ yx must be central for all x,y ∈ R.
In particular, we find that

xyx+ yx2 = (xy+ yx)x = x(xy+ yx) = x2y+ xyx,

and hence yx2 = x2y for all x,y ∈ R. In other words, also x2 is central,
and thus so is x = (x2 + x) − x2. □

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 11 / 22



We power through...

Proposition

Suppose x5 = x holds for all x ∈ R. Then R is commutative.

Proof: Note that (x4)2 = x5 · x3 = x4, so x4 is an idempotent in the
reduced ring R, hence central. We see that

(x+ 1)4 ∈ Z(R) =⇒ 4x3 + 6x2 + 4x ∈ Z(R);

(x− 1)4 ∈ Z(R) =⇒ 4x3 − 6x2 + 4x ∈ Z(R).

Subtracting these two results gives that 12x2 ∈ Z(R) for all x ∈ R.

Hence also
12(x+ 1)2 ∈ Z(R) =⇒ 24x ∈ Z(R).

But 25 = 2 implies 30 = 0 so also 6x ∈ Z(R). So

4x3 + 6x2 + 4x ∈ Z(R) =⇒ 2x3 + 2x ∈ Z(R).
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We power through...

Proposition

Suppose x5 = x holds for all x ∈ R. Then R is commutative.

Proof (cont.): Now consider

(x+ 1)5 = x+ 1 =⇒ 10x3 + 10x2 + 5x ∈ Z(R);

(x− 1)5 = x− 1 =⇒ 10x3 − 10x2 + 5x ∈ Z(R).

Adding these two results gives that 20x3 + 10x ∈ Z(R) for all x ∈ R.
Hence also 2x3 + 4x ∈ Z(R).

Recall that 2x3 + 2x ∈ Z(R) for all x ∈ R.
Combining this, we obtain 2x ∈ Z(R) for all x ∈ R. Hence

10x3 + 10x2 + 5x ∈ Z(R) =⇒ 5x ∈ Z(R).

Hence also x ∈ Z(R), completing the proof. □
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A curious case

Proposition

Suppose x6 = x holds for all x ∈ R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x+ 1)6 = x+ 1 gives that

x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 1 = x+ 1.

In other words, x4 = x2 for all x ∈ R. Hence

x = x6 = x4 · x2 = x2 · x2 = x4 = x2.

Hence R is boolean and in particular commutative. □

Observation
Suppose x6 = x holds for all x ∈ R. Then even x2 = x for all x ∈ R.

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 14 / 22



A curious case

Proposition

Suppose x6 = x holds for all x ∈ R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x+ 1)6 = x+ 1 gives that

x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 1 = x+ 1.

In other words, x4 = x2 for all x ∈ R.

Hence

x = x6 = x4 · x2 = x2 · x2 = x4 = x2.

Hence R is boolean and in particular commutative. □

Observation
Suppose x6 = x holds for all x ∈ R. Then even x2 = x for all x ∈ R.

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 14 / 22



A curious case

Proposition

Suppose x6 = x holds for all x ∈ R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x+ 1)6 = x+ 1 gives that

x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 1 = x+ 1.

In other words, x4 = x2 for all x ∈ R. Hence

x = x6 = x4 · x2 = x2 · x2 = x4 = x2.

Hence R is boolean and in particular commutative. □

Observation
Suppose x6 = x holds for all x ∈ R. Then even x2 = x for all x ∈ R.

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 14 / 22



A curious case

Proposition

Suppose x6 = x holds for all x ∈ R. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out
that (x+ 1)6 = x+ 1 gives that

x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 1 = x+ 1.

In other words, x4 = x2 for all x ∈ R. Hence

x = x6 = x4 · x2 = x2 · x2 = x4 = x2.

Hence R is boolean and in particular commutative. □

Observation
Suppose x6 = x holds for all x ∈ R. Then even x2 = x for all x ∈ R.

MikeDaas Jacobson’s Commutativity Theorem November 2nd, 2023 14 / 22



Secretly boolean?

Question 1
When are rings in which xn = x for all x secretly boolean?

Question 2
What are all relations we can deduce from 1 variable for even n?

For any x ∈ R and f ∈ F2[X], we have that f(x)n = f(x). So we define

In ⊂ F2[X] generated by f(X)n − f(X) for all f ∈ F2[X].

Proposition
The ring F2[X] is a principal ideal domain.

Corollary
There exists some gn ∈ F2[X] such that In = (gn).

Then gn is the minimal relation. Can we determine it?
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Example

Let’s re-examine the exponent 6 case in this language. By definition:

(x+ 1)6 − (x+ 1) ∈ I6 =⇒ x4 + x2 ∈ I6.

Then also
x2 · (x4 + x2) = x6 + x4 ∈ I6.

By definition, we also have

x6 + x ∈ I6.

But then also

(x+ x6) + (x6 + x4) + (x4 + x2) = x2 + x ∈ I6.

This means that I6 = (x2 + x). Can we do this in general?
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The main result

Theorem
Define the set Sn = {m ∈N : 2m − 1 | n− 1}. Then we have

gn = lcm
{
X2m − X | m ∈ Sn

}
.

If n = 2 then Sn = {1} so gn = X2 − X.
If n = 4 then Sn = {1, 2} so gn = X4 − X.
If n = 6 then Sn = {1} so gn = X2 − X.
If n = 8 then Sn = {1, 3} so gn = X8 − X.
If n = 10 then Sn = {1, 2} so gn = X4 − X.
If n = 12 then Sn = {1} so gn = X2 − X.
If n = 14 then Sn = {1} so gn = X2 − X.
If n = 16 then Sn = {1, 2, 4} so gn = X16 − X.
If n = 18 then Sn = {1} so gn = X2 − X.
If n = 20 then Sn = {1} so gn = X2 − X.
If n = 22 then Sn = {1, 2, 3} so gn = (X2 + X+ 1)(X8 − X).
If n = 24 then Sn = {1} so gn = X2 − X.
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Proof part 1/2

Theorem
Define the set Sn = {m ∈N : 2m − 1 | n− 1}. Then we have

gn = lcm
{
X2m − X | m ∈ Sn

}
.

Proof: Two (squarefree) polynomials over F2 are equal if and only if
they have the same zeroes in F2.

Zeroes of the RHS: if and only if it is a zero of X2m − X for some
m ∈ Sn. Equivalently, if and only if α ∈ F2m for some m ∈ Sn.
Zeroes of the LHS: if and only if it is a zero of all hn − h for
h ∈ F2[X]. We have thus reduced to showing that for α ∈ F2,

h(α)n = h(α) for all h ∈ F2[X] ⇐⇒ α ∈ F2m for some m ∈ Sn.
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Let α ∈ F2m for some m ∈ Sn. If h(α) = 0, we are done. If
h(α) ∈ F×2m , then h(α)2m−1 = 1. By definition of m, raising this to
some power yields that h(α)n−1 = 1, as desired.
Now let α ∈ F2 and suppose that h(α)n = h(α) for all h ∈ F2[X].
If we write F2[α] = F2m for some m ∈N, we must show that
m ∈ Sn. Observe that{

h(α) | h ∈ F2[X]
}
= F2[α] = F2m .

In other words, βn = β for all β ∈ F2m . Since F×2m is cyclic of order
2m − 1, we may choose β to be a generator. It then follows
immediately that 2m − 1 | n− 1, showing m ∈ Sn. □
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How many cases can we solve?

Question
When are rings in which xn = x for all x secretly boolean?

Answer
Precisely when n− 1 is not divisible by any 2m − 1 for m ⩾ 2.

Question
How many rings in which xn = x for all x are secretly boolean?

Lemma
Let m,n ∈N. Then gcd(2n − 1, 2m − 1) = 2gcd(m,n) − 1.

n− 1 is not divisible by any 2m − 1 as soon as n− 1 is not divisible
by any 2p − 1 for p prime. Example: not divisible by 23 − 1 = 7
implies also not divisible by 26 − 1 = 63.
For primes p , q, the numbers 2p − 1 and 2q − 1 are coprime.
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Densities and probabilities

Theorem
The density of even n for which any ring R in which xn = x for all
x ∈ R is necessarily boolean is given by

α :=
∏

p prime

2p − 2
2p − 1

≈ 0.54830.

Proof: The probability of not being divisible by 2p − 1 for a prime p is
equal to

1 −
1

2p − 1
=

2p − 2
2p − 1

.

Since all these numbers are coprime, these events are independent. □

Corollary
Using just the techniques from this presentation, we can prove
commutativity for a density of 7α/5 ≈ 0.76762 of even exponents.
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Our achievements

The following table summarises for which values of n, we can prove
that any ring satisfying xn = x must be commutative:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Comm? ✓ ✓ ✓ ✓ ✓ ? ? ? ✓ ? ✓ ? ✓ ?

For even exponents our results are even better:

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Comm? ✓ ✓ ✓ ? ✓ ✓ ✓ ? ✓ ✓ ? ✓ ✓ ✓ ✓

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)
Let R be a ring in which for any x ∈ R there exists some integer
n(x) ⩾ 2 such that xn(x) = x. Then R is commutative.

So why look for these kinds of proofs? Because it’s fun! (to me)

Thanks for listening!
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