Jacobson's Commutativity Theorem

Mike Daas

Universiteit Leiden

November 2nd, 2023

Groups

A *group* G is a set of things that we can *multiply*, write $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$, and we require that there are inverses; $g^{-1} \cdot g = 1 = g \cdot g^{-1}$.

Groups

A *group* G is a set of things that we can *multiply*, write $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$, and we require that there are inverses; $g^{-1} \cdot g = 1 = g \cdot g^{-1}$.

If $g \cdot h = h \cdot g$ for all $g, h \in G$, then G is *abelian* and write $\cdot = +$.

Groups

A group G is a set of things that we can *multiply*, write $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$, and we require that there are inverses; $g^{-1} \cdot g = 1 = g \cdot g^{-1}$.

If $g \cdot h = h \cdot g$ for all $g, h \in G$, then G is *abelian* and write $\cdot = +$.

Rings

A *ring* R is a set of things that we can *add* and *multiply*, write g + h and $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$ and that everything works nicely (associative, distributative, etc...).

Important: We do *not* require that we have inverses for multiplication!

Groups

A group G is a set of things that we can *multiply*, write $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$, and we require that there are inverses; $g^{-1} \cdot g = 1 = g \cdot g^{-1}$.

If $g \cdot h = h \cdot g$ for all $g, h \in G$, then G is *abelian* and write $\cdot = +$.

Rings

A *ring* R is a set of things that we can *add* and *multiply*, write g + h and $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$ and that everything works nicely (associative, distributative, etc...).

Important: We do *not* require that we have inverses for multiplication! If we *do* have inverses (except 0) and R is commutative, then we say that the ring is a *field*. **Example:** \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.

Groups

A *group* G is a set of things that we can *multiply*, write $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$, and we require that there are inverses; $g^{-1} \cdot g = 1 = g \cdot g^{-1}$.

If $g \cdot h = h \cdot g$ for all $g, h \in G$, then G is *abelian* and write $\cdot = +$.

Rings

A *ring* R is a set of things that we can *add* and *multiply*, write g + h and $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$ and that everything works nicely (associative, distributative, etc...).

Important: We do *not* require that we have inverses for multiplication! If we *do* have inverses (except 0) and R is commutative, then we say that the ring is a *field*. **Example:** \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.

• $\mathbb{Z}/p\mathbb{Z}$ for p prime is a field; typically denoted \mathbb{F}_p .

Groups

A *group* G is a set of things that we can *multiply*, write $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$, and we require that there are inverses; $g^{-1} \cdot g = 1 = g \cdot g^{-1}$.

If $g \cdot h = h \cdot g$ for all $g, h \in G$, then G is *abelian* and write $\cdot = +$.

Rings

A *ring* R is a set of things that we can *add* and *multiply*, write g + h and $g \cdot h$. We insist that there is a neutral element such that $1 \cdot g = g = g \cdot 1$ and that everything works nicely (associative, distributative, etc...).

Important: We do *not* require that we have inverses for multiplication! If we *do* have inverses (except 0) and R is commutative, then we say that the ring is a *field*. **Example:** \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.

- $\mathbb{Z}/p\mathbb{Z}$ for p prime is a field; typically denoted \mathbb{F}_p .
- \mathbb{Z} is a ring, but not a field. Similar for $\mathbb{Z}/4\mathbb{Z}$.

Proposition

For any prime p and positive integer k, there exists a unique finite field with p^k elements, denoted \mathbb{F}_{p^k} .

Proposition

For any prime p and positive integer k, there exists a unique finite field with p^k elements, denoted \mathbb{F}_{p^k} .

$$\mathsf{R}[\mathsf{X}] = \{\mathfrak{a}_n \mathsf{X}^n + \ldots + \mathfrak{a}_0 \mid \mathfrak{a}_i \in \mathsf{R}\}.$$

Proposition

For any prime p and positive integer k, there exists a unique finite field with p^k elements, denoted \mathbb{F}_{p^k} .

Another important example of rings:

$$\mathbf{R}[\mathbf{X}] = \{\mathbf{a}_{\mathbf{n}}\mathbf{X}^{\mathbf{n}} + \ldots + \mathbf{a}_{\mathbf{0}} \mid \mathbf{a}_{\mathbf{i}} \in \mathbf{R}\}.$$

If x ⋅ y = 0 implies x = 0 or y = 0, then we say R is an *integral domain*. Example: Z/6Z is not an integral domain; 2 ⋅ 3 = 0.

Proposition

For any prime p and positive integer k, there exists a unique finite field with p^k elements, denoted \mathbb{F}_{p^k} .

$$\mathbf{R}[\mathbf{X}] = \{\mathbf{a}_{\mathbf{n}}\mathbf{X}^{\mathbf{n}} + \ldots + \mathbf{a}_{\mathbf{0}} \mid \mathbf{a}_{\mathbf{i}} \in \mathbf{R}\}.$$

- If x ⋅ y = 0 implies x = 0 or y = 0, then we say R is an *integral domain*. Example: Z/6Z is not an integral domain; 2 ⋅ 3 = 0.
- We say some $x \in R$ is *idempotent* if $x^2 = x$. Examples: $x \in \{0, 1\}$. More interestingly, x = 3 in $\mathbb{Z}/6\mathbb{Z}$.

Proposition

For any prime p and positive integer k, there exists a unique finite field with p^k elements, denoted \mathbb{F}_{p^k} .

$$\mathbf{R}[\mathbf{X}] = \{\mathbf{a}_{\mathbf{n}}\mathbf{X}^{\mathbf{n}} + \ldots + \mathbf{a}_{\mathbf{0}} \mid \mathbf{a}_{\mathbf{i}} \in \mathbf{R}\}.$$

- If x ⋅ y = 0 implies x = 0 or y = 0, then we say R is an *integral domain*. Example: Z/6Z is not an integral domain; 2 ⋅ 3 = 0.
- We say some $x \in R$ is *idempotent* if $x^2 = x$. Examples: $x \in \{0, 1\}$. More interestingly, x = 3 in $\mathbb{Z}/6\mathbb{Z}$.
- We say a ring R is *reduced* if $x^2 = 0 \implies x = 0$. **Examples**: all fields are reduced, but so is $\mathbb{Z}/6\mathbb{Z}$. However, $\mathbb{Z}/4\mathbb{Z}$ is not reduced.

Proposition

For any prime p and positive integer k, there exists a unique finite field with p^k elements, denoted \mathbb{F}_{p^k} .

$$\mathbf{R}[\mathbf{X}] = \{\mathbf{a}_{\mathbf{n}}\mathbf{X}^{\mathbf{n}} + \ldots + \mathbf{a}_{\mathbf{0}} \mid \mathbf{a}_{\mathbf{i}} \in \mathbf{R}\}.$$

- If x ⋅ y = 0 implies x = 0 or y = 0, then we say R is an *integral domain*. Example: Z/6Z is not an integral domain; 2 ⋅ 3 = 0.
- We say some $x \in R$ is *idempotent* if $x^2 = x$. Examples: $x \in \{0, 1\}$. More interestingly, x = 3 in $\mathbb{Z}/6\mathbb{Z}$.
- We say a ring R is *reduced* if $x^2 = 0 \implies x = 0$. **Examples**: all fields are reduced, but so is $\mathbb{Z}/6\mathbb{Z}$. However, $\mathbb{Z}/4\mathbb{Z}$ is not reduced.
- Multiplication in R need not be commutative. Define the *center* of R to be $Z(R) = \{x \in R \mid xy = yx \text{ for all } y \in R\}$. This is a subring. **Example**: if $R = Mat_n(\mathbb{C})$, then $Z(R) = \{\lambda \cdot id_n \mid \lambda \in \mathbb{C}\} \cong \mathbb{C}$.

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

Proposition

For any finite field \mathbb{F}_{p^k} , the group $\mathbb{F}_{p^k}^{\times} = \mathbb{F}_{p^k} \setminus \{0\}$ is *cyclic*, i.e. it is isomorphic to $\mathbb{Z}/(p^k - 1)\mathbb{Z}$. In fact, $x^{p^k} = x \iff x \in \mathbb{F}_{p^k} \subset \overline{\mathbb{F}}_{p^k}$.

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

Proposition

For any finite field \mathbb{F}_{p^k} , the group $\mathbb{F}_{p^k}^{\times} = \mathbb{F}_{p^k} \setminus \{0\}$ is *cyclic*, i.e. it is isomorphic to $\mathbb{Z}/(p^k - 1)\mathbb{Z}$. In fact, $x^{p^k} = x \iff x \in \mathbb{F}_{p^k} \subset \overline{\mathbb{F}}_{p^k}$.

Ideals

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

Proposition

For any finite field \mathbb{F}_{p^k} , the group $\mathbb{F}_{p^k}^{\times} = \mathbb{F}_{p^k} \setminus \{0\}$ is *cyclic*, i.e. it is isomorphic to $\mathbb{Z}/(p^k - 1)\mathbb{Z}$. In fact, $x^{p^k} = x \iff x \in \mathbb{F}_{p^k} \subset \overline{\mathbb{F}}_{p^k}$.

Ideals

An *ideal* $I \subset R$ satisfies for any $x \in R$ and any $a \in I$, that $x \cdot a \in I$.

• The subset $2 \cdot \mathbb{Z} = \{2, 4, 6, \ldots\} \subset \mathbb{Z}$ is an ideal.

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

Proposition

For any finite field \mathbb{F}_{p^k} , the group $\mathbb{F}_{p^k}^{\times} = \mathbb{F}_{p^k} \setminus \{0\}$ is *cyclic*, i.e. it is isomorphic to $\mathbb{Z}/(p^k - 1)\mathbb{Z}$. In fact, $x^{p^k} = x \iff x \in \mathbb{F}_{p^k} \subset \overline{\mathbb{F}}_{p^k}$.

Ideals

- The subset $2 \cdot \mathbb{Z} = \{2, 4, 6, \ldots\} \subset \mathbb{Z}$ is an ideal.
- More generally, if $x \in R$, the ideal $I = x \cdot R$ denotes the set $\{x \cdot y \mid y \in R\}$. We say that I is *principal*.

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

Proposition

For any finite field \mathbb{F}_{p^k} , the group $\mathbb{F}_{p^k}^{\times} = \mathbb{F}_{p^k} \setminus \{0\}$ is *cyclic*, i.e. it is isomorphic to $\mathbb{Z}/(p^k - 1)\mathbb{Z}$. In fact, $x^{p^k} = x \iff x \in \mathbb{F}_{p^k} \subset \overline{\mathbb{F}}_{p^k}$.

Ideals

- The subset $2 \cdot \mathbb{Z} = \{2, 4, 6, \ldots\} \subset \mathbb{Z}$ is an ideal.
- More generally, if $x \in R$, the ideal $I = x \cdot R$ denotes the set $\{x \cdot y \mid y \in R\}$. We say that I is *principal*. Not every ideal is principal; for example $I = \{f \in \mathbb{Z}[X] \mid f(0) \text{ is even}\}$.

We say some $x \in R$ is a *unit* if xy = 1 = yx for some $y \in R$. Denote $R^{\times} = \{x \in R \mid x \text{ is a unit.}\}$. Then R^{\times} is a group, and $1 \in R^{\times}$.

Proposition

For any finite field \mathbb{F}_{p^k} , the group $\mathbb{F}_{p^k}^{\times} = \mathbb{F}_{p^k} \setminus \{0\}$ is *cyclic*, i.e. it is isomorphic to $\mathbb{Z}/(p^k - 1)\mathbb{Z}$. In fact, $x^{p^k} = x \iff x \in \mathbb{F}_{p^k} \subset \overline{\mathbb{F}}_{p^k}$.

Ideals

- The subset $2 \cdot \mathbb{Z} = \{2, 4, 6, \ldots\} \subset \mathbb{Z}$ is an ideal.
- More generally, if $x \in R$, the ideal $I = x \cdot R$ denotes the set $\{x \cdot y \mid y \in R\}$. We say that I is *principal*. Not every ideal is principal; for example $I = \{f \in \mathbb{Z}[X] \mid f(0) \text{ is even}\}$.
- If every ideal in R is principal and R is a domain, we say that R is a *principal ideal domain*, or p.i.d. **Example:** Z is a p.i.d., Z[X] is not.

Backstory

A very easy exercise in a first course on group theory:

Problem

Let G be a group. Prove that the following are equivalent:

- G is abelian;
- For all $a, b \in G$, it holds that $(ab)^{-1} = a^{-1}b^{-1}$;
- For all $a, b \in G$, it holds that $(ab)^2 = a^2b^2$.

These problems are quite boring.

Backstory

A very easy exercise in a first course on group theory:

Problem

Let G be a group. Prove that the following are equivalent:

- G is abelian;
- For all $a, b \in G$, it holds that $(ab)^{-1} = a^{-1}b^{-1}$;
- For all $a, b \in G$, it holds that $(ab)^2 = a^2b^2$.

These problems are quite boring. More interesting is:

Proposition

Suppose that $a^2 = 1$ for all $a \in G$. Then G is abelian.

Proof: We see that $(ab)^2 = 1$, so abab = 1. Hence

$$ab = a(abab)b = ba$$
,

where we used that also $a^2 = b^2 = 1$.

Proposition

Suppose that $a^2 = 1$ for all $a \in G$. Then G is abelian.

There are two reasons why this result is interesting:

- We used the given not just once, but *three* times.
- The result does not generalise, i.e. the group

$$G = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Z}/3\mathbb{Z} \right\}$$

satisfies the property that $a^3 = 1$ for all $a \in G$, but G is not abelian.

Proposition

Suppose that $a^2 = 1$ for all $a \in G$. Then G is abelian.

There are two reasons why this result is interesting:

- We used the given not just once, but *three* times.
- The result does not generalise, i.e. the group

$$\mathsf{G} = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{Z}/3\mathbb{Z} \right\}$$

satisfies the property that $a^3 = 1$ for all $a \in G$, but G is not abelian. So, *something* must be going on. **Question:** How do we suitably generalise this result to *rings*?

Clearly $x^2 = 1$ cannot hold for all $x \in R$, because $0^2 = 1$ forces $R = \{0\}$. What happens if we exclude 0?

Clearly $x^2 = 1$ cannot hold for all $x \in R$, because $0^2 = 1$ forces $R = \{0\}$. What happens if we exclude 0?

Proposition

Let R be a ring in which $x^2 = 1$ for all $x \neq 0$. Then $R \cong \mathbb{F}_2$ or $R \cong \mathbb{F}_3$.

Clearly $x^2 = 1$ cannot hold for all $x \in R$, because $0^2 = 1$ forces $R = \{0\}$. What happens if we exclude 0?

Proposition

Let R be a ring in which $x^2 = 1$ for all $x \neq 0$. Then $R \cong \mathbb{F}_2$ or $R \cong \mathbb{F}_3$.

Proof: We split two cases.

• Suppose that 2 = 0 and let $x \in R \setminus \{0, 1\}$. Then

$$1 = (x + 1)^2 = x^2 + 2x + 1 = 1 + 0 + 1 = 0,$$

a contradiction. Hence $R = \mathbb{F}_2$.

Clearly $x^2 = 1$ cannot hold for all $x \in R$, because $0^2 = 1$ forces $R = \{0\}$. What happens if we exclude 0?

Proposition

Let R be a ring in which $x^2 = 1$ for all $x \neq 0$. Then $R \cong \mathbb{F}_2$ or $R \cong \mathbb{F}_3$.

Proof: We split two cases.

• Suppose that 2 = 0 and let $x \in R \setminus \{0, 1\}$. Then

$$1 = (x + 1)^2 = x^2 + 2x + 1 = 1 + 0 + 1 = 0,$$

a contradiction. Hence $R = \mathbb{F}_2$.

• Suppose that $2 \neq 0$. Then $2^2 = 1$, so 3 = 0. Let $x \in R \setminus \{0, 1, 2\}$. Then

$$1 = (x+1)^2 = 1 - x + 1,$$

so x = 1; a contradiction. Hence $R = \mathbb{F}_3$.

The proper generalisation

So $x^2 = 1$ for all $x \neq 0$ is too much. Sadly, only considering $x \in R^{\times}$ is not enough, for consider

$$\mathsf{R} = \left\{ \begin{pmatrix} \mathsf{x} & \mathsf{y} \\ 0 & z \end{pmatrix} \middle| \mathsf{x}, \mathsf{y}, z \in \mathbb{Z}/2\mathbb{Z} \right\}.$$

The two units square to 1, but the ring is not commutative.

The proper generalisation

So $x^2 = 1$ for all $x \neq 0$ is too much. Sadly, only considering $x \in R^{\times}$ is not enough, for consider

$$\mathsf{R} = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \middle| x, y, z \in \mathbb{Z}/2\mathbb{Z} \right\}.$$

The two units square to 1, but the ring is not commutative. The right way to generalise the result on groups is as follows:

Proposition

Suppose $x^2 = x$ holds for all $x \in R$. Then R is commutative.

Proof: First observe that $1 = (-1)^2 = -1$. Hence

$$x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y.$$

We see that xy + yx = 0, and so xy = -yx = yx. These rings are called *boolean*.

Mike Daas

It generalises further

There are again two reasons why this result is interesting:

- We again used the given not just once, but *four* times.
- The result *does* in fact generalise!

It generalises further

There are again two reasons why this result is interesting:

- We again used the given not just once, but *four* times.
- The result *does* in fact generalise!

Proposition

Suppose $x^3 = x$ holds for all $x \in R$. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on the following lemma.

It generalises further

There are again two reasons why this result is interesting:

- We again used the given not just once, but *four* times.
- The result *does* in fact generalise!

Proposition

Suppose $x^3 = x$ holds for all $x \in R$. Then R is commutative.

There are multiple ways to prove this, but the shortest ones all rely on the following lemma.

Lemma

Let R be a reduced ring and $e \in R$ an idempotent. Then e is central.

Proof: Let $x \in R$ be arbitrary. Then observe that

$$(exe - ex)^2 = exexe - exex - exexe + exex = 0.$$

Hence by assumption, exe = ex. Completely analogously, ex = exe = xe, showing that *e* is indeed central.

Jacobson's Commutativity Theorem

Proving the proposition

Proposition

Suppose $x^3 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Clearly R is reduced, and $x^4 = x^2$, so that all squares in R must be central by the lemma. We now compute that:

Proving the proposition

Proposition

Suppose $x^3 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Clearly R is reduced, and $x^4 = x^2$, so that all squares in R must be central by the lemma. We now compute that:

$$xy = (xy)^{3}$$
$$= x(yx)^{2}y$$
$$= yxyx^{2}y$$
$$= yx^{3}y^{2}$$
$$= y^{3}x$$
$$= yx.$$

п

Proving the proposition

Proposition

Suppose $x^3 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Clearly R is reduced, and $x^4 = x^2$, so that all squares in R must be central by the lemma. We now compute that:

$$xy = (xy)^{3}$$
$$= x(yx)^{2}y$$
$$= yxyx^{2}y$$
$$= yx^{3}y^{2}$$
$$= y^{3}x$$
$$= yx.$$

What about even higher exponents?

Mike Daas
Another explicit example

Proposition

Suppose $x^4 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Again we have that $1 = (-1)^4 = -1$. We then compute that

$$(x^{2} + x)^{2} = x^{4} + 2x^{3} + x^{2} = x^{2} + x.$$

Hence $x^2 + x$ is an idempotent in the reduced ring R, which is thus central by the lemma.

Another explicit example

Proposition

Suppose $x^4 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Again we have that $1 = (-1)^4 = -1$. We then compute that

$$(x^{2} + x)^{2} = x^{4} + 2x^{3} + x^{2} = x^{2} + x.$$

Hence $x^2 + x$ is an idempotent in the reduced ring R, which is thus central by the lemma. Hence also

$$(x+y)^2 + (x+y) = (x^2+x) + xy + yx + (y^2+y)$$

is central, and as such, xy + yx must be central for all $x, y \in R$.

Another explicit example

Proposition

Suppose $x^4 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Again we have that $1 = (-1)^4 = -1$. We then compute that

$$(x^{2} + x)^{2} = x^{4} + 2x^{3} + x^{2} = x^{2} + x.$$

Hence $x^2 + x$ is an idempotent in the reduced ring R, which is thus central by the lemma. Hence also

$$(x+y)^2 + (x+y) = (x^2 + x) + xy + yx + (y^2 + y)$$

is central, and as such, xy + yx must be central for all $x, y \in R$. In particular, we find that

$$xyx + yx^2 = (xy + yx)x = x(xy + yx) = x^2y + xyx,$$

and hence $yx^2 = x^2y$ for all $x, y \in R$. In other words, also x^2 is central, and thus so is $x = (x^2 + x) - x^2$.

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Note that $(x^4)^2 = x^5 \cdot x^3 = x^4$, so x^4 is an idempotent in the reduced ring R, hence central. We see that

$$\begin{split} (x+1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 + 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}); \\ (x-1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 - 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}). \end{split}$$

Subtracting these two results gives that $12x^2 \in Z(\mathbb{R})$ for all $x \in \mathbb{R}$.

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Note that $(x^4)^2 = x^5 \cdot x^3 = x^4$, so x^4 is an idempotent in the reduced ring R, hence central. We see that

$$\begin{split} (x+1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 + 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}); \\ (x-1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 - 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}). \end{split}$$

Subtracting these two results gives that $12x^2 \in Z(R)$ for all $x \in R$. Hence also

$$12(x+1)^2\in \mathsf{Z}(\mathsf{R})\implies 24x\in\mathsf{Z}(\mathsf{R}).$$

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Note that $(x^4)^2 = x^5 \cdot x^3 = x^4$, so x^4 is an idempotent in the reduced ring R, hence central. We see that

$$\begin{split} (x+1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 + 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}); \\ (x-1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 - 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}). \end{split}$$

Subtracting these two results gives that $12x^2 \in Z(R)$ for all $x \in R$. Hence also

$$12(x+1)^2\in \mathsf{Z}(\mathsf{R})\implies 24x\in\mathsf{Z}(\mathsf{R}).$$

But $2^5 = 2$ implies 30 = 0 so also $6x \in Z(R)$.

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof: Note that $(x^4)^2 = x^5 \cdot x^3 = x^4$, so x^4 is an idempotent in the reduced ring R, hence central. We see that

$$\begin{split} (x+1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 + 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}); \\ (x-1)^4 \in \mathsf{Z}(\mathsf{R}) \implies 4x^3 - 6x^2 + 4x \in \mathsf{Z}(\mathsf{R}). \end{split}$$

Subtracting these two results gives that $12x^2 \in Z(R)$ for all $x \in R$. Hence also

$$12(x+1)^2\in \mathsf{Z}(\mathsf{R})\implies 24x\in\mathsf{Z}(\mathsf{R}).$$

But $2^5 = 2$ implies 30 = 0 so also $6x \in Z(R)$. So

$$4x^3+6x^2+4x\in \mathsf{Z}(\mathsf{R})\implies 2x^3+2x\in \mathsf{Z}(\mathsf{R}).$$

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof (cont.): Now consider

$$\begin{split} (x+1)^5 &= x+1 \implies 10x^3+10x^2+5x \in \mathsf{Z}(\mathsf{R});\\ (x-1)^5 &= x-1 \implies 10x^3-10x^2+5x \in \mathsf{Z}(\mathsf{R}). \end{split}$$

Adding these two results gives that $20x^3 + 10x \in Z(R)$ for all $x \in R$. Hence also $2x^3 + 4x \in Z(R)$.

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof (cont.): Now consider

$$\begin{split} (x+1)^5 &= x+1 \implies 10x^3+10x^2+5x \in \mathsf{Z}(\mathsf{R});\\ (x-1)^5 &= x-1 \implies 10x^3-10x^2+5x \in \mathsf{Z}(\mathsf{R}). \end{split}$$

Adding these two results gives that $20x^3 + 10x \in Z(R)$ for all $x \in R$. Hence also $2x^3 + 4x \in Z(R)$. Recall that $2x^3 + 2x \in Z(R)$ for all $x \in R$. Combining this, we obtain $2x \in Z(R)$ for all $x \in R$.

Proposition

Suppose $x^5 = x$ holds for all $x \in R$. Then R is commutative.

Proof (cont.): Now consider

$$\begin{aligned} (x+1)^5 &= x+1 \implies 10x^3+10x^2+5x \in \mathsf{Z}(\mathsf{R});\\ (x-1)^5 &= x-1 \implies 10x^3-10x^2+5x \in \mathsf{Z}(\mathsf{R}). \end{aligned}$$

Adding these two results gives that $20x^3 + 10x \in Z(R)$ for all $x \in R$. Hence also $2x^3 + 4x \in Z(R)$. Recall that $2x^3 + 2x \in Z(R)$ for all $x \in R$. Combining this, we obtain $2x \in Z(R)$ for all $x \in R$. Hence

$$10x^3 + 10x^2 + 5x \in \mathsf{Z}(\mathsf{R}) \implies 5x \in \mathsf{Z}(\mathsf{R}).$$

Hence also $x \in Z(R)$, completing the proof.

Mike Daas

Proposition

Suppose $x^6 = x$ holds for all $x \in R$. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out that $(x + 1)^6 = x + 1$ gives that

$$x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2} + 6x + 1 = x + 1.$$

Proposition

Suppose $x^6 = x$ holds for all $x \in R$. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out that $(x + 1)^6 = x + 1$ gives that

$$x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2} + 6x + 1 = x + 1.$$

In other words, $x^4 = x^2$ for all $x \in R$.

Proposition

Suppose $x^6 = x$ holds for all $x \in R$. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out that $(x + 1)^6 = x + 1$ gives that

$$x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2} + 6x + 1 = x + 1.$$

In other words, $x^4 = x^2$ for all $x \in R$. Hence

$$x = x^6 = x^4 \cdot x^2 = x^2 \cdot x^2 = x^4 = x^2.$$

Hence R is boolean and in particular commutative.

Proposition

Suppose $x^6 = x$ holds for all $x \in R$. Then R is commutative.

Proof: We start by remarking that once again, 2 = 0. Now, writing out that $(x + 1)^6 = x + 1$ gives that

$$x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2} + 6x + 1 = x + 1.$$

In other words, $x^4 = x^2$ for all $x \in R$. Hence

$$x = x^6 = x^4 \cdot x^2 = x^2 \cdot x^2 = x^4 = x^2.$$

Hence R is boolean and in particular commutative.

ObservationSuppose $x^6 = x$ holds for all $x \in R$. Then even $x^2 = x$ for all $x \in R$.

Question 1

When are rings in which $x^n = x$ for all x secretly boolean?

Question 1

When are rings in which $x^n = x$ for all x secretly boolean?

Question 2

What are all relations we can deduce from 1 variable for even n?

Question 1

When are rings in which $x^n = x$ for all x secretly boolean?

Question 2

What are all relations we can deduce from 1 variable for even n?

For any $x \in R$ and $f \in \mathbb{F}_2[X]$, we have that $f(x)^n = f(x)$. So we define

 $I_n \subset \mathbb{F}_2[X] \quad \text{generated by} \quad f(X)^n - f(X) \quad \text{for all} \quad f \in \mathbb{F}_2[X].$

Question 1

When are rings in which $x^n = x$ for all x secretly boolean?

Question 2

What are all relations we can deduce from 1 variable for even n?

For any $x \in R$ and $f \in \mathbb{F}_2[X]$, we have that $f(x)^n = f(x)$. So we define

 $I_n \subset \mathbb{F}_2[X] \quad \text{generated by} \quad f(X)^n - f(X) \quad \text{for all} \quad f \in \mathbb{F}_2[X].$

Proposition

The ring $\mathbb{F}_2[X]$ is a principal ideal domain.

Question 1

When are rings in which $x^n = x$ for all x secretly boolean?

Question 2

What are all relations we can deduce from 1 variable for even n?

For any $x \in R$ and $f \in \mathbb{F}_2[X]$, we have that $f(x)^n = f(x)$. So we define

 $I_n \subset \mathbb{F}_2[X] \quad \text{generated by} \quad f(X)^n - f(X) \quad \text{for all} \quad f \in \mathbb{F}_2[X].$

Proposition

The ring $\mathbb{F}_2[X]$ is a principal ideal domain.

Corollary

There exists some $g_n \in \mathbb{F}_2[X]$ such that $I_n = (g_n)$.

Question 1

When are rings in which $x^n = x$ for all x secretly boolean?

Question 2

What are all relations we can deduce from 1 variable for even n?

For any $x \in R$ and $f \in \mathbb{F}_2[X]$, we have that $f(x)^n = f(x)$. So we define

 $I_n \subset \mathbb{F}_2[X] \quad \text{generated by} \quad f(X)^n - f(X) \quad \text{for all} \quad f \in \mathbb{F}_2[X].$

Proposition

The ring $\mathbb{F}_2[X]$ is a principal ideal domain.

Corollary

There exists some $g_n \in \mathbb{F}_2[X]$ such that $I_n = (g_n)$.

Then g_n is the *minimal relation*. Can we determine it?

Mike Daas

Jacobson's Commutativity Theorem

$$(x+1)^6-(x+1)\in I_6\implies x^4+x^2\in I_6.$$

$$(x+1)^6-(x+1)\in I_6\implies x^4+x^2\in I_6.$$

Then also

$$x^2 \cdot (x^4 + x^2) = x^6 + x^4 \in I_6.$$

$$(x+1)^6-(x+1)\in I_6\implies x^4+x^2\in I_6.$$

Then also

$$x^2 \cdot (x^4 + x^2) = x^6 + x^4 \in I_6.$$

By definition, we also have

$$x^6 + x \in I_6.$$

16/22

$$(x+1)^6-(x+1)\in I_6\implies x^4+x^2\in I_6.$$

Then also

$$x^2 \cdot (x^4 + x^2) = x^6 + x^4 \in I_6.$$

By definition, we also have

$$x^6 + x \in I_6.$$

But then also

$$(x+x^6)+(x^6+x^4)+(x^4+x^2)=x^2+x\in I_6.$$

This means that $I_6 = (x^2 + x)$. Can we do this in general?

The main result

Theorem

Define the set
$$S_n = \{m \in \mathbb{N} : 2^m - 1 \mid n - 1\}$$
. Then we have

$$g_n = lcm \{X^{2^m} - X \mid m \in S_n\}.$$

The main result

Theorem

Define the set
$$S_n = \{m \in \mathbb{N} : 2^m - 1 \mid n - 1\}$$
. Then we have

$$g_n = lcm \{X^{2^m} - X \mid m \in S_n\}.$$

• If
$$n = 2$$
 then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 4$ then $S_n = \{1, 2\}$ so $g_n = X^4 - X$.
• If $n = 6$ then $S_n = \{1, 3\}$ so $g_n = X^2 - X$.
• If $n = 8$ then $S_n = \{1, 3\}$ so $g_n = X^8 - X$.
• If $n = 10$ then $S_n = \{1, 2\}$ so $g_n = X^4 - X$.
• If $n = 12$ then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 14$ then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 16$ then $S_n = \{1, 2, 4\}$ so $g_n = X^{16} - X$.
• If $n = 18$ then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 20$ then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 20$ then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 21$ then $S_n = \{1\}$ so $g_n = X^2 - X$.
• If $n = 24$ then $S_n = \{1\}$ so $g_n = X^2 - X$.

Theorem

Define the set
$$S_n = \{m \in \mathbb{N} : 2^m - 1 \mid n - 1\}$$
. Then we have

$$g_n = lcm \{X^{2^m} - X \mid m \in S_n\}.$$

Proof: Two (squarefree) polynomials over \mathbb{F}_2 are equal if and only if they have the same zeroes in $\overline{\mathbb{F}}_2$.

Theorem

Define the set
$$S_n = \{m \in \mathbb{N} : 2^m - 1 \mid n - 1\}$$
. Then we have

$$g_n = lcm \{X^{2^m} - X \mid m \in S_n\}.$$

Proof: Two (squarefree) polynomials over \mathbb{F}_2 are equal if and only if they have the same zeroes in $\overline{\mathbb{F}}_2$.

• Zeroes of the RHS: if and only if it is a zero of $X^{2^m} - X$ for some $m \in S_n$. Equivalently, if and only if $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$.

Theorem

Define the set
$$S_n = \{m \in \mathbb{N} : 2^m - 1 \mid n - 1\}$$
. Then we have

$$g_n = lcm \{X^{2^m} - X \mid m \in S_n\}.$$

Proof: Two (squarefree) polynomials over \mathbb{F}_2 are equal if and only if they have the same zeroes in $\overline{\mathbb{F}}_2$.

- Zeroes of the RHS: if and only if it is a zero of $X^{2^m} X$ for some $m \in S_n$. Equivalently, if and only if $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$.
- Zeroes of the LHS: if and only if it is a zero of all $h^n h$ for $h \in \mathbb{F}_2[X]$. We have thus reduced to showing that for $\alpha \in \overline{\mathbb{F}}_2$,

 $\mathfrak{h}(\alpha)^{\mathfrak{n}} = \mathfrak{h}(\alpha) \text{ for all } \mathfrak{h} \in \mathbb{F}_2[X] \iff \alpha \in \mathbb{F}_{2^{\mathfrak{m}}} \text{ for some } \mathfrak{m} \in S_{\mathfrak{n}}.$

• Let $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$. If $h(\alpha) = 0$, we are done.

• Let $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$. If $h(\alpha) = 0$, we are done. If $h(\alpha) \in \mathbb{F}_{2^m}^{\times}$, then $h(\alpha)^{2^m-1} = 1$. By definition of m, raising this to some power yields that $h(\alpha)^{n-1} = 1$, as desired.

- Let $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$. If $h(\alpha) = 0$, we are done. If $h(\alpha) \in \mathbb{F}_{2^m}^{\times}$, then $h(\alpha)^{2^m-1} = 1$. By definition of m, raising this to some power yields that $h(\alpha)^{n-1} = 1$, as desired.
- Now let $\alpha \in \overline{\mathbb{F}}_2$ and suppose that $h(\alpha)^n = h(\alpha)$ for all $h \in \mathbb{F}_2[X]$. If we write $\mathbb{F}_2[\alpha] = \mathbb{F}_{2^m}$ for some $m \in \mathbb{N}$, we must show that $m \in S_n$.

- Let $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$. If $h(\alpha) = 0$, we are done. If $h(\alpha) \in \mathbb{F}_{2^m}^{\times}$, then $h(\alpha)^{2^m-1} = 1$. By definition of m, raising this to some power yields that $h(\alpha)^{n-1} = 1$, as desired.
- Now let $\alpha \in \overline{\mathbb{F}}_2$ and suppose that $h(\alpha)^n = h(\alpha)$ for all $h \in \mathbb{F}_2[X]$. If we write $\mathbb{F}_2[\alpha] = \mathbb{F}_{2^m}$ for some $m \in \mathbb{N}$, we must show that $m \in S_n$. Observe that

$$\{h(\alpha) \mid h \in \mathbb{F}_2[X]\} = \mathbb{F}_2[\alpha] = \mathbb{F}_{2^m}.$$

- Let $\alpha \in \mathbb{F}_{2^m}$ for some $m \in S_n$. If $h(\alpha) = 0$, we are done. If $h(\alpha) \in \mathbb{F}_{2^m}^{\times}$, then $h(\alpha)^{2^m-1} = 1$. By definition of m, raising this to some power yields that $h(\alpha)^{n-1} = 1$, as desired.
- Now let $\alpha \in \overline{\mathbb{F}}_2$ and suppose that $h(\alpha)^n = h(\alpha)$ for all $h \in \mathbb{F}_2[X]$. If we write $\mathbb{F}_2[\alpha] = \mathbb{F}_{2^m}$ for some $m \in \mathbb{N}$, we must show that $m \in S_n$. Observe that

$$\{h(\alpha) \mid h \in \mathbb{F}_2[X]\} = \mathbb{F}_2[\alpha] = \mathbb{F}_{2^m}.$$

In other words, $\beta^n = \beta$ for all $\beta \in \mathbb{F}_{2^m}$. Since $\mathbb{F}_{2^m}^{\times}$ is cyclic of order $2^m - 1$, we may choose β to be a generator. It then follows immediately that $2^m - 1 | n - 1$, showing $m \in S_n$.

How many cases can we solve?

Question

When are rings in which $x^n = x$ for all x secretly boolean?
Question

When are rings in which $x^n = x$ for all x secretly boolean?

Answer

Precisely when n - 1 is not divisible by any $2^m - 1$ for $m \ge 2$.

Question

When are rings in which $x^n = x$ for all x secretly boolean?

Answer

Precisely when n - 1 is not divisible by any $2^m - 1$ for $m \ge 2$.

Question

How many rings in which $x^n = x$ for all x are secretly boolean?

Question

When are rings in which $x^n = x$ for all x secretly boolean?

Answer

Precisely when n - 1 is not divisible by any $2^m - 1$ for $m \ge 2$.

Question

How many rings in which $x^n = x$ for all x are secretly boolean?

Lemma

Let
$$m, n \in \mathbb{N}$$
. Then $gcd(2^n - 1, 2^m - 1) = 2^{gcd(m,n)} - 1$.

Question

When are rings in which $x^n = x$ for all x secretly boolean?

Answer

Precisely when n - 1 is not divisible by any $2^m - 1$ for $m \ge 2$.

Question

How many rings in which $x^n = x$ for all x are secretly boolean?

Lemma

- Let $m, n \in \mathbb{N}$. Then $gcd(2^n 1, 2^m 1) = 2^{gcd(m,n)} 1$.
 - n 1 is not divisible by any $2^m 1$ as soon as n 1 is not divisible by any $2^p 1$ for p prime. *Example:* not divisible by $2^3 1 = 7$ implies also not divisible by $2^6 1 = 63$.

20/22

Question

When are rings in which $x^n = x$ for all x secretly boolean?

Answer

Precisely when n - 1 is not divisible by any $2^m - 1$ for $m \ge 2$.

Question

How many rings in which $x^n = x$ for all x are secretly boolean?

Lemma

- Let $m, n \in \mathbb{N}$. Then $gcd(2^n 1, 2^m 1) = 2^{gcd(m,n)} 1$.
 - n 1 is not divisible by any $2^m 1$ as soon as n 1 is not divisible by any $2^p 1$ for p prime. *Example:* not divisible by $2^3 1 = 7$ implies also not divisible by $2^6 1 = 63$.
 - For primes $p \neq q$, the numbers $2^p 1$ and $2^q 1$ are coprime.

Densities and probabilities

Theorem

The density of even n for which any ring R in which $x^n = x$ for all $x \in R$ is necessarily boolean is given by

$$\alpha := \prod_{p \text{ prime}} \frac{2^p - 2}{2^p - 1} \approx 0.54830.$$

Densities and probabilities

Theorem

The density of even n for which any ring R in which $x^n = x$ for all $x \in R$ is necessarily boolean is given by

$$x := \prod_{p \text{ prime}} \frac{2^p - 2}{2^p - 1} \approx 0.54830.$$

Proof: The probability of *not* being divisible by $2^p - 1$ for a prime p is equal to

$$1 - \frac{1}{2^p - 1} = \frac{2^p - 2}{2^p - 1}.$$

Densities and probabilities

Theorem

The density of even n for which any ring R in which $x^n = x$ for all $x \in R$ is necessarily boolean is given by

$$x := \prod_{p \text{ prime}} \frac{2^p - 2}{2^p - 1} \approx 0.54830.$$

Proof: The probability of *not* being divisible by $2^p - 1$ for a prime p is equal to

$$1 - \frac{1}{2^p - 1} = \frac{2^p - 2}{2^p - 1}.$$

Since all these numbers are coprime, these events are independent.

Corollary

Using just the techniques from this presentation, we can prove commutativity for a density of $7\alpha/5 \approx 0.76762$ of even exponents.

Mike Daas

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

Question: is it true in general?

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

Question: is it true in general? Answer: Much more is true!

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any $x \in R$ there exists some integer $n(x) \ge 2$ such that $x^{n(x)} = x$. Then R is commutative.

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any $x \in R$ there exists some integer $n(x) \ge 2$ such that $x^{n(x)} = x$. Then R is commutative.

So why look for these kinds of proofs? Because it's fun!

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any $x \in R$ there exists some integer $n(x) \ge 2$ such that $x^{n(x)} = x$. Then R is commutative.

So why look for these kinds of proofs? Because it's fun! (to me)

The following table summarises for which values of n, we can prove that any ring satisfying $x^n = x$ must be commutative:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Comm?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	?	?	\checkmark	?	\checkmark	?	\checkmark	?

For even exponents our results are even better:

n	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Comm?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark

Question: is it true in general? Answer: Much more is true!

Theorem (Jacobson)

Let R be a ring in which for any $x \in R$ there exists some integer $n(x) \ge 2$ such that $x^{n(x)} = x$. Then R is commutative.

So why look for these kinds of proofs? Because it's fun! (to me)

Thanks for listening!